

Understanding Big Data with Statistical Physics

Viva Fisica - January 27, 2023
Clélia de Mulatier

Who am I?

Started in UvA in January 2021, as an Assistant professor in Theoretical Physics and in Informatics

I develop new theoretical and computational methods to study complex systems.

New tools to analyze high-dimensional data

How I ended up here...

Studied in France:

- 2-year BSc in Math/Physics, minor in Informatics
— 2-year BSc/MSc in Fundamental Physics (Paris)
- National Exam to become a Physics/Chemistry teacher in France
— 1-year Research MSc in "Physics of Complex Systems" (France-Italy)

PhD in Statistical Physics:

Studied the statistical properties
 of the population of neutrons inside a nuclear reactor

How I ended up here...

PhD in Statistical Physics:

Studied statistical properties of the population of neutrons in a nuclear reactor

Postdoc in Italy (2 years):

The Abdus Salam International Centre for Theoretical Physics

More Statistical Physics!
Data analysis
control theory, reinforcement learning
Multi-agent systems, game theory

Postdoc in the US (3 years):

Neuroscience
Animal behavior
Robotic, What is curiosity? (Honda)

Understanding Big Data with Statistical Physics

Viva Fisica - January 27, 2023
Clélia de Mulatier

What is Big Data?

What is Big Data?

Examples:

Conditions Symptoms diseases

1
1
Patient 2

Difficulty falling asleep

1
0
0

Waking up too early

1
0

Properties of Big Data?

Treatment Profile
0
0
0
0
0
0
$3 g /$ day
O
A

What is Big Data?

Examples:
Properties of Big Data?

- Lots of variables
- Lots of datapoints
- Variables can have different types

Conditions diseases

Chronic migraine

1
1
Patient 2
0

Symptoms

1
0

Waking up too early

1
0

Treatment Profile

$3 g /$ day

A

What do we want to do with this data?

2nd Rehnquist Court (1994-2005)

Statistical Mechanics of the US Supreme Court Edward D. Lee \boxminus, Chase P. Broedersz \& William Bialek

Journal of Statistical Physics 160, 275-301(2015) | Cite this article

US Supreme Court
 9 justices, 895 votes

Conservative (1) or Liberal (0)

Noisy Data

What do we want to do with this data?

- Extract from the noisy data which patterns are most redundant

Extract useful "Information"

Binary data

Not much is known on
how to extract the relevant patterns hidden within the data

Isn't this already solved by AI?

22222

Isn't this already solved by AI?

Isn't this already solved by AI?

Can recognise " 2 " from " 4 "
Must be identifying patterns that distinguish 2 from 4

But: We don't understand how it is doing it precisely
We don't know how to extract these patterns

What is "Information"?

How do we quantify how much "Information" there is in a dataset?

Shannon Entropy

How to quantify "Information"?

$\mathrm{P}(\mathrm{T})=0.5$	Tail
$\mathrm{P}(\mathrm{H})=0.5$	Head (B)

How to quantify "Information"?

$\mathrm{P}(\mathrm{T})=0.5 \quad$ Tail
$\mathrm{P}(\mathrm{H})=0.5$ Head

What is "Information"?

What is "Information"?

What is "Information"?

What is "Information"?

For each outcome,
Bob sent 1 bit of information

What is "Information"?

```
P(R)=0.25
P(B)=0.25
P(G)=0.25
P(Y)=0.25
```


What is "Information"?

$$
\begin{aligned}
& \mathrm{P}(\mathrm{R})=0.25 \\
& \mathrm{P}(\mathrm{~B})=0.25 \\
& \mathrm{P}(\mathrm{G})=0.25 \\
& \mathrm{P}(\mathrm{Y})=0.25
\end{aligned}
$$

How many bits do we need to easily encode 4 events?

What is "Information"?

$\mathrm{P}(\mathrm{R})=0.25$	$\longleftrightarrow \mathbf{0 0}$		
$\mathrm{P}(\mathrm{B})=0.25$	$\longleftrightarrow \mathbf{0 1}$	2 bits	
$\mathrm{P}(\mathrm{G})=0.25$	$\longleftrightarrow \mathbf{1 0}$	$\longrightarrow 2^{2}=4$ events	
$\mathrm{P}(\mathrm{Y})=0.25$	$\longleftrightarrow \mathbf{1 1}$		

What is "Information"?

$\mathbf{P}(\mathrm{R})=0.25$		$\longleftrightarrow \mathbf{0 0}$
$\mathrm{P}(\mathrm{B})=0.25$		$\longleftrightarrow \mathbf{0 1}$
$\mathrm{P}(\mathrm{G})=0.25$		$\longleftrightarrow \mathbf{1 0}$
$\mathrm{P}(\mathrm{Y})=0.25$		$\longleftrightarrow \mathbf{1 1}$

What is "Information"?

$\mathbf{P}(\mathrm{R})=0.25$		$\longleftrightarrow \mathbf{0 0}$
$\mathrm{P}(\mathrm{B})=0.25$		$\longleftrightarrow \mathbf{0 1}$
$\mathrm{P}(\mathrm{G})=0.25$		$\longleftrightarrow \mathbf{1 0}$
$\mathrm{P}(\mathrm{Y})=0.25$		$\longleftrightarrow \mathbf{1 1}$

What is "Information"?

$\mathbf{P}(\mathrm{R})=0.25$	$\longleftrightarrow \mathbf{0 0}$
$\mathrm{P}(\mathrm{B})=0.25$	
$\mathrm{P}(\mathrm{G})=0.25$	
$\mathrm{P}(\mathrm{Y})=0.25$	
	$\longleftrightarrow \mathbf{0 1 0}$
	$\longleftrightarrow \mathbf{1 1}$

What is "Information"?

$\mathrm{P}(\mathrm{R})=0.25$	$\longleftrightarrow \mathbf{0 0}$	
$\mathrm{P}(\mathrm{B})=0.25$		$\longleftrightarrow \mathbf{0 1}$
$\mathrm{P}(\mathrm{G})=0.25$		$\longleftrightarrow \mathbf{1 0}$
$\mathrm{P}(\mathrm{Y})=0.25$		$\longleftrightarrow \mathbf{1 1}$

For each outcome,
Bob sent 2 bits of information

What is "Information"?

$\mathrm{P}(\mathrm{R})=0.25$	\longleftrightarrow		
$\mathrm{P}(\mathrm{B})=0.25$	\longleftrightarrow	$\mathbf{0 1}$	
$\mathrm{P}(\mathrm{G})=0.25$		\longleftrightarrow	$\mathbf{1 0}$
$\mathrm{P}(\mathrm{Y})=0.25$		\longleftrightarrow	$\mathbf{1 1}$

2 bits \longrightarrow Optimally encodes $2^{2}=4$ equiprobable events
N bits \longrightarrow Optimally encodes $\mathrm{K}=2^{\mathrm{N}}$ equiprobable events

$$
2^{\mathrm{N}}=\mathrm{K} \rightarrow \mathrm{~N} \log (2)=\log (\mathrm{K}) \rightarrow \mathrm{N}=\log (\mathrm{K}) / \log (2)=\log _{2}(\mathrm{~K})
$$

With K equiprobable events, we need at least $N=\log _{2}(\mathbb{K})$ bits to encode which one has happened.

What if the events are not equiprobable?

What is "Information"?

Given a set of observations, the Information about an observation:
Minimum number of bits needed to encode that observation

$\mathrm{P}(\mathrm{R})=0.25$	$\longleftrightarrow 00$	
$\mathrm{P}(\mathrm{B})=0.25$	$\longleftrightarrow 01$	$K=4$ equiprobably events
$\mathrm{P}(\mathrm{G})=0.25$	$\longleftrightarrow 10$	
$\mathrm{P}(\mathrm{Y})=0.25$	$\longleftrightarrow 11$	

2 bits \longrightarrow Optimally encodes $2^{2}=4$ equiprobable events
N bits \longrightarrow Optimally encodes $\mathrm{K}=2^{\mathrm{N}}$ equiprobable events

$$
2^{\mathrm{N}}=\mathrm{K} \rightarrow \mathrm{~N} \log (2)=\log (\mathrm{K}) \rightarrow \mathrm{N}=\log (\mathrm{K}) / \log (2)=\log _{2}(\mathrm{~K})
$$

With K equiprobable events, we need at least $N=\log _{2}(\mathbb{K})$ bits to encode which one has happened.

Information \approx Surprise!

Information \approx Surprise!

No surprise

Information \approx Surprise!

- No surprise
- Not so surprisingQuite surprising, not so expected
$80 / 2$

- Surprise

5 /5 $\quad \rightarrow$ No idea about what will come out!

Information \approx Surprise!

10 / 0
The lower the probability
The more surprise

$$
\mathrm{I}(\mathrm{~s})=-\log _{2}[\mathrm{p}(\mathrm{~s})]
$$

The amount of information obtained
by observation an event depends on how surprised I am about that observation.

Information \approx Surprise!

10 / 0

$$
I(\bigcirc)=0
$$

$80 / 20$
Surprise

$$
I(\bigcirc)=-\log 2(0.5)=1 \text { bits }
$$

- Surprise
$5 \bigcirc / 5 \bigcirc$ No idea about what will come out!

Information \approx Surprise!

$$
\begin{array}{ll}
\mathrm{P}(\mathrm{~T})=0.2 & \text { Tail } \\
\mathrm{P}(\mathrm{H})=0.8 & \text { Head }
\end{array}
$$

For each outcome,
Bob sent 1 bit
But only needs:
0.2×2.32. bits $+0.8 \times 0.32$ bits $=\mathbf{0 . 7 2}$ bits

Modeling Data with Statistical Physics

How do we
extract important information?

How do we model data?

How do we model data?

How do we model data?

maybe: judges they discuss and decided with each others

Statistical inference for binary data

2nd Rehnquist Court (1994-2005)

US Supreme Court

9 justices, 895 votes
Conservative (+1) or Liberal (-1)

Ising model

Assumptions:

- Vote of each justice is a binary random variable $s_{i} \in\{+\mathbb{1},-\mathbb{1}\}$
- Each vote is independently sampled from an underlying probability distribution: the Ising model

Statistical inference for binary data

 (1994-2005)

US Supreme Court

9 justices, 895 votes
Conservative (+1) or Liberal (-1)

$$
\left.P(s \mid g)=\frac{1}{Z(g)} \exp \left(\sum_{i} h_{i} s_{i}+\sum_{\text {pair }(i, j)} J_{i j} s_{i} s_{j}\right)\right]
$$

- Vote of each justice is a binary random variable
- Each vote is independently sampled from an underlying probability distribution: the Ising model

Statistical inference for binary data

US Supreme Court

9 justices, 895 votes
Conservative (+1) or Liberal (-1)

2nd Rehnquist Court (1994-2005)

Ising model

$$
\left.P(s \mid g)=\frac{1}{Z(g)} \exp \left(\sum_{i} h_{i} s_{i}+\sum_{\text {pair }(i, j)} J_{i j} s_{i} s_{j}\right)\right)
$$

Fit the parameters:

Finds that: judges are NOT making decisions INDEPENDENTLY from each other!

Statistical inference for binary data

US Supreme Court

9 justices, 895 votes
Conservative (+1) or Liberal (-1)

2nd Rehnquist Court (1994-2005)

$$
\left.P(s \mid g)=\frac{1}{Z(g)} \exp \left(\sum_{i} h_{i} s_{i}+\sum_{\text {pair }(i, j)} J_{i j} s_{i} s_{j}\right)\right)
$$

Fit the parameters:

Very complex models: lots of parameters

Penalise for too many parameters
More liberal
More conservative

More than 80% of information

Conclusion and future

$>$ Neurons are not firing independently
> Insufficiency of pairwise interactions to model large populations of neurons

```
Searching for Collective Behavior in a Large Network of Sensory Neurons
Tkačik, Marre, Amodei, Schneidman, Bialek, Berry
PLoS Comp Bio 2014
```


$>$ We can record 1000s of neurons

Conclusion and future

$>$ Neurons are not firing independently
> Insufficiency of pairwise interactions to model large populations of neurons

Searching for Collective Behavior in a Large Network of Sensory Neurons
Tkačik, Marre, Amodei, Schneidman, Bialek, Berry
PLoS Comp Bio 2014

$>$ We can record 1000s of neurons

