
A shallow introduction to
deep learning for agents

Jerry Spanakis & Kurt Driessens

Department of Data Science and Knowledge Engineering
Maastricht University

Tutorial Overview

• Part 1:
– From linear and logistic regression to neural networks
– Autoencoders
– Convolutional Networks
– Deep Network Learning
– Applied to Agents

!You need part 1 for any deep learning architecture!
• Part 2:

– Introduction to Recurrent Neural Networks (RNNs)
– RNN variants
– Generative Adversarial Networks
– Summary
– Demo?

2

INPUTS/
OUTPUTS

ARCHITECTURE

LOSS

Introduction to RNNs

Jerry Spanakis

Some slide credits (esp. illustrations): Arun Mallya (github link)

http://arunmallya.github.io/

Motivation
• Not all problems can be converted into one with fixed-

length inputs and outputs

• Problems such as Speech Recognition or Time-series
Prediction require a system to store and use context
information
– Simple case: Output YES if the number of 1s is even, else NO

1000010101 – YES, 100011 – NO, …

• Hard/Impossible to choose a fixed context window
– There can always be a new sample longer than anything seen

4

Recurrent Neural Networks (RNNs)
• Recurrent Neural Networks take the previous output or

hidden states as inputs.
The composite input at time t has some historical
information about the happenings at time T < t

• RNNs are useful as their intermediate values (state) can
store information about past inputs for a time that is not
fixed a priori

5

Sample Feed-forward Network

6

h1

y1

x1
t = 1

Sample RNN

7

h1

y1

x1
t = 1

h2

y2

x2

h3

y3

x3

t = 2

t = 3

Sample RNN

8

h1

y1

x1
t = 1

h2

y2

x2

h3

y3

x3

t = 2

t = 3
h0

The Vanilla RNN Cell

9

ht
xt

ht-1

ht = tanhW
xt
ht−1

⎛
⎝⎜

⎞
⎠⎟

W

The Vanilla RNN Forward

10

h1

x1 h0

C1

y1

h2

x2 h1

C2

y2

h3

x3 h2

C3

y3

ht = tanhW
xt
ht−1

⎛
⎝⎜

⎞
⎠⎟

yt = F(ht)
Ct = Loss(yt ,GTt)

The Vanilla RNN Forward

11

h1

x1 h0

C1

y1

h2

x2 h1

C2

y2

h3

x3 h2

C3

y3

ht = tanhW
xt
ht−1

⎛
⎝⎜

⎞
⎠⎟

yt = F(ht)
Ct = Loss(yt ,GTt)

indicates shared weights

Recurrent Neural Networks (RNNs)
• Note that the weights are shared over time

• Essentially, copies of the RNN cell are made over time
(unrolling/unfolding), with different inputs at different
time steps

12

Sentiment Classification
• Classify a

…restaurant review from Yelp!
…movie review from IMDB
…
as positive or negative

• Inputs: Multiple words, one or more sentences
• Outputs: Positive / Negative classification

• “The food was really good”
• “The chicken crossed the road because it was uncooked”

13

RNN

The

h1

Sentiment Classification

14

RNN

The

RNN

food

h1 h2

Sentiment Classification

15

RNN

The

RNN

food

h1 h2
RNN

good

hn-1

hn

Sentiment Classification

16

RNN

The

RNN

food

h1 h2
RNN

good

hn-1

hn

Linear
Classifier

Sentiment Classification

17

RNN

The

RNN

food

h1 h2
RNN

good

hn-1

hn

Linear
Classifier

Sentiment Classification

IgnoreIgnore

h1 h2

18

RNN

The

RNN

food

h1 h2
RNN

good

hn-1

h = Sum(…)

h1
h2

hn

Sentiment Classification (alt.)

19

RNN

The

RNN

food

h1 h2
RNN

good

hn-1

h = Sum(…)

h1
h2

hn

Linear
Classifier

Sentiment Classification (alt.)

20

Image Captioning
• Given an image, produce a sentence describing its contents

• Inputs: Image feature (from a CNN)
• Outputs: Multiple words (let’s consider one sentence)

à The dog is hiding

21

RNN

Image Captioning

CNN

22

RNN

Image Captioning

CNN

RNN
h2h1

The

h2

Linear
Classifier

23

RNN

Image Captioning

CNN

RNN RNN
h2 h3h1

The dog

h2 h3

Linear
Classifier

Linear
Classifier

24

RNN Outputs: Image Captions

Show and Tell: A Neural Image Caption Generator, CVPR 15 25

https://arxiv.org/pdf/1411.4555.pdf

RNN Outputs: Language Modeling

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

VIOLA:
Why, Salisbury must find his flesh and thought
That which I am not aps, not a man and in fire,
To show the reining of the raven and the wars
To grace my hand reproach within, and not a fair are
hand,
That Caesar and my goodly father's world;
When I was heaven of presence and our fleets,
We spare with hours, but cut thy council I am great,
Murdered and by thy master's ready there
My power to give thee but so much as hell:
Some service in the noble bondman here,
Would show him to her wine.

KING LEAR:
O, if you were a feeble sight, the
courtesy of your law,
Your sight and several breath, will
wear the gods
With his heads, and my hands are
wonder'd at the deeds,
So drop upon your lordship's head,
and your opinion
Shall be against your honour.

26

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Input – Output Scenarios
Single - Single

Single - Multiple

Multiple - Single

Multiple - Multiple

Feed-forward Network

Image Captioning

Sentiment Classification

Translation

Image Captioning (again…?)
27

Input – Output Scenarios
Note: We might deliberately choose to frame our problem as a

particular input-output scenario for ease of training or
better performance.

For example, at each time step, provide previous word as
input for image captioning
(Single-Multiple to Multiple-Multiple).

28

The Vanilla RNN Forward

29

h1

x1 h0

C1

y1

h2

x2 h1

C2

y2

h3

x3 h2

C3

y3
ht = tanhW

xt
ht−1

⎛
⎝⎜

⎞
⎠⎟

yt = F(ht)
Ct = Loss(yt ,GTt)

“Unfold” network through time by
making copies at each time-step

Remember BackPropagation?

f(x; W)

x

y

C

SGD Update

W ←W −η ∂C
∂W

∂C
∂W

= ∂C
∂y

⎛
⎝⎜

⎞
⎠⎟

∂y
∂W

⎛
⎝⎜

⎞
⎠⎟

y = f (x;W)
C = Loss(y, yGT)

30

Reminder: Multiple Layers

f1(x; W1)

x

y1

C

SGD Update

W2 ←W2 −η
∂C
∂W2

W1 ←W1 −η
∂C
∂W1

f2(y1; W2)

y2

y1 = f1(x;W1)
y2 = f2 (y1;W2)
C = Loss(y2 , yGT)

31

Reminder: Chain Rule for Gradient

f1(x; W1)

x

y1

C

∂C
∂W1

= ∂C
∂y1

⎛
⎝⎜

⎞
⎠⎟

∂y1
∂W1

⎛
⎝⎜

⎞
⎠⎟

f2(y1; W2)

y2 Find ∂C
∂W1

, ∂C
∂W2

∂C
∂W2

= ∂C
∂y2

⎛
⎝⎜

⎞
⎠⎟

∂y2
∂W2

⎛
⎝⎜

⎞
⎠⎟

Application of the Chain Rule

y1 = f1(x;W1)
y2 = f2 (y1;W2)
C = Loss(y2 , yGT)

= ∂C
∂y2

⎛
⎝⎜

⎞
⎠⎟

∂y2
∂y1

⎛
⎝⎜

⎞
⎠⎟

∂y1
∂W1

⎛
⎝⎜

⎞
⎠⎟

32

Extension to Computational Graphs

f(x; W)
f1(y; W1) f2(y; W2)

f(x; W)

x

y

x

y y

y2y1

33

Extension to Computational Graphs

f(x; W)

∂C
∂y

⎛
⎝⎜

⎞
⎠⎟

∂C
∂x

⎛
⎝⎜

⎞
⎠⎟

f1(y; W1)

∂C1
∂y1

⎛
⎝⎜

⎞
⎠⎟

∂C1
∂y

⎛
⎝⎜

⎞
⎠⎟

f2(y; W2)

∂C2

∂y2

⎛
⎝⎜

⎞
⎠⎟

∂C2

∂y
⎛
⎝⎜

⎞
⎠⎟

f(x; W)

∂C
∂x

⎛
⎝⎜

⎞
⎠⎟

Σ

34

Extension to Computational Graphs

f(x; W)

∂C
∂y

⎛
⎝⎜

⎞
⎠⎟

∂C
∂x

⎛
⎝⎜

⎞
⎠⎟

f1(y; W1)

∂C1
∂y1

⎛
⎝⎜

⎞
⎠⎟

∂C1
∂y

⎛
⎝⎜

⎞
⎠⎟

f2(y; W2)

∂C2

∂y2

⎛
⎝⎜

⎞
⎠⎟

∂C2

∂y
⎛
⎝⎜

⎞
⎠⎟

f(x; W)

∂C
∂x

⎛
⎝⎜

⎞
⎠⎟

Gradient AccumulationΣ

35

BackPropagation Through Time (BPTT)
• One of the methods used to train RNNs
• The unfolded network (used during forward pass) is

treated as one big feed-forward network
• This unfolded network accepts the whole time series as

input

• The weight updates are computed for each copy in the
unfolded network, then summed (or averaged) and then
applied to the RNN weights

36

The Unfolded Vanilla RNN

37

h1

x1

C1

y1

h2

C2

y2

h3

C3

y3

h0
h1

h2

x2 x3

• Treat the unfolded network as one
big feed-forward network!

• This big network takes in entire
sequence as an input

• Compute gradients through the
usual backpropagation

• Update shared weights

The Unfolded Vanilla RNN Forward

38

h1

x1 h0

C1

y1

h2

x2 h1

C2

y2

h3

x3 h2

C3

y3

39

h1

x1 h0

C1

y1

h2

x2 h1

C2

y2

h3

x3 h2

C3

y3

The Unfolded Vanilla RNN Backward

The Vanilla RNN Backward

40

h1

x1 h0

C1

y1

h2

x2 h1

C2

y2

h3

x3 h2

C3

y3

ht = tanhW
xt
ht−1

⎛
⎝⎜

⎞
⎠⎟

yt = F(ht)
Ct = Loss(yt ,GTt)

∂Ct

∂h1
= ∂Ct

∂yt

⎛
⎝⎜

⎞
⎠⎟

∂yt
∂h1

⎛
⎝⎜

⎞
⎠⎟

= ∂Ct

∂yt

⎛
⎝⎜

⎞
⎠⎟

∂yt
∂ht

⎛
⎝⎜

⎞
⎠⎟

∂ht
∂ht−1

⎛
⎝⎜

⎞
⎠⎟
!

∂h2
∂h1

⎛
⎝⎜

⎞
⎠⎟

Issues with the Vanilla RNNs
• In the same way a product of k real numbers can shrink to

zero or explode to infinity, so can a product of matrices

• It is sufficient for , where is the largest singular
value of W, for the vanishing gradients problem to occur
and it is necessary for exploding gradients that ,
where for the tanh non-linearity and for the
sigmoid non-linearity 1

• Exploding gradients are often controlled with gradient
element-wise or norm clipping

λ1 <1/γ λ1

λ1 >1/γ
γ = 1

1 On the difficulty of training recurrent neural networks, Pascanu et al., 2013

γ = 1/ 4

41

http://www.jmlr.org/proceedings/papers/v28/pascanu13.pdf

Long Short-Term Memory (LSTM)1

42

• The LSTM uses the idea of “Constant Error Flow” for
RNNs to create a “Constant Error Carousel” (CEC) which
ensures that gradients don’t decay

• The key component is a memory cell that acts like an
accumulator (contains the identity relationship) over time

• Instead of computing new state as a matrix product with
the old state, it rather computes the difference between
them. Expressivity is the same, but gradients are better
behaved

1 Long Short-Term Memory, Hochreiter et al., 1997

http://deeplearning.cs.cmu.edu/pdfs/Hochreiter97_lstm.pdf
http://www.jmlr.org/proceedings/papers/v28/pascanu13.pdf
http://deeplearning.cs.cmu.edu/pdfs/Hochreiter97_lstm.pdf

The LSTM Idea

Cell

ht

43

xt

ht-1

ct = ct−1 + tanhW
xt
ht−1

⎛
⎝⎜

⎞
⎠⎟

ct

ht = tanhct

W

* Dashed line indicates time-lag

The Original LSTM Cell

it o tInput Gate Output Gate

Cell

ht

44

xt ht-1 xt ht-1

ct = ct−1 + it ⊗ tanhW
xt
ht−1

⎛
⎝⎜

⎞
⎠⎟

ct

ht = ot ⊗ tanhct it =σ Wi

xt
ht−1

⎛
⎝⎜

⎞
⎠⎟
+ bi

⎛
⎝⎜

⎞
⎠⎟

Similarly for o t

xt

ht-1

W

Wi Wo

The Popular LSTM Cell

it o t

ft

Input Gate Output Gate

Forget Gate

ht

45

xt ht-1

Cell

ct

ct = ft ⊗ ct−1 + it ⊗ tanhW
xt
ht−1

⎛
⎝⎜

⎞
⎠⎟

xt ht-1 xt ht-1

xt

ht-1

W

Wi Wo

Wf

ft =σ Wf

xt
ht−1

⎛
⎝⎜

⎞
⎠⎟
+ bf

⎛
⎝⎜

⎞
⎠⎟

LSTM – Forward/Backward

46

Go To: Illustrated LSTM Forward and Backward Pass

http://arunmallya.github.io/writeups/nn/lstm/index.html

Summary (so far…)

47

• RNNs allow for processing of variable length inputs and
outputs by maintaining state information across time steps

• Various Input-Output scenarios are possible
(Single/Multiple)

• Vanilla RNNs are improved upon by LSTMs which address
the vanishing gradient problem through the CEC

• Exploding gradients are handled by gradient clipping

• More complex architectures can be found online and/or
the tutorial material for you to play…

Some RNN Variants

Jerry Spanakis

Class Quiz

49

• Consider the problem of translation of English to Dutch
• E.g. What is your name Wat is jouw naam
• Is the below architecture suitable for this problem?

E1 E2 E3

F1 F2 F3

Class Quiz

50

• Consider the problem of translation of English to Dutch
• E.g. What is your name Wat is jouw naam
• Is the below architecture suitable for this problem?

• No, sentences might be of different length and words
might not align. Need to see entire sentence before
translating

E1 E2 E3

F1 F2 F3

Class Quiz

51

• Consider the problem of translation of English to Dutch
• E.g. What is your name Wat is jouw naam
• Sentences might be of different length and words might

not align. Need to see entire sentence before translating

• Input-Output nature depends on the structure of the
problem at hand

Seq2Seq Learning with Neural Networks, Sutskever et al., 2014

F1 F2 F3

E1 E2 E3

F4

https://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf

Multi-layer RNNs

52

• We can also design RNNs with multiple hidden layers

x1 x2 x3 x4 x5 x6

y1 y2 y3 y4 y5 y6

• Think big here: Skip connections across layers, across time,…

Multiple
Stacks

53

Bi-directional RNNs

54

• RNNs can process the input sequence in forward and in the
reverse direction

x1 x2 x3 x4 x5 x6

y1 y2 y3 y4 y5 y6

• Popular in speech recognition

LSTM: A Search Space Odyssey
• Tested the following variants, using LSTM as standard:

1. No Input Gate (NIG)
2. No Forget Gate (NFG)
3. No Output Gate (NOG)
4. No Input Activation Function (NIAF)
5. No Output Activation Function (NOAF)
6. No Peepholes (NP)
7. Coupled Input and Forget Gate (CIFG)
8. Full Gate Recurrence (FGR)

• On the tasks of:
– Timit Speech Recognition: Audio frame to 1 of 61 phonemes
– IAM Online Handwriting Recognition: Sketch to characters
– JSB Chorales: Next-step music frame prediction

LSTM: A Search Space Odyssey, Greff et al., 2015 55

https://arxiv.org/pdf/1503.04069.pdf

LSTM: A Search Space Odyssey
• The standard LSTM performed reasonably well on multiple

datasets and none of the modifications significantly
improved the performance

• Coupling gates and removing peephole connections
simplified the LSTM without hurting performance much

• The forget gate and output activation are crucial

• Found interaction between learning rate and network size
to be minimal – indicates calibration can be done using a
small network first

LSTM: A Search Space Odyssey, Greff et al., 2015 56

https://arxiv.org/pdf/1503.04069.pdf

Gated Recurrent Unit (GRU)
• A very simplified version of the LSTM

– Merges forget and input gate into a single ‘update’ gate
– Merges cell and hidden state

• Has fewer parameters than an LSTM and has been shown
to outperform LSTM on some tasks

Learning Phrase Representations using RNN Encoder-Decoder for
Statistical Machine Translation, Cho et al., 2014 57

https://arxiv.org/abs/1406.1078

GRU

zt

rt

Update Gate

Reset Gate

ht

58

xt ht-1

xt ht-1

ht-1

W

Wz

Wf

xt
h’t

rt =σ Wr

xt
ht−1

⎛
⎝⎜

⎞
⎠⎟
+ bf

⎛
⎝⎜

⎞
⎠⎟

ht = (1− zt)⊗ ht−1 + zt ⊗ h 't

zt =σ Wz

xt
ht−1

⎛
⎝⎜

⎞
⎠⎟
+ bf

⎛
⎝⎜

⎞
⎠⎟

h 't = tanhW
xt

rt ⊗ ht−1

⎛
⎝⎜

⎞
⎠⎟

GRU

rt Reset Gate

59

xt ht-1

Wf

rt =σ Wr

xt
ht−1

⎛
⎝⎜

⎞
⎠⎟
+ bf

⎛
⎝⎜

⎞
⎠⎟

GRU

rt Reset Gate

60

xt ht-1

ht-1

W

Wf

xt
h’t

rt =σ Wr

xt
ht−1

⎛
⎝⎜

⎞
⎠⎟
+ bf

⎛
⎝⎜

⎞
⎠⎟

h 't = tanhW
xt

rt ⊗ ht−1

⎛
⎝⎜

⎞
⎠⎟

GRU

zt

rt

Update Gate

Reset Gate

61

xt ht-1

xt ht-1

ht-1

W

Wz

Wf

xt
h’t

rt =σ Wr

xt
ht−1

⎛
⎝⎜

⎞
⎠⎟
+ bf

⎛
⎝⎜

⎞
⎠⎟

zt =σ Wz

xt
ht−1

⎛
⎝⎜

⎞
⎠⎟
+ bf

⎛
⎝⎜

⎞
⎠⎟

h 't = tanhW
xt

rt ⊗ ht−1

⎛
⎝⎜

⎞
⎠⎟

GRU

zt

rt

Update Gate

Reset Gate

ht

62

xt ht-1

xt ht-1

ht-1

W

Wz

Wf

rt =σ Wr

xt
ht−1

⎛
⎝⎜

⎞
⎠⎟
+ bf

⎛
⎝⎜

⎞
⎠⎟

ht = (1− zt)⊗ ht−1 + zt ⊗ h 't

xt
h’t

zt =σ Wz

xt
ht−1

⎛
⎝⎜

⎞
⎠⎟
+ bf

⎛
⎝⎜

⎞
⎠⎟

h 't = tanhW
xt

rt ⊗ ht−1

⎛
⎝⎜

⎞
⎠⎟

An Empirical Exploration of Recurrent
Network Architectures

• Given the rather ad-hoc design of the LSTM, the authors
try to determine if the architecture of the LSTM is
optimal

• They use an evolutionary search for better architectures

An Empirical Exploration of Recurrent Network Architectures, Jozefowicz et al., 201563

http://jmlr.org/proceedings/papers/v37/jozefowicz15.pdf

Evolutionary Architecture Search
• A list of top-100 architectures so far is maintained,

initialized with the LSTM and the GRU
• The GRU is considered as the baseline to beat
• New architectures are proposed, and retained based on

performance ratio with GRU

• All architectures are evaluated on 3 problems
– Arithmetic: Compute digits of sum or difference of two numbers

provided as inputs. Inputs have distractors to increase difficulty
3e36d9-h1h39f94eeh43keg3c = 3369 – 13994433 = -13991064

– XML Modeling: Predict next character in valid XML modeling
– Penn Tree-Bank Language Modeling: Predict distributions over

words

An Empirical Exploration of Recurrent Network Architectures, Jozefowicz et al., 201564

http://jmlr.org/proceedings/papers/v37/jozefowicz15.pdf

Evolutionary Architecture Search
• At each step

– Select 1 architecture at random, evaluate on 20 randomly chosen
hyperparameter settings.

– Alternatively, propose a new architecture by mutating an existing
one. Choose probability p from [0,1] uniformly and apply a
transformation to each node with probability p
• If node is a non-linearity, replace with {tanh(x), sigmoid(x), ReLU(x),

Linear(0, x), Linear(1, x), Linear(0.9, x), Linear(1.1, x)}
• If node is an elementwise op, replace with {multiplication, addition,

subtraction}
• Insert random activation function between node and one of its parents
• Replace node with one of its ancestors (remove node)
• Randomly select a node (node A). Replace the current node with either the

sum, product, or difference of a random ancestor of the current node and a
random ancestor of A.

– Add architecture to list based on minimum relative accuracy wrt
GRU on 3 different tasks

An Empirical Exploration of Recurrent Network Architectures, Jozefowicz et al., 201565

http://jmlr.org/proceedings/papers/v37/jozefowicz15.pdf

Evolutionary Architecture Search
• 3 novel architectures are presented in the paper
• Very similar to GRU, but slightly outperform it

• LSTM initialized with a large positive forget gate bias
outperformed both the basic LSTM and the GRU!

An Empirical Exploration of Recurrent Network Architectures, Jozefowicz et al., 201566

http://jmlr.org/proceedings/papers/v37/jozefowicz15.pdf

LSTM initialized with large positive
forget gate bias?

• Recall

An Empirical Exploration of Recurrent Network Architectures, Jozefowicz et al., 2015

ct = ft ⊗ ct−1 + it ⊗ tanhW
xt
ht−1

⎛
⎝⎜

⎞
⎠⎟

ft =σ Wf

xt
ht−1

⎛
⎝⎜

⎞
⎠⎟
+ bf

⎛
⎝⎜

⎞
⎠⎟

δct−1 = δct ⊗ ft
• Gradients will vanish if f is close to 0. Using a large positive bias

ensures that f has values close to 1, especially when training begins
• Helps learn long-range dependencies
• Originally stated in Learning to forget: Continual prediction with

LSTM, Gers et al., 2000, but forgotten over time

67

http://jmlr.org/proceedings/papers/v37/jozefowicz15.pdf
https://pdfs.semanticscholar.org/1154/0131eae85b2e11d53df7f1360eeb6476e7f4.pdf

RNN: Issues with long inputs

68

A B C D X Y Z

X Y Z Q

• The same last vector
”informs” the entire output

• Needs to capture all the
information about the
input regardless of length

• Can I do better?

Yes, we can!

69Bahdanau, D., et al. “Neural Machine Translation by Jointly Learning to Align and Translate.” ICLR (2015)

• Introduce an extra “attention” layer mapping between the
input and the ouput

● A different vector computed for every output step

Seq2Seq with Attention

f(input, h1)

X Y ZB C D

Embedding

h1

X Y Z Q

A

Attention
Based

Encoder DecoderF(input,h1)

● A different vector computed for every output step

Seq2Seq with Attention

f(input, h1)

X Y ZB C D

Embedding

h1

X Y Z Q

A

Attention
Based

Encoder DecoderF(input,h2)

h2

● A different vector computed for every output step

Seq2Seq with Attention

f(input, h1)

X Y ZB C D

Embedding

h1

X Y Z Q

A

Attention
Based

Encoder DecoderF(input,h3)

h2 h3

Seq2Seq with Attention

f(input, h1)

X Y ZB C D

Embedding

h1

X Y Z Q

A

Attention
Based

Encoder DecoderF(input,h1)

● Attention vector used to predict output and compute next hidden state

● Attention vector used to predict output and compute next hidden state

Seq2Seq with Attention

f(input, h1)

X Y ZB C D

Embedding

h1

X Y Z Q

A

Attention
Based

Encoder DecoderF(input,h2)

h2

● Attention vector used to predict output and compute next hidden state

Seq2Seq with Attention

f(input, h1)

X Y ZB C D

Embedding

h1

X Y Z Q

A

Attention
Based

Encoder DecoderF(input,h3)

h2 h3

Attention is all you need?

• Not recurrent
• Not convolutional
• Dot-product attention

over inputs is masked
to preserve causal
structure

76
Vaswani, Ashish, et al. "Attention is all you need”. In NIPS, 2017

Self-Attention
• More powerful than convolutions (which have fixed kernels)
• Less complex than recurrent structures

77

• More powerful than convolutions (which have fixed kernels)
• Less complex than recurrent structures

Self-Attention

78

Summary & intuitive tricks

79

• Architectures like the GRU have fewer parameters than
the LSTM and might perform better
– An LSTM with large positive forget gate bias works best!
– Attention models are simpler and they do perform very well!

• Finding the optimal architecture might not the problem
you want to solve.
– Browse the literature and see what works best for the type of

problem you want to try.
– Initialization of parameters is critical but well studied

• If you deal with long sequences
– Attention or Bigger state or Bi-directional architecture

Introduction to GANs

Jerry Spanakis

Some slide credits (esp. illustrations):
Ian Goofdellow (link)
Oriol Vinyals (link)
Binglin Chen

http://www.iangoodfellow.com/
https://ai.google/research/people/OriolVinyals

GANs
• Generative
– Learn a generative model

• Adversarial
– Trained in an adversarial setting

• Networks
– Use Deep Neural Networks

81

Why Generative Models?
• CNN, RNN are discriminative models

– E.g. given an image (or sequence) X, predict a label Y
– Estimates P(Y|X)

• Discriminative models have several key limitations
– Can’t model P(X), i.e. the probability of seeing a certain image
– Thus, can’t sample from P(X), i.e. can’t generate new images

• Generative models (in general) cope with all of above
– Can model P(X)
– Can generate new images

82

Magic of GANs…

83

[Ledig. et. al, 2017 “Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network”]

Magic of GANs…

84

Magic of GANs…

[Work by vue.ai : Online fashion tech startup]85

Magic of GANs…

86

Magic of GANs…

[Denton et. al., 2016, “Deep Generative Image Models using a Laplacian Pyramid of GANs”]

[Radford et. al, 2016, “Unsupervised Representation Learning with DCGANs”]
87

[Karras, et. al. 2017, “Progressive Growing of GANs
for Improved Quality, Stability, and Variation”]

Magic of GANs…

88

Adversarial Training
• Basic ideas:

– We can generate adversarial samples to fool a discriminative
model

– We can use those adversarial samples to make models robust
– We then require more effort to generate adversarial samples
– Repeat this and we get better discriminative model

• GANs extend these ideas to generative models:
– Generator: generate fake samples, tries to fool the

Discriminator
– Discriminator: tries to distinguish between real and fake

samples
– Train them against each other
– Repeat this and we get better Generator and Discriminator

89

GAN’s Architecture

• Z is some random noise (Gaussian/Uniform).
• Z can be thought as the latent representation of the image.

z
G(z)

D(x)

x

D(G(z))

G

D

90

Training Discriminator

91

Training Generator

92

Generator in action

93

GAN’s formulation
min
$
max
'
(),+

• It is formulated as a minimax game, where:
– The Discriminator is trying to maximize its reward , -, .
– The Generator is trying to minimize Discriminator’s reward (or maximize its

loss)

(),+ = 01∼3(1) log) 9 +0;∼<(;) log 1 −) +(?)

• The Nash equilibrium of this particular game is achieved at:
– @ABCB 9 = @DEF 9 ∀9

– D 9 = H
I
∀9

94

Vanishing gradient strikes back again…

min
$
max
'

(), +
(), + = -.∼0(.) log) 6 + -8∼9(8) log 1 −) +(<)

=>?((), +) = =>?-8~9(8) log 1 −) + <

– =A log 1 − B C = DEF G(A)
HDG(A)

=
DG A HDG A

HDG(A)
= −B C =

−) + <

– Gradient goes to 0 if) is confident, i.e.) + < → 0

• Minimize −-8~9 8 log) + < for Generator instead (keep Discriminator as it is)

95

Faces

96

CIFAR

97https://www.cs.toronto.edu/~kriz/cifar.html

DCGAN: Bedroom images

98

Deep Convolutional GANs (DCGANs)
Generator Architecture Key ideas:

• Replace FC hidden layers with
Convolutions
• Generator: Fractional-Strided

convolutions

• Use Batch Normalization after
each layer

• Inside Generator
• Use ReLU for hidden layers
• Use Tanh for the output layer

99

Latent vectors capture interesting patterns…

100

GANs: Part 2
• Advantages of GANs
• Training Challenges
• Non-Convergence
• Mode-Collapse

• Proposed Solutions
• Supervision with Labels
• Mini-Batch GANs

• Current trends
• Wasserstein GANs
• Conditional GANs

• (fancy) applications

Advantages of GANs
• Plenty of existing work on Deep Generative Models

– Boltzmann Machine
– Deep Belief Nets
– Variational AutoEncoders (VAE)

• Why GANs?
– Sampling (or generation) is straightforward.
– Training doesn't involve Maximum Likelihood estimation.
– Robust to Overfitting since Generator never sees the training

data.
– Empirically, GANs are good at capturing the modes of the distribution.

102

Problems with GANs
• Probability Distribution is Implicit

– Not straightforward to compute P(X).
– Thus Vanilla GANs are only good for Sampling/Generation.

• Training is Hard
– Non-Convergence
– Mode-Collapse

103

Training Problems
• Non-Convergence
• Mode-Collapse

104

Non-Convergence
min$ max' (), +

Let (), + =)+

– State 1:
– State 2:

– State 3:

– State 4 :

– State 5: == State 1

x > 0 y > 0 V > 0 Increase y Decrease x

Decrease y Decrease x

Decrease y Increase x

Increase y Increase x

Increase y Decrease x

x < 0 y > 0 V < 0

x < 0 y < 0 V > 0

x > 0 y < 0 V < 0

x > 0 y > 0 V > 0

105

min
$

max
'

(), +

• Deep Learning models (in general) involve a single player
– The player tries to maximize its reward (minimize its loss).
– Use SGD (with Backpropagation) to find the optimal parameters.
– SGD has convergence guarantees (under certain conditions).
– Problem: With non-convexity, we might converge to local optima.

min
$

, +

• GANs instead involve two (or more) players
– Discriminator is trying to maximize its reward.
– Generator is trying to minimize Discriminator’s reward.

– SGD was not designed to find the Nash equilibrium of a game.
– Problem: We might not converge to the Nash equilibrium at all.

106

Problems with GANs
• Non-Convergence
• Mode-Collapse

107

Mode-Collapse
• Generator fails to output diverse

samples

Expected

Output

Target

108

Some real examples

109

Some Solutions
• Mini-Batch GANs
• Supervision with labels

• Recent best-performing GAN:
Improved Wasserstein-GAN

https://arxiv.org/abs/1704.00028

110

https://arxiv.org/abs/1704.00028

Basic (Heuristic) Solutions
• Mini-Batch GANs
• Supervision with labels

111

How to reward sample diversity?
• At Mode Collapse,

– Generator produces good samples, but a very few of them.
– Thus, Discriminator can’t tag them as fake.

• To address this problem,
– Let the Discriminator know about this edge-case.

• More formally,
– Let the Discriminator look at the entire batch instead of single

examples
– If there is lack of diversity, it will mark the examples as fake

• Thus,
– Generator will be forced to produce diverse samples.

112

Mini-Batch GANs
• Extract features that capture diversity in the mini-batch

– For e.g. L2 norm of the difference between all pairs from the batch

• Feed those features to the discriminator along with the image

• Feature values will differ b/w diverse and non-diverse batches
– Thus, Discriminator will rely on those features for classification

• This in turn,
– Will force the Generator to match those feature values with the real

data
– Will generate diverse batches

113

Basic (Heuristic) Solutions
• Mini-Batch GANs
• Supervision with labels

114

Supervision with Labels
• Label information of the real data might help

• Empirically generates much better samples

D
Real

Fake
D Human

Fake

Car

Dog

115

Wasserstein GAN - WGAN
• Pitfalls of GAN

• No guarantee to equilibrium
• The discriminator only gives 0 or 1 but cannot describe

how good or bad the image is
https://github.com/soumith/ganhacks

•WGAN
• Wasserstein distance between two data distributions
• The discriminator gives a continuous evaluation

describe how good or bad the image is
Arjovsky, Martin, and Léon Bottou. "Towards principled methods for training generative adversarial networks." arXiv preprint
arXiv:1701.04862 (2017).
M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein gan,” arXiv preprint arXiv:1701.07875 , 2017.
I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. Courville, “Improved training of wasserstein gans,” arXiv preprint arXiv:1704 .00028,
2017.

116

https://github.com/soumith/ganhacks

Conditional GANs

Figure 2 in the original paper.

generated conditioned on their class label.
1, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 1, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 1, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 1, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 1, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 1, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 1, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 1, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 1, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 1

MNIST digits

MNIST digits

117

Conditional GANs

• Simple modification to the original
GAN framework that conditions the
model on additional information for
better multi-modal learning.

• Lends to many practical applications
of GANs when we have explicit
supervision available.

Image Credit: Figure 2 in Odena, A., Olah, C. and Shlens, J., 2016. Conditional image synthesis with auxiliary classifier GANs. arXiv preprint arXiv:1610.09585.

118

The Cool Stuff…
3D Faces

119

3D Chairs

Cool Stuff (contd.)

120

Image-to-Image Translation

Figure 1 in the original paper.
Link to an interactive demo of this paper

121

http://affinelayer.com/pixsrv/

Image-to-Image Translation
• Architecture: DCGAN-based

architecture

• Training is conditioned on the
images from the source domain.

• Conditional GANs provide an
effective way to handle many
complex domains without worrying
about designing structured loss
functions explicitly.

Figure 2 in the original paper.

122

Text-to-Image Synthesis

Figure 1 in the original paper.

Motivation

Given a text description,
generate images closely
associated.

Uses a conditional GAN with the
generator and discriminator being
condition on “dense” text
embedding.

123

Text-to-Image Synthesis

Figure 2 in the original paper.

Positive Example:
Real Image, Right Text

Negative Examples:
Real Image, Wrong Text
Fake Image, Right Text

124

Face Aging with Conditional GANs

Figure 1 in the original paper.

• Differentiating Feature: Uses an Identity Preservation Optimization using an
auxiliary network to get a better approximation of the latent code (z*) for
an input image.

• Latent code is then conditioned on a discrete (one-hot) embedding of age
categories.

125

Face Aging with Conditional GANs

Figure 3 in the original paper.

126

Coupled GAN

• Learning a joint distribution of multi-domain images.
• Using GANs to learn the joint distribution with samples drawn from

the marginal distributions.
• Direct applications in domain adaptation and image translation.

Figure 2 in the original paper.

127Liu, Ming-Yu, and Oncel Tuzel. "Coupled generative adversarial networks." NIPS 2016

Coupled GANs
• Architecture

Weight-sharing constraints the network to learn a joint distribution without corresponding supervision.

Figure 1 of the original paper.

128Liu, Ming-Yu, and Oncel Tuzel. "Coupled generative adversarial networks." NIPS 2016

Coupled
GANs

• Some examples of
generating facial images across
different feature
domains.

• Corresponding images in a column
are generate from the same latent
code !

Figure 4 in the original paper.

Hair
Color

Facial
Expressio
n

Sunglasse
s

129Liu, Ming-Yu, and Oncel Tuzel. "Coupled generative adversarial networks." NIPS 2016

Laplacian Pyramid of Adversarial
Networks

Figure 1 in the original paper. (Edited for simplicity)

• Based on the Laplacian Pyramid representation of images. (1983)
• Generate high resolution (dimension) images by using a hierarchical system of GANs
• Iteratively increase image resolution and quality.

130

Laplacian Pyramid of Adversarial
Networks

Figure 1 in the original paper.

Image Generation using a LAPGAN
• Generator !" generates the base image #" from random noise input $".
• Generators (!%,!',!() iteratively generate the difference image ()ℎ) conditioned on

previous small image (,).
• This difference image is added to an up-scaled version of previous smaller image.

131

Laplacian Pyramid of Adversarial
Networks

Figure 2 in the original paper.

Training Procedure:
Models at each level are trained independently to learn the required representation.

132

Summary
• GANs are generative models that are implemented

using two stochastic neural network modules:
Generator and Discriminator.

• Generator tries to generate samples from random
noise as input

• Discriminator tries to distinguish the samples from
Generator and samples from the real data
distribution.

• Both networks are trained adversarially (in tandem)
to fool the other component. In this process, both
models become better at their respective tasks.

• Active areas of research:
– Better loss functions (WGAN, LSGAN,…)
– Conditional GANs and all kinds of applications

133https://github.com/hindupuravinash/the-gan-zoo

https://github.com/hindupuravinash/the-gan-zoo

Why use GANs for Generation?
• Can be trained using back-propagation for

Neural Network based
Generator/Discriminator functions.

• Sharper images can be generated.
• Faster to sample from the model

distribution: single forward pass generates a
single sample.

134

Deep Learning Building Blocks
Deep Learning Building Blocks

Nagel, Wolfram. Multiscreen UX Design: Developing for a Multitude of Devices. Morgan Kaufmann, 2015.

I/O modalities,
Network architectures,
Losses/Costs

Models

135

Deep Learning: Zooming Out

136

Deep Learning: Zooming In
Non-linearities
ReLU
Sigmoid
Tanh
GRU
LSTM
Linear…?

Optimizer
SGD
Momentum
RMSProp
Adagrad
Adam
…

Connectivity
Fully connected
Convolution
Recurrent
Recursive
Skip/Residual
Random…?

Loss
Cross Entropy
Adversarial
Variational
Max. Likelihood
Sparse
L2

HyperParameters
Learning Rate
Layer Size and #
Batch Size
Dropout
Weight initialization
Data augmentation
Gradient clipping
Weight decay
Momentum
…

137

138

Finding your blocks

INPUTS/
OUTPUTS ARCHITECTURE LOSS

Image pixels / Class labels

Text sequences

Audio waveforms

Sets of images/texts (no
labels)

Discrete: softmax cross
entropy (with L2
reguralization)

Continuous: Gaussian
(mixture) likelihood

Adversarial loss

Convolutions

Recurrent (over
space/time)

Attention

Thanks!

Reading List (general)
• Books:
– http://www.deeplearningbook.org/
– http://neuralnetworksanddeeplearning.com/

• Courses:
– http://cs231n.stanford.edu/
– http://www.cs.toronto.edu/~rgrosse/csc321/
– http://web.stanford.edu/class/cs224n/

• Guides to deep learning:
– http://yerevann.com/a-guide-to-deep-learning/
– http://ufldl.stanford.edu/tutorial/
– https://github.com/terryum/awesome-deep-

learning-papers
140

http://www.deeplearningbook.org/
http://neuralnetworksanddeeplearning.com/
http://cs231n.stanford.edu/
http://www.cs.toronto.edu/~rgrosse/csc321/
http://web.stanford.edu/class/cs224n/
http://yerevann.com/a-guide-to-deep-learning/
http://ufldl.stanford.edu/tutorial/
https://github.com/terryum/awesome-deep-learning-papers

Reading List (RNNs)

141

• R. Pascanu, T. Mikolov, and Y. Bengio, On the difficulty of training recurrent neural
networks, ICML 2013

• S. Hochreiter, and J. Schmidhuber, Long short-term memory, Neural computation, 1997
9(8), pp.1735-1780

• F.A. Gers, and J. Schmidhuber, Recurrent nets that time and count, IJCNN 2000
• K. Greff , R.K. Srivastava, J. Koutník, B.R. Steunebrink, and J. Schmidhuber, LSTM: A

search space odyssey, IEEE transactions on neural networks and learning systems, 2016
• K. Cho, B. Van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y.

Bengio, Learning phrase representations using RNN encoder-decoder for statistical machine
translation, ACL 2014

• R. Jozefowicz, W. Zaremba, and I. Sutskever, An empirical exploration of recurrent
network architectures, JMLR 2015

• Seq2Seq ICML 2017 Tutorial (Vinyals & Jaitly)
• Minh-Thang Luong, Hieu Pham, and Christopher D. Manning. “Effective Approaches to

Attention-based Neural Machine Translation.” EMNLP’15.
• Andrychowicz, Marcin, and Karol Kurach. "Learning efficient algorithms with hierarchical

attentive memory." arXiv preprint arXiv:1602.03218 (2016).
• Xu, Kelvin, et al. “Show, attend and tell: Neural image caption generation with visual

attention.” ICML 2015

http://www.jmlr.org/proceedings/papers/v28/pascanu13.pdf
http://web.eecs.utk.edu/~itamar/courses/ECE-692/Bobby_paper1.pdf
ftp://ftp.idsia.ch/pub/juergen/TimeCount-IJCNN2000.pdf
https://arxiv.org/pdf/1503.04069.pdf
https://arxiv.org/pdf/1406.1078.pdf
http://jmlr.org/proceedings/papers/v37/jozefowicz15.pdf

Reading List (GANs)
• Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A. and Bengio, Y. Generative

adversarial nets, NIPS (2014).
• Goodfellow, Ian NIPS 2016 Tutorial: Generative Adversarial Networks, NIPS (2016).
• Radford, A., Metz, L. and Chintala, S., Unsupervised representation learning with deep convolutional generative adversarial

networks. arXiv preprint arXiv:1511.06434. (2015).
• Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., & Chen, X. Improved techniques for training

gans. NIPS (2016).
• Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., & Abbeel, P. InfoGAN: Interpretable Representation

Learning by Information Maximization Generative Adversarial Nets, NIPS (2016).
• Zhao, Junbo, Michael Mathieu, and Yann LeCun. Energy-based generative adversarial network. arXiv preprint

arXiv:1609.03126 (2016).
• Mirza, Mehdi, and Simon Osindero. Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784 (2014).
• Liu, Ming-Yu, and Oncel Tuzel. Coupled generative adversarial networks. NIPS (2016).
• Denton, E.L., Chintala, S. and Fergus, R., 2015. Deep Generative Image Models using a Laplacian Pyramid of Adversarial

Networks. NIPS (2015)
• Dumoulin, V., Belghazi, I., Poole, B., Lamb, A., Arjovsky, M., Mastropietro, O., & Courville, A. Adversarially learned

inference. arXiv preprint arXiv:1606.00704 (2016).

Applications:
• Isola, P., Zhu, J. Y., Zhou, T., & Efros, A. A. Image-to-image translation with conditional adversarial networks. arXiv

preprint arXiv:1611.07004. (2016).
• Reed, S., Akata, Z., Yan, X., Logeswaran, L., Schiele, B., & Lee, H. Generative adversarial text to image synthesis. JMLR

(2016).
• Antipov, G., Baccouche, M., & Dugelay, J. L. (2017). Face Aging With Conditional Generative Adversarial Networks. arXiv

preprint arXiv:1702.01983. 142

http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
https://arxiv.org/pdf/1701.00160
https://arxiv.org/pdf/1511.06434.pdf
https://papers.nips.cc/paper/6125-improved-techniques-for-training-gans.pdf
https://papers.nips.cc/paper/6399-infogan-interpretable-representation-learning-by-information-maximizing-generative-adversarial-nets.pdf
https://arxiv.org/pdf/1609.03126
https://arxiv.org/pdf/1411.1784
https://papers.nips.cc/paper/6544-coupled-generative-adversarial-networks.pdf
http://papers.nips.cc/paper/5773-deep-generative-image-models-using-a-laplacian-pyramid-of-adversarial-networks
https://arxiv.org/pdf/1606.00704
https://arxiv.org/pdf/1611.07004
http://www.jmlr.org/proceedings/papers/v48/reed16.pdf
https://arxiv.org/abs/1702.01983

