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1 Introduction

These notes provide a general introduction to the bootstrap that can be read as a follow-up

to Casella and Berger’s (2002) Statistical Inference (hereafter C&B). The bootstrap was first

developed by the U.S. statistician Bradley Efron in a seminal paper from 1979.1 In the years

since, it has become one of the most important concepts in statistics. In 2005, Efron was

awarded the National Medal of Science, the highest scientific honor in the United States, for

his work on the bootstrap.

As a further illustration of the importance of the method, that is now a standard tool in

all fields of applied statistics, consider Google Scholar (scholar.google.com), the search engine

that searches only in academic papers. Searching for ‘bootstrap confidence interval’ yields

351,000 results, while searching for ‘bootstrap hypothesis test’ even yields 439,000 results.2

Concluding, the very brief discussion in Section 10.1.4 of C&B does not do such a popular

and prominent technique in modern statistics fully justice. These notes aim to fill this gap

and present the bootstrap method in greater detail.

There exist many surveys and introductions about the bootstrap in the literature of vary-

ing levels and depths. While we cannot mention them all here, the introductions by Efron and

Tibshirani (1994), Davison and Hinkley (1997), Davidson and MacKinnon (2004), Horowitz

(2001), Efron and Hastie (2016, Chapters 10 and 11) and Hansen (2019, Chapter 10) are

worth mentioning. The material in these notes is loosely based on these sources.

The remainder of Section 1 explains why the bootstrap can be useful. As a preliminary

step to the development of the bootstrap, Section 2 discusses a nonparametric estimation

technique called the plug-in principle. Section 3 then defines the bootstrap and lays down the

foundations. In Section 4 we take a more practical view and discuss how the bootstrap can

be applied. The theoretical foundations of the bootstrap are discussed in Section 5. Section

6 contains some exercises.

As not all readers may be equally familiar with the notation used in C&B, we briefly

discuss the most important conventions in Appendix A, such that these notes can also be

understood as a stand-alone document. Readers familiar with C&B can safely skip this

appendix, but readers unfamiliar with the notation in the book are advised to read Appendix

A first.

For the course Mathematical Statistics, all proofs of lemmas and theorems, as well as the

starred sections, are optional.

1The name “bootstrap” derives from the expression “to pull one self up by his own bootstraps” and
ultimately from the famous tales of Baron von Münchhausen, who claimed that he pulled himself up out of a
swamp by his own bootstraps.

2This search was done on March 20, 2020. A regular Google search for these terms even yields 9,310,000
and 19,100,000 hits respectively!
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1.1 The shortcomings of asymptotic statistics

In Chapter 10 of C&B we have seen that asymptotic analysis allows us both to simplify

analysis where small sample results are complicated to obtain, and to allow for analysis when

otherwise small sample analysis would not be possible. As such it is a very powerful tool,

however as remarked on in Chapter 10, it is not perfect. The assumption that the sample size

increases to infinity, is (almost) never met in practice. Asymptotic results are therefore only

approximations to reality. How good are these approximations? For sure the sample size will

play an important role. After all, one could say that a large sample size is closer to infinity

than a small one! Yet, how large should the sample size be to be called large? Unfortunately

there is no straightforward answer to that question.

Example 1. Let X1, . . . , Xn be a random sample from an unspecified pdf f(x), for which

we only know that VarX < ∞. We would like to construct a confidence interval for EX =

µ. However, under these assumptions we cannot obtain small sample results, and as such,

constructing a confidence interval with exact confidence level (1− α) is impossible.

Of course, we know from the central limit theorem that
√
nXn−µ

Sn

d−→ N(0, 1), from which

we can construct the asymptotic (1− α) confidence interval

Cµ(X) =

[
Xn − zα/2

Sn√
n
,Xn + zα/2

Sn√
n

]
.

What is the actual confidence level of this interval? We only know that as n increases, it will

become closer to (1 − α). However, that still means that for a reasonable practical sample

size, coverage can be quite far away from the desired level. We can imagine two things that

affect the difference between the true confidence level and the asymptotic confidence level:

(i) the sample size and (ii) the shape of the distribution f(x).

Let us investigate this in more detail. To find the true confidence level, we need to obtain

the distribution of Q(X, µ) =
√
nXn−µ

Sn
, in order to calculate the coverage probability

γ(µ) = Pµ(Cµ(X) 3 µ) = Pµ
(
Xn − zα/2

Sn√
n
≤ µ ≤ Xn + zα/2

Sn√
n

)
= Pµ

(
−zα/2 ≤

√
n
Xn − µ
Sn

≤ zα/2
)

= Pµ
(
−zα/2 ≤ Q(X, µ) ≤ zα/2

)
.

(1)

We can calculate this probability if we choose a specific parametric distribution for f(x); for

example, if f(x) is equal to N(µ, σ2), we know that Q(X, µ) ∼ tn−1 and we need to calculate

P
(
−zα/2 ≤ tn−1 ≤ zα/2

)
. As in this case γ(µ) does not depend on µ and we can directly

conclude that the confidence level is equal to infµ γ(µ) = P
(
−zα/2 ≤ tn−1 ≤ zα/2

)
. Table 1

shows the exact confidence level of Cµ(X) for different values of n and α if we assume that

the sample is normally distributed.

We see that as n increases, the difference between the true confidence level and the asymp-
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n / α 0.005 0.010 0.025 0.050 0.100 0.150 0.200

10 0.981 0.972 0.951 0.922 0.869 0.819 0.771
20 0.989 0.982 0.963 0.936 0.884 0.835 0.785
30 0.991 0.985 0.967 0.941 0.890 0.840 0.790
40 0.992 0.986 0.969 0.943 0.892 0.842 0.793
50 0.993 0.987 0.971 0.944 0.894 0.844 0.794
70 0.994 0.988 0.972 0.946 0.896 0.846 0.796

100 0.994 0.989 0.973 0.947 0.897 0.847 0.797
∞ 0.995 0.990 0.975 0.950 0.900 0.850 0.800

Table 1: Exact confidence levels of the asymptotic (1 − α) confidence interval Cµ(X) for
normally distributed samples of size n.

totic confidence level becomes smaller, as expected. Of course, if we knew that f(x) was the

normal distribution, we did not have to use the asymptotic interval Cµ(X), and could directly

use cut-off points from the tn−1 distribution.

Therefore it is more interesting to consider another choice for f(x) than the normal. In

that case we could perform a similar calculation provided we can derive the distribution of

Q(X, µ). In general this is very complicated or even impossible though. Instead of attempting

an analytical derivation, we can let a computer do the work instead by simulating samples

from the chosen distribution. The procedure works as follows:

1. For every simulation j = 1, . . . , N , draw a random sample X(j) = X
(j)
1 , . . . , X

(j)
n from

the chosen distribution f(x). Importantly, for every simulation j, the sample must be

drawn independently from the other simulations.3

2. For every simulation j = 1, . . . , N , use the sample X(j) generated in step 1 to construct

the confidence interval Cµ(X(j)).

3. For every simulation j = 1, . . . , N , check if µ ∈ Cµ(X(j)) and record a 1 if true, and a

0 otherwise. The average of this number is the estimated coverage probability γ̂(µ)N .

Formally, γ̂(µ)N = 1
N

∑N
j=1 ICµ(X(j))(µ).

This computer-assisted method of investigating properties of statistical methods is called

Monte Carlo simulation. While γ̂(µ)N is not equal to the true coverage probability γ(µ), it is

close to it for reasonably large values of N , and one can show that if N increases to infinity,

it converges to the true coverage probability by the law of large numbers.4

3Statistical software packages such as R or Gauss have built-in algorithms to generate samples from most
popular distributions. Of course these numbers are not truly random (think how difficult it is to generate
real random numbers!), but these pseudo-random numbers are close enough to use as random numbers for the
purposes of statistical analysis. These algorithms also ensure that samples drawn in consecutive simulations
can be treated as being mutually independent.

4We can see this as follows. Let Yj =
∑N
j=1 ICµ(X(j)) for j = 1, . . . , N . As Yj is a function of the random

sample X(j), Yj is a random variable; more specifically, Yj is Bernoulli distributed with the probability of
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The switch in terminology from “confidence level” to “coverage probability” is intentional.

Remember that the confidence level is defined as the infimum over all µ of the coverage

probability; yet in a Monte Carlo simulation study, we have to choose a specific value of µ to

implement in the simulations, and so we cannot generalize the result to an arbitrary µ, and

therefore certainly not to the infimum over all µ. However, by varying the values of µ used in

the simulations, we can get an idea of whether the coverage probabilities depend on µ or not.

Figure 1 shows the coverage probabilities of Cµ(X) with 1 − α = 0.95 for the means of

several distributions as a function of the sample size n. These were obtained by Monte Carlo

simulation with N = 1, 000, 000 simulations in R. The coverage probability clearly improves

for increasing n for all these distributions and becomes closer to the desired 0.95 level. How-

ever, for any given sample size, there are clear differences between the distributions. This

illustrates that the shape of the distribution (e.g. skewness, thickness of the tails) matters

for the accuracy of the asymptotic confidence interval. As such the value of n for which the

coverage becomes satisfactory,5 differs for each distribution. Figure 1 therefore also demon-

strates that the often quoted rule-of-thumb that a sample size of 30 or larger is sufficient

to apply the central limit theorem, is nonsense: the coverage probability of Cµ(X) for the

mean of an Exponential(2) distribution at n = 30 is just 0.918, compared with 0.941 for the

normal distribution. The former seems hardly close enough to 0.95, in particular relative to

the latter, to justify the CLT approximation as very accurate.

Example 1 shows that asymptotic inference, though extremely useful, is not perfect. In

fact, there are many settings with more complicated models where it still does much worse

than in the example. Ideally, we would therefore like to have a way to improve on asymptotic

inference. Clearly, if we know the parametric form of the distribution of our sample, we can

derive exact results. Typically though we cannot be certain of that distribution. In particular,

the common assumption of normality is most often not justified. Although obtaining exact

results is therefore typically not feasible, this does not necessarily mean our only choice is

to use the standard asymptotic approximation. We may consider alternative methods that,

although they are validated using asymptotic theory, may still be more accurate in small

samples. One of the most prominent of those methods, the bootstrap, is the subject of these

notes.6

success p equal to p = EYj . The expected value of Yj is simply equal to the coverage probability γ(µ), that is
EYj = Pµ(Cµ(X) 3 µ) = γ(µ) for all j = 1, . . . , N , as all the samples X(j) are identically distributed. Moreover,
as X(1), . . . ,X(N) are independent, the same is true for Y1, . . . , YN . Hence, Y1, . . . , Yn are i.i.d. Bernoulli(γ(µ))

random variables, and therefore by the weak law of large numbers, γ̂(µ)N = Y N
p−→ EY = γ(µ).

5Defining what is satisfactory is another matter in itself.
6People also often consider Bayesian statistics as an alternative. However, this is based on very different

concepts and foundations, and as such comparing it with standard asymptotic inference is comparing apples
and oranges. Moreover, a thorough discussion of Bayesian statistics requires a whole course in itself. We
therefore do not discuss it here.
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Figure 1: Coverage probabilities for the asymptotic confidence interval Cµ(X) for the mean
of a number of distributions.

1.2 An alternative way to do inference: the bootstrap

The general principle of the bootstrap, originally developed by Efron (1979), is to treat the

sample that one observes as the population. That is, one draws new samples from the original

sample and approximates the relation between the (unknown) population and the sample with

the relation between the sample, considered as a (known) artificial population, and the newly

drawn samples. Because it requires the drawing of (many) new samples, it is computationally

heavy and requires a computer to implement. With the rise of more powerful computers, its

popularity also increased massively. Nowadays a “standard” bootstrap application is easily

done on any home computer, and partly because of this, it has become one of the most

important and popular methods in modern statistics. Let us illustrate the bootstrap with an

example.

Example 2. We return to the setting of Example 1 and investigate the distribution of the

quantity Qn(X, µ) =
√
nXn−µ

Sn
, for example needed to construct a confidence interval for the

mean. A simple bootstrap algorithm for approximating this distribution looks as follows.

1. Draw n numbers with replacement from the observed sample x1, . . . , xn. We call the
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collection of these draws the bootstrap sample and denote it with stars, i.e. x∗1, . . . , x
∗
n.

2. Using your bootstrap sample x∗1, . . . , x
∗
n, calculate the bootstrap statistics x∗n = 1

n

∑n
i=1 x

∗
i

and s∗n =
√

1
n−1

∑n
i=1(x

∗
i − x∗n)2. Using these, obtain the bootstrap version of Qn(x, µ),

which is

Q∗n = Qn(x∗, xn) =
√
n
x∗n − xn
s∗n

.

3. Repeat steps 1-2 B times, and store all numbers obtained for Q∗n. These form the

bootstrap approximation to the distribution of Q(X, µ).

Note that in step 2, in the definition of the statistic we replaced µ with xn. The reason is

that the mean of the bootstrap sample is no longer µ, but xn. We will come back to this

point later.

The bootstrap in the form as described above draws a sample with replacement from the

original sample. This action, and therefore sometimes the bootstrap in general, is also called

resampling. Initially it might be more tempting to draw a new sample without replacement,

but this does not work. After all, drawing n values from a sample of size n without replace-

ment, simply means we end up with the original sample. Moreover, it violates the assumption

that the bootstrap sample (like the original sample) is a random sample.

Once we have obtained the bootstrap distribution of a statistic, as done in Example 2, we

can use it to construct bootstrap confidence intervals or to do hypothesis testing. However,

we first need to gain an understanding of the rationale behind the bootstrap. Why do we

draw samples with replacement from the original sample? And can we somehow justify this?

Before we can go into this, we must first build the necessary foundations. For this purpose

we initially digress to nonparametric estimation, and we introduce the plug-in principle. This

principle will later turn out to be very useful to explain the bootstrap.

2 Nonparametric Estimation: The Plug-in Principle

2.1 Defining parameters without specifying a parametric distribution

In C&B we considered parameters θ as unknown quantities that determine the shape of a

parametric distribution f(x|θ). However, these parameters themselves may not always be the

quantities we are interested in. There are exceptions: for the normal distributionN(µ, σ2), the

parameters µ and σ2 have a clear interpretation as the mean and variance of the distribution.

This is however not always the case.

Example 3. Let X1, . . . , Xn be a random sample from a Gamma(α, β) distribution. We

would typically not be interested in α and β themselves; after all, what do α and β mean?

8



Rather, we would be more interested in a function of α and β. It is for instance far more

likely that we are interested in the mean µ = EX = αβ.

We can solve this issue by explicitly writing the parameters of interest as a function of

the original parameters. In the example above one would then write µ = ζ(α, β), where the

function ζ(x, y) is defined as ζ(x, y) = xy. We could then base our inference for µ on α and β,

linking the two using the function ζ(x, y). For example, to do maximum likelihood estimation

on µ we could use the invariance property of maximum likelihood from which it follows that

µ̂ML = ζ(α̂ML, β̂ML) = α̂MLβ̂ML.

While this provides a way to deal with the interpretation of parameters, a second problem

remains, in that parameters are not unique.

Example 4. Let Y1, . . . , Yn be a random sample from the exponential(β) distribution where

f(x|β) = 1
β e
−x/β. Now define γ = 1/β and let g(x|γ) = γe−γx. Then we can equivalently

say that Y1, . . . , Yn is a random sample from the distribution g(x|γ). Which parameter is

the “true” parameter, β or γ? There is no way to tell. Moreover, the interpretation of the

parameter of interest does not solve the issue. Suppose that we need the variance of X, say

θ = VarX = β2. Then we have that θ = ζ(β) with ζ(x) = x2, but equivalently θ = ζ ′(γ)

with ζ ′(x) = 1/x2. Hence we have two ways of defining θ that are not discernible from each

other.

To deal with these issues in a more coherent way, we consider a different way to define the

parameter of interest. Where in Example 3 we wrote the parameter of interest as a function

of the original parameters, we can take this one level higher to avoid the notion of original

parameters: we write the parameter of interest as a function of the pdf or pmf f(x). Let θ be

the parameter of interest. Then we write θ = ξ(f). Here we need to be careful of what kind

of operator ξ(·) is. It is similar to a function, but instead of a real number x it takes as its

argument a function f . Hence, it maps the function f to a real number, whereas a function

maps one real number to another real number. We call such an operator a functional.

Example 5. Let X be a continuous random variable with the pdf f(x) defined on x ∈ R.

Suppose that we are interested in the probability that X is larger than some constant c. We

can write θ = P(X > c) =
∫∞
c f(x)dx = ξ(f), where ξ(g) =

∫∞
c g(x)dx. If Y is a discrete

random variable with pmf f(y) taking values in N, we can again do the same by letting

ξ(g) =
∑∞

y=dce g(y). Here we let dce denote the smallest integer that is larger than c, to make

sure that the definition works for any value of c, including those that Y cannot take.

Example 6. Let X be a continuous random variable with the pdf f(x) defined on x ∈ R.

Suppose that we are interested in the mean of x, let us call this parameter θ. Now note that

θ = EX =

∫ ∞
−∞

xf(x)dx = τ(f), where ξ1(g) =

∫ ∞
−∞

xg(x)dx,

9



for any continuous function g(x). Similarly, we can define other moments as θk = EXk =

γk(f), with ξk(g) =
∫∞
−∞ x

kg(x)dx for k = 1, 2, . . ..

If Y is a discrete random variable taking values 1, 2, ... with pmf f(y), we can write

θk = EXk = ξk(f), with ξk(g) =
∑∞

x=1 x
kg(x).

Note that in none of the examples above we had to make any assumptions on the form

of the distribution f(x), other than assuming that the relevant integrals or sums exist. In

particular, we do not need to assume a particular parametric family. As we will see in the

next subsection, this make it possible to do nonparametric inference, that is inference without

making a parametric assumption on the distribution of the sample. Note though, that if we

do assume a parametric family for f(x), we are back to our familiar results.

Example 7. Consider the function ξ1(g) defined in Example 6. Now assume that X has

a N(µ, σ2) distribution; that is, let f(x) = 1√
2πσ2

e−(x−µ)
2/2σ2

. Then it follows directly that

θ = EX = ξ1(f) = µ. Similarly, for ξ(g) defined in Example 5 let f(x) = 1
β e
−x/β. Then

θ = P(X > c) = ξ(f) = e−c/β.

We want to make one further step. In the examples we still needed to make a difference

between discrete and continuous random variables. However, if we work with the cumulative

distribution function F (x) instead of the pdf/pmf f(x), we do not have to make the distinction

anymore. To distinguish with the previous functional ξ(·) operating on f(x), we write the

functional that operates on F (x) as τ(·).
For the setting discussed in Example 5 where θ = P(X > c), it follows directly for

both continuous and discrete random variables that P (x > c) = 1 − P(X ≤ c) = 1 − F (c).

Therefore, we can simply define τ(g) = 1−g(c) such that we have θ = τ(F ). For the moments

of Example 6 the situation is slightly more complicated. For this purpose we need to introduce

Riemann-Stieltjes integrals.

Definition 1. Let a = x1, . . . , xr = b be a partition of the interval [a, b], and define δr =

max2≤j≤r |xj − xj−1|. Then, for any two functions g(x) and h(x) that satisfy certain regularity

conditions7 the Riemann-Stieltjes integral of g(x) with respect to h(x) is defined as∫ b

a
g(x)dh(x) = lim

δr→0

r∑
j=2

g(cj)[h(xj)− h(xj−1)], (2)

where cj is an arbitrary point in the interval [xj−1, xj ].

Note the difference with the “standard” Riemann integral, which is defined as
∫ b
a g(x)dx =

limδr→0
∑r

j=2 g(cj)(xj−xj−1). Rather than integrating over x, we essentially weigh x through

7These conditions ensure that the limit of the right-hand side of (2) exists and does neither depend on the
sequence of partitions nor on the choice of c1, . . . , cr. For our purposes these are satisfied.
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the function h(x). If h′(x) exists and is continuous, then we find that∫ b

a
g(x)dh(x) =

∫ b

a
g(x)h′(x)dx, (3)

which follows directly from writing h′(x) = dh(x)
dx , from which we can substitute dh(x) with

h′(x)dx. The advantage of the Riemann-Stieltjes integral is that we can now deal with

situations where h′(x) is not continuous. The main use of the Riemann-Stieltjes integral for

us is described in Lemma 1, where we choose h(x) = F (x), and hence for a discrete random

variable h′(x) = f(x) is not continuous.

Lemma 1. Let X be a discrete or continuous random variable with cdf F (x). For any function

g(x), we can then write

E g(X) =

∫ ∞
−∞

g(x)dF (x). (4)

Proof. Take h(x) = F (x) in (3) such that h′(x) = f(x). It then follows directly from (3) that

for a continuous random variable X we get that E g(X) =
∫∞
−∞ g(x)dF (x).

We next show that for discrete random variables we can write E g(X) =
∫∞
−∞ g(x)dF (x) as

well. Consider a discrete random variable X which can take values a1, . . . , ak where P (X =

ai) = pi with 0 ≤ pi ≤ 1 for all i = 1, . . . , k as well as
∑k

i=1 pi = 1. Let F (x) = P (X ≤ x) be

the corresponding cdf of X.

Now consider a1 = x1, . . . , xr = ak as a partition of the interval [a1, ak]. As we only need to

consider limδr → 0 in order to define the Riemann-Stieltjes integral, we can restrict ourselves

to those partitions for which δr ≤ min2≤i≤k |ai − ai−1|. In words, we only consider those

partitions in which in every interval xj − xj−1, there is at most one ai. This automatically

implies for those partitions r ≥ k. For such partitions we can consider two scenarios:

1. No value of ai lies in the interval [xj−1, xj ]. In that case F (xj)− F (xj−1) = 0.

2. There is one value of ai that lies in the interval [xj−1, xj ]. In that case F (xj)−F (xj−1 =

P (xj−1 < X < xj) = P (X = ai) = pi.

Note that for any such partition, the second scenario occurs exactly k times, one for each

a1, . . . , ak. This means that
∑r

j=2 g(cj)[F (xj) − F (xj−1)] can be restricted to only those

intervals for which scenario 2 above applies.

For i = 1, . . . , k, define y−i = xj−1 and y+i = xj if ai ∈ [xj−1, xj ]. It then follows that

∫ b

a
g(x)dF (x) = lim

δr→0

r∑
j=2

g(cj)[F (xj)− F (xj−1)]

= lim
δr→0

r∑
j=2

g(cj)

k∑
i=2

P (X = ai)I[xj−1,xj ](pi) = lim
δr→0

k∑
i=2

g(cji)pi,

11



where ji is defined such that cji ∈ [y−i , y
+
i ]. Now note that limδr→0 cji = ai. Therefore

∫ b

a
g(x)dF (x) =

k∑
i=2

g(ai)pi = E g(X).

This is the result we set out to show. We can therefore conclude that for any random variable

X, whether discrete or continuous, we have that EXk =
∫∞
−∞ x

kdF (x).

2.2 The plug-in principle

We derived before that we may write the parameter of interest as θ = τ(F ). We now use this

representation to construct estimators of θ. To do this we first estimate the cdf F (x) by an

estimator F̂ (x) for all x, and then plug in this estimator into the functional τ(·). This way

of constructing an estimator is called the plug-in principle.

Definition 2. Let X1, . . . , Xn be a random sample from a cdf F (x). Let the function F̂n(x)

be an estimator of F (x), where F̂n is a cdf itself as well. Then the plug-in estimator of

θ = τ(F ) is defined as θ̂ = τ(F̂n).

Of course, the key in applying the plug-in principle for estimation is how we choose F̂n(x).

If we assume a parametric family F (x|γ), then the plug-in estimator will simply require us to

estimate γ.

Example 8. Assume that X1, . . . , Xn is a random sample from an exponential(β) distribution

and let θ = P(X > c) = τ(F ) = e−c/β. We can then consider the estimator F̂n(x) of

F (x|β) = 1− e−c/β defined by

F̂n(x) = F (x|β̂n) = 1− e−c/β̂n .

From this it directly follows that the plug-in estimator of θ is equal to θ̂ = τ(F̂n) = e−c/β̂n .

It then depends on how we estimate β what this estimator looks like. If we estimate β

using maximum likelihood, β̂n = Xn and θ̂n = e−c/Xn . Of course, in this case this plug-

in estimator coincides with the “direct” maximum likelihood estimator of θ because of the

invariance property of maximum likelihood estimators.

2.3 The empirical distribution function

Example 8 demonstrates that the plug-in estimator in the setting where we have a parametric

family does not really add new insights. It still requires us to come up with an estimator

of the parameters of the distribution and does not specify how to do that. Hence in the

parametric setting the plug-in principle does not provide guidance to construct estimators of

θ. Instead, it is more useful in a nonparametric setting, where we cannot or do not want to

12



assume a parametric family f(x|γ). For this purpose we now define a simple nonparametric

estimator of F (x).

Definition 3. Let X1, . . . , Xn be a random sample from a cdf F (x). The empirical distri-

bution function F̂En (x), also denoted as EDF, is the estimator of F that for every x counts

which proportion of X1, . . . , Xn is smaller or equal to x. Formally,

F̂En (x) =
1

n

n∑
i=1

I(−∞,x](Xi) =
1

n

n∑
i=1

I[Xi,∞)(x).

Before we continue, two remarks on notation. First, traditional notation for the EDF is

Fn, and therefore in most literature about the bootstrap you will see Fn(x) instead of F̂En .

We use F̂En instead as it might be confusing that Fn without a hat is still an estimator of

F . Second, as can be seen from the definition there are two equivalent ways of expressing

the indicator functions in the EDF. Both the conditions I(−∞,x](Xi) and I[Xi,∞)(x) are true

whenever Xi ≤ x. This confirms that no matter how one writes it, the EDF indeed counts how

many of X1, . . . , Xn are smaller than or equal to x. The two ways of writing are equivalent,

and it depends on personal preference which to prefer. Throughout this chapter we will use

the first one.

Example 9. We observe a random sample X1, . . . , X4 from an unspecified distribution F .

Suppose the following values are observed: x1 = 1.26, x2 = −2.45, x3 = 0.75 and x4 = −0.27.

The realization of the corresponding EDF F̂En can then be specified as follows:

F̂En (x) =



0 if x < −2.45
1
4 if − 2.45 ≤ x < −0.27
1
2 if − 0.27 ≤ x < 0.75
3
4 if 0.75 ≤ x < 1.26

1 if 1.26 ≤ x

This EDF is displayed in Figure 2.

It is important to note that the realization of the EDF itself is a valid cdf as it satisfies

all conditions of Theorem 1.5.3. Given the importance of this result, we formally state this

and prove it in the following theorem.

Theorem 1. Consider a sequence of real numbers x1, . . . , xn and let F̂En (x) be defined as (the

realization of) the empirical distribution function corresponding to these points, that is

F̂En (x) =
1

n

n∑
i=1

I(−∞,x](xi).

Then F̂En (x) is a cdf.

13
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Figure 2: The EDF for the sample x1 = 1.26, x2 = −2.45, x3 = 0.75 and x4 = −0.27

Proof. We verify that F̂En (x) satisfies all conditions of Theorem 1.5.3. For condition (a),

note that for any x < mini xi, we have that I(−∞,x](xi) = 0 for all i = 1, . . . , n and therefore

F̂En (x) = 0. As −∞ < mini xi, this means limx→−∞ F̂
E
n (x) = 0. Similarly, for any x ≥ maxi xi

we have that I(−∞,x](xi) = 1 for all i = 1, . . . , n and therefore F̂En (x) = 1, implying that

limx→∞ F̂
E
n (x) = 1.

For condition (b), take any two points a, b ∈ R where a < b. Now note that F̂En (b) −
F̂En (a) = 1

n

∑n
i=1

[
I(−∞,b](xi)− I(−∞,a](xi)

]
. We prove that F̂En (b)− F̂En (a) ≥ 0 for all a and

b satisfying a < b by contradiction. Assume that there is some a < b such that F̂En (b) −
F̂En (a) < 0. For this to be true there must be some i for which I(−∞,b](xi)− I(−∞,a](xi) < 0.

As the indicator function only takes values 0 and 1, it must be that I(−∞,b](xi) = 0 and

I(−∞,a](xi) = 1. However, these two statements can only be true if b < xi ≤ a, which

contradicts that a < b. This proves condition (b).

To prove that condition (c) holds, let us first order x1, . . . , xn from low to high. Re-

member from Definition 5.4.1 that we denote these order statistics as x(1) < . . . < x(n),

where x(k) corresponds to the k-th smallest among x1, . . . , xn. Now note that F̂En (x) =
1
n

∑n
i=1 I(−∞,x](xi) = 1

n

∑n
i=1 I(−∞,x](x(i)). Take an x0 such that x(k−1) ≤ x0 < x(k) for some

k = 2, . . . , n. As exactly k − 1 values of x1, . . . , xn are smaller than or equal to x0, we know

14



that F̂En (x0) = k−1
n .

Next we consider the limit for x ↓ x0. Note that limx↓x0 F̂
E
n (x) = 1

n

∑n
i=1 limx↓x0 I(−∞,x](x(i)).

As x > x0 ≥ x(k−1), we have that limx↓x0 I(−∞,x](x(i)) = 1. It then remains to show that

for i ≥ k, limx↓x0 I(−∞,x](x(i)) = 0. If we can show that for every ε > 0 there exists a δ > 0

such that for all x0 < x < x0 + δ, I(−∞,x](x(k)) < ε, the result then immediately follows for

i > k. Take δ such that 0 < δ < x(k) − x0. For all x < x0 + δ < x(k) we then have that

I(−∞,x](x(k)) = 0 < ε for all ε > 0. This proves that for i ≥ k, limx↓x0 I(−∞,x](x(i)) = 0 and

consequently that limx↓x0 F̂
E
n (x) = F̂En (x0) for x(k−1) ≤ x0 < x(k).

As we assumed an arbitrary k = 2, . . . , n, this result holds for each of these intervals, and

therefore for any x0 such that x(1) ≤ x0 < x(n). In exactly the same way we can prove the

result for x0 in the intervals (−∞, x(1)) and [x(n),∞) to conclude the proof.8

Now that we established that F̂En (x) is a cdf (upon observing a realization of a sample),

we can also discuss random variables with the distribution F̂En (x). What does such a random

variable look like? First note that F̂En (x) is a discrete distribution function, which jumps up

by an amount of 1
n whenever x = xi for i = 1, . . . , n. From this it directly follows that the

corresponding pmf has the form f̂En (x) = 1/n for x = x1, . . . , xn, and f̂En (x) = 0 otherwise.

The following lemma formalizes this notion and derives some further properties.

Lemma 2. Let F̂En (y) = 1
n

∑n
i=1 I(−∞,y](xi) be the EDF corresponding to the sample x1, . . . , xn

and define a random variable Y that has cdf F̂En (y). Then

(a) PF̂En (Y = xi) = 1
n for i = 1, . . . , n;

(b) EF̂En g(Y ) = 1
n

∑n
i=1 g(xi) for any function g(·).

Proof. Part (a) follows directly from the definition of the cdf and corresponding pmf. Part

(b) then follows from part (a), as for a discrete random variable as Y we can write

EF̂En g(Y ) =
n∑
i=1

g(xi)PF̂En (Y = xi) =
1

n

n∑
i=1

g(xi).

We can also use Riemann-Stieltjes integrals to conclude that EF̂En g(Y ) =
∫∞
−∞ g(y)dF̂En (y) =

1
n

∑n
i=1 g(xi).

Note that if we draw a variable Y from the distribution F̂En (y), then by Lemma 2(a), this

variable takes on one of the values x1, . . . , xn with equal probability. If we draw a random

sample of size n, say Y1, . . . , Yn, then each of these variables take on one of the values x1, . . . , xn

with equal probability. Note that this is equivalent to what we did in Example 2, that is,

8Note that it is crucial for condition (c) that we consider intervals of the form (−∞, x] rather than (−∞, x)
in the indicator functions used for the EDF. If we use open intervals the function is not right-continuous as
1 = limx↓xi I(−∞,x)(xi) 6= I(−∞,xi)(xi) = 0.
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drawing a sample of size n from the original sample with replacement. Hence, we can link

the bootstrap directly to the EDF. Before we do so formally, we consider the properties of

the EDF as a estimator of the true distribution.

2.4 Consistency of the EDF

As a next step we now consider the properties of F̂En (x) as a random variable, or more

specifically, as an estimator of F (x). In light of our use for the bootstrap, here we restrict

ourselves to consistency. Before we considered only properties of F̂En (x) upon observing a

particular realization x1, . . . , xn; in that case F̂En (x) was an estimate rather than an estimator.

Now, in order to study its properties as an estimator, we let X1, . . . , Xn be a random sample

from a population with pmf or pdf f(x), and corresponding cdf F (x). For every x ∈ R, it

then follows directly from the weak law of large numbers that

F̂En (x) =
1

n

n∑
i=1

I(−∞,x](Xi)
p−→ F (x),

and it even holds almost surely by applying the strong law of large numbers.9

This result would be sufficient if we were only interested in a single point x, however

typically we are not. Consistency of the EDF is simply a stepping stone to show consistency

of the plug-in estimator that uses it, or later, to show consistency of the bootstrap. For both

purposes we need the function F̂En (x) over all points, rather than at a single point. Therefore

a stronger result is needed: that of uniform convergence.

Definition 4. Let f(x) be a function and fn(x) be a sequence of functions defined on x ∈ R.

We say that fn(x) converges uniformly to f(x) if

sup
x∈R
|fn(x)− f(x)| → 0.

as n→∞. If fn(x) is a sequence of random function, almost sure uniform convergence (uni-

form convergence in probability) holds if supx∈R |fn(x)− f(x)| a.s.−−→ 0 (supx∈R |fn(x)− f(x)| p−→
0).

The difference between uniform convergence, and the regular, so-called pointwise con-

vergece, is that we take the supremum over all x. As such uniform convergence is stronger

than pointwise convergence. The Glivenko-Cantelli Theorem (here stated without proof)

shows that this indeed holds for the EDF.

Theorem 2 (Glivenko-Cantelli). Let X1, . . . , Xn be a random sample from a population with

pmf or pdf f(x), and corresponding cdf F (x). Let F̂En (x) = 1
n

∑n
i=1 I(−∞,x](Xi) be the EDF

9Realize that Yi = I(−∞,x](Xi) is a Bernoulli distributed random variable with success probability F (x),

and that Y1, . . . , Yn are independent. It then follows that F̂En (x) = Y n
p−→ F (x).
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based on this sample. Then

sup
x∈R

∣∣∣F̂En (x)− F (x)
∣∣∣ a.s.−−→ 0.

Example 10. To illustrate the convergence of F̂En (x) to F (x), consider a random sample

X1, . . . , Xn from a N(0, 1) distribution. Figure 3 shows the EDF for four such samples, based

on different sample sizes. The specific samples are drawn using a computer to simulate the

N(0, 1) distribution. While the top left panel (a) still shows a big discrepancy between the

EDF and the true cdf (the smooth line), this rapidly decreases when n increases; for n = 500

in the bottom right panel (d), hardly any difference is visible anymore.
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(b) n = 50
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(d) n = 500

Figure 3: The EDF for samples from a N(0, 1) distribution; the smooth line is the true cdf.

This result can now be used to prove consistency of various plug-in estimators. Obviously,

for many of them, such as the plug-in moment estimators, there is no need to follow this line

of proving consistency, as a direct proof will be easier. However, when we consider more

complex applications of the plug-in principle, such as the bootstrap, the Glivenko-Cantelli
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Theorem provides a justification why the bootstrap works.

3 The Bootstrap

3.1 Definition through the plug-in principle

We are now ready to formally describe and motivate the bootstrap. The tool we will use

to do so is the plug-in principle developed in the previous section. Assume we observe a

random sample X1, . . . , Xn from a cdf F and let us be interested in the distribution of a

certain function of the sample, and possibly of an (unknown) parameter θ. Let us call this

quantity Q′n(X, θ). One option for Q′n(X, θ) could simply be a sample statistic, for example

Xn. In that case Q′n(X, θ) = Q′n(X) is not a function of θ. Alternatively, we can consider

an asymptotically pivotal quantity, as in Examples 1 and 2 where Q′n(X, µ) =
√
nXn−µ

Sn
. We

make one further change of notation. As explained in the previous section, any population

parameter θ is a function of the population distribution F , i.e. θ = τ(F ). Therefore we write

the quantity in terms of F rather than θ as Qn(X, F ). The two notations can easily be linked

as

Q′n(X, θ) = Q′n(X, τ(F )) = Qn(X, F ). (5)

We want to obtain (an approximation to) the unknown distribution of Qn(X, F ), let

us call its cdf Gn(x, F ), i.e. Gn(x, F ) = PF (Qn(X, F ) ≤ x). We add the subscript ‘n’ to

emphasize this is the exact cdf (i.e. not the asymptotic one). If Qn(X, F ) is an asymptotic

pivot, then limn→∞Gn(x, F1) = limn→∞Gn(x, F2) for different distributions F1 and F2; that

is, the asymptotic distribution does not depend on F . This is however not necessary to assume

at this point.

Example 11. In Examples 1 and 2 we looked at Qn(X, F ) =
√
nXn−µ

Sn
. In that case

limn→∞Gn(x, F ) = Φ(x), where Φ(x) is the cdf of a standard normal random variable. So

this is indeed an asymptotic pivot. Alternatively, had we considered Q#
n (X, F ) =

√
n(Xn−µ),

then limn→∞G
#
n (x, F ) = Φ (x/σ), and as such this is not an asymptotic pivot.

Unless strong assumptions are made on F , such as normality, Gn(x, F ) is typically un-

known and cannot be used for inference. The standard way to proceed is to use limn→∞Gn(x, F ) =

G∞(x, F ) for inference, provided G∞(x, F ) does not depend on F . Example 1 showed this is

not without dangers, as the asymptotic approximation may not be very accurate.

The bootstrap offers an alternative through application of the plug-in principle. Just as

we did for estimating parameters, we can plug in an estimate of F , let us call it F̂n, into the

formula for Gn. This is made formal in the following definition of the bootstrap.

Definition 5. Consider a random sample X1, . . . , Xn from a population with cdf F . Let our

quantity of interest be Qn(X, F ) and denote its cdf by Gn(x, F ). Let F̂n(x) be an estimator
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of F that satisfies all conditions for being a cdf. The bootstrap estimator of Gn(x, F ) is

defined as Gn(x, F̂n).

It might be odd to think of Gn(x, F̂n) as an estimator. It is however, a function of the

sample X1, . . . , Xn only, as F̂n(x) is an estimator, and therefore a function of X1, . . . , Xn only.

We also call Gn(x, F̂n) the bootstrap distribution, which hides the fact that it is an estimator.

It is important for the further development of the bootstrap to keep in mind though that it

is, statistically speaking, an estimator.

Unlike the case where we estimate parameters through the plug-in principle, we typically

cannot find an analytical expression for Gn(x, F̂n). However, we can approximate it with

arbitrary accuracy using simulation. This is what is typically done using the bootstrap, as

described in the algorithm below.

Algorithm 1 (Simulating the bootstrap distribution). Follow the following steps to obtain

the approximation to the bootstrap distribution Gn(x, F̂n). In steps 1 and 2 below, the su-

perscript b, which takes values 1, 2, . . . , B, describes one specific bootstrap simulation. These

steps 1 and 2 should therefore be repeated B times.

1. Draw a random sample from the cdf F̂n. The realized sample x∗b1 , . . . , x
∗b
n is your boot-

strap sample.

2. Calculate the bootstrap version of Qn(x, F ), which is Qn(x∗b, F̂n). We also denote this

as short-hand by Q∗bn .

3. After repeating steps 1 and 2 B times, collect all the calculated bootstrap quantities

Q∗1n , Q
∗2
n , . . . , Q

∗B
n . These form the approximation to the bootstrap distribution.

We can now use Q∗1n , Q
∗2
n , . . . , Q

∗B
n to calculate whatever aspect of Gn(x, F̂n) we need for

inference.

Remark 1. It is common to denote bootstrap quantities with a superscript ‘∗’, as we did

above. Typically people leave out the ‘b’ which indicates the specific bootstrap simulation

iteration, unless it is really needed when describing a computational algorithm. We follow

the same convention here,only adding a superscript ‘b’ when we need to stress the specific

simulation it comes from. In addition, we again distinguish between random variables by

using capital letters, and specific realizations using small letters. Hence, X∗1 , . . . , X
∗
n denotes

a general random sample from the distribution F̂n. In the bootstrap context, when we discuss

specific realizations, it is often in the context of a computational algorithm. Therefore, we will

only need the superscript ‘b’ when considering specific realizations. Hence, we will generally

write X∗1 , . . . , X
∗
n without superscript ‘b’ but a specific realization x∗b1 , . . . , x

∗b
n with superscript

‘b’, although there are occasions where we need to deviate from this convention.
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How the sample in step 1 of Algorithm 1 is drawn, depends on the form of the estimator

F̂n. As for parameter estimation, we can make the distinction between parametric estimation,

in which case a parametric family F (x|θ) is assumed and only the parameter θ needs to be

estimated, or nonparametric estimation, in which no assumption on the distribution is made

and the estimator is the EDF. These lead to the following two bootstrap methods:

1. Parametric bootstrap [F is estimated by F (x|θ̂n)]: The bootstrap sample X∗1 , . . . , X
∗
n

is drawn from the cdf F (x|θ̂n), where θ̂n is an estimate of θ based on the original sample

x1, . . . , xn.

2. Nonparametric (iid) bootstrap [F is estimated by the EDF F̂En ]: The bootstrap

sampleX∗1 , . . . , X
∗
n is drawn from the cdf F̂En , which by Lemma 2 implies thatX∗1 , . . . , X

∗
n

is drawn with replacement from the original sample x1, . . . , xn.

When people talk about “the bootstrap”, they typically mean the nonparametric bootstrap

as described above. The nonparametric bootstrap has become by far the more popular boot-

strap version because it does not require one to make an (unrealistic) assumption about the

distribution F , and moreover, it typically is not even much less accurate than the parametric

bootstrap when the parametric assumption is correct. We will see this illustrated later.

There are many other bootstrap methods that are applicable in settings where the random

sample assumption is not appropriate. We will not discuss these here, but to avoid confusion

later on, we will call the nonparametric bootstrap iid bootstrap from here on. This way we

can distinguish it from other nonparametric forms of the bootstrap, highlighting the only real

assumption needed to apply it: that the sample is iid.

3.2 Probabilistic calculations in the bootstrap

One of the more complicated and confusing things about the bootstrap is to properly under-

stand and perform probabilistic calculations with bootstrap quantities. In terms of notation,

just as done for the bootstrap sample, people typically append a ‘∗’ to probability or expec-

tation operators to signify that those probabilities should be taken in the bootstrap world.

While this looks nice, the simple notation does obscure the complicated matter quite a bit. In

particular, it hides the fact that, as discussed below Definition 5, the bootstrap distribution

is an estimator and thus a random variable. Similarly, this means that any probability calcu-

lation in the bootstrap need to be performed conditionally on observing the sample X = x.

Here we look at this in more detail.

Let us first introduce a bit of notation. For a random variable X with cdf F , we explicity

append a subscript ‘F ’ to probabilities or expectations, as in PF (X ≤ x) and EF (X). This re-

minds us what the relevant distribution is with respect to which we calculate the probabilities.

This addition makes it easier to make the transition to the bootstrap world.
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Now assume a random sample X1, . . . , Xn with cdf F . Suppose we have an estimator F̂n

for F – for example the EDF – and assume that we draw a bootstrap sample X∗1 , . . . , X
∗
n from

this distribution F̂n. The distribution of the bootstrap sample is conditional on X1, . . . , Xn,

or if we want to condition on an observed outcome, conditional on observing that X1 =

x1, . . . , Xn = xn. If we now calculate a probability or expectation for the bootstrap sample

– still conditional on the original sample – we need to do so with respect to the distribution

F̂n rather than F . For instance, the expectation of X∗i – conditional on the sample X – can

be written as

E∗X∗i = EF̂n(X∗i |X) =

∫
xdF̂n(x).

Let us consider the two equality signs in turn. The first equality sign simply tells us what we

mean with the notation E∗: (i) the expectation is with respect to the distribution F̂n and (ii)

the expectation is conditional on the original sample. The second equality sign simply uses

the definition of an expectation using the Riemann-Stieltjes integral. How we now calculate

the expectation, depends on the choice of F̂n. For the iid bootstrap where F̂n is the EDF F̂En ,

we have from Lemma 2(b) that

E∗X∗i = EF̂En (X∗i |X) =
1

n

n∑
i=1

Xi.

For a parametric choice of F̂n one simply considers the expectation of that distribution, but

then with an estimated parameter rather than the true one.

For probabilities things work exactly the same. For instance, again with F̂n = F̂En , we

have that

P∗(X∗i ≤ c) = PF̂En (X∗i ≤ c|X) = F̂En (c) =
1

n

n∑
i=1

I(−∞,c](Xi).

An important consequence of working conditionally on the sample, is that when we do not

condition on a specific outcome X = x, but on the random variables X, that bootstrap prob-

abilities and expectations are random variables themselves. This is true for any conditional

probability or expectation.

4 Applications of the Bootstrap

Once one has obtained the bootstrap distribution Gn(x, F̂n), it can be used for inference.

How this is done depends on the goal of the researcher. Here we discuss four possible uses,

of which the last two are by far the most important.
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4.1 Improving point estimation (bias reduction)

One of the most basic uses of the bootstrap is to improve the quality of point estimators.

For a random sample X1, . . . , Xn, assume we have a certain parameter θ = τ(F ), and an

estimator θ̂n = Wn(X) of θ that has a bias An = EF (θ̂n − θ). The bootstrap can be used to

estimate the bias and consequently to reduce the bias of θ̂n. Define Qn(X, θ) = θ̂n − θ, and

let Gn(x, F ) be the corresponding cdf. Then we can write

Biasn = EF (θ̂n − θ) = EF Qn(X, F ) =

∫
xdGn(x, F ). (6)

Now assume that we have a bootstrap sample X∗1 , . . . , X
∗
n with distribution F̂n – condi-

tional on the sample X. The bootstrap version of the quantity of interest is Qn(X∗, F̂n). How

do we calculate this? Note that Qn(X, θ) = θ̂n−θ. The first part is easy: to get the bootstrap

version, replace θ̂n = Wn(X) which was calculated using the original sample X1, . . . , Xn, with

θ̂∗n = Wn(X∗), the same function but calculated with the bootstrap sample. For the second

part we use that θ = τ(F ), and therefore the bootstrap equivalent is θ∗ = τ(F̂n). Putting

the two steps above together, we get Qn(X∗, F̂n) = θ̂∗n − θ∗ = Wn(X∗)− τ(F̂n). We can then

write down the bootstrap approximation to the bias:

Bias∗n = E∗
[
Qn(X∗, F̂n)

]
= EF̂n

[
W (X∗)− τ(F̂n)|X

]
. (7)

The quantity EF̂n [Qn(X∗, F̂ )|X] typically cannot be calculated analytically. However, we also

do not need to as we can use our bootstrap simulations for that! Assume that we can obtain

Q∗1n , . . . , Q
∗B
n as in Algorithm 1. We can then approximate Bias∗n by the simulation average

Bias∗n,B =
1

B

B∑
b=1

Q∗bn =
1

B

B∑
b=1

Qn(X∗b, F̂ ) =
1

B

B∑
b=1

θ̂∗b − θ∗ =
1

B

B∑
b=1

W (X∗b)− τ(F̂n).

A simple application of the weak law of large numbers tells us that Bias∗n,B
p−→ Bias∗n as

B →∞.

Now that we obtained an estimate for the bias, we can use it to construct a bias-corrected

estimator. Ideally, if we knew the true bias Biasn, we could construct an estimator θ̂′n =

θ̂n − Biasn which by construction has zero bias. We can do the same with estimated bias, in

the hope that at least the bias will be less. Hence, we construct the estimator

θ̂bcn = θ̂n − Bias∗n,B .

The method described above requires us to calculate θ∗ = τ(F̂n). How to do this depends

on the function τ(·) and the choice of F̂n. For example, if θ = EF (g(X)) =
∫
g(x)dF (x), then

θ∗ = EF̂n(g(X∗)|X) =
∫
g(x)dF̂n(x). If we then consider the nonparametric bootstrap with
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F̂n equal to the EDF, Lemma 2 tells us that θ∗ = 1
n

∑n
i=1 g(Xi).

Often the estimator θ̂n will coincide with θ∗. This is typically trivially true for the para-

metric bootstrap, but also for the nonparametric bootstrap. If we do not want to make an

assumption on the parametric distributional family, we will most likely estimate θ using the

plug-in principle, such that θ̂n = τ(F̂n) and typically F̂n is the EDF. In that case θ∗ = θ̂n and

the estimator reduces to

θ̂bcn = θ̂n − Bias∗n,B = θ̂n −

(
1

B

B∑
b=1

θ̂∗b − θ∗
)

= θ̂n −
1

B

B∑
b=1

θ̂∗b + θ̂n = 2θ̂n − θ̂∗n,

where θ̂∗n = 1
B

∑B
b=1 θ̂

∗b
n . This is the form of the bootstrap bias-corrected estimator typically

encountered in the literature.

4.2 Variance estimation

A second purpose of the bootstrap is variance estimation. Suppose that we know that

√
n

θ̂n − θ√
Var(θ̂n)

d−→ N(0, 1),

but that this asymptotic pivot cannot be used, because Var(θ̂n) is unknown, and it is difficult

to obtain an estimate of the variance. We can then use the bootstrap to estimate the variance.

Letting Qn(X, F ) = θ̂n, and consequently Qn(X∗, F̂n) = θ̂∗n, we can estimate the variance

of θ̂n by the bootstrap variance

Var∗(θ̂n) = EF̂n

[(
θ̂∗n − EF̂n θ̂

∗
n

)2∣∣∣∣X] .
In practice, having again followed Algorithm 1 to obtain Q∗1n , . . . , Q

∗B
n , we let

Var∗B(θ̂n) =
1

B

B∑
b=1

(
θ̂∗bn − θ̂∗n

)2
.

While this application of the bootstrap was very popular in the early stages of the de-

velopment, it is not used often anymore. Typically the estimate of the variance is not the

final goal, but only an intermediate step towards for example a hypothesis test or confidence

interval. In that case its use is to make the pivot
√
n θ̂n−θ√

Var∗B(θ̂n)
feasible. However, doing

so still requires one to use the asymptotic normality of the pivot to do inference. This is a

considerable drawback, especially since the bootstrap can be used to avoid this entirely, as

we shall see for the next two applications.
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4.3 Hypothesis testing

Assume we have a random sample X1, . . . , Xn from a cdf F . We wish to perform a hypothesis

test on a parameter θ = τ(F ). In particular, let H0 : θ = θ0, and H1 either one-sided or two-

sided. Let F0 denote the “null distribution”, that is a distribution that satisfies H0, such that

θ0 = τ(F0). Typically, F0 is not fully specified, as there may be many different distributions

for which θ0 = τ(F0). For instance, in Example 12 below, if θ = EF X, any distribution which

has mean θ0 satisfies H0.

Assume we have an asymptotic pivot Qn(X, F ) on which we would like to base the test.

In particular, we define the test statistic Tn(X, θ0) = Qn(X, F0) such that its asymptotic

distribution Gn(x, F ) is fully known if F = F0.
10 However, rather than using the asymptotic

distribution, we want to use the bootstrap to obtain critical values, or equivalently, p-values.11

Again we can follow Algorithm 1 to obtain the bootstrap quantities, however there is one

complication with hypothesis testing. Assuming that H1 : θ > θ0 – the other cases follow

similarly – remember from Chapter 8 that we can define the critical value cα for a test with

size α as

α = Pθ0(Tn(X, θ0) ≥ cα) = PF0(Qn(X, F0) ≥ cα) = 1−Gn(cα, F0),

and the p-value p(x) for an observed sample x as

p(x) = Pθ0(Tn(X, θ0) ≥ Tn(x, θ0)) = PF0(Qn(X, F0) ≥ Qn(x, F0)) = 1−Gn(Qn(x, F0), F0).

In either case, what is required is the probability if the null hypothesis is true. Hence, to

estimate these using the bootstrap we need to approximate F0 rather than F . What this

practically means is that in the bootstrap we must make sure the null hypothesis is indeed

true. We have two options to achieve this:

1. Adapt the null hypothesis in the bootstrap such that it is satisfied. If F̂n is the estimate

of F used, construct the test statistic to test H0 : θ∗ = θ∗0, where θ∗0 = τ(F̂n), rather

than testing H0 : θ∗ = θ0. In this case the “standard” bootstrap quantity Qn(X∗, F̂n)

can be used.

2. Adapt your estimator F̂n to satisfy the null hypothesis. Let F̂0,n denote an estimator

of F that satisfies H0, in the sense that Qn(X∗, F̂0,n) = Tn(X∗, θ0). Then X∗1 , . . . , X
∗
n

are drawn from F̂0,n and therefore satisfy H0.

10Even if F0 is not uniquely defined, i.e. there are multiple distributions that satisfy H0, due to the pivot
that we use the asymptotic distribution is still fully known.

11We can treat a composite null hypothesis such as H0 : θ ≤ θ0 as if it were H0 : θ = θ0 for the purposes
of the bootstrap; as explained in Chapter 8, only the parameter value on the border θ0 matters for obtaining
critical values or p-values.
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For a parametric bootstrap this is not really an issue. For option 1, if θ̂n is the esti-

mated parameter of the assumed parametric family, one can simply take H0 : θ∗ = θ̂n in the

bootstrap. For option 2, one can generate the bootstrap sample from F (x|θ0).
For the nonparametric bootstrap things are a bit more involved. Typically, the EDF F̂En

does not satisfy the null hypothesis and so, if the nonparametric bootstrap is used, one of the

two corrections has to be employed. What this entails is best illustrated by an example.

Example 12. Let X1, . . . , Xn be a random sample with cdf F . As in Examples 1 and 2,

let µ = EF X and assume we want to test H0 : µ ≤ µ0 versus H1 : µ > µ0. Consider the

asymptotic pivot

Qn(X, F ) =
√
n
Xn − µ
Sn

d−→ N(0, 1).

Now let F0 be such that µ0 = EF0 X,12 and consider the test statistic

Tn(X, µ0) = Qn(X, F0) =
√
n
Xn − µ0
Sn

,

where we reject for large values of Tn(X, µ0).

If we draw the bootstrap sample X∗1 , . . . , X
∗
n from the EDF F̂En , then we have seen before

that µ∗ = E∗X∗ = EF̂En (X∗|X) = Xn. So, by construction, µ∗ 6= µ0 with probability 1, and

a correction has to be applied. For option 1 we adapt the null hypothesis in the bootstrap.

Hence we need to test H0 : µ∗ = µ∗0 versus H1 : µ∗ > µ∗0, where µ∗0 = Xn. Note that

this statement only makes sense by conditioning on a realization X, otherwise we test if a

parameter is equal to a random variable.13 The bootstrap statistic then looks like

Tn(X∗, µ∗0) = Qn(X∗, F̂En ) =
√
n
X
∗
n − xn
S∗n

.

For option 2, we need to draw the bootstrap sample from a different distribution. One option

is the following. Let Zi = Xi −Xn for i = 1, . . . , n, then Z̄n = 0, and define Yi = Zi + µ0 =

Xi −Xn + µ0 for i = 1, . . . , n, which implies that Y n = µ0.

Now draw the bootstrap sample X∗1 , . . . , X
∗
n from the EDF of Y1, . . . , Yn, let us denote it

as F̂E,yn . In that case E∗X∗ = E
F̂E,yn

(X∗|X) = Y n = µ0 and the null hypothesis is satisfied.

Hence, we know that F̂E,yn satisfies H0, such that we can write F̂E,yn = F̂0,n. We can then use

the bootstrap statistic

Tn(X∗, µ0) = Qn(X∗, F̂0,n) =
√
n
X
∗
n − µ0
S∗n

12As explained above, F0 is not fully specified, as there are many different distributions that have the same
mean. Even if we assume a parametric distributional family F0 may not be fully specified; for instance, any
normal distribution with mean µ0 satisfies H0, regardless of the value of σ2.

13Formally we should write that conditionally on observing the sample X = x, we test H0 : µ∗ = x.
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to perform the test.

A careful inspection of Example 12 reveals that in that specific case the two options are

identical – the only difference being the point at which the sample mean is subtracted – but

in general this is not the case. There is no general consensus on which approach is better.

Typically the difference between the two approaches is small and the preferred option depends

on the specific application, and very often simply on which one is easier to implement.

Whichever way we set up Q∗n = Tn(X∗, θ∗0) = Qn(X∗, F̂n), the bootstrap critical values c∗α

can then be obtained using the relation

P∗(Q∗n ≥ c∗α) = PF̂n(Qn(X∗, F̂n) ≥ c∗α|X) = α.

Note that c∗α, as all quantities with a ‘∗’, is a random variable as it depends on the sample X.

So, formally, we should write cF̂n,α(X), but to lighten the notation we just write c∗α instead.

It then depends on the type of test how we proceed:

• In case of a right-tailed test we obtain c∗α as above and reject H0 if Tn(x, θ0) > c∗α.

• For a left-tailed test we get the left-tail cutoff point c∗1−α in the same way, and reject

H0 if Tn(x, θ0) < c∗1−α

• For a two-tailed test, there are two options. First we consider the equal-tailed test. We

do not make an assumption about the symmetry of the distribution of the test statistic,

and use separate critical values for the lower and upper tail, c∗1−α/2 and c∗α/2 respectively.

Both are obtained in the same way as above. We reject H0 if either Tn(x, θ0) > c∗α/2 or

if Tn(x, θ0) < c∗1−α/2.

• Alternatively, if one believes the distribution of the test statistic to be symmetric under

H0, one can obtain the critical value as the 1 − α percentile of the absolute values of

Q∗n. In this case we define c∗α by the relation

P∗(|Q∗n| ≥ c∗α) = PF̂n
(∣∣Qn(X∗, F̂n)

∣∣ ≥ c∗α∣∣X ) = α,

and we reject H0 if |Tn(x, θ0)| > c∗α.

In practice, we can again approximate c∗α from the collection Q∗1n , . . . , Q
∗B
n = T ∗1n , . . . , T ∗Bn

that we obtained by following Algorithm 1. The approximate bootstrap critical value c∗α,B
for a level α test is simply obtained as the appropriate percentile of the Q∗1n , . . . , Q

∗B
n . In

particular,

c∗α,B = Q∗([(1−α)B])
n ,
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where Q∗n([(1− α)B]) is the (1 − α)B-th order statistic of Q∗1n , . . . , Q
∗B
n . Exactly the same

reasoning can be applied to find the left-tail critical value. For the symmetric two-tailed, one

can obtain the critical value as the 1− α percentile of the absolute values of Q∗1n , . . . , Q
∗B
n .

The bootstrap can also be used to obtain p-values. These bootstrap p-value for a right-

tailed test is given by

p∗(X) = P∗(Q∗n ≥ Qn(x, F0)) = PF̂n(Qn(X∗, F̂n) ≥ Qn(X, F0)|X),

with similar definitions for the other tests. In practice, they are simply calculated by counting

how many bootstrap statistics are larger (or smaller, depending on the direction of the test)

than the original statistic tn = Tn(x, θ0) for the observed sample x. Specifically, for a

• right-tail test: p∗r,B(x) = 1
B

∑B
b=1 I(tn,∞)(Q

∗b
n ).

• left-tail test: p∗l,B(x) = 1
B

∑B
b=1 I(−∞,tn)(Q

∗b
n ).

• two-tailed test (equal-tailed): p∗e,B(x) = 2 min {p(x)∗l , p(x)∗r}.

• two-tailed test (symmetric): p∗s,B(x) = 1
B

∑B
b=1 I(|tn|,∞)(

∣∣Q∗bn ∣∣).
Before we end the section on hypothesis testing, let us make one final remark. So far

we assumed that the test statistic Tn(X, θ0) was based on an asymptotically pivotal quan-

tity, i.e. its asymptotic distribution does not depend on nuisance parameters. While this

is necessary if one wishes to apply asymptotic results, this is in fact not necessary for the

bootstrap!

In Example 12 for instance, we could have taken T ′n(X, µ0) =
√
n(Xn−µ0). As T ′n(X, µ0)

d−→
N(0, σ2) we cannot use this quantity for our standard asymptotic analysis unless we know

σ2 = VarX. However, the bootstrap can deal with this automatically – just put this quantity

into Algorithm 1 and a bootstrap distribution comes out regardless of knowing σ2. This is

because implicitly the bootstrap automatically provides us with a (plug-in) estimate of σ2.

While in general it is much preferable to indeed use pivotal quantities if possible, the boot-

strap can be used without. In situations where it is difficult to find a pivotal quantity, this is

a major advantage of the bootstrap.

Example 13. Let us again consider the setting of Example 12 and test H0 : µ ≤ µ0 vs. H1 :

µ > µ0. We showed that for the nonparametric bootstrap using the EDF F̂En , we have

Tn(X∗, µ∗0) = Qn(X∗, F̂En ) =
√
n
X
∗
n −Xn

S∗n
.

The full bootstrap algorithm then looks as follows.

1. For b = 1, 2, . . . , B, draw a sample x∗b1 , . . . , x
∗b
n with replacement from x1, . . . , xn.
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2. Calculate the bootstrap quantity

Q∗bn = Qn(x∗b, F̂En ) = Tn(x∗b, µ∗0) =
√
n
x∗bn − xn
s∗bn

.

3. Repeat steps 1 and 2 B times and collect all bootstrap quantities Q∗1n , Q
∗2
n , . . . , Q

∗B
n .

Let

c∗α,B = Q∗([(1−α)B])
n .

4. Reject H0 if Qn(x, F0) > c∗α,B.

4.4 Confidence intervals

Next we consider the construction of confidence intervals using the bootstrap. There are a

few different intervals one can consider. Here we treat them in turn. For clarity, assume we

have a random sample X1, . . . , Xn with cdf F and our parameter of interest is θ = τ(F ). Let

θ̂n = Wn(X) be an estimator of θ.

4.4.1 Equal-tailed percentile intervals

The first type of interval we consider, the so-called percentile interval, is applied directly to

θ̂n = Wn(X) without attempting to find a pivotal quantity. While not optimal, it is a very

easy interval to construct and motivate. Hence, we let Qn(X, F ) = θ̂n − θ.
We first derive the infeasible interval based on knowledge of Gn(x, F ), the cdf of Qn(X, F ).

Afterwards we then only have to plug in F̂n for F .14 Define the cut-off point cα such that

PF (Qn(X, F ) ≥ cα) = α. Now we can derive the interval using the probabilities

PF (c1−α/2 ≤ θ̂n − θ ≤ cα/2) = 1− α

⇔ PF (−θ̂n + c1−α/2 ≤ −θ ≤ −θ̂n + cα/2) = 1− α

⇔ PF (θ̂n − cα/2 ≤ θ ≤ θ̂n − c1−α/2) = 1− α.

Hence, the infeasible interval based on Qn(x, F ) would be Cθ(X) =
[
θ̂n − cα/2, θ̂n − c1−α/2

]
.

For the bootstrap, letting θ̂∗n = Wn(X∗) and θ∗ = τ(F̂n), we can define the bootstrap

quantity Q∗n = Qn(X∗, F̂n) = θ̂∗n − θ∗.15 We can then define the bootstrap cut-off point c∗α

14Equivalently one can derive the bootstrap percentile interval from the inversion of the acceptance region
of the bootstrap test of H0 : θ = θ0 vs. H1 : θ 6= θ0 and the test statistic is Tn(X, θ0) = θ̂n − θ, see Exercise
B.1

15As discussed for the bias reduction case, typically θ∗ = θ̂n and therefore Q∗n(X∗, F̂n) = θ̂∗n − θ̂n.
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such that

P∗(Q∗n ≥ c∗α) = PF̂n(Qn(X∗, F̂n) ≥ c∗α|X) = α.

The bootstrap percentile interval can then be written as

C∗θ (X) =
[
θ̂n − c∗α/2, θ̂n − c

∗
1−α/2

]
. (8)

In practice we again approximate c∗α by c∗α,B = Q
∗([(1−α)∗B])
n after following Algorithm 1.

4.4.2 An incorrect percentile interval

Efron (1979) originally proposed a different interval. Efron took Q̃n(X∗, θ∗) = θ̂∗n, and let

c̃∗α be defined such that P∗(Q̃∗n ≥ c̃∗α) = α. He then proposed to use the interval C̃∗θ (X) =

[c̃∗1−α/2, c̃
∗
α/2]. While this seems to be a logical choice, this is in fact an incorrect interval. It

turns out the interval has its tails reversed.

To show that its coverage is not the intended (1 − α), first note if we take Q∗n =

Qn(X∗, F̂n) = θ̂∗n − θ∗ as above, we can write that

α = P∗(Q̃∗n ≥ c̃∗α) = P∗(Q̃∗n − θ∗ ≥ c̃∗α − θ∗) = P∗(Q∗n ≥ c∗α).

From this we can conclude that c∗α = c̃∗α − θ∗ and represent Efron’s interval as C̃∗θ (X) =

[θ∗ + c∗1−α/2, θ
∗ + c∗α/2].

First note that this interval only makes sense if θ∗ = θ̂n, as it is otherwise not centered

around the estimator θ̂n. If we assume that this is indeed true, which is frequently the case,

then we have that

C̃∗θ (X) =
[
θ̂n + c∗1−α/2, θ̂n + c∗α/2

]
.

It now becomes apparent that this is the interval C∗θ (X) with its tails “flipped around”.

Note that Efron’s interval approximates the infeasible interval [θ̂n + c1−α/2, θ̂n + cα/2], where

PF (Qn(X, F ) ≥ cα) = α. Then we can calculate that interval’s coverage as

PF (θ̂n + c1−α/2 ≤ θ ≤ θ̂n + cα/2) = PF (cα/2 ≤ θ − θ̂n ≤ c1−α/2)

= PF (−cα/2 ≤ Qn(X, F ) ≤ −c1−α/2).

This probability is typically not equal to 1−α. The tails are clearly reversed, and only if the

distribution of Qn(X, F ) is symmetric around 0, in which case c1−α/2 = −cα/2, is this interval

appropriate.

29



4.4.3 Equal-tailed percentile-t interval

The percentile interval is not optimal as it is not based on a pivotal quantity. Due to the

central limit theorem, in many instances there will be a pivotal t-ratio available for which

θ̂n − θ√
V̂ar(θ̂n)

=
Wn(X)− θ√

Vn(X)

d−→ N(0, 1),

where θ̂n = Wn(X) is an appropriate estimator of θ, and V̂ar(θ̂) = Vn(X) is an estimator of the

variance of θ̂n. In this case, an infeasible interval for θ can be derived from the manipulation

of

PF

c1−α/2 ≤ θ̂n − θ√
V̂ar(θ̂n)

≤ cα/2

 = 1− α

⇔ PF
(
−cα/2

√
V̂ar(θ̂n) ≤ θ − θ̂n ≤ −c1−α/2

√
V̂ar(θ̂n)

)
= 1− α

⇔ PF
(
θ̂n − cα/2

√
V̂ar(θ̂n) ≤ θ ≤ θ̂n − c1−α/2

√
V̂ar(θ̂n)

)
= 1− α,

where cα is such that PF (Qn(X, F ) ≥ cα) = α.

The bootstrap estimator of this interval is based on the bootstrap quantity

Q∗n = Qn(X∗, F̂n) =
θ̂∗n − θ∗√
V̂ar(θ̂∗n)

=
Wn(X∗)− θ∗√

Vn(X∗)
,

where θ∗ = τ(F̂n), and θ̂∗n = Wn(X∗) and V̂ar(θ̂∗n) = Vn(X∗) are the same functions as for

the original sample but calculated using X∗. The bootstrap interval is then

C∗θ (X) =

[
θ̂n − c∗α/2

√
V̂ar(θ̂n), θ̂n − c∗1−α/2

√
V̂ar(θ̂n)

]
, (9)

where c∗α is again such that P∗(Q∗n ≥ c∗α) = PF̂n(Qn(X∗, F̂ ) ≥ c∗α|X) = α.

Example 14. In Example 1 we saw that the asymptotic confidence interval for the mean did

not perform well for all distributions and sample sizes. In particular, for the exponential(2)

distribution and sample sizes smaller than n = 100, the asymptotic confidence interval did

not come close to the desired 95% coverage. We now check if the bootstrap does better. In

particular, we investigate if the equal-tailed bootstrap percentile-t interval defined in (9) does

better. We consider both the iid bootstrap, where F̂n is the EDF F̂En , and the parametric

bootstrap where we (correctly) assume an exponential distribution with parameter µ̂n, that

is where F̂n =
∫ x
−∞ f(y|µ̂n)dx =

∫ x
−∞

1
µ̂n
e−x/µ̂ndx.

For the estimator of µ we take µ̂n = Xn, and we take V̂ar(µ̂n) = S2
n
n , such that Qn(X, F ) =
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√
nXn−µ

Sn
and Q∗n = Qn(X∗, F̂n) =

√
nX

∗
n−µ∗
S∗n

. It then follows from (9) that the confidence

interval is

C∗µ(X) =

[
Xn − c∗α/2

Sn√
n
,Xn − c∗1−α/2

Sn√
n

]
.

To calculate this interval in practice, we take the following steps:

1. For b = 1, 2, . . . , B, draw a random sample x∗b1 , . . . , x
∗b
n from F̂n.

2. Calculate the bootstrap quantity

Q∗bn = Qn(x∗b, F̂En ) =
√
n
x∗bn − µ∗

s∗bn
.

For the nonparametric bootstrap with F̂n equal to the EDF F̂En , we have µ∗ = xn, while

for the parametric bootstrap we have µ∗ = µ̂n.

3. Repeat steps 1 and 2 B times and collect all bootstrap quantities Q∗1n , Q
∗2
n , . . . , Q

∗B
n .

Let

c∗α/2,B = Q∗([(1−α/2)B])
n and c∗1−α/2,B = Q∗([(α/2)B])

n .

4. Obtain the interval

C∗µ(x) =

[
xn − c∗α/2,B

sn√
n
, xxn − c∗1−α/2,B

sn√
n

]
.

We now use Monte Carlo simulations to investigate the coverage of the interval. The

whole procedure now looks as follows:

1. Generate a sample X1, . . . , Xn drawn from the exponential distribution with µ = 2.

2. Use the sample generated in step 1 to construct the asymptotic confidence interval as

well as the two bootstrap confidence intervals described above.

3. For each confidence interval, check if µ is contained in the interval and record a 1 if

true, and a 0 otherwise.

4. Repeat step 1-3 N times; the average of the numbers recorded in step 3 is the estimated

coverage.

Figure 4 shows the resulting coverages. The bootstrap intervals massively improve the

coverage compared with the asymptotic interval. Perhaps surprisingly, the nonparametric

interval is almost as good as the parametric bootstrap interval where we had the distribution

right. This is typical for the nonparametric bootstrap in general; it turns out that the loss
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Figure 4: Estimated coverage probabilities as a function of the sample size n for three
confidence intervals for the mean of an exponential(2) distribution.

for not making a parametric distributional assumption is rather small in general. Therefore

it is usually preferred in most applications.

4.4.4 Symmetric intervals

If we know that the distribution of Qn(X, F ) is symmetric, we might as well use that explicitly

in the construction of the confidence interval. For the percentile interval in that case we can

define c∗α such that P∗(|Q∗n| ≥ c∗α) = α, and construct the interval as

C∗θ (X) =
[
θ̂n − c∗α, θ̂n + c∗α

]
.

Similarly, the symmetric percentile t-interval uses a critical value c∗α defined in the same way

as above, but now for the t-ratio Q∗n = θ̂∗n−θ∗√
V̂ar(θ̂∗n)

, which gives the interval

C∗θ (X) =

[
θ̂n − c∗α

√
V̂ar(θ̂n), θ̂n + c∗α

√
V̂ar(θ̂n)

]
.
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4.5 Bootstrap in regression models

As a final application we look at how the bootstrap can be used in regression models. Assume

that we have the following regression model for i = 1, . . . , n:

Yi = α+ βXi + εi,

with ε1, . . . , εn an iid error term. We consider two different bootstrap methods for this setting.

Although both can be seen as an extension of the bootstrap as discussed so far, they are based

on a different outlook.

4.5.1 Pairs bootstrap

The first bootstrap method we consider, the pairs bootstrap, is a direct extension of the iid

bootstrap, and is based on the bivariate EDF F̂En (x, y) for the sample (X1, Y1), . . . , (Xn, Yn).

To this end the only assumption one needs to make is that (X1, Y1), . . . , (Xn, Yn) are a random

sample with a bivariate cdf F . For example, the bivariate normal model described in Section

11.3.3 in C&B fits this description. No assumption on the regression model actually being

the true model has to be made; remember that in this setting we can define α + βX as the

best linear predictor of Y where

β = τ(F ) =
CovF (X,Y )

VarF (X)
=

EF (X − EF X)(Y − EF Y )

EF (X − EF X)2
.

The pairs bootstrap builds the bootstrap sample (X∗1 , Y
∗
1 ), . . . , (X∗n, Y

∗
n ) by drawing pairs

with replacement from the sample (X1, Y1), . . . , (Xn, Yn). It is crucial that (Xi, Yi) are kept

together as a pair, otherwise if Y∗ and X∗ were drawn separately the bootstrap would assume

there is no relation between the two.

As an illustration, let us consider constructing a bootstrap equal-tailed percentile-t confi-

dence interval for β. Consider the least squares estimator

β̂n,LS =

∑n
i=1(Xi −Xn)(Yi − Y n)∑n

i=1(Xi −Xn)2
=
SXY
SXX

.

Consider the asymptotically pivotal quantity

Qn(Y,X, F ) = Q′n(Y,X, β) =
β̂n,LS − β√
S2
n/SXX

,

where S2
n = 1

n−2
∑n

i=1(Yi − α̂n,LS − β̂n,LSXi)
2. Its bootstrap version is

Q∗n = Qn(Y∗,X∗, F̂n) = Q′n(Y∗,X∗, β∗) =
β̂∗n,LS − β∗√
S∗2n /S

∗
XX

,
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where

β̂∗n,LS =

∑n
i=1(X

∗
i −X

∗
n)(Y ∗i − Y

∗
n)∑n

i=1(X
∗
i −X

∗
n)2

=
S∗XY
SXX

,

β∗ = τ(F̂n), and S∗2n = 1
n−2

∑n
i=1(Y

∗
i − α̂∗n,LS − β̂∗n,LSX∗i )2.

For the pairs bootstrap where F̂n is the EDF F̂En , one can show that β∗ = τ(F̂En ) = β̂n,LS .

Defining c∗α such that P∗(Q∗n ≥ c∗α) = α, we can then construct the equal-tailed percentile-t

interval for β[
β̂n,LS − c∗α/2

√
S2
n∑n

i=1(Xi −Xn)2
, β̂n,LS − c∗1−α/2

√
S2
n∑n

i=1(Xi −Xn)2

]
. (10)

While the pairs bootstrap is simple to use, it may be “too much nonparametric” for our needs.

That is, it does not use our (assumed) knowledge that a linear regression model is appropriate

for Y and X.

4.5.2 Residual bootstrap

The second bootstrap method we consider, the residual bootstrap, does utilize that knowledge

more efficiently. Its first step is to calculate the residuals of the regression model:

ε̂i = Yi − α̂n − β̂nXi for i = 1, . . . , n.

We then apply either a parametric bootstrap or the iid bootstrap to the residuals ε̂1, . . . , ε̂n

to obtain the bootstrap errors ε∗1, . . . , ε
∗
n. If the i.i.d. bootstrap is used, it is important to

make sure that the residuals have mean zero, i.e. that 1
n

∑n
i=1 ε̂i = 0. In that case E∗ ε∗i =

1
n

∑n
i=1 ε̂i = 0, which should be the case as error terms should always have mean zero. If a

constant is included in the regression, as is the case above, this is automatically satisfied.

We next need to construct the bootstrap regressors X∗1 , . . . , X
∗
n. Here we have two options:

(i) fix the bootstrap regressors by taking X∗1 = X1, . . . , X
∗
n = Xn; or (ii) draw the bootstrap

regressors randomly with replacement from X1, . . . , Xn. In practice the options yield very

similar results. If the actual regressor is actually a fixed deterministic quantity, as we assumed

throughout much of Chapter 11 of C&B, then option (i) is clearly preferred.

The final step consists of building the bootstrap sample Y ∗1 , . . . , Y
∗
n , using the elements

we have so far:

Y ∗i = α∗ + β∗X∗i + ε∗i ,

where for α∗ and β∗ one could take any value, but usually one takes α∗ = α̂n and β∗ = β̂n.16

16If we use the bootstrap for an hypothesis test, then one could also take β∗ = β0 to automatically make
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Once the bootstrap sample is generated, the remainder of this bootstrap procedure is identical

to the pairs bootstrap.

It is not always clear whether the residual or pairs bootstrap should be preferred. Often

they give very similar results. As explained above, the residual bootstrap has the advantage

of imposing the knowledge of the linear regression model that the pairs bootstrap does not

do. On the other hand, the pairs bootstrap is more robust to misspecification, for instance if

ε1, . . . , εn are not iid, but the variances differ. In such a setting the pairs bootstrap will be

superior. It is therefore not clear in general which method to prefer. In practice the residual

bootstrap seems the more popular method.

4.6 Practical implementation

How many bootstrap replications To implement the bootstrap in practice, we first need

a value for B, the number of bootstrap replications. If one uses it for hypothesis testing or

confidence intervals, it is recommended to take B such that α(B+ 1) is an integer, where α is

the significance level of the test or 1−α is the confidence level of the interval, see e.g. Davidson

and MacKinnon (2004).

Ideally we want to take B as large as possible, although taking B large of course increases

computation time. For applications, a reasonable value is B = 9, 999. Lower values such as

B = 1, 999 are used if the computation time is too high. For Monte Carlo simulations, which

take a lot more time, lower values such as B = 499 or B = 999 are more common.

Implementation in R The crucial aspect of implementing the bootstrap in a language

like R, is how to draw the bootstrap sample. Here we focus on the nonparametric bootstrap

where we draw from the EDF F̂En . This implies that X∗1 should be drawn randomly from

X1, . . . , Xn. The whole bootstrap sample is then drawn with replacement from X1, . . . , Xn.

While commands exist in R to draw with replacement, we do not even need those. In

fact, all we need is to draw random numbers from a discrete uniform distribution. To see

this, note that we can write

X∗1 = XJ1 ,

where J1 determines which ofX1, . . . , Xn we draw. As we are equally likely to pickX1, . . . , Xn,

we can equivalently say that J1 is equally likely to be any of the numbers 1, . . . , n. This simply

means that J1 is uniformly distributed on {1, . . . , n}. Similarly, X∗2 = XJ2 , where J2 has the

same uniform distribution and is independent of J1, and so on.

To draw a random sample of continuous uniformly distriubed random numbers in R, we

can use the function runif(n, min, max). The input n indicates how many (independent)

the bootstrap sample satisfy H0.
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random variables one draws, while min and max are the minimum and maximum of the range

of the uniform respectively. Finally, to draw discrete rather than continuous random variables,

we just need to round up. Putting everything together, the line

J <- ceiling(runif(n, min = 0, max = n))

will give us the vector J1, . . . , Jn we need. Alternatively, as a “short-cut” we can use the

function sample.int, which directly draws a sample of integers:

J <- sample.int(n,size = n, replace = TRUE)

Here the first argument n means that we draw from the integers up to the number n, the

second argument size = n indicates we want to draw a sample of size n, and the third

argument replace = TRUE means we draw a sample with replacement.

To build the bootstrap sample, we then simply need to access the right elements of the

vector X = X1, . . . , Xn. Assuming we store the sample as a vector in the variable X, we get

X.star <- X[J]

We can then use X.star to obtain whatever quantity we need. If we let theta.star contain

our bootstrap parameter θ∗, we can get Q∗n = Qn(X∗, F̂En ) = Q′n(X∗, θ∗) as

Q.star <- Q.func(X.star, theta.star)

where Q.func is a function that we have to change depending on our specific application.

As we need to store Q∗n for all b = 1, . . . , B bootstrap replications, it is best to first

construct a vector Q.star of dimension B, for instance as a vector of zeroes, and then loop

over all bootstrap replications, storing the b-th version of Q∗n in the b-th element of the vector.

Putting everything together, a code in R to do the bootstrap could look like

Q.star <- rep(0, times = B)

for (b in 1:B) {

J <- sample.int(n, size = n, replace = TRUE)

X.star <- X[J]

Q.star[b] <- Q.func(X.star, theta.star)

}

Finally, for hypothesis testing or confidence intervals, we need to take out the right ele-

ments from Q.star. The R function quantile can be used for this.

5 Theoretical Properties of the Bootstrap

So far we looked at how to implement the bootstrap, but we did not consider if it is actually

appropriate to use it. Also, we did not provide any reason why it would actually improve on
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the standard asymptotic approximation. Example 14 is very promising regarding performance

of the bootstrap, but we cannot go on one specific example to draw any conclusions on whether

the bootstrap is appropriate or not. Instead we need theory to answer that question in a more

systematic way. First we consider when it is allowed to use the bootstrap, that is, when we

can guarantee it provides at least reasonable results. Next we consider when the bootstrap

actually performs better than the asymptotic approximation.

5.1 Consistency

5.1.1 Definition of consistency

In this section we want to establish a necessary condition to be allowed to use the bootstrap.

That is, if the bootstrap does not satisfy this condition, its use should always be avoided.

The way we do this is link it to the standard asymptotic approximation. We know that this

approximation is at least correct for a sample size increasing to infinity. Therefore we may

reasonably expect the bootstrap to also be correct when the sample size tends to infinity. We

call this consistency of the bootstrap. It is formalized in the following definition.

Definition 6. Let Gn(x, F ) be the cdf of the quantity Qn(x, F ). Furthermore, let Gn(x, F̂n)

be the cdf of the corresponding bootstrap quantity Qn(X∗, F̂n). Let F be a set of permissible

distributions F . The bootstrap estimator Gn(x, F̂n) is consistent for Gn(x, F ) if for every

F ∈ F

sup
x∈R

∣∣∣Gn(x, F̂n)−G∞(x, F )
∣∣∣ p−→ 0. (11)

If (11) is satisfied, we also say that the bootstrap is asymptotically valid.

The definition states that the bootstrap is asymptotically valid, or consistent, if the

bootstrap distribution Gn(x, F̂ ) converges uniformly (with respect to x) in probability to

G∞(x, F ), the true asymptotic distribution of Qn(x, F ). The set F , to which F is restricted,

is simply there to be able to rule out some “crazy” distributions.

Generally it turns out that the bootstrap is valid for most “well-behaved” statistics. It is

not automatically true that the bootstrap is consistent though. There are several practical

applications where the bootstrap is not consistent. Two of these are considered in Example 15

as well as Exercises B.2 and B.3. Horowitz (2001) considers several other cases. As illustrated

in Example 15. it always remains important to check if the bootstrap is consistent or not.

Often we do not have to check uniform convergence (using the difficult looking supremum

over x), as the following theorem tells us that pointwise convergence is enough when G∞(x, F )

is a continuous function (which is often the case).
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Theorem 3 (Polya’s Theorem). If G∞(x, F ) is a continuous function over x ∈ R, and

Gn(x, F̂n)
p−→ G∞(x, F ) for all x ∈ R, (12)

then supx∈R

∣∣∣Gn(x, F̂n)−G∞(x, F )
∣∣∣ p−→ 0.

The pointwise convergence in (12) is easier to verify, but although this check can be done

on a case-by-case basis, it is still typically not very efficient nor easy to verify for each single

application that the condition (11) is satisfied. In the following (optional) section we therefore

consider a general theorem that can be used.

Example 15 (Bootstrap Invalidity). In Exercise B.2 it is shown that the nonparametric

bootstrap is invalid for inference on the maximum of a uniform distribution. Here we elaborate

on the implications of the invalidity in practice.

Let X1, . . . , Xn be a random sample from a uniform(0, θ) distribution. We construct

bootstrap percentile confidence intervals based on the iid bootstrap where F̂n = F̂En the

EDF, and a parametric bootstrap where F̂n is uniform(0, θ̂n), where we take the maximum

likelihood estimator θ̂n = maxiXi. To calculate the interval, let Qn(X, F ) = n(θ̂n − θ), and

take the following steps:

1. For b = 1, 2, . . . , B, draw a random sample X∗b1 , . . . , X
∗b
n from F̂n.

2. Calculate the bootstrap quantity

Q∗bn = Qn(X∗b, F̂En ) = n(θ̂∗n − θ̂n),

where θ̂∗n = maxiX
∗
i .

3. Repeat steps 1 and 2 B times and collect all bootstrap quantities Q∗1n , Q
∗2
n , . . . , Q

∗B
n .

Let

c∗1−α,B = Q∗([αB])
n .

4. Obtain the interval17

C∗µ(X) =
[
Xn, Xn − c∗1−α,B

]
.

As in Example 14 we perform a Monte Carlo study to investigate the accuracy of the two

intervals in finite samples. Figure 5 presents the coverage probabilities when we take θ = 1.

We see that, unlike the parametric bootstrap interval, the nonparametric iid bootstrap interval

17As Q∗bn can only take negative values (like Qn(X, F )), we do not use the standard c∗1−α,B and c∗1−α,B
cut-off points, but “shift the interval to the left” to ensure that θ̂n is included (as the left endpoint).
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does not have the correct coverage. Moreover, it does not get better when n increases. This

is in line with the theoretical results from Exercise B.2. As the actual coverage is typically

below 80%, the interval is very inaccurate and should not be used in practice. This illustrates

the need for checking that the bootstrap is indeed consistent.
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Figure 5: Estimated coverage probabilities as a function of the sample size n for two confi-
dence intervals for the maximum of an uniform(0, 1) distribution.

5.1.2 A General theorem for proving consistency*

Horowitz (2001) discusses a theorem by Beran and Ducharme (1991) which derives sufficient

conditions to guarantee the validity of (11). They show that if the following three conditions

are satisfied, the bootstrap is indeed consistent.

1. For every F ∈ F , supx∈R

∣∣∣F̂En (x)− F (x)
∣∣∣ p−→ 0. This condition is satisfied for the EDF

F̂En by the Glivenko-Cantelli Theorem. For the parametric bootstrap this can be shown

to be true if the parametric family chosen F (x|θ) is the correct one and if θ̂n
p−→ θ.

2. For every F ∈ F , G∞(x, F ) is a continuous function of x. This is true in most applica-

tions; very often G∞(x, F ) is the normal or χ2 distribution, which is continuous.
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3. For every x and every sequence of functions F̃n ∈ F for which F̃n(x) → F (x), we

have that limn→∞Gn(x, F̃n) = G∞(x, F ). This condition essentially states that for any

consistent estimator of F , such as the EDF F̂En , the consistency should “carry over”

to Gn(x, F̃n). If the bootstrap is inconsistent, it is often the case that this condition is

violated.

The third condition – which is often the critical one – can still be quite difficult to verify.

Many people have come up with sufficient conditions for which the condition is satisfied, and

thankfully for most “well-behaved” or regular statistics, the bootstrap is indeed consistent.

Horowitz (2001) discusses this in detail. Among the results discussed there, the following

theorem, inspired by Mammen (1992), is worth mentioning explicitly.

Theorem 4 (Mammen, 1992). Let X1, . . . , Xn be a random sample from a distribution with

cdf F . Let Wn(X) = 1
n

∑n
i=1 gn(Xi) for a sequence of functions gn(·). Let kn and ln be

sequences of numbers, and define

Qn(X, F ) =
Wn(X)− kn

ln
.

Let the bootstrap sample X∗1 , . . . , X
∗
n be generated from the EDF F̂En , and define

Qn(X∗, F̂En ) =
Wn(X∗)−Wn(X)

ln
.

Then the bootstrap is consistent for Qn(X, F ) if and only if Qn(X, F )
d−→ N(0, 1).

Many statistics can either be written in the form above, or approximated as such. The

theorem proves consistency of the bootstrap for such quantities if they have a standard normal

distribution asymptotically. The following example shows how this theorem can be used to

prove bootstrap consistency for the sample mean.

Example 16. Let us consider the consistency of the bootstrap for the distribution of

Qn(X, F ) =
√
n
Xn − µ
Sn

, (13)

where µ = EF X. Also let σ2 = VarX < ∞. However, in order to apply the theorem, we

first consider

Q′n(X, F ) =
√
n
Xn − µ

σ
.

Now take gn(x) = x, such that Wn(X) = Xn. Let kn = µ, and let ln = Var(Xn) = σ2/n.
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Then

Qn(X, F ) =
Wn(X)− kn

ln
=
√
n
Xn − µ

σ

d−→ N(0, 1).

As µ∗ = Xn = Wn(X), we can take Q′n(X∗, F̂En ) = Wn(X
∗)−Wn(X)
ln

. Now all conditions of the

theorem are satisfied, and thereby the consistency of the bootstrap for the mean when based

on Q′n(X, F ) =
√
n(Xn − µ)/σ is shown.

Of course, typically we don’t know σ. However, we also don’t need to in order to apply

this result. The bootstrap considered above is the same as the bootstrap of Q′′n(X, F ) =
√
n(Xn − µ), given that the denominator σ does not change inside the bootstrap. Clearly

we may multiply the quantity of interest with any real number, as long as we do it in the

bootstrap too, it will not change anything.

Finally, bootstrap consistency for Qn(X, F ) as defined in (13) now follows from the fact

that Sn
p−→ σ, and thus Qn(X, F )

p−→ Q′n(X, F ). By proving the same result for S∗n, bootstrap

consistency follows.

The theorem can be used to prove consistency for a much larger class of quantities, that in-

clude for example least squares estimators as well as many method of moments and maximum

likelihood estimators for exponential families.

5.2 Higher order properties of the bootstrap*

The previous section only discussed conditions under which the bootstrap may be applied.

However, all that was required was that asymptotically the bootstrap is the same as the

standard approach. This says nothing about whether the bootstrap actually works better

than the standard asymptotic approach.

In particular, the section does not explain at all why the bootstrap is often observed to

provide a better approximation to the unknown true quantity than the asymptotic approxi-

mation, like we saw in Figure 4.

In order to explain this difference, we need to look at the approximation errors made by the

bootstrap, compared to the standard approximation. For this we use so-called higher order

asymptotic analysis. The name refers to the fact that we do not only consider the resulting

limiting approximation (the first order term), but we also look at terms in the approximation

that vanish at a certain rate (the higher order terms). This works similarly as in a Taylor

expansion, and will be explained in more detail below. Before we can do so we first need a

way to describe the order of the approximation error.

5.2.1 Stochastic order symbols*

Here we introduce stochastic order symbols, which are an extension of the standard order of

magnitude symbols. These will be used in the next section to describe approximation errors
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for the bootstrap.

Remember, if x1, x2, . . . is any sequence of real numbers, and a1, a2, . . . is any sequence

of positive real numbers, then we say that xn is of the order of magnitude of an, written as

xn = O(an), if there is a K <∞ such that |xn| /an < K for all n. Similarly, if |xn| /an → 0 as

n→∞, we say that xn is of a smaller order of magnitude than an, and we write xn = o(an).

Example 17. Consider the sequence xn = c/n for some real number c > 0. Take the sequence

an = 1 for all n. Then clearly |xn| /an = c/n→ 0 as n→ 0. Therefore xn = o(1). We can be

more precise however. Take an = n−b, for 0 < b < 1. Then still |xn| /an = c/n
n−b

= cnb−1 → 0

as n → 0, as b − 1 < 0. Therefore, xn = o(n−b) for any 0 < b < 1. However, if we take

an = 1/n, then |xn| /an = c/n
1/n = c, which does not converge to 0 as n → 0. However, we

can clearly find a K <∞ such that |xn| /an < B for all n; any number larger than c will do.

Therefore, xn = O(1/n).

Similarly, consider the sequence yn =
√
n sin(n). As −1 ≤ sin(x) ≤ 1, it follows directly

that |sin(n)| ≤ 1 for all n. Taking the sequence bn =
√
n, it follows directly that |yn| /bn =

|√n sin(n)|√
n

= |sin(n)| ≤ 1 for all n. Therefore, yn = O(
√
n).

Stochastic order symbols extend this definition to random variables.

Definition 7. Let X1, X2, . . . denote a sequence of random variables, and let a1, a2, . . . denote

a sequence of positive real numbers. Then, if for any ε > 0 there exists a Kε > 0 that does

not depend on n but may depend on ε, such that

P(|Xn| /an > Kε) < ε for all n,

we say that Xn is of (at most) the same stochastic order as an, written as Op(an).

Similarly, if for every ε > 0 we have that P(|Xn| /an > ε)→ 0 we say that Xn is of smaller

stochastic order than an, written as op(an).

We can use consistency results, for example by the weak law of large numbers, to determine

op(·) orders.

Example 18. Let X1, . . . , Xn be a random sample from an unspecified distribution, with

EX = µ and VarX = σ2 < ∞. Then the weak law of large numbers tells us that Xn
p−→ µ.

Let Yn = Xn − µ. Then, it follows from the weak law of large numbers that, for any ε > 0,

P(|Yn| > ε) = P(
∣∣Xn − µ

∣∣ > ε)→ 0.

Therefore, Yn = op(1). Or to write things in a different way, Xn = µ+ Yn = µ+ op(1).

To determine Op(·) orders, we have to use results on convergence in distribution.
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Example 19. For the same setting as in Example 18, the central limit theorem tells us that

√
nYn =

√
n(Xn − µ)

d−→ N(0, σ2).

This is enough to determine the Op(·) order of Yn. First note that for any fixed n, we can

always find a constant Kε,n such that P(|Yi| /ai > Kε,n) for any sequence ai for all i = 1, . . . , n

(see the proof of Lemma 3 for details). Hence, we do not have to look at fixed n, but instead

to the tail of the sequence, in other words let n → ∞. Yet for that setting, we have by the

CLT, for any K,

P
(
|Yn|

1/
√
n
> K

)
= P(

√
n |Yn| > K)→ P(Z > K).

Therefore, if we take an = 1/
√
n, we find that there exists a Kε > 0 such that P(|Yn| /an >

Kε) < ε for all n, and therefore Yn = Op(1/
√
n), or alternatively Xn = µ+Op(1/

√
n).

As can be seen from Example 19, the stochastic order when written in an equation as

Xn = µ+Op(1/
√
n), can be interpreted as a statement on how fast Xn converges to µ. This

speed of convergence is what we need to discuss asymptotic refinements. Before we do so,

we give one more result that extends the approach in Example 19 to find stochastic orders.

Although the result is fairly intuitive, a formal proof is not so straightforward to set up.

Lemma 3. Let X1, . . . , Xn be a sequence of random variables, let m1, . . . ,mn be a sequence of

positive real numbers, and let Tn(X) = Tn(X1, . . . , Xn) be a function of the random variables

such that

mn(Tn(X)− θ) d−→ Y, (14)

where Y is a random variable with pdf f(x). Then Tn(X) = θ +Op(1/mn).

Proof. The proof of this lemma is essentially the same proof as used to prove the result that

the (non-random) sequence a1, . . . , an is bounded if an → a as n→∞ for some |a| <∞. The

difference is that we need to adapt the proof to a probabilistic setting.

The convergence result (14) tells us that for every x, we have that P(mn(Tn(X) − θ) ≤
x)→ P(Y ≤ x) as n→∞. Explicitly writing out the limit, we have that for any δ > 0, there

exists an Nδ,x such that for all n > Nδ,x we have that

|P(mn(Tn(X)− θ) ≤ x)− P(Y ≤ x)| < δ/2.

As P(|Y | > x) = 1 − P(Y ≤ x) + P(Y < −x), we may equivalently write that for any δ > 0,

there exists an Nδ = max{Nδ,x, Nδ,−x} such that for all n > Nδ we have that

|P(mn |Tn(X)− θ| > x)− P(|Y | > x)| < δ.
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Now let Kε,Y be defined such that P(|Y | > Kε,Y ) < ε/2. Then, taking δ = ε/2, for any

n > Nε/2,

P(mn |Tn(X)− θ| > Kε,Y ) ≤ |P(mn |Tn(X)− θ| > Kε,Y )− P(|Y | > Kε,Y )|

+ P(|Y | > Kε,Y ) < ε/2 + ε/2 = ε.

Next we consider n ≤ Nε/2. For all n = 1, . . . , Nε/2, let kε,n be such that P(mn |Tn(X)− θ| >
kε,n) < ε. For any specific j such a kε,j <∞ always exists. Then takeKε,Nε/2 = max1≤j≤Nε/2 kε,j ,

such that for any n ≤ Nε/2,

P(mn |Tn(X)− θ| > Kε,Nε/2) = P(mn |Tn(X)− θ| > max
1≤j≤Nε/2

kε,n)

≤ P(mn |Tn(X)− θ| > kε,n) < ε.

Finally, we put the two together. Let Kε = max{Kε,Nε/2 ,Kε,Y }, then

sup
n

P(mn |Tn(X)− θ| > Kε)

= max

{
sup

n≤Nε/2
P(mn |Tn(X)− θ| > Kε), sup

n>Nε/2

P(mn |Tn(X)− θ| > Kε)

}

≤ max

{
sup

n≤Nε/2
P(mn |Tn(X)− θ| > Kε,Nε/2), sup

n>Nε/2

P(mn |Tn(X)− θ| > Kε,Y )

}
≤ max{ε, ε} = ε.

This completes the proof.

5.2.2 Asymptotic refinements*

Now that we defined stochastic order symbols, we can provide a formal definition of the

asymptotic condition under which the bootstrap performs better than the standard asymp-

totic approximation.

Definition 8. Let X1, . . . , Xn be a random sample with cdf F . Let Qn(X, F ) be our quantity

of interest, and denote its cdf by Gn(x, F ). Let the bootstrap pivot be Qn(X∗, F̂n) with

associated cdf G∗n = Gn(x, F̂n). Consider doing inference based on a functional of Gn, let us

call this γ(Gn). Denote the approximation error of the asymptotic distribution to the true

finite sample distribution as Ea,n = γ(G∞)−γ(Gn) and the approximation error made by the

bootstrap to the true finite sample distribution as Eb,n = γ(G∗n)−γ(Gn). Then the bootstrap

provides asymptotic refinements for γ(G) if Eb,n/Ea,n → 0 as n→∞.

The definition states that the bootstrap offers asymptotic refinements if the approximation

error it makes, decreases faster than the asymptotic approximation error. While it does not
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directly say anything about the performance in small samples, it can be used as a justification

for the bootstrap’s superior small sample performance.

We can rephrase the condition for refinements in terms of order symbols. Assume that the

asymptotic approximation error is of order O(an), while the bootstrap approximation error

is of order Op(bn). Formally,

γ(G∞) = γ(Gn) +O(an), γ(G∗n) = γ(G∞) +Op(bn).

Then the bootstrap provides asymptotic refinements for γ(G) if bn/an → 0 as n→∞.

Bias Reduction The theory is best illustrated for the purposes of bias reduction. Let θ =

τ(F ) be our parameter of interest, and θ̂n = τ(F̂n) the associated estimator. Let Qn(x, F ) =

θ̂n − θ. Recall from (6) that, if we take γ(G) =
∫
xdG we have

γ(Gn) =

∫
xdGn(x, F ) = Biasn = EF Qn(X, F ) = EF (θ̂n − θ).

As a consistent estimator does not have an asymptotic bias, the asymptotic approximation

in this case is simply τ(G∞) = 0. The asymptotic approximation error is then just (minus)

the bias itself. Let the error be of order an, that is, Biasn = O(an), where an → 0.

As in Section 4.1, let Qn(X∗, F̂n) = θ̂∗n − θ̂n. From (7), the bootstrap error then is

Bias∗n−Biasn = EF̂
[
θ̂∗n − θ∗|X

]
− EF (θ̂n − θ) = Op(bn).

The bootstrap then offers asymptotic refinements if bn/an → 0. To find the actual orders an

and bn, we need to consider higher order Taylor expansions, which is why this kind of analysis

is called higher order asymptotic analysis. We illustrate this with an example.

Example 20. Let X1, . . . , Xn be a random sample with cdf F . Let µ = EF X, and assume

that we are interested in θ = eµ. Let θ̂ = eXn . The bias is then

Biasn = EF (eXn − eµ).

To evaluate this bias we perform a Taylor expansion. Letting g(x) = ex, we have that

g′(x) = g′′(x) = ex. Then

eXn − eµ = eµ(Xn − µ) +
eµ

2
(Xn − µ)2 +Rn,

where one can show for the remainder term Rn that EF (Rn) = O(n−2). Now take the

expectation:

Biasn = EF (eXn−eµ) = eµ EF (Xn−µ)+
eµ

2
EF (Xn−µ)2+EF (Rn) =

eµ

2
VarXn+O(n−2),
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as EF (Xn − µ) = 0 and EF (Xn − µ)2 = VarXn. As VarXn = VarX/n = O(n−1), we find

that Biasn = O(n−1).

For the bootstrap, we get similarly

eX
∗
n − eXn = eXn(X

∗
n −Xn) +

eXn

2
(X
∗
n −Xn)2 +R∗n,

where EF̂n(R∗n|X) = Op(n
−2). Then, as EF̂n(X

∗
n −Xn|X) = 0, we have that

Bias∗n = EF̂n(eX
∗
n − eXn |X) =

eXn

2
VarF̂n(X

∗
n) +Op(n

−2).

So far, nothing is different for the bootstrap compared with the standard asymptotic

approximation. However, now we put things together. Consider the bias-corrected estimator

θ̂bcn = eXn − Bias∗n and let us calculate the bias of this estimator.

Bias(θ̂bcn ) = EF (eXn − Bias∗n−θ) = EF (eXn − θ)− EF [EF̂n(eX
∗
n − eXn |X)]

=
eµ

2
VarXn +O(n−2)− EF

[
eXn

2
VarF̂n(X

∗
n)

]
+O(n−2).

Using a similar Taylor expansion as above we can show that

EF

[
eXn

2
VarF̂n(X

∗
n)

]
=
eµ

2
VarXn +O(n−2).

It then follows that

Bias(θ̂bcn ) =
eµ

2
VarXn −

eµ

2
VarXn +O(n−2) = O(n−2).

Hence, the bias of the bootstrap bias-corrected estimator is of smaller order – O(n−2) – than

the bias of the original estimator, which is O(n−1).

Approximation for distributions In a similar way we can make approximations to other

functions of Gn(x, F ), or to Gn(x, F ) itself. This is needed if we want to look at hypothesis

testing or confidence intervals. Unfortunately Taylor expansions do not work anymore in

that setting. Instead we have to use Edgeworth expansions, which work in the same way as

Taylor expansions, but then for distribution functions. The theory behind is rather more

complicated though, and therefore we do not treat them in detail.
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6 Exercises

B.1 The confidence intervals derived in Section 4.4 can alternatively be derived by inverting

the acceptance region of an appropriate hypothesis test. Do this for the

(a) equal-tailed percentile interval;

(b) symmetric percentile interval;

(c) equal-tailed percentile-t interval.

B.2 Let X1, . . . , Xn be a random sample from a uniform(0, θ) distribution. Remember (see

e.g. X 7.2) that the MLE of θ is equal to θ̂n = maxiXi, and let Qn(X, F ) = n(θ − θ̂n).

Then from X 10.6 we know that

G∞(x, F ) = lim
n→∞

PF (Qn(X, F ) ≤ x) = P
(
n(θ − θ̂n) ≤ x

)
= 1− e−x/θ, x ≥ 0.

Now consider the nonparametric bootstrap where F̂n = F̂En , the EDF, and the corre-

sponding bootstrap quantity Qn(X, F̂En ) = n(θ̂n − θ̂∗n), where θ̂∗n = maxi(X
∗
1 , . . . , X

∗
n).

Let Gn(x, F̂En ) denote the cdf of Qn(X, F̂En ).

(a) Show that P∗(X∗1 ≤ x) = k/n, where k =
∑n

i=1 I(−∞,x](Xi).

(b) Explain why P∗(maxiX
∗
i > maxiXi) = 0.

(c) Show that P∗(maxiX
∗
i = maxiXi) = 1−(1−1/n)n. Hint: show that P∗(maxiX

∗
i <

x) = [P∗(X∗1 < x)]n.

(d) Using part (c), show that
∣∣∣P∗(θ̂∗n = θ̂n)− P(θ̂n = θ)

∣∣∣ p−→ 1− e−1 6= 0.

(e) Explain why (d) implies that the bootstrap is inconsistent.

B.3 Let X1, . . . , Xn be a random sample from a N(µ, σ2) distribution with σ2 known. Con-

sider estimating θ = µ2 using its MLE θ̂n = X
2
n.

(a) Use the Delta method to show that, if µ 6= 0,

√
n
X

2
n − µ2

2 |µ|σ
d−→ N(0, 1).

(b) Explain why the standard Delta method does not apply if µ = 0. Instead, show

how the second-order Delta method (Th. 5.5.26) implies that

n
X

2
n

σ2
d−→ χ2

1

if µ = 0.
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(c) For the nonparametric bootstrap with F̂n equal to the EDF F̂En , one can show that,

conditionally on the sample X,

√
n
X
∗
n −Xn

σ∗
d−→ N(0, 1), (15)

where σ∗2 = VarF̂En
X∗ = 1

n

∑n
i=1(Xi − Xn)2. Use (15) and the Delta method to

show that, conditionally on the sample X,

√
n
X
∗2
n −X

2
n

2
∣∣Xn

∣∣σ∗ d−→ N(0, 1),

if Xn 6= 0.

(d) We can write the result in part (c)

PF̂En

(
√
n
X
∗2
n −X

2
n

2
∣∣Xn

∣∣σ∗ ≤ x
∣∣∣∣∣Xn 6= 0

)
p−→ P(Z ≤ x).

Explain why Pµ(Xn = 0) for any µ, and use it to show that

PF̂En

(
√
n
X
∗2
n −X

2
n

2
∣∣Xn

∣∣σ∗ ≤ x
)

p−→ P(Z ≤ x).

that is, the result in (c) holds even without assuming that Xn 6= 0.

(e) Explain why it follows from (d) that the bootstrap is valid if µ 6= 0, but invalid if

µ = 0.
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A Notation

Random variables and realizations Random variables are denoted by upper case letters

such as X and Y , while realizations of those random variables are denoted by lower case

letters, such as x and y. A sample of n random variables is denoted as X1, . . . , Xn or in

vector notation as X, while its realization is denoted as x1, . . . , xn or x.

Density and distribution functions A probability density function (pdf) or probability

mass function (pmf) is generally denoted by lower case f(x), while its corresponding cumula-

tive distribution function (cdf) is denoted by upper case F (x). When it is not necessary, we

don’t distinguish between continuous and discrete distributions, and use pdf as abbreviation

that could indicate both. When f(x) belongs to some specific parametric family indexed by

parameters θ, we often write f(x|θ) and F (x|θ) to emphasize this.

Probabilities and expectations Probabilities and expectations are generally denoted

by P(·) and E(·) respectively. In order to make clear with respect to which distribution

the probability or expectation is taken, we often add a subscript ‘F ’ or – in the case of a

parametric family F (x|θ) – ‘θ’ to the symbol. For example, PF (X ≤ c) is understood to mean

the probability that the random variable X, with cdf F , is smaller than or equal to c; in other

words, PF (X ≤ c) = F (c). Similarly, Eθ Y 2 is the expectation of Y 2 for a random variable Y

with cdf F (x|θ), where F (x|θ) belongs to a known parametric family.

Cut-off points and quantiles Generic cut-off points of distributions are denoted as cα,

where cα is the right-tail cut-off points corresponding to probability α. That is, for some

distribution F , cα corresponds to the (1− α)-quantile of F , that is, cα = {inf c : P(X ≤ c) ≥
1 − α}. When no confusion can arise, we ignore discrete distributions and define cα as that
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(assumed unique) value for which P(X ≤ cα) = 1 − α. Similarly, c1−α is the left-tail cut-off

point, defined as the α-quantile of the distribution. For specific, often-used, distributions, the

notation is adapted accordingly. For example, zα is the right-tail cut-off point of the standard

normal distribution, with values such as z0.025 = 1.96 and z0.95 = −z0.05 = −1.645. Similarly,

tn,α denotes the right-tail cut-off point of the t-distribution with n degrees of freedom. As

explained in the notes, we use a similar convention for bootstrap cut-off points.
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