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Travelling Scientist Problem (TSP)
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Kool et al., 2019

TSP* is (NP-)hard!
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What does it mean?
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‘next location should be nearby’We use HEURISTICS
Can be seen as ‘rules of thumb’

Finding optimal solutions for all problem instances
* unless P = NP

MISSION:

IMPOSSIBLE

Finding acceptable solutions for relevant problem instances MISSION:

IMPOSSIBLE
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Designing of heuristics is
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So what do we do?

HARD 
WORK Feature engineering

• Needs expert knowledge
• Time consuming hand-tuning

Computer Vision Features
(SIFT, etc.)

like feature engineering
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Two eyes?

Nose?

Mouth?

It’s a face! It’s a face!

Traditional approach
Feature engineering

Deep Learning
No feature engineering

Designing of heuristics is like feature engineering
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‘Translate’ problem into solution
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Je suis une personneI am a person

(𝑥#, 𝑦#) (𝑥', 𝑦') (𝑥(, 𝑦() (𝑥), 𝑦)) (𝑥#, 𝑦#) (𝑥', 𝑦')(𝑥(, 𝑦() (𝑥), 𝑦))
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How does that work?
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Sample 𝜋!~𝑝𝜽 𝜋! 𝑠) Sample 𝜋#~𝑝𝜽 𝜋# 𝑠, 𝜋!)

Instance 𝑠 =
( 𝑥*, 𝑦* , 𝑥,, 𝑦, ,… , 𝑥., 𝑦. )

Solution 𝝅 = 𝜋!, 𝜋#, …
with length 𝐿 𝝅

Model 𝑝𝜽 𝜋$ 𝑠, 𝜋%$)=
𝑝𝜽(next node | partial tour)

𝐸!𝜽(𝝅|&) 𝐿 𝝅
How to optimize 𝜽?

Randomized algorithm
with expected cost:

Sample 𝜋$~𝑝𝜽 𝜋$ 𝑠, 𝜋%$)
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REINFORCE (for dummies)
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Do something

Result = ?

Do more often! Do less often!

Sample 𝝅 ∼ 𝑝𝜽(% |𝑠)

𝐿 𝝅 = 7.43

Good! Bad!

Increase 𝑝𝜽(𝝅|𝑠) Decrease 𝑝𝜽(𝝅|𝑠)

We need a baseline to 
compare against: 
rollout earlier model

Repeat

𝝅+, ∼ 𝑝𝜽&'(% |𝑠) (greedy!)

𝐿 𝝅+, = 6.89
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The rollout baseline
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Use (rollout) the model but greedy instead of sampling!

Sample 𝝅 ∼ 𝑝𝜽(% |𝑠)

Rollout 𝝅+, ∼ 𝑝𝜽&'(% |𝑠) (greedy!)

𝐿 𝝅 < 𝐿 𝝅+, Good!

𝐿 𝝅 > 𝐿 𝝅+, Bad!

Adjust 𝑝𝜽(𝝅|𝑠)
proportional to 
𝐿 𝝅 − 𝐿 𝝅+,
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Learning Algorithm (roughly)
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Init 𝜽, 𝜽!" ← 𝜽
For ever(y epoch):

For iteration:
Sample 𝑠
Sample 𝝅 ∼ 𝑝𝜽(- |𝑠)
Rollout 𝝅!" ∼ 𝑝𝜽$%(- |𝑠) (greedy!)

Update 𝜽 ← 𝜽− 𝜂 ∇ log𝑝𝜽 𝝅|𝑠 𝐿 𝝅 − 𝐿 𝝅!"

If 𝜽 better* than 𝜽!"
Update 𝜽!" ← 𝜽

* Paired t-test on solution of 10 000  
instances with greedy rollout
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What’s the model architecture?
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𝑝𝜽 𝜋" 𝑠, 𝜋#")

Graph convolutions

+

Read the paper…
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Experiments
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Train for each problem, same hyperparameters!

Travelling Salesman 
Problem (TSP)

(Stochastic) Prize 
Collecting TSP 
((S)PCTSP)

Vehicle Routing 
Problem (VRP)

Orienteering 
Problem (OP)

Minimize length
Visit all nodes

Maximize total prize
Max length constraint

Minimize length + penalties 
of unvisited nodes
Collect minimum total prize

Minimize length
Visit all nodes
Total route demand must fit 
vehicle capacity
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Results Attention Model + Rollout Baseline
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• Improves over classical heuristics!

• Improves over prior learned heuristics!
• Attention Model improves
• Rollout helps significantly

• Gets close to single-purpose SOTA (20 to 100 nodes)!
• TSP 0.34% to 4.53% (greedy)
• TSP 0.08% to 2.26% (best of 1280 samples)
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https://neuripsconf.medium.com/neurips-2020-online-experiments-
gather-town-poster-sessions-and-mementor-ac1573d61c8a
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Something else!
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Deep Policy Dynamic Programming
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Autoregressive approach
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Vinyals et al., 2015
Bello et al., 2016
Kool et al., 2019
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Non-autoregressive approach (Joshi et al., 2019)
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Picture by Joshi et al., 2019

Note: trained using supervised learning!
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Dynamic Programming for TSP (Held & Karp, 1962; Bellman, 1962)
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Dominate

𝐶 𝑆, 𝑖 = min
)∈+∖{.}

𝐶 𝑆 ∖ 𝑖 , 𝑗 + 𝑐).
Set of 
visited 
nodes

Current 
node

DP state

Minimum 
cost to go 
from 0 to 𝑖
visiting all 
nodes in 𝑆

Cost/distance 
from 𝑗 to 𝑖

Find best solution 
for each DP state
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Deep Policy Dynamic Programming (DPDP)
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DPDP

Forward view

𝑂 𝐵𝑛 or linear

For each iteration
• Expand solutions
• Remove dominated solutions
• Select top 𝐵 according to policy
• Repeat

Policy: select top 𝐵 solutions that maximize the score.

Picture by Joshi et al., 2019

SCORE = HEAT + POTENTIAL

Heat of edges 
in solution

Heat
ℎ!" ∈ (0,1)

Estimate for 
unvisited nodes 

based on remaining edges

Potential 
avoids 

‘skipped 
nodes’

https://arxiv.org/abs/2102.11756

https://arxiv.org/abs/2102.11756
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Deep Policy Dynamic Programming (DPDP)
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•DPDP is a beam search over the DP state space, guided by a neural network

•DP is flexible framework for many VRP variants e.g. time windows

• Suitable for GPU implementation
•Natural trade-off compute vs. performance -> asymptotically optimal

• Supervised training based on example solutions
• Test time: only evaluate NN once!

https://arxiv.org/abs/2102.11756

https://arxiv.org/abs/2102.11756
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Results
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Vehicle Routing ProblemTravelling Salesman Problem
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The end
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Questions?


