

RUHR-UNIVERSITÄT BOCHUM

Efficiently Masking Polynomial Inversion at Arbitrary Order

Markus Krausz ${ }^{1} \quad$ Georg Land $^{1,2} \quad$ Jan Richter-Brochmann ${ }^{1} \quad$ Tim Güneysu ${ }^{1,2}$
${ }^{1}$ Chair for Security Engineering, Ruhr-Universität Bochum
${ }^{2}$ DFKI GmbH, Cyber-Physical Systems, Bremen, Germany
September 29, 2022

Motivation

BIKE Key Generation

Require: BIKE parameters n, w, ℓ.
Ensure: Private key (h_{0}, h_{1}, σ) and public key h.
1: Generate $\left(h_{0}, h_{1}\right) \stackrel{5}{\leftarrow} \mathcal{R}^{2}$ both of odd weight $\left|h_{0}\right|=\left|h_{1}\right|=w / 2$.
 at random.
3: Compute $h \leftarrow h_{1} h_{0}^{-1}$.
4: Return (h_{0}, h_{1}, σ) and h.

NTRU Key Generation

Require: NTRU parameters n, p, q.
Ensure: Priv. key (f, f_{p}, f_{q}), pub. key h.
1: Generate $f \stackrel{5}{\leftarrow} \mathcal{L}_{f}$
2: Generate $g \stackrel{s}{\leftarrow} \mathcal{L}_{g}$
3: Compute $f_{p} \leftarrow 1 / f$ in S_{3}
4: Compute $f_{q} \leftarrow 1 / f$ in S_{q}
5: Compute $g \leftarrow 3 \cdot g \cdot f_{g}$ in R_{q}
6: Compute $h_{q} \leftarrow 1 / h$ in S_{q}
7: Return $\left(f, f_{p}, f_{q}\right)$ and h.

sNTRUp Key Generation

Require: sNTRUp parameter q.
Ensure: Priv. key ($f, g_{\text {inv }}$), pub. key h.
repeat
Generate $g \stackrel{\mathfrak{s}}{\leftarrow} R, g$ small
until g is invertible in R_{3}
Generate $f \stackrel{s}{\leftarrow}$ Short
Compute $g_{\text {inv }} \leftarrow 1 / g$ in R_{3}
Compute $h \leftarrow g /(3 \cdot f)$ in R_{q}
7: Return $\left(f, g_{\text {inv }}\right)$ and h.

Observation: secret polynomials are inverted.

Motivation

Processing secrets requires protection against side-channel adversaries.

Motivation

Processing secrets requires protection against side-channel adversaries.

Constant time implementations counter timing attacks. Embedded devices: Attacker can measure power consumption.

Our Work

1. First procedure for masking polynomial inversion.
2. It is efficient.
3. Possible at arbitrary masking order.

Conceptual Considerations

Attacker Model

- All inversions happen in key generation, which is executed once.
- The only valid attack is a (profiled) Simple Power Analysis with one attack measurement.

Shuffling and Masking

- Standard countermeasure: shuffling (randomizing the execution order of steps within the inversion procedure)
- Shuffling: highly non-trivial, probably infeasible for optimized inversion implementations.
- Masking: very efficient against SPA, possible on arithmetic shares using Fermat inversion (expensive)
- Usually, first-order masking is sufficient against realistic attackers.

Masking?

- Based on Shamir's secret sharing
- Hiding secret values from the CPU that processes it by splitting them up in multiple random shares
- Usual in PQC: boolean and additive masking

Basic Idea

Basic Idea

$a \oplus b$

Basic Idea

Basic Idea

Basic Idea

$a+b$

Basic Idea

$$
a+b=a_{1}+b_{1}+a_{2}+b_{2}
$$

Basic Idea

Observation: Applying functions that are linear in the masking domain is cheap.

Basic Idea

Observation: Applying functions that are linear in the masking domain is cheap.

In which masking domain is polynomial inversion linear?

Polynomial-Multiplicative Masking

Old Idea: Multiplicative Masking

New: Shares are polynomials, whose polynomial product yields the secret polynomial.

Polynomial-Multiplicative Masking

Old Idea: Multiplicative Masking

New: Shares are polynomials, whose polynomial product yields the secret polynomial.

Old problem: Masking zero.

No new problem: The zero polynomial is not invertible and will never be masked.

Additive to Polynomial Multiplicative Conversion

$a=\quad \times \quad$| |
| :--- |
| |

Additive to Polynomial Multiplicative Conversion

Invertibility: Two Cases

BIKE and NTRU

- There is an easy way of sampling invertible polynomials.
- BIKE: The polynomial must have an odd weight (sample uniform, check \& correct).
- NTRU: All non-zero polynomials are invertible (sample uniform).

Invertibility: Two Cases

Streamlined NTRU Prime

BIKE and NTRU

- There is an easy way of sampling invertible polynomials.
- BIKE: The polynomial must have an odd weight (sample uniform, check \& correct).
- NTRU: All non-zero polynomials are invertible (sample uniform).
- No easy way to sample invertible polynomials
- Even the (shared) input polynomial might not be invertible
- Invertibility check is done by inverting
- Uniform random polynomials are invertible with high probability
- Solution:

1. Sample uniform random r
2. If inversion of $r a_{0}+r a_{1}$ fails, a or r were not invertible, start over

Multiplicative to Additive Conversion

- Idea: usually the inverted polynomial is multiplied by another polynomial

Multiplicative to Additive Conversion

- Idea: usually the inverted polynomial is multiplied by another polynomial

Multiplicative to Additive Conversion

$$
\begin{aligned}
& p= a \\
& p= \times \\
&+\square a_{1}+ \\
& a_{1}+ \\
& a_{2}
\end{aligned}
$$

- Idea: usually the inverted polynomial is multiplied by another polynomial

Multiplicative to Additive Conversion

- Idea: usually the inverted polynomial is multiplied by another polynomial
- Cost: 2 polynomial multiplications

Multiplicative to Additive Conversion

$p=$	a
p	$=\left(\begin{array}{\|c}a_{1} \\ p\end{array}+\begin{array}{\|c}a_{2} \\ m\end{array}\right.$
$p=$$m_{1}$ $m_{1} m_{1} m_{2}$ $a_{2} m_{1} m_{2}$	

- Idea: usually the inverted polynomial is multiplied by another polynomial
- Cost: 4 polynomial multiplications

Multiplicative to Additive Conversion

$p=$	a
p	$=\left(\begin{array}{\|c}a_{1} \\ p\end{array}+\begin{array}{\|c}a_{2} \\ m\end{array}\right.$
$p=$$m_{1} m_{1} m_{2}$ $m_{2} m_{1} m_{2}$	

- Idea: usually the inverted polynomial is multiplied by another polynomial
- Cost: 4 polynomial multiplications
- Higher orders: re-sharing needed as intermediate steps
- Multiplication of two secret polynomials in additive domain would require re-sharing already for first order!

Side-Channel Evaluation

Additive to Polynomial-Multiplicative Conversion with implicit Inversion

t-test (2000 traces) without randomness: leakage

t-test (100 000 traces) with randomness: no leakage

More evaluation: see the paper.

Performance Evaluation

NTRU-HPS-2048677									
Ord. d	A2M Inversion			M2A Mul.			M2A Conversion		
	Cydes	muL		Cycles	MUL	ADD	Cycles	MUL	ADD
1	1723778	2	1	885773	4	4	486165	2	3
2	2372502	5	1	2090841	9	12	1230767	5	
3	3211410		1	3802004	16	24	2238833	9	15
4	4260732	14	1	6057128	25	40	3503189	14	24
5	5524861	20	1	8848501	36	60	5049140	20	35
6	6991050	27	1	12097869	49	84	6859272	27	48
Unprotected operations:									
- Addition:					18340 clock cycles				
- Multiplication:					201383 clock cycles				
- Inversion:					1273864 clock cycles				

Performance Evaluation

Ord. d	A2M Inversion			M2A Mul.			M2A Conversion		
	Cycles	MUL	INV	Cycles	MUL	ADD	Cycles	MUL	ADD
1	1723778	2	1	885773	4	4	486165	2	3
2	2372502	5	1	2090841	9	12	1230767	5	8
3	3211410	9	1	3802004	16	24	2238833	9	15
4	4260732	14	1	6057128	25	40	3503189	14	24
5	5524861	20	1	8848501	36	60	5049140	20	35
6	6991050	27	1	12097869	49	84	6859272	27	48

Unprotected operations:

- Addition: 18340 clock cycles
- Multiplication:

201383 clock cycles

- Inversion: 1273864 clock cycles
$1^{\text {st }}$ order A 2 M with inversion vs unprotected inversion: 35% overhead

Performance Evaluation

	A2M Inversion			M2A Mul.			M2A Conversion		
Ord. d	Cycles	MUL	INV	Cycles	MUL	ADD	Cycles	MUL	ADD
1	1723778	2	1	885773	4	4	486165	2	3
2	2372502	5	1	2090841	9	12	1230767	5	8
3	3211410	9	1	3802004	16	24	2238833	9	15
4	4260732	14	1	6057128	25	40	3503189	14	24
5	5524861	20	1	8848501	36	60	5049140	20	35
6	6991050	27	1	12097869	49	84	6859272	27	48

Unprotected operations:

- Addition:
- Multiplication:
- Inversion: 18340 clock cycles 201383 clock cycles 1273864 clock cycles

BIKE Level 1

Ord. d	A2M Inversion			M2A Mul.			M2A Conversion		
	Cycles	MUL	INV	Cycles	MUL	ADD	Cycles	MUL	ADD
1	21317392	2	1	4240017	4	4	2131405	2	3
2	24487146	5	1	9584999	9	12	5342630	5	8
3	28736397	9	1	17068753	16	24	9622491	9	15
4	34007250	14	1	26740596	25	40	14994627	14	24
5	40275530	20	1	38507790	36	60	21419851	20	35
6	47744390	27	1	52493255	49	84	28945019	27	48

Unprotected operations:

- Addition:
- Multiplication:
- Inversion:
$1^{\text {st }}$ order A 2 M with inversion vs unprotected inversion: 35% overhead

Performance Evaluation

NTRU-HPS-2048677
Ord. d

Unprotected operations:

- Addition:
- Multiplication:
- Inversion:
$1^{\text {st }}$ order A 2 M with inversion vs unprotected inversion: 35% overhead

BIKE Level 1

Ord. d	A2M Inversion			M2A Mul.			M2A Conversion		
	Cycles	MUL	INV	Cycles	MUL	ADD	Cycles	MUL	ADD
1	21317392	2	1	4240017	4	4	2131405	2	3
2	24487146	5	1	9584999	9	12	5342630	5	8
3	28736397	9	1	17068753	16	24	9622491	9	15
4	34007250	14	1	26740596	25	40	14994627	14	24
5	40275530	20	1	38507790	36	60	21419851	20	35
6	47744390	27	1	52493255	49	84	28945019	27	48

Unprotected operations:

- Addition:
- Multiplication:
- Inversion:
$1^{\text {st }}$ order A 2 M with inversion vs unprotected inversion: 11% overhead

Conclusion

- Efficient method for masking polynomial inversion to counter Simple Power Analysis

Conclusion

- Efficient method for masking polynomial inversion to counter Simple Power Analysis
- In the paper:
- M2A conversion without implicit multiplication
- Generalization to higher masking orders

Conclusion

- Efficient method for masking polynomial inversion to counter Simple Power Analysis
- In the paper:
- M2A conversion without implicit multiplication
- Generalization to higher masking orders
- Recent work by Coron et al. ${ }^{1}$ shows theoretical vulnerability of A2M algorithm starting from third order
- Can be mitigated with low cost (more random sampling)
- Higher-order single-trace SPA attackers are rather theoretical

[^0]
Conclusion

- Efficient method for masking polynomial inversion to counter Simple Power Analysis
- In the paper:
- M2A conversion without implicit multiplication
- Generalization to higher masking orders
- Recent work by Coron et al. ${ }^{1}$ shows theoretical vulnerability of A2M algorithm starting from third order
- Can be mitigated with low cost (more random sampling)
- Higher-order single-trace SPA attackers are rather theoretical
- Future work: formal proofs of our algorithms

[^1]
[^0]: 1 "High-order masking of NTRU", https://eprint.iacr.org/2022/1188

[^1]: 1 "High-order masking of NTRU", https://eprint.iacr.org/2022/1188

