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Tutorial Overview

• Part 1:
– From linear and logistic regression to neural networks
– Autoencoders
– Convolutional Networks
– Deep Network Learning
– Applied to Agents

!You need part 1 for any deep learning architecture!
• Part 2:

– Introduction to Recurrent Neural Networks (RNNs)
– RNN variants
– Generative Adversarial Networks
– Summary
– Demo?
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Introduction to RNNs

Jerry Spanakis

Some slide credits (esp. illustrations):   Arun Mallya (github link)

http://arunmallya.github.io/


Motivation
• Not all problems can be converted into one with fixed-

length inputs and outputs

• Problems such as Speech Recognition or Time-series 
Prediction require a system to store and use context 
information
– Simple case: Output YES if the number of 1s is even, else NO

1000010101 – YES, 100011 – NO, …  

• Hard/Impossible to choose a fixed context window
– There can always be a new sample longer than anything seen
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Recurrent Neural Networks (RNNs)
• Recurrent Neural Networks take the previous output or 

hidden states as inputs. 
The composite input at time t has some historical 
information about the happenings at time T < t

• RNNs are useful as their intermediate values (state) can 
store information about past inputs for a time that is not 
fixed a priori
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Sample Feed-forward Network
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Sample RNN
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Sample RNN

8

h1

y1

x1
t = 1

h2

y2

x2

h3

y3

x3

t = 2

t = 3
h0



The Vanilla RNN Cell
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The Vanilla RNN Forward
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The Vanilla RNN Forward
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Recurrent Neural Networks (RNNs)
• Note that the weights are shared over time

• Essentially, copies of the RNN cell are made over time 
(unrolling/unfolding), with different inputs at different 
time steps
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Sentiment Classification
• Classify a 

…restaurant review from Yelp! 
…movie review from IMDB
…
as positive or negative

• Inputs: Multiple words, one or more sentences
• Outputs: Positive / Negative classification

• “The food was really good”
• “The chicken crossed the road because it was uncooked”
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Image Captioning
• Given an image, produce a sentence describing its contents

• Inputs: Image feature (from a CNN)
• Outputs: Multiple words (let’s consider one sentence)

à The dog is hiding
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RNN Outputs: Image Captions

Show and Tell: A Neural Image Caption Generator, CVPR 15 25

https://arxiv.org/pdf/1411.4555.pdf


RNN Outputs: Language Modeling

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

VIOLA:
Why, Salisbury must find his flesh and thought
That which I am not aps, not a man and in fire,
To show the reining of the raven and the wars
To grace my hand reproach within, and not a fair are 
hand,
That Caesar and my goodly father's world;
When I was heaven of presence and our fleets,
We spare with hours, but cut thy council I am great,
Murdered and by thy master's ready there
My power to give thee but so much as hell:
Some service in the noble bondman here,
Would show him to her wine.

KING LEAR:
O, if you were a feeble sight, the 
courtesy of your law,
Your sight and several breath, will 
wear the gods
With his heads, and my hands are 
wonder'd at the deeds,
So drop upon your lordship's head, 
and your opinion
Shall be against your honour.
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http://karpathy.github.io/2015/05/21/rnn-effectiveness/


Input – Output Scenarios
Single - Single

Single - Multiple

Multiple - Single

Multiple - Multiple

Feed-forward Network

Image Captioning

Sentiment Classification

Translation

Image Captioning (again…?)
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Input – Output Scenarios
Note: We might deliberately choose to frame our problem as a

particular input-output scenario for ease of training or
better performance. 

For example, at each time step, provide previous word as
input for image captioning
(Single-Multiple to Multiple-Multiple).
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The Vanilla RNN Forward
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Remember BackPropagation?
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Reminder: Multiple Layers
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Reminder: Chain Rule for Gradient
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Extension to Computational Graphs

f(x; W)
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Extension to Computational Graphs
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Extension to Computational Graphs
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BackPropagation Through Time (BPTT)
• One of the methods used to train RNNs
• The unfolded network (used during forward pass) is 

treated as one big feed-forward network
• This unfolded network accepts the whole time series as 

input

• The weight updates are computed for each copy in the 
unfolded network, then summed (or averaged) and then 
applied to the RNN weights
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The Unfolded Vanilla RNN
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The Unfolded Vanilla RNN Forward
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The Vanilla RNN Backward
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Issues with the Vanilla RNNs
• In the same way a product of k real numbers can shrink to 

zero or explode to infinity, so can a product of matrices

• It is sufficient for           , where    is the largest singular 
value of W, for the vanishing gradients problem to occur 
and it is necessary for exploding gradients that          , 
where       for the tanh non-linearity and          for the 
sigmoid non-linearity 1

• Exploding gradients are often controlled with gradient 
element-wise or norm clipping

λ1 <1/γ λ1

λ1 >1/γ
γ = 1

1 On the difficulty of training recurrent neural networks, Pascanu et al., 2013

γ = 1/ 4
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http://www.jmlr.org/proceedings/papers/v28/pascanu13.pdf


Long Short-Term Memory (LSTM)1

42

• The LSTM uses the idea of “Constant Error Flow” for 
RNNs to create a “Constant Error Carousel” (CEC) which 
ensures that gradients don’t decay

• The key component is a memory cell that acts like an 
accumulator (contains the identity relationship) over time

• Instead of computing new state as a matrix product with 
the old state, it rather computes the difference between 
them. Expressivity is the same, but gradients are better 
behaved

1 Long Short-Term Memory, Hochreiter et al., 1997

http://deeplearning.cs.cmu.edu/pdfs/Hochreiter97_lstm.pdf
http://www.jmlr.org/proceedings/papers/v28/pascanu13.pdf
http://deeplearning.cs.cmu.edu/pdfs/Hochreiter97_lstm.pdf


The LSTM Idea
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The Original LSTM Cell
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The Popular LSTM Cell
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LSTM – Forward/Backward

46

Go To: Illustrated LSTM Forward and Backward Pass

http://arunmallya.github.io/writeups/nn/lstm/index.html


Summary (so far…)
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• RNNs allow for processing of variable length inputs and 
outputs by maintaining state information across time steps

• Various Input-Output scenarios are possible 
(Single/Multiple)

• Vanilla RNNs are improved upon by LSTMs which address 
the vanishing gradient problem through the CEC

• Exploding gradients are handled by gradient clipping

• More complex architectures can be found online and/or 
the tutorial material for you to play…



Some RNN Variants

Jerry Spanakis



Class Quiz
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• Consider the problem of translation of English to Dutch
• E.g. What is your name      Wat is jouw naam
• Is the below architecture suitable for this problem?

E1 E2 E3

F1 F2 F3



Class Quiz
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• Consider the problem of translation of English to Dutch
• E.g. What is your name      Wat is jouw naam
• Is the below architecture suitable for this problem?

• No, sentences might be of different length and words 
might not align. Need to see entire sentence before 
translating

E1 E2 E3

F1 F2 F3



Class Quiz
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• Consider the problem of translation of English to Dutch
• E.g. What is your name      Wat is jouw naam
• Sentences might be of different length and words might 

not align. Need to see entire sentence before translating

• Input-Output nature depends on the structure of the 
problem at hand

Seq2Seq Learning with Neural Networks, Sutskever et al., 2014

F1 F2 F3

E1 E2 E3

F4

https://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf


Multi-layer RNNs

52

• We can also design RNNs with multiple hidden layers

x1 x2 x3 x4 x5 x6

y1 y2 y3 y4 y5 y6

• Think big here: Skip connections across layers, across time,…



Multiple
Stacks
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Bi-directional RNNs
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• RNNs can process the input sequence in forward and in the 
reverse direction

x1 x2 x3 x4 x5 x6

y1 y2 y3 y4 y5 y6

• Popular in speech recognition



LSTM: A Search Space Odyssey
• Tested the following variants, using LSTM as standard:

1. No Input Gate (NIG) 
2. No Forget Gate (NFG) 
3. No Output Gate (NOG) 
4. No Input Activation Function (NIAF) 
5. No Output Activation Function (NOAF) 
6. No Peepholes (NP) 
7. Coupled Input and Forget Gate (CIFG) 
8. Full Gate Recurrence (FGR)

• On the tasks of:
– Timit Speech Recognition: Audio frame to 1 of 61 phonemes
– IAM Online Handwriting Recognition: Sketch to characters
– JSB Chorales: Next-step music frame prediction

LSTM: A Search Space Odyssey, Greff et al., 2015 55

https://arxiv.org/pdf/1503.04069.pdf


LSTM: A Search Space Odyssey
• The standard LSTM performed reasonably well on multiple 

datasets and none of the modifications significantly 
improved the performance

• Coupling gates and removing peephole connections 
simplified the LSTM without hurting performance much

• The forget gate and output activation are crucial

• Found interaction between learning rate and network size 
to be minimal – indicates calibration can be done using a 
small network first

LSTM: A Search Space Odyssey, Greff et al., 2015 56

https://arxiv.org/pdf/1503.04069.pdf


Gated Recurrent Unit (GRU)
• A very simplified version of the LSTM

– Merges forget and input gate into a single ‘update’ gate
– Merges cell and hidden state

• Has fewer parameters than an LSTM and has been shown 
to outperform LSTM on some tasks

Learning Phrase Representations using RNN Encoder-Decoder for 
Statistical Machine Translation, Cho et al., 2014 57

https://arxiv.org/abs/1406.1078
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GRU

rt Reset Gate
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GRU

rt Reset Gate
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GRU
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GRU
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An Empirical Exploration of Recurrent 
Network Architectures

• Given the rather ad-hoc design of the LSTM, the authors 
try to determine if the architecture of the LSTM is 
optimal

• They use an evolutionary search for better architectures

An Empirical Exploration of Recurrent Network Architectures, Jozefowicz et al., 201563

http://jmlr.org/proceedings/papers/v37/jozefowicz15.pdf


Evolutionary Architecture Search
• A list of top-100 architectures so far is maintained, 

initialized with the LSTM and the GRU
• The GRU is considered as the baseline to beat
• New architectures are proposed, and retained based on 

performance ratio with GRU

• All architectures are evaluated on 3 problems
– Arithmetic: Compute digits of sum or difference of two numbers 

provided as inputs. Inputs have distractors to increase difficulty
3e36d9-h1h39f94eeh43keg3c = 3369 – 13994433 = -13991064

– XML Modeling: Predict next character in valid XML modeling
– Penn Tree-Bank Language Modeling: Predict distributions over 

words 

An Empirical Exploration of Recurrent Network Architectures, Jozefowicz et al., 201564

http://jmlr.org/proceedings/papers/v37/jozefowicz15.pdf


Evolutionary Architecture Search
• At each step

– Select 1 architecture at random, evaluate on 20 randomly chosen 
hyperparameter settings. 

– Alternatively, propose a new architecture by mutating an existing 
one. Choose probability p from [0,1] uniformly and apply a 
transformation to each node with probability p
• If node is a non-linearity, replace with {tanh(x), sigmoid(x), ReLU(x), 

Linear(0, x), Linear(1, x), Linear(0.9, x), Linear(1.1, x)}
• If node is an elementwise op, replace with {multiplication, addition, 

subtraction}
• Insert random activation function between node and one of its parents
• Replace node with one of its ancestors (remove node)
• Randomly select a node (node A). Replace the current node with either the 

sum, product, or difference of a random ancestor of the current node and a 
random ancestor of A.

– Add architecture to list based on minimum relative accuracy wrt
GRU on 3 different tasks

An Empirical Exploration of Recurrent Network Architectures, Jozefowicz et al., 201565

http://jmlr.org/proceedings/papers/v37/jozefowicz15.pdf


Evolutionary Architecture Search
• 3 novel architectures are presented in the paper
• Very similar to GRU, but slightly outperform it

• LSTM initialized with a large positive forget gate bias 
outperformed both the basic LSTM and the GRU!

An Empirical Exploration of Recurrent Network Architectures, Jozefowicz et al., 201566

http://jmlr.org/proceedings/papers/v37/jozefowicz15.pdf


LSTM initialized with large positive 
forget gate bias?

• Recall

An Empirical Exploration of Recurrent Network Architectures, Jozefowicz et al., 2015
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δct−1 = δct ⊗ ft
• Gradients will vanish if f is close to 0. Using a large positive bias 

ensures that f has values close to 1, especially when training begins
• Helps learn long-range dependencies
• Originally stated in Learning to forget: Continual prediction with 

LSTM, Gers et al., 2000, but forgotten over time

67

http://jmlr.org/proceedings/papers/v37/jozefowicz15.pdf
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RNN: Issues with long inputs
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A B C D X Y Z

X Y Z Q

• The same last vector 
”informs” the entire output

• Needs to capture all the 
information about the 
input regardless of length

• Can I do better?



Yes, we can!

69Bahdanau, D., et al. “Neural Machine Translation by Jointly Learning to Align and Translate.” ICLR (2015) 

• Introduce an extra “attention” layer mapping between the 
input and the ouput



● A different vector computed for every output step

Seq2Seq with Attention
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Based

Encoder DecoderF(input,h1)
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● A different vector computed for every output step
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Seq2Seq with Attention

f(input, h1)
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● Attention vector used to predict output and compute next hidden state



● Attention vector used to predict output and compute next hidden state
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● Attention vector used to predict output and compute next hidden state

Seq2Seq with Attention

f(input, h1)

X Y ZB C D

Embedding

h1
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A
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Based
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h2 h3



Attention is all you need?

• Not recurrent
• Not convolutional
• Dot-product attention 

over inputs is masked 
to preserve causal 
structure

76
Vaswani, Ashish, et al. "Attention is all you need”. In NIPS, 2017 



Self-Attention
• More powerful than convolutions (which have fixed kernels)
• Less complex than recurrent structures
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• More powerful than convolutions (which have fixed kernels)
• Less complex than recurrent structures

Self-Attention
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Summary & intuitive tricks
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• Architectures like the GRU have fewer parameters than 
the LSTM and might perform better
– An LSTM with large positive forget gate bias works best!
– Attention models are simpler and they do perform very well!

• Finding the optimal architecture might not the problem 
you want to solve.
– Browse the literature and see what works best for the type of 

problem you want to try.
– Initialization of parameters is critical but well studied

• If you deal with long sequences
– Attention or Bigger state or Bi-directional architecture



Introduction to GANs

Jerry Spanakis

Some slide credits (esp. illustrations):
Ian Goofdellow (link)
Oriol Vinyals (link)
Binglin Chen

http://www.iangoodfellow.com/
https://ai.google/research/people/OriolVinyals


GANs
• Generative
– Learn a generative model

• Adversarial
– Trained in an adversarial setting

• Networks
– Use Deep Neural Networks
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Why Generative Models?
• CNN, RNN are discriminative models

– E.g. given an image (or sequence) X, predict a label Y
– Estimates P(Y|X)

• Discriminative models have several key limitations
– Can’t model P(X), i.e. the probability of seeing a certain image
– Thus, can’t sample from P(X), i.e. can’t generate new images

• Generative models (in general) cope with all of above
– Can model P(X)
– Can generate new images
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Magic of GANs…
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[Ledig. et. al, 2017 “Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network”]

Magic of GANs…
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Magic of GANs…

[Work by vue.ai : Online fashion tech startup]85



Magic of GANs…
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Magic of GANs…

[Denton et. al., 2016, “Deep Generative Image Models using a Laplacian Pyramid of GANs”]

[Radford et. al, 2016, “Unsupervised Representation Learning with DCGANs”]
87



[Karras, et. al. 2017, “Progressive Growing of GANs
for Improved Quality, Stability, and Variation”]

Magic of GANs…
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Adversarial Training
• Basic ideas:

– We can generate adversarial samples to fool a discriminative 
model

– We can use those adversarial samples to make models robust
– We then require more effort to generate adversarial samples
– Repeat this and we get better discriminative model

• GANs extend these ideas to generative models:
– Generator: generate fake samples, tries to fool the 

Discriminator
– Discriminator: tries to distinguish between real and fake 

samples
– Train them against each other
– Repeat this and we get better Generator and Discriminator
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GAN’s Architecture

• Z is some random noise (Gaussian/Uniform).
• Z can be thought as the latent representation of the image.

z
G(z)

D(x)

x

D(G(z))

G

D
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Training Discriminator
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Training Generator
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Generator in action
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GAN’s formulation
min
$
max
'
( ),+

• It is formulated as a minimax game, where:
– The Discriminator is trying to maximize its reward , -, .
– The Generator is trying to minimize Discriminator’s reward (or maximize its 

loss)

( ),+ = 01∼3(1) log) 9 +0;∼<(;) log 1 −) +(?)

• The Nash equilibrium of this particular game is achieved at:
– @ABCB 9 = @DEF 9 ∀9

– D 9 = H
I
∀9

94



Vanishing gradient strikes back again…

min
$
max
'

( ), +
( ), + = -.∼0(.) log) 6 + -8∼9(8) log 1 − ) +(<)

=>?((), +) = =>?-8~9(8) log 1 − ) + <

– =A log 1 − B C = DEF G(A)
HDG(A)

=
DG A HDG A

HDG(A)
= −B C =  

− ) + <

– Gradient goes to 0 if ) is confident, i.e. ) + < → 0

• Minimize −-8~9 8 log) + < for Generator instead (keep Discriminator as it is)
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Faces
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CIFAR

97https://www.cs.toronto.edu/~kriz/cifar.html



DCGAN: Bedroom images
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Deep Convolutional GANs (DCGANs)
Generator Architecture Key ideas:

• Replace FC hidden layers with 
Convolutions
• Generator: Fractional-Strided

convolutions

• Use Batch Normalization after 
each layer

• Inside Generator
• Use ReLU for hidden layers
• Use Tanh for the output layer
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Latent vectors capture interesting patterns…
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GANs: Part 2
• Advantages of GANs
• Training Challenges
• Non-Convergence
• Mode-Collapse

• Proposed Solutions
• Supervision with Labels
• Mini-Batch GANs

• Current trends
• Wasserstein GANs
• Conditional GANs

• (fancy) applications



Advantages of GANs
• Plenty of existing work on Deep Generative Models

– Boltzmann Machine
– Deep Belief Nets
– Variational AutoEncoders (VAE)

• Why GANs?
– Sampling (or generation) is straightforward.
– Training doesn't involve Maximum Likelihood estimation.
– Robust to Overfitting since Generator never sees the training 

data.
– Empirically, GANs are good at capturing the modes of the distribution.
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Problems with GANs
• Probability Distribution is Implicit

– Not straightforward to compute P(X).
– Thus Vanilla GANs are only good for Sampling/Generation.

• Training is Hard
– Non-Convergence
– Mode-Collapse

103



Training Problems
• Non-Convergence
• Mode-Collapse
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Non-Convergence
min$ max' ( ), +

Let ( ), + = )+

– State 1: 
– State 2:

– State 3:

– State 4 :

– State 5: == State 1

x > 0 y > 0 V > 0 Increase y Decrease x

Decrease y Decrease x

Decrease y Increase x

Increase y Increase x

Increase y Decrease x

x < 0 y > 0 V < 0

x < 0 y < 0 V > 0

x > 0 y < 0 V < 0

x > 0 y > 0 V > 0
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min
$

max
'

( ), +

• Deep Learning models (in general) involve a single player
– The player tries to maximize its reward (minimize its loss).
– Use SGD (with Backpropagation) to find the optimal parameters.
– SGD has convergence guarantees (under certain conditions).
– Problem: With non-convexity, we might converge to local optima.

min
$

, +

• GANs instead involve two (or more) players
– Discriminator is trying to maximize its reward.
– Generator is trying to minimize Discriminator’s reward.

– SGD was not designed to find the Nash equilibrium of a game.
– Problem: We might not converge to the Nash equilibrium at all.
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Problems with GANs
• Non-Convergence
• Mode-Collapse
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Mode-Collapse
• Generator fails to output diverse 

samples

Expected

Output

Target
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Some real examples

109



Some Solutions
• Mini-Batch GANs
• Supervision with labels

• Recent best-performing GAN:
Improved Wasserstein-GAN

https://arxiv.org/abs/1704.00028

110

https://arxiv.org/abs/1704.00028


Basic (Heuristic) Solutions
• Mini-Batch GANs
• Supervision with labels
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How to reward sample diversity?
• At Mode Collapse,

– Generator produces good samples, but a very few of them.
– Thus, Discriminator can’t tag them as fake.

• To address this problem,
– Let the Discriminator know about this edge-case.

• More formally,
– Let the Discriminator look at the entire batch instead of single 

examples
– If there is lack of diversity, it will mark the examples as fake

• Thus,
– Generator will be forced to produce diverse samples.
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Mini-Batch GANs
• Extract features that capture diversity in the mini-batch

– For e.g. L2 norm of the difference between all pairs from the batch

• Feed those features to the discriminator along with the image

• Feature values will differ b/w diverse and non-diverse batches
– Thus, Discriminator will rely on those features for classification

• This in turn,
– Will force the Generator to match those feature values with the real 

data
– Will generate diverse batches
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Basic (Heuristic) Solutions
• Mini-Batch GANs
• Supervision with labels

114



Supervision with Labels
• Label information of the real data might help

• Empirically generates much better samples

D
Real

Fake
D Human

Fake

Car

Dog
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Wasserstein GAN - WGAN
• Pitfalls of GAN

• No guarantee to equilibrium
• The discriminator only gives 0 or 1 but cannot describe

how good or bad the image is
https://github.com/soumith/ganhacks

•WGAN
• Wasserstein distance between two data distributions
• The discriminator gives a continuous evaluation

describe how good or bad the image is
Arjovsky, Martin, and Léon Bottou. "Towards principled methods for training generative adversarial networks." arXiv preprint
arXiv:1701.04862 (2017).
M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein gan,” arXiv preprint arXiv:1701.07875 , 2017.
I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. Courville, “Improved training of wasserstein gans,” arXiv preprint arXiv:1704 .00028,
2017.
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https://github.com/soumith/ganhacks


Conditional GANs

Figure 2 in the original paper.

generated conditioned on their class label.
1, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 1, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 1, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 1, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 1, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 1, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 1, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 1, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 1, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 1

MNIST digits 

MNIST digits
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Conditional GANs

• Simple modification to the original 
GAN framework that conditions the 
model on additional information for 
better multi-modal learning.

• Lends to many practical applications 
of GANs when we have explicit 
supervision available.

Image Credit: Figure 2 in Odena, A., Olah, C. and Shlens, J., 2016. Conditional image synthesis with auxiliary classifier GANs. arXiv preprint arXiv:1610.09585.
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The Cool Stuff…
3D Faces
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3D Chairs

Cool Stuff (contd.)

120



Image-to-Image Translation

Figure 1 in the original paper.
Link to an interactive demo of this paper
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http://affinelayer.com/pixsrv/


Image-to-Image Translation
• Architecture: DCGAN-based 

architecture

• Training is conditioned on the 
images from the source domain.

• Conditional GANs provide an 
effective way to handle many 
complex domains without worrying 
about designing structured loss
functions explicitly.

Figure 2 in the original paper.
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Text-to-Image Synthesis

Figure 1 in the original paper.

Motivation

Given a text description, 
generate images closely 
associated.

Uses a conditional GAN with the 
generator and discriminator being 
condition on “dense” text 
embedding.
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Text-to-Image Synthesis

Figure 2 in the original paper.

Positive Example:
Real Image, Right Text

Negative Examples:
Real Image, Wrong Text
Fake Image, Right Text
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Face Aging with Conditional GANs

Figure 1 in the original paper.

• Differentiating Feature: Uses an Identity Preservation Optimization using an 
auxiliary network to get a better approximation of the latent code (z*) for 
an input image.

• Latent code is then conditioned on a discrete (one-hot) embedding of age 
categories.
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Face Aging with Conditional GANs

Figure 3 in the original paper.
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Coupled GAN

• Learning a joint distribution of multi-domain images.
• Using GANs to learn the joint distribution with samples drawn from 

the marginal distributions.
• Direct applications in domain adaptation and image translation.

Figure 2 in the original paper.

127Liu, Ming-Yu, and Oncel Tuzel. "Coupled generative adversarial networks." NIPS 2016



Coupled GANs
• Architecture

Weight-sharing constraints the network to learn a joint distribution without corresponding supervision.

Figure 1 of the original paper.

128Liu, Ming-Yu, and Oncel Tuzel. "Coupled generative adversarial networks." NIPS 2016



Coupled 
GANs

• Some examples of 
generating facial images across 
different feature 
domains.

• Corresponding images in a column 
are generate from the same latent 
code !

Figure 4 in the original paper.

Hair 
Color

Facial
Expressio
n

Sunglasse
s

129Liu, Ming-Yu, and Oncel Tuzel. "Coupled generative adversarial networks." NIPS 2016



Laplacian Pyramid of Adversarial 
Networks

Figure 1 in the original paper. (Edited for simplicity)

• Based on the Laplacian Pyramid representation of images. (1983)
• Generate high resolution (dimension) images by using a hierarchical system of GANs
• Iteratively increase image resolution and quality.

130



Laplacian Pyramid of Adversarial 
Networks

Figure 1 in the original paper.

Image Generation using a LAPGAN
• Generator !" generates the base image #" from random noise input $".
• Generators (!%,!',!() iteratively generate the difference image ()ℎ) conditioned on 

previous small image (,).
• This difference image is added to an up-scaled version of previous smaller image.
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Laplacian Pyramid of Adversarial 
Networks

Figure 2 in the original paper.

Training Procedure:
Models at each level are trained independently to learn the required representation.
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Summary
• GANs are generative models that are implemented 

using two stochastic neural network modules: 
Generator and Discriminator.

• Generator tries to generate samples from random 
noise as input

• Discriminator tries to distinguish the samples from 
Generator and samples from the real data 
distribution.

• Both networks are trained adversarially (in tandem) 
to fool the other component. In this process, both 
models become better at their respective tasks.

• Active areas of research:
– Better loss functions (WGAN, LSGAN,…)
– Conditional GANs and all kinds of applications

133https://github.com/hindupuravinash/the-gan-zoo

https://github.com/hindupuravinash/the-gan-zoo


Why use GANs for Generation?
• Can be trained using back-propagation for 

Neural Network based 
Generator/Discriminator functions.

• Sharper images can be generated.
• Faster to sample from the model 

distribution: single forward pass generates a 
single sample.
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Deep Learning Building Blocks
Deep Learning Building Blocks

Nagel, Wolfram. Multiscreen UX Design: Developing for a Multitude of Devices. Morgan Kaufmann, 2015.

I/O modalities,
Network architectures,
Losses/Costs

Models
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Deep Learning: Zooming Out
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Deep Learning: Zooming In
Non-linearities
ReLU
Sigmoid
Tanh
GRU
LSTM
Linear…?

Optimizer
SGD
Momentum
RMSProp
Adagrad
Adam
…

Connectivity
Fully connected
Convolution
Recurrent
Recursive
Skip/Residual
Random…?

Loss
Cross Entropy
Adversarial
Variational
Max. Likelihood
Sparse
L2

HyperParameters
Learning Rate
Layer Size and #
Batch Size
Dropout
Weight initialization
Data augmentation
Gradient clipping
Weight decay
Momentum
…
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Finding your blocks

INPUTS/
OUTPUTS ARCHITECTURE LOSS

Image pixels / Class labels

Text sequences

Audio waveforms

Sets of images/texts (no 
labels)

Discrete: softmax cross 
entropy (with L2 
reguralization)

Continuous: Gaussian 
(mixture) likelihood

Adversarial loss

Convolutions

Recurrent (over 
space/time)

Attention



Thanks!



Reading List (general)
• Books:
– http://www.deeplearningbook.org/
– http://neuralnetworksanddeeplearning.com/

• Courses:
– http://cs231n.stanford.edu/
– http://www.cs.toronto.edu/~rgrosse/csc321/
– http://web.stanford.edu/class/cs224n/

• Guides to deep learning:
– http://yerevann.com/a-guide-to-deep-learning/
– http://ufldl.stanford.edu/tutorial/
– https://github.com/terryum/awesome-deep-

learning-papers
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Reading List (RNNs)
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• R. Pascanu, T. Mikolov, and Y. Bengio, On the difficulty of training recurrent neural 
networks, ICML 2013

• S. Hochreiter, and J. Schmidhuber, Long short-term memory, Neural computation, 1997 
9(8), pp.1735-1780

• F.A. Gers, and J. Schmidhuber, Recurrent nets that time and count, IJCNN 2000
• K. Greff , R.K. Srivastava, J. Koutník, B.R. Steunebrink, and J. Schmidhuber, LSTM: A 

search space odyssey, IEEE transactions on neural networks and learning systems, 2016 
• K. Cho, B. Van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. 

Bengio, Learning phrase representations using RNN encoder-decoder for statistical machine 
translation, ACL 2014

• R. Jozefowicz, W. Zaremba, and I. Sutskever, An empirical exploration of recurrent 
network architectures, JMLR 2015

• Seq2Seq ICML 2017 Tutorial (Vinyals & Jaitly) 
• Minh-Thang Luong, Hieu Pham, and Christopher D. Manning. “Effective Approaches to 

Attention-based Neural Machine Translation.” EMNLP’15. 
• Andrychowicz, Marcin, and Karol Kurach. "Learning efficient algorithms with hierarchical 

attentive memory." arXiv preprint arXiv:1602.03218 (2016).
• Xu, Kelvin, et al. “Show, attend and tell: Neural image caption generation with visual 

attention.” ICML 2015 

http://www.jmlr.org/proceedings/papers/v28/pascanu13.pdf
http://web.eecs.utk.edu/~itamar/courses/ECE-692/Bobby_paper1.pdf
ftp://ftp.idsia.ch/pub/juergen/TimeCount-IJCNN2000.pdf
https://arxiv.org/pdf/1503.04069.pdf
https://arxiv.org/pdf/1406.1078.pdf
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Reading List (GANs)
• Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A. and Bengio, Y. Generative 

adversarial nets, NIPS (2014).
• Goodfellow, Ian NIPS 2016 Tutorial: Generative Adversarial Networks, NIPS (2016).
• Radford, A., Metz, L. and Chintala, S., Unsupervised representation learning with deep convolutional generative adversarial 

networks. arXiv preprint arXiv:1511.06434. (2015).
• Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., & Chen, X. Improved techniques for training 

gans. NIPS (2016).
• Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., & Abbeel, P. InfoGAN: Interpretable Representation 

Learning by Information Maximization Generative Adversarial Nets, NIPS (2016).
• Zhao, Junbo, Michael Mathieu, and Yann LeCun. Energy-based generative adversarial network. arXiv preprint 

arXiv:1609.03126 (2016).
• Mirza, Mehdi, and Simon Osindero. Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784 (2014).
• Liu, Ming-Yu, and Oncel Tuzel. Coupled generative adversarial networks. NIPS (2016).
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inference. arXiv preprint arXiv:1606.00704 (2016).

Applications:
• Isola, P., Zhu, J. Y., Zhou, T., & Efros, A. A. Image-to-image translation with conditional adversarial networks. arXiv 

preprint arXiv:1611.07004. (2016).
• Reed, S., Akata, Z., Yan, X., Logeswaran, L., Schiele, B., & Lee, H. Generative adversarial text to image synthesis. JMLR 

(2016).
• Antipov, G., Baccouche, M., & Dugelay, J. L. (2017). Face Aging With Conditional Generative Adversarial Networks. arXiv 
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