
TITLEPAGE (W/ ADJUSTABLE VIDEO)

Wouter Kool

Routing Problems

Learning to Solve

Max Welling

Herke van Hoof

Joaquim Gromicho

TEXT LEFT + PHOTO (S)

Wouter

2

Master of Business Analytics &
Master of Econometrics & OR

1+6 years at , OR engineer

September 2017, PhD @

Working on ML & OR

TEXT LEFT + PHOTO (S)

Travelling Scientist Problem (TSP)

3

Kool et al., 2019

TSP* is (NP-)hard!

TEXT LEFT + PHOTO (S)

What does it mean?

4

‘next location should be nearby’We use HEURISTICS
Can be seen as ‘rules of thumb’

Finding optimal solutions for all problem instances
* unless P = NP

MISSION:

IMPOSSIBLE

Finding acceptable solutions for relevant problem instances MISSION:

IMPOSSIBLE

TEXT LEFT + PHOTO (S)

Designing of heuristics is

5

So what do we do?

HARD
WORK Feature engineering

• Needs expert knowledge
• Time consuming hand-tuning

Computer Vision Features
(SIFT, etc.)

like feature engineering

TEXT LEFT + PHOTO (S)

6

Two eyes?

Nose?

Mouth?

It’s a face! It’s a face!

Traditional approach
Feature engineering

Deep Learning
No feature engineering

Designing of heuristics is like feature engineering

TEXT LEFT + PHOTO (S)

‘Translate’ problem into solution

7

Je suis une personneI am a person

(𝑥#, 𝑦#) (𝑥', 𝑦') (𝑥(, 𝑦() (𝑥), 𝑦)) (𝑥#, 𝑦#) (𝑥', 𝑦')(𝑥(, 𝑦() (𝑥), 𝑦))

TEXT LEFT + PHOTO (S)

How does that work?

8

Sample 𝜋!~𝑝𝜽 𝜋! 𝑠) Sample 𝜋#~𝑝𝜽 𝜋# 𝑠, 𝜋!)

Instance 𝑠 =
(𝑥*, 𝑦* , 𝑥,, 𝑦, ,… , 𝑥., 𝑦.)

Solution 𝝅 = 𝜋!, 𝜋#, …
with length 𝐿 𝝅

Model 𝑝𝜽 𝜋$ 𝑠, 𝜋%$)=
𝑝𝜽(next node | partial tour)

𝐸!𝜽(𝝅|&) 𝐿 𝝅
How to optimize 𝜽?

Randomized algorithm
with expected cost:

Sample 𝜋$~𝑝𝜽 𝜋$ 𝑠, 𝜋%$)

TEXT LEFT + PHOTO (S)

REINFORCE (for dummies)

9

Do something

Result = ?

Do more often! Do less often!

Sample 𝝅 ∼ 𝑝𝜽(% |𝑠)

𝐿 𝝅 = 7.43

Good! Bad!

Increase 𝑝𝜽(𝝅|𝑠) Decrease 𝑝𝜽(𝝅|𝑠)

We need a baseline to
compare against:
rollout earlier model

Repeat

𝝅+, ∼ 𝑝𝜽&'(% |𝑠) (greedy!)

𝐿 𝝅+, = 6.89

TEXT LEFT + PHOTO (S)

The rollout baseline

10

Use (rollout) the model but greedy instead of sampling!

Sample 𝝅 ∼ 𝑝𝜽(% |𝑠)

Rollout 𝝅+, ∼ 𝑝𝜽&'(% |𝑠) (greedy!)

𝐿 𝝅 < 𝐿 𝝅+, Good!

𝐿 𝝅 > 𝐿 𝝅+, Bad!

Adjust 𝑝𝜽(𝝅|𝑠)
proportional to
𝐿 𝝅 − 𝐿 𝝅+,

TEXT LEFT + PHOTO (S)

Learning Algorithm (roughly)

11

Init 𝜽, 𝜽!" ← 𝜽
For ever(y epoch):

For iteration:
Sample 𝑠
Sample 𝝅 ∼ 𝑝𝜽(- |𝑠)
Rollout 𝝅!" ∼ 𝑝𝜽$%(- |𝑠) (greedy!)

Update 𝜽 ← 𝜽− 𝜂 ∇ log𝑝𝜽 𝝅|𝑠 𝐿 𝝅 − 𝐿 𝝅!"

If 𝜽 better* than 𝜽!"
Update 𝜽!" ← 𝜽

* Paired t-test on solution of 10 000
instances with greedy rollout

TEXT LEFT + PHOTO (S)

What’s the model architecture?

12

𝑝𝜽 𝜋" 𝑠, 𝜋#")

Graph convolutions

+

Read the paper…

TEXT LEFT + PHOTO (S)

Experiments

13

Train for each problem, same hyperparameters!

Travelling Salesman
Problem (TSP)

(Stochastic) Prize
Collecting TSP
((S)PCTSP)

Vehicle Routing
Problem (VRP)

Orienteering
Problem (OP)

Minimize length
Visit all nodes

Maximize total prize
Max length constraint

Minimize length + penalties
of unvisited nodes
Collect minimum total prize

Minimize length
Visit all nodes
Total route demand must fit
vehicle capacity

TEXT LEFT + PHOTO (S)

Results Attention Model + Rollout Baseline

14

• Improves over classical heuristics!

• Improves over prior learned heuristics!
• Attention Model improves
• Rollout helps significantly

• Gets close to single-purpose SOTA (20 to 100 nodes)!
• TSP 0.34% to 4.53% (greedy)
• TSP 0.08% to 2.26% (best of 1280 samples)

PHOTO (1X)

15
https://neuripsconf.medium.com/neurips-2020-online-experiments-
gather-town-poster-sessions-and-mementor-ac1573d61c8a

CHAPTER SLIDE

Something else!

16

Deep Policy Dynamic Programming

TEXT LEFT + PHOTO (S)

Autoregressive approach

17

Vinyals et al., 2015
Bello et al., 2016
Kool et al., 2019

TEXT LEFT + PHOTO (S)

Non-autoregressive approach (Joshi et al., 2019)

18

Picture by Joshi et al., 2019

Note: trained using supervised learning!

TEXT LEFT + PHOTO (S)

Dynamic Programming for TSP (Held & Karp, 1962; Bellman, 1962)

19

0
1

2 3

4

5

6

7

0
1

2 3

4

5

6

7

Dominate

𝐶 𝑆, 𝑖 = min
)∈+∖{.}

𝐶 𝑆 ∖ 𝑖 , 𝑗 + 𝑐).
Set of
visited
nodes

Current
node

DP state

Minimum
cost to go
from 0 to 𝑖
visiting all
nodes in 𝑆

Cost/distance
from 𝑗 to 𝑖

Find best solution
for each DP state

TEXT LEFT + PHOTO (S)

Deep Policy Dynamic Programming (DPDP)

20

DPDP

Forward view

𝑂 𝐵𝑛 or linear

For each iteration
• Expand solutions
• Remove dominated solutions
• Select top 𝐵 according to policy
• Repeat

Policy: select top 𝐵 solutions that maximize the score.

Picture by Joshi et al., 2019

SCORE = HEAT + POTENTIAL

Heat of edges
in solution

Heat
ℎ!" ∈ (0,1)

Estimate for
unvisited nodes

based on remaining edges

Potential
avoids

‘skipped
nodes’

https://arxiv.org/abs/2102.11756

https://arxiv.org/abs/2102.11756

TEXT LEFT + PHOTO (S)

Deep Policy Dynamic Programming (DPDP)

21

•DPDP is a beam search over the DP state space, guided by a neural network

•DP is flexible framework for many VRP variants e.g. time windows

• Suitable for GPU implementation
•Natural trade-off compute vs. performance -> asymptotically optimal

• Supervised training based on example solutions
• Test time: only evaluate NN once!

https://arxiv.org/abs/2102.11756

https://arxiv.org/abs/2102.11756

TEXT LEFT + PHOTO (S)

Results

22

Vehicle Routing ProblemTravelling Salesman Problem

TEXT LEFT + PHOTO (S)

The end

23

Questions?

