Learning to Solve

Routing Problems

Wouter Kool

Herke van Hoof

Joaquim Gromicho

Max Welling

Wouter

Master of Business Analytics & VU Master of Econometrics & OR

1+6 years at ORTEC, OR engineer

(k!)4

September 2017, PhD @

Working on ML & OR

ex

Travelling Scientist Problem (TSP)

π

(k!)4

Kool et al., 2019

UNIVERSITY OF AMSTERDAM

2√2 9801

ex

What does it mean?

Finding *optimal* solutions for *all* problem instances

Finding *acceptable* solutions for *relevant* problem instances

* unless P = NP

MISSION:

IMPOSSIBLE

<u>2√2</u> 9801

ex

π

We use HEURISTICS Can be seen as 'rules of thumb'

'next location should be nearby'

(k!)4

Designing of heuristics is like feature engineering

Computer Vision Features (SIFT, etc.)

(k!)4

Feature engineering

- Needs expert knowledge
- Time consuming hand-tuning

So what do we do?

ex

Designing of heuristics is like feature engineering

(k!)4

Traditional approach Feature engineering

Deep Learning No feature engineering

ex

'Translate' problem into solution

Department of Mathematics, UC Berkeley

Google Brain

•

•

Google Brain

π

(k!)4

UNIVERSITY OF AMSTERDAM

•

2√2 9801

ex

e^x

•

2

π

•

How does that work?

Sample $\pi_1 \sim p_{\theta}(\pi_1|s)$

Sample $\pi_2 \sim p_{\theta}(\pi_2 | s, \pi_1)$

(k!)4

Sample $\pi_t \sim p_{\theta}(\pi_t | s, \pi_{< t})$

<u>2√</u>2

Randomized algorithm with expected cost:

$$E_{p_{\boldsymbol{\theta}}(\boldsymbol{\pi}|s)}[L(\boldsymbol{\pi})]$$

How to optimize θ ?

NEURAL COMBINATORIAL OPTIMIZATION WITH REINFORCEMENT LEARNING

Irwan Bello^{*}, Hieu Pham^{*}, Quoc V. Le, Mohammad Norouzi, Samy Bengio Google Brain {ibello,hyhieu,qvl,mnorouzi,bengio}@google.com

The rollout baseline

Use (rollout) the model but greedy instead of sampling!

π

(k!)⁴

Sample $\boldsymbol{\pi} \sim p_{\boldsymbol{\theta}}(\cdot | s)$ Rollout $\boldsymbol{\pi}^{bl} \sim p_{\boldsymbol{\theta}^{bl}}(\cdot | s)$ (greedy!)

 $L(\pi) < L(\pi^{bl})$ Good! $L(\pi) > L(\pi^{bl})$ Bad! Adjust $p_{\theta}(\boldsymbol{\pi}|s)$ proportional to $L(\boldsymbol{\pi}) - L(\boldsymbol{\pi}^{bl})$

 $\frac{2\sqrt{2}}{9801}$

ex

<u>2√2</u> 9801 Learning Algorithm (roughly) Init $\boldsymbol{\theta}, \boldsymbol{\theta}^{bl} \leftarrow \boldsymbol{\theta}$ For ever(y epoch): For iteration: Sample *s* Sample $\pi \sim p_{\theta}(\cdot | s)$ Rollout $\boldsymbol{\pi}^{bl} \sim p_{\boldsymbol{\theta}^{bl}}(\cdot | s)$ (greedy!) Update $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \eta \nabla \log p_{\boldsymbol{\theta}}(\boldsymbol{\pi}|s) \left(L(\boldsymbol{\pi}) - L(\boldsymbol{\pi}^{bl}) \right)$

If θ better* than θ^{bl} Update $\theta^{bl} \leftarrow \theta$

* Paired *t*-test on solution of 10 000 instances with greedy rollout

- ¬P

ex

π

(k!)4

What's the model architecture?

 $p_{\theta}(\pi_t | s, \pi_{< t})$

Read the paper...

(k!)4

ATTENTION, LEARN TO SOLVE ROUTING PROBLEMS!

Wouter Kool University of Amsterdam w.w.m.kool@uva.nl Herke van Hoof University of Amsterdam h.c.vanhoof@uva.nl Max Welling University of Amsterdam m.welling@uva.nl

2√2 9801

ex

π

Graph convolutions

Attention Is All You Need						
Ashish Vaswani*	Noam Shazeer*	Niki Parmar*	Jakob Uszkoreit*			
Google Brain	Google Brain	Google Research	Google Research			
avaswani@google.com	noam@google.com	nikip@google.com	usz@google.com			
Llion Jones*	Aidan N. Gomez	z ^{*†} Łuka	Łukasz Kaiser*			
Google Research	University of Torc	nnto Goo	Google Brain			
llion@google.com	aidan@cs.torontc	D.edu lukaszkais	lukaszkaiser@google.com			

Illia Polosukhin*[‡] illia.polosukhin@gmail.com

Experiments

Travelling Salesman Problem (TSP)

Minimize length Visit all nodes

Maximize total prize Max length constraint Minimize length + penalties of unvisited nodes Collect minimum total prize

(Stochastic) Prize

Collecting TSP

((s)PCTSP)

(k!)4

Vehicle Routing Problem (VRP)

ex

π

Minimize length Visit all nodes Total route demand must fit vehicle capacity

Train for each problem, *same hyperparameters*!

Results Attention Model + Rollout Baseline

- Improves over classical heuristics!
- Improves over prior learned heuristics!
 - Attention Model improves
 - Rollout helps significantly
- Gets close to single-purpose SOTA (20 to 100 nodes)!
 - TSP 0.34% to 4.53% (greedy)
 - TSP 0.08% to 2.26% (best of 1280 samples)

ex

π

(k!)4

Neural Information Processing Systems Conference

Tweets sent to this account are not actively monitored. To contact us please go to <u>http://neurips.cc/Hel</u> <u>p/Contact</u>

Follow

41

Ö

()

Д

simply wandering; each poster had a clearly marked presenter spot to easily spot the presenter; people could teleport directly to the poster of their choice from the NeurIPS website, and a coordinate systems allowed people to locate a poster of interest once they were in a room.

https://neuripsconf.medium.com/neurips-2020-online-experimentsgather-town-poster-sessions-and-mementor-ac1573d61c8a

π

6,

Something else!

Deep Policy Dynamic Programming

.

ORTEC

٦P

•

(K!)

Autoregressive approach

(k!)4

Vinyals et al., 2015 Bello et al., 2016 Kool et al., 2019

> UNIVERSITY OF AMSTERDAM

2√2 9801

ex

Non-autoregressive approach (Joshi et al., 2019)

Picture by Joshi et al., 2019

Note: trained using supervised learning!

(k!)⁴

UNIVERSITY OF AMSTERDAM

ex

Dynamic Programming for TSP (Held & Karp, 1962; Bellman, 1962)

π

(k!)4

Minimum
cost to go
from 0 to *i*
visiting all
nodes
DP state
$$C(S, i) = \min_{\substack{j \in S \setminus \{i\} \\ i \in S \setminus \{i\} \\ j \in$$

UNIVERSITY OF AMSTERDAM

e^x

Deep Policy Dynamic Programming (DPDP)

• DPDP is a *beam search* over the DP state space, guided by a neural network

- DP is flexible framework for many VRP variants e.g. time windows
- Suitable for GPU implementation
- Natural trade-off compute vs. performance -> asymptotically optimal
- Supervised training based on example solutions
- Test time: only evaluate NN once!

https://arxiv.org/abs/2102.11756

e^x

Results

Travelling Salesman Problem

•

.

π

Table 1. Main results for TSP with 100 nodes.

Method	Соѕт	Gap	TIME
Concorde LKH Gurobi	7.765 7.765 7.776	0.000 % 0.000 % 0.15 %	6м 42м 31м
Kool et al. (2019) Joshi et al. (2019a) da Costa et al. (2020) Fu et al. (2020)	7.94 7.87 7.83 7.764*	2.26 % 1.39 % 0.87 % 0.04 %	1H 40M 41M 4M + 11M
DPDP 10K DPDP 100K	7.765 7.765	0.009 % 0.004 %	10м + 1н06м 10м + 2н35м

Vehicle Routing Problem

(k!)4

Table 2. Main results for VRP with 100 nodes.

Метнор	Соѕт	GAP	TIME
LKH	15.647	0.000 %	12н59м
XIN ET AL. (2020) KOOL ET AL. (2019) CHEN & TIAN (2019) PENG ET AL. (2019) WU ET AL. (2019) HOTTUNG & TIERNEY (2019)	16.49 16.23 16.10 16.27 16.03 15.99	4.99 % 3.72 % 2.90 % 3.96 % 2.47 % 1.02 %	39s 2H 1H 6H 5H 1H
LU ET AL. (2020)	15.57*	-	4000н
DPDP 10K	15.832	1.183 %	10м + 2н24м
DPDP 100K	15.694	0.305 %	10м + 5н48м
DPDP 1M	15.627	- 0.127 %	10м + 48н27м

•

2√2 9801

ex

ex

π

•

•

Questions?

π

(k!)4

• ~P

2√2 9801

ex