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Motivating Examples: Networked Data

▶ Huge data sets are generated in networks (transportation networks,
biological networks, brain networks, computer networks, social networks)

▶ The data structure carries critical information about the nature of the data

▶ Modelling the data structure with graphs
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Graph Signal Processing (GSP)

▶ Consider an undirected weighted graph G(V, E ,W)

⇒ V, E , W → set of nodes, edges, weights

▶ Define a signal x ∈ RN on the top of the graph

⇒ xi = value of graph signal (GS) at node i

▶ Associated with G is the Graph-Shift Operator (GSO)

⇒ S ∈ RN×N , Sij ̸= 0 for i = j and (i , j) ∈ E

⇒ Ex: Adjacency A, Laplacian L = D− A, random walk...
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Graph Learning: Motivation and Context

Network topology inference from nodal observations

“Given a collection X := [x1, ..., xR ] of graph signal observations
supported on the unknown graph G(V, E ,A) find an optimal S”

▶ This work:

⇒ Use data to learn both, the graph and the higher-order interactions

⇒ Modelling data and graph using Autoregressive Graph Volterra Models
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Graph Learning: Related work (I)

▶ Goal: use X=[x1, ..., xR ]∈RN×R to learn S with Σ̂ = 1
RXX

T

▶ Let X supported on G ⇒ {Correlation networks}

Ŝ ≈ Σ̂ = E
[
XXT

]
(Ŝ is a thresholded version of Σ̂)

▶ Let X be i.i.d samples of N (0,Σ)⇒{Part. corr. netw.} GL

Ŝ = argmin
S⪰0,S∈SΘ

− log(det(S)) + tr(Σ̂S) + ρh(S)[Fr.08]

▶ Let X be stationary w.r.t S⇒{Graph-st. diff. process.} GSR

Ŝ = argmin
S∈S

∥S∥0 s. to Σ̂S = SΣ̂ [Segarra17]

▶ Other approaches:

Smoothness: Ŝ = argmin
S⪰0,S∈SL

tr(X⊤SX) + f(S)[Dong17]

Sparse SEM: Ŝ = argmin
S⪰0,S∈S

∥X− SX∥2F + g(S)[Bazerque13]
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(Ŝ is a thresholded version of Σ̂)

▶ Let X be i.i.d samples of N (0,Σ)⇒{Part. corr. netw.} GL
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Graph Learning: Related work (II)

▶ Goal: use X and S to learn higher-order interactions

▶ Vietoris–Rips complex approach [Zomorodian10] RC

⇒ Is defined as a way of forming a topological space from
distances in a set of points

⇒ Learn simplicial complexes (SCs) from a distance
matrix computed from the data (i.e. Σ̂ = E

[
XXT

]
)

▶ Learning SCs from data [Barbarossa20] MTV-SC

⇒ Assuming specific physical nature for the data defined
on the edges of a graph x1 = B⊤

1 s0 + sH + B2s2 + w
⇒ Learning higher-order interactions from data defined

on the edges (X1) and assuming known topology (B1)

▶ Learning hypergraphs from data [Tang23] HGSL

⇒ Assume that the hypergraph structure is derived from
a learnable graph structure obtained from data

⇒ The learned higher-order interactions (hyperedges) are
obtained based on the learned topology from data
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Problem Formulation: Data Modelling

▶ Data Modelling: Autoregressive Graph Volterra Model of order 2

X = H1X+H2Y + V + E, with Y = X⊙ X ∈ RN2×R

H1∈RN×N pairwise interactions, H2∈RN×N2

node-pair interactions

• H1X is a linear combination of the signals in the other nodes
• H2Y is a product of the signals in the other tuples of nodes

▶ Example of signal representation in terms of H1 and H2

x2 = H1[2, 1]x1 +H1[2, 4]x4 +H2[2, (1, 4)]x1x4

+H2[2, (4, 1)]x1x4 + v2 + e2.

Part of x2 is described by:

⇒ node-to-node interactions (H1)

⇒ node-to-pair interactions (H2)
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Problem Formulation: Graph Modelling

▶ Recalling the signal modelling

X = H1X+H2Y + V + E, with Y = X⊙ X.

▶ Graph Modelling: pairwise interactions H1.

⇒ H1 = {H1 ≥ 0,B1 ◦H1 = 0, H1 = H⊤
1 }

⇒ Pos. weights, no self-loops (B1= I), symmetry.

▶ Graph Modelling: node-to-pair interactions H2.

⇒ H2 = {H2 ≥ 0,B2 ◦H2 = 0}

⇒ Positive weights, no self-loops
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Proposed Approach

Proposed formulation for learning graphs and simplicial complexes

(Ĥ1, Ĥ2) = argmin
H1∈H1,H2∈H2

∥X−H1X−H2Y−V∥2F + α∥H1∥1 + β∥H2∥1

s. t. H2[k , (i , j)] ≤ θ1(H1[k , i ]H1[k, j ]H1[i , j ]);

⇒ Fitting the available data to the autoregressive graph Volterra model

⇒ Controlling the number of node-to-node interactions (∥H1∥1) with α

⇒ Controlling the number of node-to-pair interactions (∥H2∥1) with β

⇒ Filled triangle can exist if nodes i , j , and k are interconnected

▶ Non-convex formulation because of the trilinear constraint

⇒ Next → convex formulation to address non-convexities.
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Proposed Convex Approach

Convex formulation for learning graphs and simplicial complexes

(Ĥ1, Ĥ2) = argmin
H1∈H1,H2∈H2

∥X−H1X−H2Y − V∥2F + α∥H1∥1 + β∥H2∥1

+ γ

N∑
i,j,k=1

∥Q(i,j,k) ◦ [H1,H2]∥F

▶ Binary matrix Q(i,j,k) ∈ RN×(N+N2) involving three nodes

⇒ Edges between the three nodes

Q(i,j,k)[i , j ] = 1, Q(i,j,k)[i , k] = 1, Q(i,j,k)[j , k] = 1

⇒ Node-pair interactions between the three nodes

Q(i,j,k)[i ,Nj + k] = 1, Q(i,j,k)[j ,Ni + k] = 1, Q(i,j,k)[k,Ni + j ] = 1

▶ Group entries of H1 and H2 that participate in a triangle using Q(i,j,k)

▶ Controlling the number of filled triangles (H2) with β

10 / 13



Synthetic Data Results

▶ Estimation performance (err(H1)) of different algorithms as R increases

▶ Normalized error when estimating filled triangles (err(H2))

Alg. \ R 50 100 200 300 400 500

MTV-SC 1.505 1.496 1.497 1.493 1.494 1.490
RC 0.790 0.767 0.761 0.753 0.748 0.751
VGR 0.559 0.428 0.294 0.214 0.165 0.133
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Real Data Results

▶ Estimation performance (F-score) of different algorithms as N increases

▶ F-score and err(H2) when estimating filled triangles

F-score Error
Alg. \ N 15 20 25 15 20 25

MTV-SC 0.093 0.058 0.056 7.418 7.536 7.530
RC 0.667 0.650 0.585 1.350 2.101 2.837
VGR 0.718 0.676 0.625 0.548 0.558 0.649
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Conclusions

▶ New scheme that jointly learns graphs and simplicial complexes

▶ Key assumptions:

⇒ Model data using autoregressive graph Volterra models

⇒ Model network as graph (H1) and simplicial complexes (H2)

▶ Jointly learn from data node-pair interactions and filled triangles

▶ Challenge: non-convex approach due to filled triangle modelling

⇒ Convex approach using group sparsity term

▶ Encouraging results in both synthetic and real data sets

▶ THANKS!

⇒ Feel free to contact me for questions and code andrei.buciulea@urjc.es
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