Problem 1. Let S be a non-empty polyhedron: $S := \{x \in \mathbb{R}^n : Ax \leq b\}$ for some $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$.

- 1. Describe the recession cone R_S using A and b and prove the correctness of your description.
- 2. Describe int(S) using A and b and prove the correctness of your description. Is int(S) = ri(S) for any A, b? I yes, provide a proof, if no, provide a counterexample.
- 3. Assume $x \in ri(S)$. Provide one example of a face $F \subset S$ (so $F \neq S$) such that $x \in F$ or prove that such a face does not exist.

Problem 2. Let K be a convex cone.

- 1. Show that if K is pointed (i.e., it contains no straight lines), then 0 is an extreme point of K.
- 2. Provide an example of a convex cone in \mathbb{R}^2 which contains at least one straight line is not pointed but for which 0 is its extreme point and explain why your example satisfies the required conditions.
- 3. Bonus question (not necessary but will give some bonus points): provide a counterexample showing that the set of cones required in 2. in the previous formulation of this exercise (i.e., non-pointed as defined in the slides, convex, having zero as an extreme point) is empty.