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Motivating Examples: Networked Data

> Huge data sets are generated in networks (transportation networks,
biological networks, brain networks, computer networks, social networks)

» The data structure carries critical information about the nature of the data

» Modelling the data structure with graphs

Interpolate a brain signal Compress a signal in Localize the
from local observations an irregular domain source of a rumor
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Smooth an observed Predict the evolutionof a Infer the topology where
network profile network process the signals reside



Graph Signal Processing (GSP)

» Consider an undirected weighted graph G(V, &, W)
=V, £, W — set of nodes, edges, weights

» Define a signal x € R" on the top of the graph l - J' - l‘ P’ _

= x; = value of graph signal (GS) at node i

> Associated with G is the Graph-Shift Operator (GSO)
= SeRVN S, £0fori=jand (i,j) €E
= Ex: Adjacency A, Laplacian L = D — A, random walk...



Graph Learning: Motivation and Context

Network from nodal observations

“Given a collection X := [xy, ..., Xg] of graph signal observations
supported on the unknown graph G(V, &, A) find an optimal S”
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» This work:

= Use data to learn both, the graph and the higher-order interactions

= Modelling data and graph using Autoregressive Graph Volterra Models



Graph Learning: Related work (1)

> Goal: use X=[xq, ..., xg] ERV*R to learn S with & = LXXT

> Let X supported on G = {Correlation networks}

S~ =E [XXT] (S is a thresholded version of %)
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> Let X be stationary w.r.t S={Graph-st. diff. process.} GSR
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Graph Learning: Related work (1)

> Goal: use X=[xq, ..., xg] ERV*R to learn S with & = LXXT Graph

> Let X supported on G = {Correlation networks}

S~ =E [XXT] (S is a thresholded version of %)

> Let X be i.i.d samples of AN/(0, X)=-{Part. corr. netw.} GL Simplicial complex
§ = argmin — log(det(S)) + tr(£S) + ph(S q
rgmin. — log(det(S)) + tr(£5) + ph(S) %

> Let X be stationary w.r.t S={Graph-st. diff. process.} GSR

S =argmin ||S|ly s to £S=S%
ses

Hypergr?ph
» Other approaches: . "| .
\
Smoothness: S = argmin tr(X ' SX) + £(S) ﬁ \
S-0,5€8, \
. M
Sparse SEM: S = argmm X — SX||7 + g(S)

$>0,Se
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Graph Learning: Related work (11)

P> Goal: use X and S to learn higher-order interactions

> Vietoris—Rips complex approach RC

= Is defined as a way of forming a topological space from
distances in a set of points

= Learn simplicial complexes (SCs) from a distance
matrix computed from the data (i.e. £ = E[XX'])
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Graph Learning: Related work (11)

P> Goal: use X and S to learn higher-order interactions Graph

> Vietoris—Rips complex approach RC

= Is defined as a way of forming a topological space from
distances in a set of points
= Learn simplicial complexes (SCs) from a distance
matrix computed from the data (i.e. £ = E [XXT]) Simplicial complex

» Learning SCs from data MTV-SC ﬁ:

= Assuming specific physical nature for the data defined
on the edges of a graph x; = B{ so + sy + Bosy +w
= Learning higher-order interactions from data defined
on the edges (X1) and assuming known topology (B1) Hypergraph

» Learning hypergraphs from data HGSL ‘

= Assume that the hypergraph structure is derived from
a learnable graph structure obtained from data

= The learned higher-order interactions (hyperedges) are
obtained based on the learned topology from data




Problem Formulation: Data Modelling

» Data Modelling: Autoregressive Graph Volterra Model of order 2

(D
X=H,X+HY+VLEE, withY =X@oXeRV*R

0 0 o 0 2 o a q
H; e RV*N pairwise interactions, H, e RN*N" node-pair interactions

e H;X is a linear combination of the signals in the other nodes
e H,Y is a product of the signals in the other tuples of nodes




Problem Formulation: Data Modelling

» Data Modelling: Autoregressive Graph Volterra Model of order 2

(D
X=H,X+HY+VLEE, withY =X@oXeRV*R

. . . . 2 .. .
H; e RV*N pairwise interactions, H, e RN*N" node-pair interactions

e H;X is a linear combination of the signals in the other nodes
e H,Y is a product of the signals in the other tuples of nodes

» Example of signal representation in terms of H; and H

Xy = H1[27 1]X1 + H1[2,4]X4 + H2[2, (1,4)]X1X4 1
+ H2[2, (4, 1)]xixs + va + e2.
Part of x, is described by:

= node-to-node interactions (H;)

= node-to-pair interactions (H>) 2



Problem Formulation: Graph Modelling

» Recalling the signal modelling
X=H;X+HY+V+E, withY=X0oX. >
» Graph Modelling: pairwise interactions Hj.

=>H1:{H1207810H1:0,H1:HI} 2 4
= Pos. weights, no self-loops (B; =1), symmetry.

» Graph Modelling: node-to-pair interactions Hs.
= Hy={H,>0,By0H, =0}

= Positive weights, no self-loops

H2 [(1,1)(1,2)(1,3)(1,4)(1,5)(2,1)(2,2)(2,3)(2,4)(2,5)(3,1)(3,2) (3,3)/(3,4) (3,5)/(4,1) (4,2) (4,3) (4,4) (4,5) (5,1)(5,2) (5,3) (5,4) (5,5)

Vb w|N|e




Proposed Approach

Proposed formulation for learning graphs and simplicial complexes

(Hi,Hy) = argmin IX—H1X—H.Y—V||Z + aH1|l1 + B|[H2]l1
Hi eH1,HaEH

s. t. Halk, (7,/)] < 01 (Hy[k, i]H1[k, j]H1[i,j]);

= Fitting the available data to the autoregressive graph Volterra model
= Controlling the number of node-to-node interactions (||H1||1) with «
= Controlling the number of node-to-pair interactions (||H2||1) with 3

= Filled triangle can exist if nodes i, j, and k are interconnected

» Non-convex formulation because of the trilinear constraint

= Next — convex formulation to address non-convexities.



Proposed Convex Approach

Convex formulation for learning graphs and simplicial complexes

(Hi,Ho) = argmin [ X — HiX = HoY = V|1 + a||Hulls + BI|H2 [
HieH1,HEH

N
+v > 11QWH o [Hy, Hy|lF
ol fr=il

> Binary matrix QUK € RV*(N+N*) inyolving three nodes
= Edges between the three nodes
Q(iulk)[,"j] =1, Q("J»k)[,’7 k] =1, Q(iyj,k)U’ kK] =1
= Node-pair interactions between the three nodes
QUi Nj + k] =1, QUIKI[j, Ni + k] = 1, QUIR [k, Ni + j] = 1
» Group entries of H; and H, that participate in a triangle using Q{74
» Controlling the number of filled triangles (H2) with 3



Synthetic Data Results

> Estimation performance (err(H;)) of different algorithms as R increases

f-=-0--0--90--90-=-0--0--0

A-GL-V
-#GSR-V
-=-HGSL-V
-©-VGR-V (ours)
A-GL-noV
~#-GSR-noV
-1-HGSL-noV |
-0-VGR-noV (ours)
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Normalized mean error for H;

50 100 150 200 250 300 350 400
(a) Number of samples

» Normalized error when estimating filled triangles (err(H>))

Alg. \ R 50 100 200 300 400 500

MTV-SC 1.505 1.496 1.497 1.493 1.494 1.490
RC 0.790 0.767 0.761 0.753 0.748 0.751
VGR 0.559 0.428 0.294 0.214 0.165 0.133
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Real Data Results

> Estimation performance (F-score) of different algorithms as N increases

0.9

A-GL - GSR -5-HGSL +RC -©-VGR (ours) |

05
15 20 25
(b) Number of nodes
» F-score and err(H,) when estimating filled triangles
F-score I Error
Alg \N | 15 20 % | 15 20 25
MTV-SC 0.093 0.058 0.056 7.418 7.536 7.530
RC 0.667 0.650 0.585 1.350 2.101 2.837
VGR 0.718 0.676 0.625 0.548 0.558 0.649
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Conclusions

» New scheme that jointly learns graphs and simplicial complexes

v

Key assumptions:
= Model data using autoregressive graph Volterra models
= Model network as graph (H1) and simplicial complexes (H»)

v

Jointly learn from data node-pair interactions and filled triangles

v

Challenge: non-convex approach due to filled triangle modelling
= Convex approach using group sparsity term
» Encouraging results in both synthetic and real data sets

» THANKS!
= Feel free to contact me for questions and code andrei.buciulea@urijc.es
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