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a b s t r a c t

The damping behaviour of continuous carbon fibre and flax fibre reinforced polymer (CFRP and FFRP)
composites was studied by comparing angle-ply laminates. Using logarithmic decrement measurements,
dynamic mechanical analysis and vibration beam measurements, the damping was described as the
specific damping capacity j in order to compare data using the different methods.

Our results show approximately 2e3 times better damping of FFRP compared to CFRP at low frequency
and low strain. We show that the damping of both materials increases with increasing angle-ply
orientation below 300 Hz. While the matrix and interface seems to contribute mainly to damping at
lower frequencies, the fibre shows an increasing contribution with j ¼ 64:4% for unidirectional FFRP at
1259 Hz in the 5th mode of vibration, without a notable change in the elastic modulus. This work
demonstrates that the FFRP may be simultaneously stiff and efficient at damping.

© 2017 Elsevier Ltd. All rights reserved.
1. Introduction

The high specific elastic modulus and specific strength of carbon
fibre reinforced polymer composites (CFRPs) make them attractive
for lightweight applications. Lightweight structures are however,
prone to vibrations which lead to unwanted instability, reduced
efficiency or in severe cases, structural failure. This can lead to
conservative design, or the need of additional vibration damping
which adds weight.

Flax fibre reinforced polymer composites (FFRPs) have gained
interest due to their low environmental footprint and relatively
good specific mechanical properties [1]. In flax fibres, semi-
crystalline cellulose microfibrils are embedded in pectin and
hemicellulose matrix [2]. These are ordered into cell walls enclos-
ing a lumen to form the fibre microstructure. Stiffness and strength
is primarily given by the secondary wall, ordered with an acute
angle of 10+ to the fibre direction. In turn, these elementary fibres
are bundled with a lignin matrix and twisted together to form the
structural fibre [3]. The combination of stiff discontinuous fibres
connected with soft matrices means that such hierarchical flax
ueppel), kunal.masania@mat.
fibre-epoxy composites have an order of magnitude higher damp-
ing than aluminium and exhibit three times higher damping than
carbon- or glass-fibre composites [4], making it a very attractive
composite material to simultaneously provide structural damping
and stiffness [5]. We build on this work by studying the effect of
frequency and strain on FFRPs.

Several effects need to be considered to describe the damping
behavior of such hierarchical composite materials. Fibre deforma-
tion [6], interphase viscoelasticity [7], matrix modification [8],
columb friction at the interface [9], moisture, temperature [10] and
ply angle are known to contribute to the overall damping [11].
Known methods to reduce and shift eigenmodes in composites
have included viscoelastic layers [12], bolting or joining of struc-
tures [13], and damage or delamination [14], which add weight
and/or are undesired. Previous works show that damping experi-
ments can provide trends, but do not always yield comparable
quantitative results due the test set up, excitation and material
interaction across length scales. We aim to compare damping
across sample size, excitation frequencies and applied strain by
reducing themeasurements to a common damping description, the
specific damping capacity.

The specific damping capacity j may be defined as

j ¼ DU
U

(1)
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where DU is the total energy loss per cycle and U is the maximum
elastic stored energy [11]. This measure is useful as its energy
definition is applicable to any damping measurement method.

2. Materials

Carbon fibre reinforced polymer composites were produced
from unidirectional pre-preg Toray M40JB fibre ThinPreg TM 80EP-
736/CF with an areal weight of 30 g/m2 (North Thin Ply Technology,
Switzerland, [15]). Unidirectional non-crimp flax fibre fabric with
an areal weight of 300g=m2, type 5009 (Bcomp AG, Switzerland)
with a twist angle of 20+, was used in combination with ThinPreg
TM 80EP-736 (North Thin Ply Technology, Switzerland) epoxy
matrix for consistency in our measurements.

The CFRPs were produced with 80 layers of 0:03 mm prepreg
and FFRP composites were produced with 8 layers of 0:3 mm to
produce lay ups with angle-ply orientations of 0+, ±10+, ±20+,
±30+, ±60+ and 90+ resulting in approximately 2:4� 2:5 mm thick
laminates. The composites were prepared (after a flax fibre pre-
drying process of 110+ C for 30 min) using autoclave
manufacturing for the CFRP or compression resin transfer
moulding for the FFRP and cured at 100+ C for 2 h using a pressure
of 1 MPa. Subsequent differential scanning calorimetry was used to
ensure that the composites were indeed fully cured with a glass
transition temperature of 115+C and optical microscopy of polished
cross sections confirmed a porosity of less than 2 % in the water-jet
cut samples. All of the samples were dried at 40+C in a vacuum
overnight prior to testing.

3. Experimental methodology

Three measurement methods were studied to characterise the
damping behaviour of FFRP with CFRP as a reference material for
comparison, as shown in Table 1. The logarithmic decrement
measurement method (LDM) measures the decay of vibration of a
beam oscillating at its natural frequency fn. Dynamic mechanical
analysis (DMA) was performed to provide a clamp free measure-
ment using the non-resonant damping experiment. Lastly, vibra-
tion beam measurements (VBM) were conducted to allow
measurement of resonant damping at very large amplitudes,
identify many modes of vibration and the study of a broad fre-
quency range. The dynamic behaviour, elastic modulus E was
derived using these methods, then damping was related to the
specific damping capacity j in order to compare damping in CFRP
and FFRP composites.

3.1. Logarithmic decrement measurement

The logarithmic decrement d is a damping measure for linear
systems in the time domain. The test was performed on beams of
vibrating length L ¼ 290 mm, declining at their natural frequency
fn from a pre-defined deflection. The specimens were clamped at
one end with a fixed torque of 15 Nm. A fixed displacement
X0 ¼ 5 mmwas applied to a point l ¼ 150 mm along the beam and
then the decline in amplitude was recorded as a function of time
using an OptoNCDT 1700 Laser displacement sensor. Two samples
Table 1
Properties of the damping measurement methods studied.

Method Sample size Frequency Clamping torque Measure

LDM 360� 45mm2 fn 15 Nm d

DMA 60� 10mm2 0.1e100 Hz e tanðgÞ
VBM 360� 45mm2 5-3000 Hz 15 Nm Q factor
were tested from a single plate and each sample was removed and
re-clamped until three repeat measurements were obtained for
each material (total six tests). Typically, an exponential function
may be fit to the recorded amplitude decay in order to describe the
vibration decline. Additionally, one may analyse the Fourier spectra
to obtain the natural frequencies and damping via the quality factor
Q which is the reciprocal of the dimensionless bandwidth, that
describes the magnitude of under-damping of the system in reso-
nance [16].

For linear under-damped systems in the time domain, defined
by a parallel spring-damper material model with an attached mass
m

0 ¼ mx€ðtÞ þ c _xðtÞ þ kxðtÞ (2)

where c is the damper coefficient and k is the spring constant. The
solution xðtÞ to (2) is

xðtÞ ¼ X0expð�ttÞcosðT tÞ (3)

with the initial displacement X0, the decline rate t and the period T.
The decrement d for a one dimensional decline can be determined
by the decline of a free vibrating beam from one maximum
amplitude bxðtÞ, to the next bxðt þ TÞ [17].

d :¼ ln
bxðtÞbxðt þ TÞ (4)

with the period T ¼ 1=fn the eigenfrequency fn the decay rate t and
time t. Using (3), the decrement becomes

d ¼ ln
X0expð�ttÞ

X0expð�tðt þ TÞÞ ¼ tT ¼ t

fn
(5)

Further, solving the following system of equations, one may
convert d to the specific damping capacity j.

z ¼ dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p2 þ d2

q (6)

Q�1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1� 2z2 þ 2z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2

q �s
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1� 2z2 � 2z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2

q �s
(7)

Q�1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j

2p

r
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� j

2p

r
(8)

Using Taylor expansions for d close to zero, i.e. low damping, one
may find the commonly used approximation jLDMz2d [4]. Repre-
sentative LDM measurements of 0+ CFRP and FFRP in are shown in
Fig. 1. The time domain envelopes of these measured declining vi-
brations did not follow the one dimensional linear vibration posed
by equation (2). When analysing the Fourier spectra, more than one
resonance frequency fn with notable and significant power was
identified. As is evident in Fig. 1. Model (2) was therefore extended
to a two dimensional space. The solution xðtÞ and resulting enve-
lope gðtÞ of the free vibration becomes

xðtÞ ¼
X2
i¼1

ciexpð�titÞcos
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2
ni
� t2i

q
t
�

(9)

gðtÞ ¼ ðc1expð � t1tÞ þ c2expð � t2tÞÞ c1 þ c2 ¼ X0 (10)

The envelope gðtÞ is the sum of the two exponential declines.



Fig. 1. Logarithmic decrement method (LDM) vibration of representative CFRP and FFRP angle-ply composites (±q ¼ 30+). Both of the studied composites decline with a sum of two
frequencies f1 and f2, which sum to form the decline that was observed experimentally.
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Conclusive damping values were not identified in time domain,
thus the damping was determined by computing the Q factor in the
Fourier Domain, which was then related to the specific damping
capacity jLDM [18], using

jLDMn
¼ 2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

 
2� 1

Q2
n

!2

4
;

vuuuut
Qn :¼ fn

fh1
� fh2

(11)

with the half power points fhi
. Further, to find the elastic modulus

ELDM , the Euler beam equation was used

d4w
dx4

þ rA
EIx

d2w
dt2

¼ Fðx; tÞ
EIx

(12)

with the displacement w, area A, density r, second area moment of
inertia Ix and the force F. Euler beam theory was preferred over
Timoshenko beam theory due to our low thickness to span ratio of
0.008, therefore transverse shear induced deformation was negli-
gible. Equation (12)may be posed as an eigenvalue problem and the

quotient rA
EI is related to the resonance frequency of a beam [19].

This results in a relation between the elastic modulus En at mode n
and resonance frequency fn

ELDMn
¼ rAð2pfnÞ2

b4nIx
(13)

with the beam length L dependent parameter bn [19] which rep-
resents a mode shape dependant constant, allowing the measured
resonance frequencies to be converted to a beam stiffness. Using
(5), the decline ti can be calculated using data from the frequency
domain,

ti ¼ jifni

�
2 (14)

as shown in Fig. 1, the two exponentials were found using the
Fourier spectra and their addition showed a good fit to the observed
decline, thus concluding that this was a preferable approach.
3.2. Dynamic mechanical analysis

The measurements were performed on a TA Instruments Q800
DMA using a three point bending set up at frequencies of 1 Hz and
25 Hz. The CFRP samples measured 60 mm by 6 mm and the FFRP
samples measured 60 mm by 10 mm in order to generate more
strain in the CFRP while respecting the force limit of the machine. A
pre-load of 0:05 Nwas applied and the amplitude was set to 17 mm
or 42 mm for CFRP and FFRP, respectively, with three samples for
each material at a constant temperature of 30 +C, with each mea-
surement repeated twice including remounting the sample, total-
ling six measurements.

The complex modulus E consisting of the storage modulus E
0
,

the loss modulus E
00
and the tangent of the complex moduli

tanðgÞ :¼ E
00

E0 , is based on the following forced vibration equation of
motion

f ðtÞ ¼ mx€ðtÞ þ
�
E

0 � iE
00�
xðtÞ (15)

with the imaginary unit i. Physically, complex values in time
domain are not interpretable [16], but are widely accepted in ma-
terial damping because this usage simplifies the underlining
equations. The relation of tanðgÞ and (15) may be shown by
computing the transfer function H of system (15). The FT of (15) is
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FðuÞ ¼ XðuÞ
�
mu2 þ E

0 � iuE
00�

(16)

with input FðuÞ ¼ Fðf ðtÞÞ and output XðuÞ ¼ FðxðtÞÞ. The transfer
function H of (15) with the phase f is

HðuÞ ¼ 1
E0 þmu2 � iuE00 fðuÞ ¼ arctan

� �E
00

E0 þmu2

�
(17)

By neglecting the mass m these equations reproduce the defi-
nition of tanðgÞ.

HðuÞ ¼ 1
E0 � iuE00 fðuÞ ¼ arctan

�
E

00

E0

�
¼ g (18)

Thus, the frequency dependent phase shift fðuÞ ¼ g, between
the force input and the displacement output describes damping,
assuming the mass of the sample is small. Summing g over a full
cycle, jDMA may be written as

jDMA :¼ 2ph ¼ 2p tanðfðuÞÞ (19)

The elastic modulus EDMA was extracted from the complex
modulus as

EDMA ¼ <ðEÞ ¼ E
0

(20)

3.3. Vibration beam measurement

Vibration beam tests were conducted on a Tira LS-340 shaker by
clamping one end of the composite beam with a torque of 15 Nm.
Accelerometers were mounted to the free edge and to the shaker.
The accelerometer on the shaker was set as the master motor-
control and an acceleration sine curve was performed for a fre-
quency sweep from 5 Hz to 3 kHz. Sensor data was recorded on a
Signal Star Vector, Dataphysics, which computed the Fourier
transform of test beam. The maximum input acceleration varied
from 0:75 g to 2 g, with g ¼ 9:81 m=s2, in order to generate
maximum tip displacements of about 150 mm. The tip displace-
ment close to the 1st mode of resonance frequency was set to
approximately 150 mm by adjusting the acceleration. Then a fre-
quency sweepwas performed at constant acceleration to obtain the
transfer function which was the input acceleration over the output
acceleration at the beam tip. Extraneous sources of damping such
as air damping and friction damping from specimen supports can
significantly change the apparent damping of low-damping mate-
rials [20]. Therefore, we ensured consistent amplitude for the 1st

mode of each sample before the constant acceleration frequency
sweep to provide comparable data. The tests were performed on
the same beams that were used for LDM, testing two samples from
a single plate that was removed and re-clamped until three repeat
measurements were obtained for each sample, totalling six tests
per material configuration.

The 3D transfer function HðuÞ of a vibrating beamwas obtained
from the Fourier transform of the accelerometer input XðuÞ, divided
Table 2
Dynamic, elastic and specific damping capacity (SDC) j models for each damping m

Method Dynamic model

LDM 0 ¼ mx€ðtÞ þ c _xðtÞ þ kxðtÞ

DMA f ðtÞ ¼ mx€ðtÞ þ ðE0 � iE
00 ÞxðtÞ

VBM d
4w
dx4 þ rA

EVBMIx
d
2w
dt2 ¼ Fðx;tÞ

EIx
by the Fourier transform of the output YðuÞ.

HðuÞ ¼ YðuÞ
XðuÞ (21)

For analysis and data processing, HðuÞ was split into the gain
and phase. The gain of this transfer function was converted to dB
and the phase fðuÞ was extracted from the argument of HðuÞ

jHðuÞj½dB� ¼ 20 log10ðjHðuÞj½ � �Þ fðuÞ ¼ argðHðuÞÞ (22)

The vertical dimension of HðuÞ (shaker direction) was used for
dynamic analysis while the other two dimensions were investi-
gated to ensure that torsion or transverse modes were not excited
during our measurements. To extract the resonances n, fn for each
beamwas approximated using fðuÞ because the phase at resonance
is close to 90+ þ n180+ with n2ℕ at each n with a deviation in
frequency corresponding to damping effects. The local maxima of
jHðuÞj then determined the exact resonance frequency
fn ¼ un=ð2pÞ. From this maximum, the half power points ui with
i ¼ h1;h2, were extracted. These were then used to compute the
mode n dependent quality factor (11) and jVBMn

jVBMn
¼ 2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

�
2� 1

Q2
n

�2

4

vuuut
(23)

To find the elastic modulus at each mode EVBMn
, the Euler beam

equation was used (12):

EVBMn
¼ rAu2

n

b4nIx
(24)

Shown in Table 2, the formulation of each method from the
dynamic model to the elastic modulus E and the definition of
specific damping capacity j is summarised.
4. Results

4.1. Logarithmic decrement measurement

The elastic modulus ELDM and the damping jLDM weremeasured
for the CFRP and FFRP angle-ply laminates, as shown in Fig. 2, for
the first two modes. The elastic modulus ELDM decreased with
increasing ±q at both mode 1 and mode 2. In mode 1, ELDM varied
from 168 GPa to 7 GPa for CFRP angle-plies 0+ to 90+ and from
32 GPa to 5 GPa for FFRP angle-plies 0+ to 90+. The ELDM2

of 0+ CFRP
for mode 2, ELDM2

¼ 55 GPa was lower than expected. This was
likely due to the low torsional stiffness of the 0+ CFRP and
concurrently occurring excitation of the torsional mode before the
2nd longitudinal mode. Thus the identification of mode 2 as per (13)
was not appropriate for the 0+ CFRP laminate.

The measured damping at mode 1 jLDM1
increased with

increasing angle-ply orientation ±q and was consistent with pre-
vious work [21]. The CFRP damped with jLDM1

varying from 3:1% to
7:3% for the angle-ply range 0+ to 90+. The FFRP damped notably
easurement method.

Elastic modulus SDC j

rAð2pfnÞ2
b
4
nIx

2d

<ðEÞ 2p tanðgÞ
rAu2

n

b
4
nIx 2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

�
2� 1

Q2

�2

4

s



Fig. 2. Logarithmic decrement method (LDM) analysis of CFRP and FFRP as a function of angle-ply orientation ±q shows the elastic modulus ELDM and the specific damping capacity
jLDM at the 1st and 2nd modes of vibration.
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more and jLDM1
varied from 9:1% to 14:5% in the angle-ply range 0+

to 90+. The value of jLDM1
for FFRP was approximately twice the

magnitude of CFRP for all angle-ply orientations that were studied.
Inmode 2 of vibration, the damping jLDM2

showed high variance
and no clear correlation between jLDM2

and ±q for the studied
materials. Since the 2nd mode was excited much less than the 1st

mode, the Fourier spectra were much noisier, making identification
of the peak in the data difficult.
Fig. 3. Dynamic mechanical analysis (DMA) of CFRP and FFRP as a function of angle-ply orie
f ¼ 1 Hz and 25 Hz.
4.2. Dynamic mechanical analysis

The elastic modulus EDMA wasmeasured as 147 GPa to 7 GPa for
CFRP angle-plies 0+ to 90+ at 1 Hz (Fig. 3 top). The DMA measured
modulus for the 0+ CFRP was found to be lower than the quasi-
static flexural modulus of 195 GPa. The EDMA for FFRP measured
as 29 GPa to 4 GPa for angle-ply orientations 0+ to 90+, which were
in the range of our measured quasi-static values. At 25 Hz, no
ntation ±q shows the elastic modulus EDMA and the specific damping capacity jDMA at
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difference in the value of EDMA was noted compared to the mea-
surements at 1 Hz.

The value of jDMA increased with increasing angle-ply orienta-
tion for both materials (Fig. 3 bot.). For the 1 Hz CFRP measure-
ments, jDMA increased from 3:0% to 5:6% with increasing angle-ply
orientation. The value of jDMA for FFRP increased from 8:1% to
14:5% with increasing angle-ply orientation. The value of jDMA was
about 2.5 times higher in FFRP compared to CFRP for the angle-ply
orientations studied.

At 25 Hz, both composites damped more, notably at smaller
angle-ply orientations. The value of jDMA varied from 7:9% to 11:5%
and 11:4% to 16:3% for the CFRP and FFRP 0+ to 90+ angle-ply ori-
entations, respectively. The increase with ply angle was notably
flatter and an increased scatter in the data was observed.
4.3. Vibration beam measurement

Fig. 4 presents results for damping at different frequencies, by
keeping the modal number constant in each of the plots, shown for
Fig. 4. Vibration beam measurements of CFRP and FFRP as a function of angle-ply orienta
capacity jVBM.
the first four modes of vibration. For example, mode 1 occurred at
frequencies in the range 42 Hz to 9 Hz or 19 Hz to 8 Hz for the
CFRP and FFRP composites. At mode 4, these frequencies increased
to 1639 Hz to 336 Hz or 733 Hz to 292 Hz, respectively, with the
stiffer (closer to 0+ orientations) having a higher natural frequency
at each mode.

The elastic modulus EVBM varied as a function of angle-ply
orientation for the measured modes of vibration, as shown in
Fig. 4. Lower than expected values of EVBM were measured in mode
1, while modes 2 to 4 roughly follow classical laminate theory
predictions. For example, EVBM2

varied from 142 GPa to 5 GPa and
33 GPa to 5 GPa for the CFRP and FFRP 0+ to 90+ angle-ply orien-
tations respectively.

In mode 1, the measured jVBM1
for both materials was larger in

magnitude than the other modes and was found to increase with
angle-ply orientation until a maximum for the 90+ composites.
Since each beam measurement was conducted at a constant ac-
celeration amplitude for a frequency sweep, the displacement
amplitudes XðuÞ=u2 at mode 1 were much higher than for other
tion ±q shows the identified dynamic elastic modulus EVBM and the specific damping



Fig. 5. Vibration beam measurements of CFRP and FFRP as a function of frequency shows the specific damping capacity jVBM for the studied angle-ply orientations ±q.
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measured modes. Air drag contributes to the damping for high
amplitude tests [20] and therefore the measured resonance of a
material is shifted to lower frequencies in the 1st mode of vibration
when air damping is prominent. For subsequent modes of vibra-
tion, tip displacements were much lower due to the modal shapes
of the beams. Additionally, for the low ±q CFRP composites (the
stiffest), compliance of the measurement set-up relative to the
stiffness of the sample would cause low angle-ply CFRP jVBM in
mode 1 to be larger than expected due to damping from the CFRP
micro-structural architecture alone. This effect was noted in the
CFRP jVBM for ±10+ and ±20+ in mode 1.

The 2nd mode damping jVBM2
also increased with angle-ply

orientation from 8:7% and 11:9% to a maximum of 13:8% and
17:6% at q ¼ 90+ for the CFRP and FFRP composites, respectively.
The difference between jVBM2

for the 0+ and 90+ angle-ply orien-
tations was less for both the studied composites. Mode 3 values of
jVBM were found to peak for the ±60+ angle-ply orientations, being
less pronounced for the CFRP (jVBM3

¼ 15:3%) than for the FFRP
(jVBM3

¼ 40:8%) composites. In mode 4 of vibration, no obvious
trend was observed for the CFRP composites. The FFRP however,
presented highest damping at 0+ with jVBM4

¼ 40:1%, decreasing to
jVBM4

¼ 20:3% for the 90+ FFRP.
The damping jVBM versus the frequency f for each angle-ply

orientation was also compared, shown in Fig. 5. Each point in-
dicates the magnitude of damping at the natural frequency for the
first 5 modes of vibration. Below about 300 Hz, the difference in
jVBM between CFRP and FFRPwas small, but typically higher for the
FFRP composites (upto a factor 2). With increasing frequency, an
increasing deviation between the value of jVBM for the two mate-
rials was noted. For the 90+ composites, little difference was
observed in the value of jVBM , with strong deviation only observed
in the 5th mode, when the FFRP experienced much more damping
than the CFRP (47:5% versus 19:6%). The tendency of increasingly
higher damping in FFRP was more prominent as the angle-ply
orientation approached 0+ (i.e. the fibre direction). The value of
jVBM for the FFRP 0+ was measured as jVBM5

¼ 65:4% while
maintaining stiffness.

5. Discussion

The elastic moduli EVBM showed no strong frequency depen-
dence up to the 5th mode using the vibration methods that were
studied. While CFRP composites are known to demonstrate rate
sensitivity in EVBM , data for CFRP and FFRP were both rather inde-
pendent of frequency up to 2:5 kHz. Limitations in the elastic
modulus identification were noted for the stiffest samples, such as
for 0+ CFRP. The value of E for those samples were measured with
LDM as 168 GPa, with DMA as 147 GPa and with VBM as 143 GPa,
which were all lower than the measured 195 GPa from quasi-static
bending tests. Clamping of the LDM and VBM testing set-ups or the
relative short span of the DMA three point bending was believed to
be the main cause of this discrepancy, which would have the effect
of elevating the measured values of j beyond contribution to the
CFRP only, at low values of ±q. The elastic moduli for 0+ FFRP were
identified with LDM at 32 GPa, with DMA at 29 GPa and with VBM
at 31 GPa. Noting that FFRPs have a bilinear strain dependent
elastic modulus with transition at approximately 0:2% strain [22],
the identified elastic modulus showed good agreement with the
measured bending elastic modulus of 31 GPa.

5.1. Damping of carbon fibre and flax fibre reinforced polymer
composites

The two composite materials were compared using LDM mode



Fig. 6. Comparison of the elastic modulus E and the specific damping capacity j of CFRP and FFRP as a function of angle-ply orientation ±q using the 1st mode of the logarithmic
decrement method (LDM), dynamic mechanical analysis (DMA) measurements at 1 Hz and the 2nd mode of the vibration beam method (VBM).
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1, DMA at 1 Hz, and VBMmode 2 results. The value of jwas lowest
for the CFRP at 0+ and highest at 90+, which is consistent with
previous work [21]. The FFRP composites were measured to have
two to three times higher j than CFRP. The measurements for jVBM
(Fig. 5), were found to increase with frequency from the lowest
value of jVBM in mode 2. For the angle-ply range 0+ � ±30+, the rise
in jVBM was also increasingly larger in magnitude in the FFRP
compared to the CFRP composites.

This shows that both materials are frequency dependent and
that the angle-ply orientation plays a crucial role for optimal
damping at frequencies above approximately 300� 400 Hz. The
FFRP composites demonstrated vibration suppression while
maintaining a high specific stiffness. This suggests that the hierar-
chical fibre micro-structure of flax fibres strongly contributes to
damping at higher frequencies. Some of the notable results include
j ¼ 47:8% at 472 Hz for the 90+ FFRP and the highest damping of
jVBM5

¼ 65:4% at 1259 Hz in the 5th mode for the 0+ FFRP com-
posite in the fibre direction.
5.2. Comparison of measurement methods

The LDM measurements were performed on fixed cantilever
samples, meaning some additional damping due to the clampmass
and friction at the mount would have been present. However, with
relatively low frequencies of vibration of excitation and small am-
plitudes (maximum of 300 Hz and 10 mm tip displacement), little
additional damping due to air resistance would have occurred. The
DMA measurements were performed clamp-free, with a small
coupon at a frequency of 1� 25 Hz, creating little air drag due to
the low frequency and amplitude of oscillation (up to 42 mm). The
same clamping set up was used for samples tested by VBM as LDM,
but as the amplitude of vibration was larger during VBM, air
resistance effects on the damping were more prominent; especially
for mode 1 with beam tip amplitudes up to 150 mm.

Interestingly, the data for j versus ±q for the studied methods
presented consistent trends, albeit at different magnitudes of j.
Likewise E versus ±q compare reasonablywell, with deviations only
at the lowest CFRP angle-ply orientations. To attempt to compare
the methods, damping results from the LDM, DMA and VBM were
least squares fitted to quantify the damping effects caused by the
measurement method. The 1st mode of the jLDM , jDMA at 1 Hz and
the 2nd mode of jVBM (to have a VBM measure with less air
damping and the same bending modal shape at the DMA tests)
were compared

jLDM1
þ jc1 ¼ jDMA þ jc2 ¼ jVBM2

(25)

using the constant damping term jci .
The constant external damping jc1 ¼ 0:8% and jc2 ¼ 5:10% can

be interpreted as damping due to external effects such as air
resistance and clamping effects in the VBM measurements,
respectively. Shown in Fig. 6, the results compare well quantita-
tively, demonstrating that j could be useful when comparing
across methods, however noting that it is important to quantify
external effects and to understand the limitations of each test
methodology when comparing data using the different methods.
6. Conclusions

This paper describes three damping measurement tests for
continuous fibre reinforced polymer composites and develops a
methodology to compare across sample size, excitation frequencies
and applied strain. Ourmethodologywas used to study carbon fibre
and flax fibre reinforced composites. It was possible to compare
across the LDM, DMA and VBM measurement methods using the
specific damping capacity j despite the methodologies being
rather different.

Notably, the LDM provided non-linear decay for both the ma-
terials, suggesting that one must carefully consider initial parts of
the displacement curve during tests to identify the two vibrating
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frequencies that were observed. For materials with high damping,
the LDMmethod in time domain can provide useful data [4] due to
the quick decline of f2 and large magnitude of t2. However, the
identification can be difficult since the decline contains a super-
position of more than one exponential decline, especially at the
initial moment of the vibration. The DMA provided useful infor-
mation about the materials at low strain and relatively low fre-
quencies. A large range of amplitudes and frequencies may be
studied using VBM, meaning FFRP could be characterised in a va-
riety of strain conditions and a number of natural frequencies. We
noticed that additional damping through air resistance occurred
due to the large amplitudes of vibration, especially in the 1st mode.

By using CFRP as a reference material, we studied hierarchically
structured FFRP composites. The FFRP composites consistently
damped about 2e3 timesmore than the CFRP composites at a given
angle-ply orientation at low frequencies and low strains. Both
materials followed the same trend with respect to angle-ply
orientation, albeit larger in magnitude for the FFRP composites.
We found that above 300� 400 Hz, highest damping occurs ever-
more closer to the fibre direction as the frequency increases. The
unidirectional FFRPwas found to have j¼ 65:4% of energy per cycle
dissipated in vibration suppression, at frequencies of 1259 Hz in
the 5th mode without a change in the elastic modulus. Such com-
posites could be extremely valuable because damping can be
incorporated via micro-structures in the reinforcing fibre.

Acknowledgements

This work was carried out in the research project TWiCDamp
funded by the Swiss Space Office, grant agreement no. 236-01D3/
Bro and ETH Foundation grant SP-MaP 01-15, within the frame-
work of the Swiss Competence Center for Energy Research (Ca-
pacity Area A3: Minimization of energy demand). The
contributions of W. Woigk, L. Repond, and F. Stork are gratefully
acknowledged, as well as Prof. H-P. Gr€obelbauer for use of the
shaker.

References

[1] C. Baley, Analysis of the flax fibres tensile behaviour and analysis of the tensile
stiffness increase, Compos. Part A - Appl. Sci. Manuf. 33 (2002) 939e948.
[2] K. Oksman, A. Mathew, R. Långstr€om, B. Nystr€om, K. Joseph, The influence of

fibre microstructure on fibre breakage and mechanical properties of natural
fibre reinforced polypropylene, Compos. Sci. Technol. 69 (2009) 1847e1853.

[3] B. Madsen, M. Aslan, H. Lilholt, Fractographic observations of the micro-
structural characteristics of flax fibre composites, Compos. Sci. Technol. 123
(2016) 151e162.

[4] F. Duc, P. Bourban, J. Manson, The role of twist and crimp on the vibration
behaviour of flax fibre composites, Compos. Sci. Technol. 102 (2014) 94e99.

[5] M. Rueppel, J. Rion, C. Dransfeld, K. Masania, Damping of carbon fibre and flax
fibre reinforced angle ply polymers, in: Proceedings of ECCM17-17th Euro.
Conf. on Compos. Mater., Munich.

[6] H. Kishi, M. Kuwata, S. Matsuda, T. Asami, A. Murakami, Damping properties of
thermoplastic-elastomer interleaved carbon fiber-reinforced epoxy compos-
ites, Compos. Sci. Technol. 64 (2004) 2517e2523.

[7] R. Chandra, S.P. Singh, K. Gupta, A study of damping in fiber-reinforced
composites, J. Sound. Vib. 262 (2003) 475e496.

[8] R.S. Lakes, High damping composite materials: effect of structural hierarchy,
J. Compos. Mater 36 (2002) 287e297.

[9] D.J. Nelson, J.W. Hancock, Interfacial slip and damping in fibre reinforced
composites, J. Mater. Sci. 13 (1978) 2429e2440.

[10] S. Vengallatore, Analysis of thermoelastic damping in laminated composite
micromechanical beam resonators, J. Micromech. Microeng. 15 (2005)
2398e2404.

[11] M. Maheri, R. Adams, Steady-state flexural vibration damping of honeycomb
sandwich beams, Compos. Sci. Technol. 52 (1994) 333e347.

[12] J.Y. Lai, K.F. Young, Dynamics of graphite/epoxy composite under delamina-
tion fracture and environmental effects, Compos. Struct. 30 (1995) 25e32.

[13] L. Gaul, J. Lenz, Nonlinear dynamics of structures assembled by bolted joints,
Acta Mech. 125 (1997) 169e181.

[14] F. Guild, R. Adams, A new technique for the measurement of the specific
damping capacity of beams in flexure, J. Phys. E 14 (1981) 355e363.

[15] R. Amacher, J. Cugnoni, J. Botsis, L. Sorensen, W. Smith, C. Dransfeld, Thin ply
composites: experimental characterization and modeling of size-effects,
Compos. Sci. Technol. 101 (2014) 121e132.

[16] C.W. Bert, Material damping: an introductory review of mathematic measures
and experimental technique, J. Sound. Vib. 29 (1973) 129e153.

[17] K.K. Chawla, Interfaces in Composite Materials: Science and Engineering,
Springer Science and Business Media, New York, NY, 2012.

[18] M. Carfagni, E. Lenzi, M. Pierini, S. Marta, The loss factor as a measure of
mechanical damping, in: Proceedings-spie the International Society for optical
Engineering, pp. 580e584.

[19] D.J. Ewins, S. Braun, S. Rao, Beams, Encyclopedia of Vibration, vol. 1, Academic
Press Ltd, 2001.

[20] M. Maheri, R. Adams, Vibration properties of structural FRP composites, JSME
Int. J. Ser. A Solid Mech. Mater. Eng. 42 (1999) 307e320.

[21] R. Adams, M. Maheri, Dynamic flexural properties of anisotropic fibrous
composite beams, Compos. Sci. Technol. 50 (1994) 497e514.

[22] C. Baley, A. Le Duigou, A. Bourmaud, P. Davies, Influence of drying on the
mechanical behaviour of flax fibres and their unidirectional composites,
Compos. Part A Appl. Sci. Manuf. 43 (2012) 1226e1233.

http://refhub.elsevier.com/S0266-3538(16)30912-5/sref1
http://refhub.elsevier.com/S0266-3538(16)30912-5/sref1
http://refhub.elsevier.com/S0266-3538(16)30912-5/sref1
http://refhub.elsevier.com/S0266-3538(16)30912-5/sref2
http://refhub.elsevier.com/S0266-3538(16)30912-5/sref2
http://refhub.elsevier.com/S0266-3538(16)30912-5/sref2
http://refhub.elsevier.com/S0266-3538(16)30912-5/sref2
http://refhub.elsevier.com/S0266-3538(16)30912-5/sref2
http://refhub.elsevier.com/S0266-3538(16)30912-5/sref2
http://refhub.elsevier.com/S0266-3538(16)30912-5/sref3
http://refhub.elsevier.com/S0266-3538(16)30912-5/sref3
http://refhub.elsevier.com/S0266-3538(16)30912-5/sref3
http://refhub.elsevier.com/S0266-3538(16)30912-5/sref3
http://refhub.elsevier.com/S0266-3538(16)30912-5/sref4
http://refhub.elsevier.com/S0266-3538(16)30912-5/sref4
http://refhub.elsevier.com/S0266-3538(16)30912-5/sref4
http://refhub.elsevier.com/S0266-3538(16)30912-5/sref6
http://refhub.elsevier.com/S0266-3538(16)30912-5/sref6
http://refhub.elsevier.com/S0266-3538(16)30912-5/sref6
http://refhub.elsevier.com/S0266-3538(16)30912-5/sref6
http://refhub.elsevier.com/S0266-3538(16)30912-5/sref7
http://refhub.elsevier.com/S0266-3538(16)30912-5/sref7
http://refhub.elsevier.com/S0266-3538(16)30912-5/sref7
http://refhub.elsevier.com/S0266-3538(16)30912-5/sref8
http://refhub.elsevier.com/S0266-3538(16)30912-5/sref8
http://refhub.elsevier.com/S0266-3538(16)30912-5/sref8
http://refhub.elsevier.com/S0266-3538(16)30912-5/sref9
http://refhub.elsevier.com/S0266-3538(16)30912-5/sref9
http://refhub.elsevier.com/S0266-3538(16)30912-5/sref9
http://refhub.elsevier.com/S0266-3538(16)30912-5/sref10
http://refhub.elsevier.com/S0266-3538(16)30912-5/sref10
http://refhub.elsevier.com/S0266-3538(16)30912-5/sref10
http://refhub.elsevier.com/S0266-3538(16)30912-5/sref10
http://refhub.elsevier.com/S0266-3538(16)30912-5/sref11
http://refhub.elsevier.com/S0266-3538(16)30912-5/sref11
http://refhub.elsevier.com/S0266-3538(16)30912-5/sref11
http://refhub.elsevier.com/S0266-3538(16)30912-5/sref12
http://refhub.elsevier.com/S0266-3538(16)30912-5/sref12
http://refhub.elsevier.com/S0266-3538(16)30912-5/sref12
http://refhub.elsevier.com/S0266-3538(16)30912-5/sref13
http://refhub.elsevier.com/S0266-3538(16)30912-5/sref13
http://refhub.elsevier.com/S0266-3538(16)30912-5/sref13
http://refhub.elsevier.com/S0266-3538(16)30912-5/sref14
http://refhub.elsevier.com/S0266-3538(16)30912-5/sref14
http://refhub.elsevier.com/S0266-3538(16)30912-5/sref14
http://refhub.elsevier.com/S0266-3538(16)30912-5/sref15
http://refhub.elsevier.com/S0266-3538(16)30912-5/sref15
http://refhub.elsevier.com/S0266-3538(16)30912-5/sref15
http://refhub.elsevier.com/S0266-3538(16)30912-5/sref15
http://refhub.elsevier.com/S0266-3538(16)30912-5/sref16
http://refhub.elsevier.com/S0266-3538(16)30912-5/sref16
http://refhub.elsevier.com/S0266-3538(16)30912-5/sref16
http://refhub.elsevier.com/S0266-3538(16)30912-5/sref17
http://refhub.elsevier.com/S0266-3538(16)30912-5/sref17
http://refhub.elsevier.com/S0266-3538(16)30912-5/sref19
http://refhub.elsevier.com/S0266-3538(16)30912-5/sref19
http://refhub.elsevier.com/S0266-3538(16)30912-5/sref20
http://refhub.elsevier.com/S0266-3538(16)30912-5/sref20
http://refhub.elsevier.com/S0266-3538(16)30912-5/sref20
http://refhub.elsevier.com/S0266-3538(16)30912-5/sref21
http://refhub.elsevier.com/S0266-3538(16)30912-5/sref21
http://refhub.elsevier.com/S0266-3538(16)30912-5/sref21
http://refhub.elsevier.com/S0266-3538(16)30912-5/sref22
http://refhub.elsevier.com/S0266-3538(16)30912-5/sref22
http://refhub.elsevier.com/S0266-3538(16)30912-5/sref22
http://refhub.elsevier.com/S0266-3538(16)30912-5/sref22

	Damping of carbon fibre and flax fibre angle-ply composite laminates
	1. Introduction
	2. Materials
	3. Experimental methodology
	3.1. Logarithmic decrement measurement
	3.2. Dynamic mechanical analysis
	3.3. Vibration beam measurement

	4. Results
	4.1. Logarithmic decrement measurement
	4.2. Dynamic mechanical analysis
	4.3. Vibration beam measurement

	5. Discussion
	5.1. Damping of carbon fibre and flax fibre reinforced polymer composites
	5.2. Comparison of measurement methods

	6. Conclusions
	Acknowledgements
	References


