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Tutorial Overview

INPUTS/
OUTPUTS

I'You need part 1 for any deep learning architecture! w

 Part 2: ARCHITECTURE

— Introduction to Recurrent Neural Networks (RNNs)

— RNN variants

— Generative Adversarial Networks e
—  Summary '

— Demo?
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Introduction to RNNs

Jerry Spanakis

Some slide credits (esp. illustrations): Arun Mallya [github link)


http://arunmallya.github.io/

Motivation

* Not all problems can be converted into one with fixed-
length inputs and outputs

* Problems such as Speech Recognition or Time-series
Prediction require a system to store and use context
information

— Simple case: Output YES if the number of 1s is even, else NO
1000010101 — YES, 100011 — NO, ...

« Hard/Impossible to choose a fixed context window
— There can always be a new sample longer than anything seen



Recurrent Neural Networks (RNNs)

* Recurrent Neural Networks take the previous output or

hidden states as inputs.
The composite input at time t has some historical
iInformation about the happenings at time T < t

* RNNs are useful as their intermediate values (state) can
store information about past inputs for a time that is not
fixed a priori



Sample Feed-forward Network
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The Vanilla RNN Cell
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The Vanilla RNN Forward

y1 y2 Y.
hi h2
ho X2 hi1

i

'xt
h = tanhW( j
h

-1
y, =F(h,)
C, =Loss(y,,GT)

X3 ho

10



The Vanilla RNN Forward
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Recurrent Neural Networks (RNNs)

* Note that the weights are shared over time

* Essentially, copies of the RNN cell are made over time
(unrolling/unfolding), with different inputs at different

time steps



Sentiment Classification

Classify a
...restaurant review from Yelp!
...movie review from IMDB

as positive or negative

Inputs: Multiple words, one or more sentences
Outputs: Positive / Negative classification

“The food was really good”
“The chicken crossed the road because it was uncooked"



Sentiment Classification
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Sentiment Classification
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Sentiment Classification

RNN ? RNN ? —_— ?
1 2 -1

The food

->

RNN

>

Q
Q.



Sentiment Classification
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Sentiment Classification
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Sentiment Classification (alt.)

The food good



Sentiment Classification (alt.)

Linear
Classifier

h =Sum(...)

hi hn

h2

A -> A - - = A

The food good



Image Captioning
e Given an image, produce a sentence describing its contents

* Inputs: Image feature (from a CNN)
* Qutputs: Multiple words (let's consider one sentence)

- The dog is hiding

21



Image Captioning
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Image Captioning
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CNN

Image Captioning

The dog
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Linear Linear
Classifier Classifier
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RNN Outputs: Image Captions

A person riding a Two dogs play in the grass. A herd of elephants walking
motorcycle on a dirt road. across a dry grass field.

Two hock.y p'.y.n are A close up of a cat .'y‘ﬂg
on a couch.

fighting over the puck

25



https://arxiv.org/pdf/1411.4555.pdf

RNN Outputs: Language Modeling

VIOLA: KING LEAR:

Why, Salisbury must find his flesh and thought O, If you were a feeble sight, the
That which | am not aps, not a man and in fire, courtesy of your law,

To show the reining of the raven and the wars Your sight and several breath, will
To grace my hand reproach within, and not a fair are  wear the gods

hand, With his heads, and my hands are
That Caesar and my goodly father's world; wonder'd at the deeds,

When | was heaven of presence and our fleets, So drop upon your lordship's head,
We spare with hours, but cut thy council | am great,  and your opinion

Murdered and by thy master's ready there Shall be against your honour.

My power to give thee but so much as hell:
Some service in the noble bondman here,

Would show him to her wine.


http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Input — Output Scenarios

A
A

Single - Single Feed-forward Network

Single - Multiple Image Captioning

Multiple - Single zkx
Multiple - Multiple zkw Translation

Image Captioning (again...?)

Sentiment Classification




Input — Output Scenarios

Note: We might deliberately choose to frame our problem as a
particular input-output scenario for ease of training or
better performance.

For example, at each time step, provide previous word as
iInput for iImage captioning
(Single-Multiple to Multiple-Multiple).



The Vanilla RNN Forward
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“Unfold” network through time by
making copies at each time-step
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Remember BackPropagation?

y=f(x;W)

C =Loss(y,y;r)
y
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Reminder: Multiple Layers

v, = H(6W)
Y, =LOW,)

C =Loss(y,,Y5r)
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Reminder: Chain Rule for Gradient
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Extension to Computational Graphs
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Extension to Computational Graphs
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BackPropagation Through Time (BPTT)

 (One of the methods used to train RNNs

* The unfolded network (used during forward pass) is
treated as one big feed-forward network

* This unfolded network accepts the whole time series as
Input

* The weight updates are computed for each copy In the
unfolded network, then summed (or averaged) and then
applied to the RNN welights



The Unfolded Vanilla RNN

% V2 V3
A A

A

e TJreat the unfolded network as one
big feed-forward network!

e This big network takes in entire
sequence as an input

« Compute gradients through the
usual backpropagation

« Update shared weights

37
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The Unfolded Vanilla RNN Forward




The Unfolded Vanilla RNN Backward




The Vanilla RNN Backward
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Issues with the Vanilla RNNs

* |n the same way a product of k real numbers can shrink to
zero or explode to infinity, so can a product of matrices

e |t Is sufficient for A <1/y, where A, Is the largest singular
value of W, for the vanishing gradients problem to occur
and It Is necessary for exploding gradients that | >1/y,
where y =1 for the tanh non-linearity andy =1/4 for the
sigmoid non-linearity !

* Exploding gradients are often controlled with gradient
element-wise or norm clipping

1 Op the difficultyv of training recurrent neural npetworks, Pascanu et g/, 2013


http://www.jmlr.org/proceedings/papers/v28/pascanu13.pdf

Long Short-Term Memory (LSTM)?

11

The LSTM uses the idea of “Constant Error Flow" for
RNNs to create a “Constant Error Carousel” (CEC) which
ensures that gradients don't decay

The key component 1s a memory cell that acts like an
accumulator (contains the identity relationship) over time

Instead of computing new state as a matrix product with
the old state, It rather computes the difference between

them. Expressivity Is the same, but gradients are better
behaved

n hort-Term Memoryv. Hochreiter [ 1997


http://deeplearning.cs.cmu.edu/pdfs/Hochreiter97_lstm.pdf
http://www.jmlr.org/proceedings/papers/v28/pascanu13.pdf
http://deeplearning.cs.cmu.edu/pdfs/Hochreiter97_lstm.pdf
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The Original LSTM Cell

Xt ht-1 Xt ht-1

i
Input Gate 0

W

o

Output Gate Q
D>

Cell

R,

A
Sy

X, X,
c,=c¢_ +1i, ®taﬂhW(h j h =o, @tanhc, | =G£VVZ{ j+bi) Similarly for ot

-1 t—1



The Popular LSTM Cell

Xt ht-1 Xt ht-1

] 0
Input Gate 0 Output Gate Q




LSTM — Forward/Backward

Go To: lllustrated LSTM Forward and Backward Pass


http://arunmallya.github.io/writeups/nn/lstm/index.html

Summary (so far...)

RNNs allow for processing of variable length inputs and
outputs by maintaining state information across time steps

Various Input-Output scenarios are possible
(Single/Multiple)

Vanilla RNNs are improved upon by LSTMs which address
the vanishing gradient problem through the CEC

Exploding gradients are handled by gradient clipping

More complex architectures can be found online and/or
the tutorial material for you to play...



Some RNN Variants

Jerry Spanakis



Class Quiz

* (Consider the problem of translation of English to Dutch
« E.g. What is your name) Wat is jouw naam

* |s the below architecture suitable for this problem?

Fi1 Fo F3



Class Quiz

Consider the problem of translation of English to Dutch
E.g. What is your name) Wat Is jouw naam

Is the below architecture suitable for this problem?

Fi1 Fo F3

AAA

3

No, sentences might be of different length and words
might not align. Need to see entire sentence before

translating



Class Quiz

Consider the problem of translation of English to Dutch
E.g. What is your name) Wat Is jouw naam

Sentences might be of different length and words might
not align. Need to see entire sentence before translating

gg E3s

Input-Output nature depends on the structure of the
problem at hand

F1 F2 F3 F4

4


https://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf

Multi-layer RNINs

 \We can also design RNNs with multiple hidden layers

AAAAAA

y2 V3

AA

A

- o~ X1 X2 X3 X4 X5 X6

AThink big here: Skip connections across layers, across time, ...



Multiple
Stacks




Bi-directional RNNs

 RNNs can process the input sequence in forward and in the

reverse direction
Y1 y2 y3 v4 y5 V6

8839845

X1 X2 X3 X4 X5 X6

* Popular in speech recognition

54



LSTM: A Search Space Odyssey

e Tested the following variants, using LSTM as standard:

No Input Gate (NIG)
No Forget Gate (NFG)

No Output Gate (NOG)
No Input Activation Function (NIAF)

No Output Activation Function (NOAF)
No Peepholes (NP)

Coupled Input and Forget Gate (CIFG)
Full Gate Recurrence (FGR)

. On the tasks of:

— Timit Speech Recognition: Audio frame to 1 of 61 phonemes
— |AM Online Handwriting Recognition: Sketch to characters

OO\IChLTI-l>(.)~)I\.)l—k

— JSB Chorales: Next-step music frame prediction

LST M A (ch reff [ 2015


https://arxiv.org/pdf/1503.04069.pdf

LSTM: A Search Space Odyssey

 The standard LSTM performed reasonably well on multiple
datasets and none of the modifications significantly
improved the performance

* Coupling gates and removing peephole connections
simplified the LSTM without hurting performance much

* The forget gate and output activation are crucial

* Found Iinteraction between learning rate and network size
to be minimal — indicates calibration can be done using a
small network first

LST M A (ch reff [ 2015


https://arxiv.org/pdf/1503.04069.pdf

Gated Recurrent Unit (GRU)

* A very simplified version of the LSTM
— Merges forget and input gate into a single ‘update’ gate
— Merges cell and hidden state

* Has fewer parameters than an LSTM and has been shown
to outperform LSTM on some tasks

istical Machine Translation, Ch [ 2014


https://arxiv.org/abs/1406.1078
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An Empirical Exploration of Recurrent
Network Architectures

* Given the rather ad-hoc design of the LSTM, the authors
try to determine if the architecture of the LSTM is

optimal

* They use an evolutionary search for better architectures

An EFmpirical Exploration of R rrent N rk Archi r zefowicz /.

/Y

15


http://jmlr.org/proceedings/papers/v37/jozefowicz15.pdf

Evolutionary Architecture Search

A list of top-100 architectures so far iIs maintained,
initialized with the LSTM and the GRU

e The GRU is considered as the baseline to beat

 New architectures are proposed, and retained based on
performance ratio with GRU

* All architectures are evaluated on 3 problems

— Arithmetic: Compute digits of sum or difference of two numbers
provided as inputs. Inputs have distractors to increase difficulty
3e36d9-h1h39f94eeh43keg3c = 3369 — 13994433 = -13991064

— XML Modeling: Predict next character in valid XML modeling

— Penn Tree-Bank Language Modeling: Predict distributions over
words

An EFmpirical Exploration of R rrent N rk Archi r zefowicz [ 9015


http://jmlr.org/proceedings/papers/v37/jozefowicz15.pdf

Evolutionary Architecture Search

* At each step
— Select 1 architecture at random, evaluate on 20 randomly chosen
hyperparameter settings.

— Alternatively, propose a new architecture by mutating an existing

one. Choose probability p from [0,1] uniformly and apply a
transformation to each node with probability p
* If node is a non-linearity, replace with {tanh(x), sigmoid(x), ReLU(x),
Linear(0, x), Linear(1, x), Linear(0.9, x), Linear(1.1, x)}
* If node is an elementwise op, replace with {multiplication, addition,
subtraction}
* Insert random activation function between node and one of Its parents
* Replace node with one of its ancestors (remove node)

* Randomly select a node (node A). Replace the current node with either the
sum, product, or difference of a random ancestor of the current node and a

random ancestor of A.

— Add architecture to list based on minimum relative accuracy wrt
GRU on 3 different tasks


http://jmlr.org/proceedings/papers/v37/jozefowicz15.pdf

Evolutionary Architecture Search

* 3 novel architectures are presented in the paper
* Very similar to GRU, but slightly outperform it

 LSTM initialized with a large positive forget gate bias
outperformed both the basic LSTM and the GRU!



http://jmlr.org/proceedings/papers/v37/jozefowicz15.pdf

LSTM initialized with large positive
forget gate bias?

ol

X
C, =ft®ct1-|—it®tanhW( t )
ht—l

e Recall

oc,_, =0c, ® f,
e Gradients will vanish if fis close to 0. Using a large positive bias
ensures that f has values close to 1, especially when training begins
 Helps learn long-range dependencies

* Originally stated in Learning to forget. Continual prediction with
LSTM. _Gers et gl 2000, but forgotten over time


http://jmlr.org/proceedings/papers/v37/jozefowicz15.pdf
https://pdfs.semanticscholar.org/1154/0131eae85b2e11d53df7f1360eeb6476e7f4.pdf

RNN: Issues with long inputs

e [he same last vector
"Informs” the entire output

* Needs to capture all the

iInformation about the
iInput regardless of length

Spipap

°Can|dobetter? I I I I I I I

Al L e OB

68



Yes, we can!

* Introduce an extra "attention” layer mapping between the
iInput and the ouput

€
O g.&’
5 25_. %3 B, A
7} ko]
v © £ ® ,, ¢ = c
QO o o (@))]
0} 9] ]
_ccnc_c:uum_g’c:?m
F ©® 0o w w3 Hnh & A \Y
L

économique

européenne
e e e —

Bahdanau, D., et al. “Neural Machine Translation by Jointly Learning to Align and Translate.” ICLR (2015)



Seq2Seq with Attention

e A different vector computed for every output step
o

AL I = b D =

Encoder F(input,hl) Decoder

Attention
Based
Embedding



Seq2Seq with Attention

e A different vector computed for every output step

] B [

HAH] < THRHH

AL I = b D =

Encoder F(input,h2) Decoder

Attention
Based
Embedding



Seq2Seq with Attention

e A different vector computed for every output step

] B [

HAH] < THRH

AL I = b D =

Encoder F(input,h3) Decoder

Attention
Based
Embedding



Seq2Seq with Attention

e Attention vector used to predict output and compute next hidden state

Attention
Based
Embedding

HHH] HHH,
AHEE |

Encoder F(input,hl) Decoder



Seq2Seq with Attention

e Attention vector used to predict output and compute next hidden state

Attention
Based
Embedding

HHH]

AHEE |

Encoder F(input,h2) Decoder



Seq2Seq with Attention

e Attention vector used to predict output and compute next hidden state

] [

HHH] I},. 1

Attention
Based
Embedding

AL = b D =

Encoder F(input,h3) Decoder



Attention is all you need?

* Not recurrent

 Not convolutional

e Dot-product attention
over Inputs 1s masked N

Multi- Head ' ‘
to preserve causal Attention Arertor
LU - LW -
structure — ——
Fr‘u oding N .- : )
E rn::::'! ng E 'v:-t:r;fm

Inputs

Vaswani, Ashish, et al. "Attention is all you need”. In NIPS, 2017




Self-Attention

« More powerful than convolutions (which have fixed kernels)
e Less complex than recurrent structures

e S e e e

77



Self-Attention

« More powerful than convolutions (which have fixed kernels)
e Less complex than recurrent structures

OO%O © 0 0 O o O
o ©O (-] ¢ ¢ 0 0 v 9
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Summary & intuitive tricks

Architectures like the GRU have fewer parameters than
the LSTM and might perform better

— An LSTM with large positive forget gate bias works best!

— Attention models are simpler and they do perform very well!

Finding the optimal architecture might not the problem
you want to solve.

— Browse the literature and see what works best for the type of
problem you want to try.

— Initialization of parameters is critical but well studied

If you deal with long sequences
— Attention or Bigger state or Bi-directional architecture



Introduction to GANSs

Jerry Spanakis

Some slide credits (esp. illustrations):
lan Goofdellow (lipk)

Oriol Vinyals (link)
Binglin Chen


http://www.iangoodfellow.com/
https://ai.google/research/people/OriolVinyals

GANSs

* Generative
— Learn a generative model

* Adversarial
— Traned in an adversarial setting

 Networks
— Use Deep Neural Networks

81



Why Generative Models?

CNN, RNN are discriminative models

— E.g. given an image (or sequence) X, predict a label Y
— Estimates P(Y|X)

Discriminative models have several key limitations
— Can't model P(X), i.e. the probability of seeing a certain image

— Thus, can't sample from P(X), i.e. can't generate new images

Generative models (in general) cope with all of above
— Can model P(X)
— (Can generate new images

82



Magic of GANS...

Ground Truth

Adversarial

83



Magic of GANS...

Nearest Neighbor Super-resolution

[Ledig. et. al, 2017 “Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Netwok”]



Magic of GANS...

33



User edits

Magic of GANS...

Generated 1mag,es

86



'

Maglc of GANs...

v' ne' n'“ 1“ *‘i“ Wilﬁ

r‘i’ ' 2 ‘1 - = (

[Denton et. al., 2016, “Deep Generative Image Models using a Laplacian Pyramid of GANs”]

7
[Radford et. al, 2016, “Unsupervised Representation Learning with DCGANS"F



Magic of GANS...

[Karras, et. al. 2017, “Progressive Growing of GANs
for Improved Quality, Stability, and Variation”]



Adversarial Training
» Basic ideas:
— We can generate adversarial samples to fool a discriminative
model
— We can use those adversarial samples to make models robust
— We then require more effort to generate adversarial samples
— Repeat th|s and we get better discriminative model

panda ibl Onginal Image Adversanal Noise Adversarial Example
" i g1bbon “Goldfish™ 17255 x sign(V, J(0,r, u)) “Mudpuppy”
58% confidence 99% confidence )

* GANSs extend these ideas to generative models:
— Generator: generate fake samples, tries to fool the
Discriminator

— Discriminator: tries to distinguish between real and fake
samples

— Train them against each other

— Repeat this and we get better Generator and Discriminator
89



GAN's Architecture

Differentiable module
Realworld —« Sample
images D Real D(x)

O
»  Discriminator " .
z G 3 g
G(z) ‘
O Fake p(G(2))
9, ~ Generator - Sample -

Latent random variable

&/ Differentiable module

* Z is some random noise (Gaussian/Uniform).
» Z can be thought as the latent representation of the image.

90



Latent random variable

Training Discriminator

Real world
images

Generator

Sample

o

Discriminator

00

Backprop error to
update discriminator
weights
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Latent random variable

000

Training Generator

.

Generator

Discriminator

Sample

o

Real
-
® a
. 4
Fake

-

Backprop error to
update generator
weights
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Generator in action

93



GAN'’s formulation

minmax V (D, G)
G D

It Is formulated as a minimax game, where:
— The Discriminator is trying to maximize its reward V(D, G)

— The Generator is trying to minimize Discriminator’s reward (or maximize its
loss)

V(D,G) = Exp(xllog D(x)] + Ez-qx|log(1 — D(G(2)))]

The Nash equilibrium of this particular game is achieved at:

— Pgara(x) = Pgen(x) Vx

— D(x) =.; Vx

94



Vanishing gradient strikes back again...

rnGin max V(D, G)
V(D,G) = ]Epr(x) [log D(x)] + IE':z««q(z) [log(l - D(G (Z)))]

VooV (D, G) = VggE,—qen |log (1 - D(6(2)))]|

— Vylog(1 - o(a)) =_1‘i4:(ag)) = %;(j)(a)) = —o(a) =
— D(G(Z))

— Gradient goes to 0 if D is confident, i.e. D(G(z)) — 0

*  Minimize —E,.4(;|log D(G(2))] |for Generator instead (keep Discriminator as it is)

95
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https://www.cs.toronto.edu/~kriz/cifar.html
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DCGAN: Bedroom images

e — , ' | l
R - ! V- “. d ‘ . -‘ e
" “ : : | s
- - - Sy~

—

\

e
. “\
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Deep Convolutional cAns (DCGANS)
Generator Architecture Key ideas:

* Replace FC hidden layers with
Convolutions

» Generator: Fractional-Strided
convolutions

 Use Batch Normalization after
each layer

* Inside Generator
Use RelLU for hidden layers
Use Tanh for the output layer

99



Latent vectors capture interesting patterns...

AN
——— l
u Ed
man man woman

A . ) i I
with glasses without glasses without glasses woman with glasses

100



GANSs

Advantages of GANs
Training Challenges

 Non-Convergence
 Mode-Collapse

Proposed Solutions
e Supervision with Labels
 Mini-Batch GANs

Current trends
e Wasserstein GANSs
e (Conditional GANs

(fancy) applications

- Part 2



Advantages of GANs

* Plenty of existing work on Deep Generative Models

— Boltzmann Machine
— Deep Belief Nets

— Variational AutoEncoders (VAE)

* Why GANS?
— Sampling (or generation) is straightforward.

— Tramning doesn't involve Maximum Likelithood estimation.

— Robust to Overfitting since Generator never sees the training
data.

— Empirically, GANs are good at capturing the modes of the
distribution.

102



Problems with GANSs

* Probability Distribution is Implicit
— Not straightforward to compute P(X).
— Thus Vanilla GANs are only good for Sampling/Generation.

* Training i1s Hard

— Non-Convergence
— Mode-Collapse

103



Training Problems

* Non-Convergence

* Mode-Collapse

104



State 1:

State 2:
State 3:
State 4 :

State b:

Non-Convergence

min max V(x,y)

x y
Let V(x,y) = xy

x>0 y>0 V>0
x<0 y>0 V<O
x<0 y<O0 V>0
x>0 y<0 V<0
x>0 y>0 V>0

== State 1

Increase y Decrease x
Decrease y Decrease x
Decreasey |Increase x
Increase y Increase x
Increase y Decrease x

105




« Deep Learning models (in general) involve a single player

— The player tries to maximize its reward (minimize its loss).

— Use SGD (with Backpropagation) to find the optimal parameters.
— SGD has convergence guarantees (under certain conditions).

— Problem: With non-convexity, we might converge to local optima.

min L(G)
G

« GAN:s instead involve two (or more) players
— Discriminator is trying to maximize its reward.
— Generator is trying to minimize Discriminator’s reward.
mGin max V(D,G)

— SGD was not designed to find the Nash equilibrium of a game.
— Problem: We might not converge to the Nash equilibrium at all.

106



Problems with GANSs

* Non-Convergence

« Mode-Collapse

107



Mode-Collapse

* Generator fails to output diverse
samples
Target

Expected - ’ * O ( - 4

Step 0 Step 5k Step 10k Step 15k Step 20k

» -
Output - -

Step 25k

108



Some real examples

109



Some Solutions

 Mini-Batch GANs
e Supervision with labels

* Recent best-performing GAN:
Improved Wasserstein-GAN

https://arxiv.org/abs/1704.00028

110


https://arxiv.org/abs/1704.00028

Basic (Heuristic) Solutions

 Mini-Batch GANSs
e Supervision with labels
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How to reward sample diversity?
At Mode Collapse,

— Generator produces good samples, but a very few of them.
— Thus, Discriminator can't tag them as fake.

To address this problem,

— Let the Discriminator know about this edge-case.

More formally,

— Let the Discriminator look at the entire batch instead of single
examples

— If there is lack of diversity, it will mark the examples as fake

Thus,

— Generator will be forced to produce diverse samples.
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Mini-Batch GANs

Extract features that capture diversity in the mini-batch

— For e.g. L2 norm of the difference between all pairs from the batch

Feed those features to the discriminator along with the image

Feature values will differ b/w diverse and non-diverse batches
— Thus, Discriminator will rely on those features for classification

This in turn,

— Wil force the Generator to match those feature values with the real
data

— Will generate diverse batches
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Basic (Heuristic) Solutions

 Mini-Batch GANs
e Supervision with labels
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Supervision with Labels

* Label information of the real data might help
Car

Dog

Human

Real

Fake

 Empirically generates much better samples
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Arjovsky, Martin, and Léon Bottou.
arXiv:1701.04862 (2017).

Wasserstein GAN - WGAN
e Pitfalls of GAN

* No guarantee to equilibrium

* The discriminator only gives 0 or 1 but cannot describe
how good or bad the image Is

https: ithub.com/soumith /ganhacks

* WGAN

* \Wasserstein distance between two data distributions

e The discriminator gives a continuous evaluation
describe how good or bad the image Is

"Towards principled methods for training generative adversarial networks." arXiv preprint

M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein gan,” arXiv preprint arXiv:1701.07875, 2017.
[. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. Courville, “Improved training of wasserstein gans,” arXiv preprint arXiv:1704.00028, 116

2017.


https://github.com/soumith/ganhacks

Conditional GANs
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Figure 2 in the oniginal paper.



Conditional GANs

( real )

. . . . - . [a—_:
 Simple modification to the original [{c
GAN framework that conditions the D

model on additional information for /\

better multi-modal learning. e
t
* Lends to many practical applications \/(\
of GANs when we have explicit (Cum) (Zmom

supervision available. Conditional GAN

Mirza & Qsindero, 2014)

Image Credit: Figure 2 in Odena, A., Olah, C. and Shlens, J., 2016. Conditional image synthesis with auxiliary classifier GANs. arXiv preprint arXiv:1610.09585.

118



The Cool Stuff...

3D Faces
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Cool Stuff (contd.)

3D Chairs
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Image-to-Image Translation

Labels 10 Street Scene Labels 10 Facade BW to Color

e Y " S

2B 0i

-

input output
Figure 1 in the original paper.
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http://affinelayer.com/pixsrv/

Image-to-Image Translation

 Architecture: DCGAN-based

a rch Itectu re ?’zsntwe CXQAMPES 'iiid'.-"'.':j;&”'ﬁ‘i‘i
- 1
D [ I
 Training is conditioned on the ——
Images from the source domain. .
t
« Conditional GANs provide an =
effective way to handle many rontandn
Comp|eX domains without Worl’ying D tries 10 identdy the fakes
about designing structured loss Figure 2 in the original paper.

functions explicitly.
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Text-to-Image Synthesis

this small bird has a pink this magnificent fellow is
: : breast and crown, and black almost all black with a red
M Ot IVa t 10N primaries and secondaries. crest, and white cheek patch.

Given a text description,
generate images closely
associated.

the flower has petals that this white and yellow flower
are bright pinkish purple have thin white petals and a
with white stigma round yellow stamen

Uses a conditional GAN with the

generator and discriminator being
condition on “dense” text

embedding.

Figure 1 in the original paper.
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Text-to-Image Synthesis

s flower has small, round violet This flower has small, round violer

petals with a dark purple center petals with a dark purple center

"L
! :
z ~ N(0. ”@

E\D(E ¢(t))

Discriminator Network
Figure 2 in the original paper.

Generator Network

Positive Example: Negative Examples:
Real Image, Right Text Real Image, Wrong Text
Fake Image, Right Text
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Face Aging with Conditional GANSs

* Differentiating Feature: Uses an Identity Preservation Optimization using an
auxiliary network to get a better approximation of the latent code (z*) for
an input image.

« Latent code is then conditioned on a discrete (one-hot) embedding of age

categories.
Latent Vector Approvimation Face Aging

ey N\ /7 I

.-

lxs'..d PO DO Optmmsrod socomstnectx

L L

Figure 1 in the orlglnal paper.
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Face Aging with Conditional GANSs

Figure 3 in the original paper.
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Coupled GAN
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e Learning a joint distribution of multi-domain images.

EEEEEENNN;
EXEXEXTXXNN]

igure 2 in the original paper.

* Using GANs to learn the joint distribution with samples drawn from

the marginal distributions.
e Direct applications in domain adaptation and image translation.

Liu, Ming-Yu, and Oncel Tuzel. "Coupled generative adversarial networks." NIPS 2016
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Coupled GANSs

 Architecture

Generators Discriminators
GAN, [1(9v2)

. . . 9,(2) . . _‘_’O

z . | weight sharing

f2(922)

e . - . gZ(Z) - . —o—O

Figure 1 of the original paper.

GAN,

Weight-sharing constraints the network to learn a joint distribution without corresponding supervision.

Liu, Ming-Yu, and Oncel Tuzel. "Coupled generative adversarial networks." NIPS 2016 128



Coupled

Hair
G ‘N NS Color
* Some examples of
generating facial
Images across |
different feature Facial -
. Expressio
domains. )
* Corresponding
Images In a column
are generate from
the same latent Sunglasse

S

code z

Figure 4 in the original paper.

Liu, Ming-Yu, and Oncel Tuzel. "Coupled generative adversarial networks." NIPS 2016 129



Laplacian Pyramid of Adversarial
Networks

n TI—;;T.J—L?

Figure 1 in the original paper. (Edited for simplicity)

» Based on the Laplacian Pyramid representation of images. (1983)

 Generate high resolution (dimension) images by using a hierarchical system of GANSs
* [teratively increase image resolution and quality.
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Laplacian Pyramid of Adversarial
Networks

Figure 1 in the original paper.

Image Generation using a LAPGAN

» Generator G3 generates the base image I3 from random noise input z3.
«  Generators (G,, G1, Gy) iteratively generate the difference image (h) conditioned on
previous small image (1).

» This difference image is added to an up-scaled version of previous smaller image.
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Laplacian Pyramid of Adversarial
Networks

Figure 2 in the original paper.

Training Procedure:
Models at each level are trained independently to learn the required representation.

132



Summary

GANs are generative models that are implemented
using two stochastic neural network modules:
Generator and Discriminator.

Generator tries to generate samples from random
noise as Input

Discriminator tries to distinguish the samples from
Generator and samples from the real data
distribution.

Both networks are trained adversarially (in tandem)

to fool the other component. In this process, both
models become better at their respective tasks.

Active areas of research:

— Better loss functions (WGAN, LSGAN,...)
— Conditional GANs and all kinds of applications

hitps:. //aithub com /hindupuravinash/the-gdan-z9oo 133


https://github.com/hindupuravinash/the-gan-zoo

Why use GANSs for Generation?

* Can be trained using back-propagation for
Neural Network based
Generator/Discriminator functions.

* Sharper images can be generated.

* Faster to sample from the model
distribution: single forward pass generates a

single sample.
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Deep Learning Building Blocks

Models

|/O modalities,
Network architectures,
Losses/Costs

2 tgding -
— '".Tf:= s."-_'sllsr

w

Nagel, Wolfram. Multiscreen UX Design: Developing for a Multitude of Devices. Morgan Kaufmann, 2015.
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Deep Learning: Zooming Out,

B Microsoft

CNTK

theano

PYTHRCH

Google Cloud
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Deep Learning: Zooming In

....

Non-linearities € Optimizer =
RelLU

| | SGD _
Sigmoid Momentum o = e
Tanh RMSProp HyperParameters
GRU Adagrad Learning Rate
LSTM Adam Layer Size and #
Linear...? Batch Size

Dropout

Connectivity @ Loss f‘ Weight initialization
Fully connected Cross Entropy Data augmentation
Convolution Adversarial Gradient clipping
Recurrent Variational Weight decay
Recursive Max. Likelihood Momentum
Skip/Residual Sparse

Random...? L2 137



Finding your blocks

INPUTS/
OUTPUTS

Image pixels / Class labels

Text sequences

Audio waveforms

Sets of images/texts (no
labels)

ARCHITECTURE LOSS

Convolutions

Recurrent (over
space/time)

Attention

Discrete: softmax cross
entropy (with L2
reguralization)

Continuous: Gaussian
(mixture) likelihood

Adversarial loss
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Thanks!



Reading List (general)

e Books:

— httg:f{www.deeglearningbook.org/
— http://neuralnetworksanddeeplearning.com/

e Courses:

— http://cs231n.stanford.edu/
— httQ:{{www.cs.toronto.edu[’rgrosse{cscSQl/
— httg:{fweb.stanford.edu{class{cs224n./

e Guides to deep learning:

— httg:{{xerevann.com(a—guide—to—deeg—learning/
— http://ufldl.stanford.edu/tutorial/

— httEs: / fgithub.com /terryum {awesome—deeg—
earning-papers
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https://github.com/terryum/awesome-deep-learning-papers

Reading List (RNNs)

R. Pascanu, T. Mikolov, and Y. Bengio, Qn the difficulty of training recurrent neural
networks, ICML 2013

S. Hochreiter, and J. Schmidhuber, Long shor-term memory, Neural computation, 1997
9(8), pp.1735-1780

F.A. Gers, and J. Schmidhuber, Recurrent nets that fime and count, [JCNN 2000
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w ACL 2014
R. Jozefowicz, W. Zaremba, and |. Sutskever, An_empirical exploration of recurrent

petwork architectures, JMLR 2015
Seq2Seq ICML 2017 Tutorial (Vinyals & Jaitly)

Minh-Thang Luong, Hieu Pham, and Christopher D. Manning. “Effective Approaches to
Attention-based Neural Machine Translation.” EMNLP'15.

Andrychowicz, Marcin, and Karol Kurach. "Learning efficient algorithms with hierarchical
attentive memory." arXiv preprint arXiv:1602.03218 (2016).

Xu, Kelvin, et al. “Show, attend and tell: Neural image caption generation with visual
attention.” ICML 2015
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http://web.eecs.utk.edu/~itamar/courses/ECE-692/Bobby_paper1.pdf
ftp://ftp.idsia.ch/pub/juergen/TimeCount-IJCNN2000.pdf
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Reading List (GANSs)

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A. and Bengio, Y _Generative
advercarial nets, NIPS (2014).
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Appllcatlons
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