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Who am I?

Started in UvA in January 2021, as an Assistant professor in

Theoretical Physics and in Informatics

I develop new theoretical and computational methods

to study complex systems.

New tools to analyze high-dimensional data
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How I ended up here...

Amsterdam Studied in France:

The Hague Netherlands
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Studied the statistical properties

of the population of neutrons inside a nuclear reactor



How I ended up here...

PhD in Statistical Physics:

fission

Studied statistical properties

of the population of neutrons in a nuclear reactor

Postdoc in Italy (2 years):

The Abdus Salam
) International Centre
(CTP for Theoretical Physics
More Statistical Physics!

Data analysis
control theory, reinforcement learning

Multi-agent systems, game theory
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What 1S Blg Data?

Examples: ) I.
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What is Big Data?

Examples: 9@®%@ Properties of Big Data?
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What do we want to do with this data?
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Statistical Mechanics of the US Supreme Court

Edward D. Lee &, Chase P. Broedersz & William Bialek

Journal of Statistical Physics 160, 275-301(2015) | Cite this article
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895 votes

US Supreme Court
9justices, 895 votes
Conservative (1) or Liberal (0)

Noisy Data
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What do we want to do with this data?

Statistical Mechanics of the US Supreme Court

Edward D. Lee &, Chase P. Broedersz & William Bialek

Journal of Statistical Physics 160, 275-301(2015) | Cite this article

US Supreme Court
9justices, 895 votes
Conservative (1) or Liberal (0)

Patterns:

e Certain states can be more frequent than others
e Some justices are more likely to vote C or L
e Some justices are more likely to vote similarly

Ete= =

e Extract from the noisy data which patterns are most redundant

Extract useful “Information”
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Neuronal data

Binary data

—— Medical/psychological data
(symptoms + disease)

Behavioral data
Fedcid

Not much is known on

how to extract the relevant patterns hidden within the data



[sn’t this already solved by AI?
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[sn’t this already solved by AI?
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[sn’t this already solved by AI?
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Can recognise “2” from “4”
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Must be identifying patterns that distinguish 2 from 4

We don’t understand how it is doing it precisely

But:

We don’t know how to extract these patterns



What is “Information”?

How do we quantity
how much “Information” there i1s in a dataset?

Shannon Entropy



How to quantity “Information”?

P(T)=0.5

P(H)=0.5




How to quantity “Information”?

P(T)=0.5

P(H)=0.5




What is “Information”?

P(T)=0.5

P(H)=0.5

1 => “Head”
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What is “Information”?

P(T)=0.5

P(H)=0.5
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What is “Information”?

P(T)=0.5

P(H)=0.5

(¢
>




What is “Information”?

P(T)=0.5

P(H)=0.5

For each outcome,

Bob sent 1 bit of information




What is “Information”?

P(R)=0.25 ]
P(B)=0.25 ]
P(G)=0.25 )
P(Y)=0.25
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What is “Information”?

P(R)=0.25 ]
P(B)=0.25 ) How many bits do we need
P(G)=0.25 ) to easily encode 4 events?
P(Y)=0.25

-

"Blue”
Bob @




What is “Information”?

Bob

P(R)=0.25 B — 00
P(B)=0.25 B — 01
P(G)=0.25 B — 10
P(Y)=0.25 — 11

2 bits

—» 22 =4 events

01 => “Blue”
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What is “Information”?

P(R)=0.25 | — 00
P(B)=0.25 B — 01
P(G)=0.25 B — 10
P(Y)=0.25 — 11
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What is “Information”?

P(R)=0.25 | — 00
P(B)=0.25 B — 01
P(G)=0.25 B — 10
P(Y)=0.25 — 11
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What is “Information”?

P(R)=0.25 | — 00
P(B)=0.25 B — 01
P(G)=0.25 B — 10
P(Y)=0.25 — 11

-- 100000011101 ‘
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What is “Information”?

P(R)=0.25 | — 00
P(B)=0.25 B — 01
P(G)=0.25 B — 10
P(Y)=0.25 — 11

For each outcome,

Bob sent 2 bits of information

-- 100000011101 ‘
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What is “Information”?

P(R)=0.25 | — 00
P(B)=0.25 B — 01
P(G)=0.25 B — 10
P(Y)=0.25 — 11

K=4 equiprobably events

2 bits —»  Optimally encodes 22 =4 equiprobable events

N bits —> Optimally encodes K =2N equiprobable events

2N=K = Nlog(2)=1log (K) » N =log (K) / log(2)=1log, (K)

-

With K equiprobable events, we need at least N =log, (K) bits

to encode which one has happened.

What if the events are not equiprobable?



What is “Information”?

Given a set of observations, the Information about an observation:

Minimum number of bits needed to encode that observation

P(R)=0.25 B — 00
P(B)=0.25 B — 01
P(G)=0.25 B — 10
P(Y)=0.25 — 11

K=4 equiprobably events

2 bits —»  Optimally encodes 22 =4 equiprobable events

N bits —> Optimally encodes K =2N equiprobable events

2N=K = Nlog(2)=1og (K) -+ N =1log (K) /log(2)=1log> (K)

~
With K equiprobable events, we need at least N =log; (K) bits

to encode which one has happened.

What if the events are not equiprobable?



Information = Surprise!
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Information = Surprise!

‘ No surprise




Information = Surprise!
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‘ No surprise

‘ Not so surprising

© Quite surprising, not so expected



Information = Surprise!
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The lower the probability

The more surprise

I(s) = -logy [p(s)]

The amount of information obtained

by observation an event depends on how surprised I am

about that observation.



Information = Surprise!

(‘ O ® O ® A ® No surprise
O O No information about the system
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—> No idea about what will come out!



Information = Surprise!

P(T)=0.2

P(H)=0.8 Head ( ) — 1

For each outcome,
Bob sent 1 bit

But only needs:

0.2 x 2.32. bits + 0.8 x 0.32 bits = 0.72 bits
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Modeling Data with Statstcal
Physics

How do we
extract important information?



9 justices
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How do we model data?
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Statistical Mechanics of the US Supreme Court

Edward D. Lee &, Chase P. Broedersz & William Bialek

Journal of Statistical Physics 160, 275-301(2015) | Cite this article

9justices, 895 votes

result of a vote Conservative (+1) or Liberal (0)
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895 votes

2nd Rehnquist Court
(1994-2005)



9 justices
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How do we model data?
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Statistical Mechanics of the US Supreme Court

Edward D. Lee &, Chase P. Broedersz & William Bialek

Journal of Statistical Physics 160, 275-301(2015) | Cite this article

9justices, 895 votes
result of a vote Conservative (+1) or Liberal (0)
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maybe: judges are making their own decision



9 justices
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How do we model data?

Statistical Mechanics of the US Supreme Court

Edward D. Lee &, Chase P. Broedersz & William Bialek

Journal of Statistical Physics 160, 275-301(2015) | Cite this article

9justices, 895 votes

resuli ofavote Conservative (+1) or Liberal (0) .4 rehnquist Court
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895 votes

maybe: judges they discuss and decided with each others



Statistical inference for binary data

US Supreme Court ;
9 justices, 895 votes ISlng model

Conservative (+1) or Liberal (-1)
1
P(s|g) = Z(0) exp (Z hisi + Z Jij Sisj)

pair(i,j)

2nd Rehnquist Court

1994-2005
: : 8:(817'”789)

Assumptions:

» Vote of each justice is a binary random variable s; € {+1, -1}

 Each vote is independently sampled from an
underlying probability distribution: the Ising model

[Lee, Broedersz, Bialek] Statistical Mechanics of the US Supreme Court



Statistical inference for binary data

US Supreme Court

9 justices, 895 votes ISing model
Conservative (+1) or Liberal (-1)
1
P(s|g) = exp (Z hisi + Z Jij Sisj)
Z (9) - T — A
pair(i,j)
2nd Rehnquist Court |
local fields

(1994-2005)
models an External drive to vote

conservative or liberal

couplings
Assumptions: models a Tendency of i and j to vote

similarly or oppositely
* Vote of each justice is a binary random variable

P t :h’...7h7J7...’J
* Each vote is independently sampled from an arameters g = (71 9, J12 89)

underlying probability distribution: the Ising model

[Lee, Broedersz, Bialek] Statistical Mechanics of the US Supreme Court



[Lee, Broedersz, Bialek] Statistical Mechanics of the US Supreme Court

Statistical inference for binary data

US Supreme Court ;
9 justices, 895 votes ISlng model

Conservative (+1) or Liberal (-1)
1
P(s|g) = Z(0) exp (Z hisi + Z Jij Sisj)

pair(i,j)

2nd Rehnquist Court

(1994-2005) :
Fit the parameters:

0.30F

0.25¢
~0.20
Can it predict other types of patterns in the data? = 0.15
0.10f
0.05f
0.00

Ex. High order patterns

Finds that: judges are NOT making decisions INDEPENDENTLY from each other!



[Lee, Broedersz, Bialek] Statistical Mechanics of the US Supreme Court

Statistical inference for binary data

US Supreme Court

9 justices, 895 votes ISlng model
Conservative (+1) or Liberal (-1)

1
P(S‘g) = Z(g) exXp (ZhZ S; + Z Jij S/L'Sj)
i T pair(i,7) T

Fit the parameters:

2nd Rehnquist Court
(1994-2005)

Very complex models: lots of parameters

Penalise for too many parameters

More liberal More conservative

More than 80% of information




Conclusion and future

> Neurons are not firing independently

> Insufficiency of pairwise interactions
to model large populations of neurons

Searching for Collective Behavior in a Large Network
of Sensory Neurons

Tkacik, Marre, Amodei, Schneidman, Bialek, Berry

PLoS Comp Bio 2014

> We can record 1000s of neurons



Conclusion and future

> Neurons are not firing independently

> Insufficiency of pairwise interactions
to model large populations of neurons

Searching for Collective Behavior in a Large Network
of Sensory Neurons

Tkacik, Marre, Amodei, Schneidman, Bialek, Berry

PLoS Comp Bio 2014

> We can record 1000s of neurons Detecting
communities of neurons

o _>.0.

Renormalisation




