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Network Geometry aka Network Embeddings

Network Node Embedding: 

Mapping of a network to a (relatively) low-dimensional (metric) space.

Given: network G(V,E) and space 𝕄.

for ∀i∈V 


Question: xi∈𝕄 ?
Toy Example: 𝕄=R2 

R2

A (xA, yA)

Interpretation: dij reflects similarity between i and j: 

smaller dij implies higher similarity.



Network Embeddings: Applications

Interpretation: dij reflects similarity between i and j: 

smaller dij implies higher similarity.

Application 1 (Network reconstruction):

e.g., unconnected nodes at small distances are missing links ?

Application 2 (Classification):

e.g., learn missing node attributes

?

Advanced Applications:

Search, e.g., S. Ratnasamy et al, ACM SIGCOMM CCR (2001).


Routing, e.g., M. Boguñá et al, Nature Communications (2010).


Shortest Path Finding in Incomplete Networks

M. Kitsak et al, Nature Communications (2023).




Taxonomy of Network Embeddings

Table 1

Shallow 4.5
Deep learning 4.5
Higher-order 1
Matrix 
Factorization 1.5
Random-walk 1.5
Optimization 1.5
Graph 
Generative 1.5
Graph Neural 
Network 1.5
Conventional 
Neural Network 1.5
Simplicial and 
cell complex 0.5
Hypergraph 0.5

Magnetic and 
Connection 
Laplacians

1

Comparison 
methods

1

Hyperbolic and 
Lorentzian 
spaces

1

HypergraphSimplicial and cell complex

Conventional Neural Network

Graph Neural Network

Graph Generative Optimization

Random-walk

Matrix Factorization

Higher-order

Deep learning Shallow

* Deepwalk (64)

* Node2vec (70)

*  Walklets (75)

* Laplacian Eigenmaps (42)

* GraRep (46)

*  M-NMF (50)

* VERSE (94)

* LINE (98)

* DNGR (112)

* DKRL (116)

*  PALE (118)

* GCN (122)

* GAT (124, 126)

*  DiffPool (128)

* GraphGAN (132)

* pRBM (136)

* Spectral hypergraph embedding (34)

* HGNN (36)

*  Hyper-Conv (147)

* BScNets (152)

* CXNs (153)

* CAN (155)

* Glee (156)

Hyperbolic and Lorentzian spaces

Comparison methods

Magnetic and Connection Laplacians
* Poincaré Embeddings (167)

* Coalescent embedding (169)

* HGCN (176)

* TMFG (178)

* Magnetic Eigenmaps (183)

* Magnet (186)

* NBED (192)

* Dimension selection (193)

* Comparison tasks (194) 
* BiaScope (199)

Taxonomy

Emerging methods

1

Fig. 1. Pie charts describing the new taxonomy defined in this manuscript. In the top pie chart, the methods are divided into two main categories: shallow embedding methods
and the deep learning methods, complemented by higher-order methods that can be either a shallow embedding or a deep learning methods. The bottom pie chart highlights

the three major emerging groups of methods. Notably, these emerging groups of methods can be classified into our defined taxonomy due to its flexibility.
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L = Tr(ZZT L) = Tr(ZT LZ) , [5]

with Z = (z1, z2, ..., zn) œ R
d◊n. The loss function needs

to respect the constraint ZT DZ = I to avoid trivial
solutions. The solution can be obtained by finding the
matrix composed of the eigenvectors associated with the d
smallest eigenvalues of the generalized eigenvalue problem
LZ = �DZ, with � = diag([⁄1, ⁄2, ..., ⁄n]) (43).
It is important to note that Laplacian Eigenmaps use
a quadratic decoder function. This function does not
preserve the local topology because the quadratic penalty
penalises the small distance between embedded nodes.

• Cauchy Graph Embedding (44) aims to improve the
previous method (Laplacian Eigenmaps), which does
not preserve the local topology. Cauchy Graph Em-
bedding use a di�erent decoder function Dec(zi, zj) =

Îzi≠zj Î2
2

Îzi≠zj Î2
2+‡2 = 1 ≠ ‡

2

Îzi≠zj Î2
2+‡2 , with ‡2 representing the

variance. Consequently, the loss function can be written
as follows:

L =
ÿ

i,j

1
Îzi ≠ zjÎ2

2 + ‡2 Wij , [6]

with the following constraints:
q

i
zi = 0, and ZT Z =

I, where Z = (z1, z2, ..., zn) œ R
d◊n. The solution is

obtained by an algorithm that mixes gradient descent and
SVD.

• Graph factorisation (45) proposes a factorisation
method that is designed for network partitioning. It
learns an embedding representation that minimises the
number of neighbouring vertices across the partition. The
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Hyperbolic Network Embeddings

Embedding space is a low-dimensional hyperbolic disk, 𝕄=HD 

Hyperbolic = Curvature K < 0
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We analyze the stability of the network’s giant connected component under impact of adverse

events, which we model through the link percolation. Specifically, we quantify the extent to which

the largest connected component of a network consists of the same nodes, regardless of the specific

set of deactivated links. Our results are intuitive in the case of single-layered systems: the presence of

large degree nodes in a single-layered network ensures both its robustness and stability. In contrast,

we find that interdependent networks that are robust to adverse events have unstable connected

components. Our results bring novel insights to the design of resilient network topologies and the

reinforcement of existing networked systems.
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Robustness and resilience of networked systems under
the impact of adverse events have been extensively stud-
ied in network science for two decades, but the research
has been primarily focused on computing the mean-field
properties, such as the expected size of the system’s giant
connected component (GCC) [? ? ? ]. The inherent as-
sumption is that only connected subnetworks retain their
functionality, with the largest of these being most rele-
vant to the overall performance of the system.

While the mean-field analysis of a system’s behavior
is undoubtedly an important first step toward under-
standing its robustness, in most practical situations it
is insu�cient to know the expected size of the so-called
‘functional component.’ Rather, the location of the func-
tional component within the network itself is important.
It is especially true in the case of resilience where critical
system function and its recovery is of prime importance
[? ? ]. For example, in the case of a major natural
disaster, such as flood or an earthquake, one needs to
know infrastructure units and transportation routes that
are likely to remain functional. The e�ciency of immu-
nization strategies depends on our knowledge of low and
high-risk groups in social networks. Likewise, the suc-
cess of a marketing campaign depends on the knowledge
of the target audience.

Yet, apart from a handful of recent works aiming to un-
derstand individual node properties in percolation and
epidemic processes [? ? ? ? ? ], organization pat-
terns of individual network’s functional components are
poorly studied. One reason is that the random nature of
adverse events coupled with the complexity of relevant
networked systems often makes the prediction of func-
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Hyperbolic disk expands exponentially!

Hyperbolic geodesics are “biased” towards disk center!

Why Hyperbolic Space?
Volume:

Geodesic: Straight line “Biased” towards center

A O

B

Euclidean Disk
R

B

A O

Hyperbolic Disk
R

Network

Shortest paths tend to

pass large degree nodes

D. Krioukov et al, Phys.Rev. E. (2010)

M. Kitsak et al, Phys. Rev. Research (2020)


M. Boguñá et al, Nat. Rev. Physics (2021)

M. Kitsak et al, Nat. Comm. (2023)



Are All Networks Embeddable (Effectively Geometric)? Not at all!

Internet backbone, courtesy of CAIDA

Counter Example: G(n,p) Connect each node pair with probability p

Open Hard Questions that are Underrated:

Q1: Is the network of interest effectively geometric?

Q2: What are the properties of the latent space 𝕄?

E.g., curvature? dimensionality? volume?


D. Krioukov, "Clustering implies geometry in networks”, Phys. Rev. Lett. (2016).

M. Boguñá et al, "Small worlds and clustering in spatial networks”, Phys. Rev. Res. (2020).

Y. Ollivier, “Ricci curvature of metric spaces”, C. R. Math. Acad. Sci. Paris (2007).

P. van der Hoorn et al, "Ollivier Curvature of Random Geometric Graphs Converges to Ricci Curvature of Their Riemannian 
Manifolds",  Discrete & Computational Geometry (2023).

P. A. Blanco et al, "Detecting the ultra low dimensionality of real networks", Nat. Comm. (2022).



Why Geometric Methods Dominate NetSci/ML/DataSci?

Internet backbone, courtesy of CAIDA

Similarity Principle:            Birds of a Feather Flock Together


In Network Science:           Connections are Likely Between Similar Nodes

Why? 

Network science has been fueled by social sciences in early 2000s


because social network data is relatively easy to connect



Why Geometric Methods Dominate NetSci/ML/DataSci?

Internet backbone, courtesy of CAIDA

Similarity Principle:            Birds of a Feather Flock Together


In Network Science:           Connections are Likely Between Similar Nodes

Why? Similarity is very intuitive owing to its transitivity:

A similar to B, B similar to C ->  A similar to C
 2

d(A,B) d(B,C)

d(A,C) ≤ d(A,B) + d(B,C)

c

a

b

c
relax

rest

FIG. 1: (a) Similarity-based toy network. Nodes are depicted as propellers with variable numbers of blades, all nodes are similar since

they are all propellers. Similarity is transitive: if A is similar to B, and B is similar to C, then A is expected to be similar to C. (b)

Complementarity-based toy network: complementarity of two nodes is shown by matching interfaces. Complementarity is not transitive: if

A is complementary to B (there are matching interfaces) and B is complementary to C (there are matching interfaces), A is not guaranteed

to be complementary to C (there are no matching interfaces). (c) Embedding of the toy network into a metric space imposes constraints

on distances due to the triangle inequality. (d) A subgraph of the antonym network. Note that rest-relax and unemployed-employed node

pairs share 2 common neighbors each and can be incorrectly interpreted as connected if similarity-based methods are blindly applied to

the network.

connected.
Why are network embeddings not readily applicable to complementarity-driven systems? The answer is rooted in

the non-transitivity of complementarity. Imagine that the same toy network is now formed by the complementarity
principles, Fig. 1b. The complementarity of A and B and B and C do not suggest the complementarity of A and
C. The complementarity network in Fig. 1b, however, is identical to its similarity counterpart in Fig. 1a, resulting
in the same embedding of Fig. 1c. Consequently, a small distance d(A,C) in the embedding of the complementarity
network immediately translates to inference errors. If the goal of the network embedding is to predict missing links,
for instance, a small distance d(A,C) implies a false positive link candidate between A and C. If, on the other hand,
the problem at hand is cluster analysis, A, B, and C may end up in the same node cluster in M, implying that
they all have similar characteristics, which is not the case for a complementarity-based network. As a real example,
we consider a subgraph of the antonym network, which can be regarded as a colloquial complementarity network.
Here nodes are words and links are established between the words with opposite meanings, Fig. 1d. The ”rest-relax”
word pair are synonyms and in the antonym network these two words share two antonyms, ”work” and ”play”.
Being synonyms, the words ”rest” and ”relax” are not connected in the antonym network. If a similarity-based link
prediction algorithm is blindly applied to the network, however, the ”rest - relax” pair can be interpreted as a missing
link candidate, contrary to our expectations.

The demonstrated non-transitivity of the complementarity principles invites us to revise existing network-based
and embedding-based approaches to make them applicable to complementarity-driven networks, which we do in the
following sections of the manuscript. In section II, we define the principled complementarity framework, quantifying
complementarity between nodes as their ability to execute certain functions or tasks. In section III, we analyze the
properties of the principled complementarity framework to deduce a minimal practical framework for learning repre-
sentations of real systems. In section IV, we apply the minimal complementarity framework to learn complementarity
representations of five real networks. We conclude the manuscript with the summary and outlook in Section V.

The idea that the complementarity principle is di↵erent from the similarity is quickly getting traction in the scientific
community. Therefore, before proceeding further, we find it important to pause and acknowledge other concurrent
e↵orts to study complementarity mechanisms in networks. Shortly after the initial work of I. Kovács highlighting
the role of complementarity in protein-protein interaction networks [37] and the first version of the present work, C.
Mattson et al discovered the prominent role of complementarity in production networks [7]. Another very recent work
by S. Talaga and A. Nowak proposes to quantify the relative role of similarity and complementarity in a network
through densities of triangle and quadrangle subgraphs in it [31]. While these works are invaluable in developing our
intuition about complementarity in real networks, we lack rigorous mathematical frameworks that would allow us to
model synthetic complementarity networks and learn complementarity representations of real networks. We address
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the non-transitivity of complementarity. Imagine that the same toy network is now formed by the complementarity
principles, Fig. 1b. The complementarity of A and B and B and C do not suggest the complementarity of A and
C. The complementarity network in Fig. 1b, however, is identical to its similarity counterpart in Fig. 1a, resulting
in the same embedding of Fig. 1c. Consequently, a small distance d(A,C) in the embedding of the complementarity
network immediately translates to inference errors. If the goal of the network embedding is to predict missing links,
for instance, a small distance d(A,C) implies a false positive link candidate between A and C. If, on the other hand,
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Here nodes are words and links are established between the words with opposite meanings, Fig. 1d. The ”rest-relax”
word pair are synonyms and in the antonym network these two words share two antonyms, ”work” and ”play”.
Being synonyms, the words ”rest” and ”relax” are not connected in the antonym network. If a similarity-based link
prediction algorithm is blindly applied to the network, however, the ”rest - relax” pair can be interpreted as a missing
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The demonstrated non-transitivity of the complementarity principles invites us to revise existing network-based
and embedding-based approaches to make them applicable to complementarity-driven networks, which we do in the
following sections of the manuscript. In section II, we define the principled complementarity framework, quantifying
complementarity between nodes as their ability to execute certain functions or tasks. In section III, we analyze the
properties of the principled complementarity framework to deduce a minimal practical framework for learning repre-
sentations of real systems. In section IV, we apply the minimal complementarity framework to learn complementarity
representations of five real networks. We conclude the manuscript with the summary and outlook in Section V.

The idea that the complementarity principle is di↵erent from the similarity is quickly getting traction in the scientific
community. Therefore, before proceeding further, we find it important to pause and acknowledge other concurrent
e↵orts to study complementarity mechanisms in networks. Shortly after the initial work of I. Kovács highlighting
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So is our 3D(+1) Euclidean world: Euclidean space is metric: d(A,C) ≤ d(A,B) + d(B,C)  


It easy to think of networks using physics intuition:

Nodes are points, links appear between close nodes.


Paths are nothing else but trajectories.

Communities are dense regions of space where a lot of nodes are.



A lot of Networks that are Complementarity-Based

Proteins perform a vast array of functions within organisms

myoglobin (source: Wikipedia)

19

able to co-solve tasks are complementarity to each other. Therefore, synthetic networks generated by the principled
complementarity framework are bipartite.

In a one-mode projection, nodes of one domain of the bipartite network are removed. Nodes of the other domain
are connected if they share at least one common neighbor in the bipartite network. Therefore, complementarity links
between the agents in the principled complementarity framework can be viewed as one-mode projections of the full
network onto the domain of agents.

Coordinates of agents and tasks in principled complementarity framework can be viewed as hidden variables, so
that connections between the agents and tasks are established independently with probabilities that are functions
of the corresponding hidden variables. Therefore, the principled complementarity framework belongs to the class of
bipartite networks with hidden variables [33].

Furthermore, one can think of a reduced complementarity framework if each agent is represented by one point
either in M1 or M2 but not in both. The reduced complementarity framework may be instrumental in modeling,
e.g., scientific collaborations when each scientist has exactly one domain-specific expertise. In this is the case, the
reduced complementarity model also belongs to the class of bipartite networks in latent spaces, that we discussed in
Ref. [45].
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[21] K. Zuev, M. Boguñá, G. Bianconi, and D. Krioukov, Emergence of Soft Communities from Geometric Preferential At-

tachment, Sci. Rep. 5, 9421 (2015).
[22] L. Yang, X. Cao, D. Jin, X. Wang, and D. Meng, A Unified Semi-Supervised Community Detection Framework Using

Latent Space Graph Regularization, IEEE Trans. Cybern. 45, 2585 (2015).
[23] D. K. Sewell and Y. Chen, Latent Space Approaches to Community Detection in Dynamic Networks, Bayesian Anal. 12

(2017), 10.1214/16-BA1000.

 Example 1 (Chemistry 101):   Covalent Bonds: sharing electrons between atoms.



A lot of Networks that are Complementarity-Based

Example 2: Interdisciplinary collaborations: 

Scientists with complementary skills can benefit in collaborations:


BioInformatics

Quantum Computing


Medical Physics

Political Data Science

Example 3: Business (trading) networks


Example 4: Text

Words appear in text to complement each other towards certain message.


He was an old man who fished alone in a skiff in the Gulf Stream and he had gone eighty-four days now without taking a fish.



Off-the-Shelf Geometric Methods Fail for Complementarity Networks!
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FIG. 1: (a) Similarity-based toy network. Nodes are depicted as propellers with variable numbers of blades, all nodes are similar since

they are all propellers. Similarity is transitive: if A is similar to B, and B is similar to C, then A is expected to be similar to C. (b)

Complementarity-based toy network: complementarity of two nodes is shown by matching interfaces. Complementarity is not transitive: if

A is complementary to B (there are matching interfaces) and B is complementary to C (there are matching interfaces), A is not guaranteed

to be complementary to C (there are no matching interfaces). (c) Embedding of the toy network into a metric space imposes constraints

on distances due to the triangle inequality. (d) A subgraph of the antonym network. Note that rest-relax and unemployed-employed node

pairs share 2 common neighbors each and can be incorrectly interpreted as connected if similarity-based methods are blindly applied to

the network.

connected.
Why are network embeddings not readily applicable to complementarity-driven systems? The answer is rooted in

the non-transitivity of complementarity. Imagine that the same toy network is now formed by the complementarity
principles, Fig. 1b. The complementarity of A and B and B and C do not suggest the complementarity of A and
C. The complementarity network in Fig. 1b, however, is identical to its similarity counterpart in Fig. 1a, resulting
in the same embedding of Fig. 1c. Consequently, a small distance d(A,C) in the embedding of the complementarity
network immediately translates to inference errors. If the goal of the network embedding is to predict missing links,
for instance, a small distance d(A,C) implies a false positive link candidate between A and C. If, on the other hand,
the problem at hand is cluster analysis, A, B, and C may end up in the same node cluster in M, implying that
they all have similar characteristics, which is not the case for a complementarity-based network. As a real example,
we consider a subgraph of the antonym network, which can be regarded as a colloquial complementarity network.
Here nodes are words and links are established between the words with opposite meanings, Fig. 1d. The ”rest-relax”
word pair are synonyms and in the antonym network these two words share two antonyms, ”work” and ”play”.
Being synonyms, the words ”rest” and ”relax” are not connected in the antonym network. If a similarity-based link
prediction algorithm is blindly applied to the network, however, the ”rest - relax” pair can be interpreted as a missing
link candidate, contrary to our expectations.

The demonstrated non-transitivity of the complementarity principles invites us to revise existing network-based
and embedding-based approaches to make them applicable to complementarity-driven networks, which we do in the
following sections of the manuscript. In section II, we define the principled complementarity framework, quantifying
complementarity between nodes as their ability to execute certain functions or tasks. In section III, we analyze the
properties of the principled complementarity framework to deduce a minimal practical framework for learning repre-
sentations of real systems. In section IV, we apply the minimal complementarity framework to learn complementarity
representations of five real networks. We conclude the manuscript with the summary and outlook in Section V.

The idea that the complementarity principle is di↵erent from the similarity is quickly getting traction in the scientific
community. Therefore, before proceeding further, we find it important to pause and acknowledge other concurrent
e↵orts to study complementarity mechanisms in networks. Shortly after the initial work of I. Kovács highlighting
the role of complementarity in protein-protein interaction networks [37] and the first version of the present work, C.
Mattson et al discovered the prominent role of complementarity in production networks [7]. Another very recent work
by S. Talaga and A. Nowak proposes to quantify the relative role of similarity and complementarity in a network
through densities of triangle and quadrangle subgraphs in it [31]. While these works are invaluable in developing our
intuition about complementarity in real networks, we lack rigorous mathematical frameworks that would allow us to
model synthetic complementarity networks and learn complementarity representations of real networks. We address

Complementarity is not transitive!    A compl B, B compl C, do not imply A compl C
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C. The complementarity network in Fig. 1b, however, is identical to its similarity counterpart in Fig. 1a, resulting
in the same embedding of Fig. 1c. Consequently, a small distance d(A,C) in the embedding of the complementarity
network immediately translates to inference errors. If the goal of the network embedding is to predict missing links,
for instance, a small distance d(A,C) implies a false positive link candidate between A and C. If, on the other hand,
the problem at hand is cluster analysis, A, B, and C may end up in the same node cluster in M, implying that
they all have similar characteristics, which is not the case for a complementarity-based network. As a real example,
we consider a subgraph of the antonym network, which can be regarded as a colloquial complementarity network.
Here nodes are words and links are established between the words with opposite meanings, Fig. 1d. The ”rest-relax”
word pair are synonyms and in the antonym network these two words share two antonyms, ”work” and ”play”.
Being synonyms, the words ”rest” and ”relax” are not connected in the antonym network. If a similarity-based link
prediction algorithm is blindly applied to the network, however, the ”rest - relax” pair can be interpreted as a missing
link candidate, contrary to our expectations.

The demonstrated non-transitivity of the complementarity principles invites us to revise existing network-based
and embedding-based approaches to make them applicable to complementarity-driven networks, which we do in the
following sections of the manuscript. In section II, we define the principled complementarity framework, quantifying
complementarity between nodes as their ability to execute certain functions or tasks. In section III, we analyze the
properties of the principled complementarity framework to deduce a minimal practical framework for learning repre-
sentations of real systems. In section IV, we apply the minimal complementarity framework to learn complementarity
representations of five real networks. We conclude the manuscript with the summary and outlook in Section V.

The idea that the complementarity principle is di↵erent from the similarity is quickly getting traction in the scientific
community. Therefore, before proceeding further, we find it important to pause and acknowledge other concurrent
e↵orts to study complementarity mechanisms in networks. Shortly after the initial work of I. Kovács highlighting
the role of complementarity in protein-protein interaction networks [37] and the first version of the present work, C.
Mattson et al discovered the prominent role of complementarity in production networks [7]. Another very recent work
by S. Talaga and A. Nowak proposes to quantify the relative role of similarity and complementarity in a network
through densities of triangle and quadrangle subgraphs in it [31]. While these works are invaluable in developing our
intuition about complementarity in real networks, we lack rigorous mathematical frameworks that would allow us to
model synthetic complementarity networks and learn complementarity representations of real networks. We address

Applying similarity philosophy 

leads to inference errors!

the degree distributions to inflections in the language. Moreover, we found that not only in inflecting languages there are many
inflected forms of words but also in one agglutinating language, which is Finnish.

All the aforementioned structural patterns in semantic networks encouraged us to investigate the organizing principles of
these networks. We introduced the two major organizing principles of semantic networks in the Similarity and Complementarity
section.By computing the structural similarity and complementarity coefficients of 50 semantic networks from different
languages, we observed both similarity and complementarity in the connection principles of semantic networks. But the
proportions of similarity and complementarity in networks are different depending on the semantic relation type. For
example, ‘Synonym’ networks show stronger similarity, while connections in ‘Antonym’ are more driven by complementarity.
Additionally, the Chinese ‘Related-To’ network stood out with the highest structural complementarity coefficient from the rest
of the networks. We were able to partially relate this strong complementarity to a unique grammatical phenomenon in Chinese:
measure words.

(a) Triangle closure (similarity) (b) Quadrangle closure (complementarity)

(c) Quadrangle closure (complementarity) (d) Quadrangle closure (complementarity)

Figure 8. Comparison of similarity and complementarity principles in networks. (a) Lots of common neighbors of A and B
imply similarity between A and B, therefore they are connected. (b) An example of triangle closure in ‘Synonym’ network. (c)
In complementarity-based networks, if node X and Y share many common neighbors, the additional neighbor Z of node X
implies the link between Z and Y. (d) An example of quadrangle closure in ‘Antonym’ network.

The results presented in the Section Similarity and Complementarity are important for Natural Language Processing
(NLP), because NLP algorithms mostly rely on the similarity principle and neglect the principle of complementarity. Existing
NLP algorithms may work well for networks that are similarity-based, but different methods are required for processing
complementarity-based semantic networks.

The motivation for our study was the desire to improve upon existing NLP algorithms. Though we did not provide the
solution itself, we are certain that our results (especially in the Section Similarity and Complementarity)serve as evidence that
we better inform NLP methods. Here we give an example of where the difference between similarity and complementarity
manifests in a fundamental task, that is, missing link prediction in semantic networks.

In the view of traditional link prediction (see Fig. 8a), two nodes A and B are considered to be similar if they have a lot
of common neighbors. Therefore, nodes A and B must be connected. The rationale is that people who have many common
friends will most likely also establish connections. In the ‘Synonym’ network (Fig. 8b), the words ‘type’ and ‘class’ share lots
of neighbors that have similar meanings, such as ‘kind’, ‘form’ and ‘genre’. Therefore, ‘type’ and ‘class’ also have similar
meanings.

However, in complementarity-driven networks, the principle of similarity does not work for predicting missing links. Two
nodes that share a lot of common neighbors may be similar, but they do not necessarily complement each other. Instead, the
connection principle is, if a node X has an additional connection to a node Z that is not shared with node Y, then node Z and Y
might be connected as well (See Fig. 8c). For example, in our ‘Antonym’ network (Fig. 8d), the words ‘few’ and ‘minor’ have
lots of neighbors that have the opposite meaning as them. The word ‘few’ is additionally connected to ‘majority’. Hence, we
can conclude that ‘majority’ and ‘minor’ are also connected by the antonym relation.

15/32

Common neighbors do not imply links!

I. Kovacs et al, "Network-based prediction of protein interactions”, Nat. Comm. (2023).



Can we rescue network embedding methods?

Quick Solution: 

Nodes Represented by Several Points in 𝕄.


Each point can be viewed as a distinct property (or skill, or interface).


Distances between points of different type quantify complementarity. 

G. Budel and M. Kitsak "Complementarity in Complex Networks", arXiv 2003.06665 (2023).
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FIG. 6: Complementarity representation of the antonym network in a 2-dimensional hyperbolic disk. Each word is represented by two

points shown with squares and circles. Larger nodes sizes correspond to more general words, as quantified by the number of their antonyms.

Colored are four groups of nodes closest to words Bad, Free, Man, and Real, see Table I. To avoid clutter, for every node pair i and j
we draw only one link. In doing so, we connect either points xi and yj or xj and yi, selecting the closest pair. b, c We zoom into two

regions of the space in the vicinity of the word “free”. We stretch out the angular node coordinates to improve the visibility.
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Complementarity Representation of the Antonym Network

G. Budel and M. Kitsak "Complementarity in Complex Networks", arXiv 2003.06665 (2023).
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Can we rescue network embedding methods?

Quick Solution: 

Nodes Represented by Several Points in 𝕄.


Each point can be viewed as a distinct property (or skill, or interface).


Distances between points of different type quantify complementarity. 

G. Budel and M. Kitsak, "Complementarity in Complex Networks", arXiv 2003.06665 (2023).

Prediction of missing links in five complementarity-based networks 9
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FIG. 5: Link prediction results obtained with the Complementarity HyperLink (CHL) are compared to non-embedding link prediction

methods. We conduct link prediction experiments in a the network of antonyms (Antonyms), b human protein-protein interaction network

(Human PPI), c S. cerevisiae protein-protein interaction network (Yeast PPI), d Messel food web (Messel), and (d) Hamsterster social

network (Hamster) for a fraction 1 � q = 0.5 of removed links. Considered link prediction methods are the (CHL) Complementarity

HyperLink (our method), Cannistraci Resource Allocation (CRA) [48], Resource Allocation (RA) [43], Adamic Adar (AA) [44], Jaccard

Index (JACC) [49], the number of Common Neighbors (CN) [50], the L3 method [41], the Structural Perturbation Method (SPM) [46],

Katz index [47] with parameter � = 0.1 (Katz), and Preferential Attachment (PA) [45],

triangles and quadrangles, respectively. A more general conclusion can be made, however, that there are no purely
similarity-driven or complementarity-driven systems. Luckily, our results indicate that similarity may be a special
case of complementarity. Our minimal complementarity framework, in particular, contains both complementarity and
similarity principles, the latter is captured by the special case where each node is characterized by two identical points
in the space.

The complementarity vision not only opens new avenues for the analysis of complementarity-driven systems but also
challenges traditional approaches of network science that were initially developed for social networks and are routinely
applied to other network classes. Shortest paths and communities have been adopted from similarity-based networks
and are routinely used in the analysis of complementarity-driven networks. Network communities are routinely used
to quantify disease and functional modules in biological networks [52–54], and scientific communities in collaboration
networks [55, 56]. Shortest paths, on the other hand, are often used to quantify network-based separations between
network modules of interest [57, 58].

One example is the notion of the shortest path, which is often envisioned as a certain discrete trajectory in the
network space, Fig. 7a. Such a trajectory is also possible in a complementarity framework: a chain of connections
may form due to a spatial alignment of complementary points into a geometric trajectory, Fig. 7b. While such an
alignment is definitely su�cient for the formation of a network chain, it is by no means necessary: another possibility
is a collection of pairwise, yet disjoint, proximities between corresponding points in a latent space, as seen in Fig. 7c.

Another example is that of the network community. In its classical formulation, a community is a group of nodes
densely connected within and sparsely connected outside the group [55]. Based on this definition, network communities
in social sciences are often envisioned as collections of similar node points that are localized in the network, Fig. 7d-f.
In a complementarity driven system, similar nodes and nodes forming a relatively dense subgraph are two distinct
concepts since similar nodes are not expected to be connected and, conversely, connected nodes are not expected to be
similar. As we demonstrated in the complementarity representation of the antonym network, Fig. 6a, similar nodes
may form several localized clusters in the latent space, each cluster corresponding to a di↵erent feature. Densely
connected subgraphs that are routinely defined as communities in network science, on the other hand, can be either
fully, Fig. 7e, or partially localized in the complementarity representation, Fig. 7f.

In summary, we hope that the complementarity concepts developed in our work will not only enhance our intuition
but also enrich the arsenals of available quantitative methods for the analysis of networks.



Can we rescue network embedding methods?

Quick Solution: 

Nodes Represented by Several Points in 𝕄.


Each point can be viewed as a distinct property (or skill, or interface).


Distances between points of different type quantify complementarity. 

G. Budel and M. Kitsak "Complementarity in Complex Networks", arXiv 2003.06665 (2023).

Open Questions: 

What if there are more skills per node?


Why different skills belong to the same space?


How can we even compare different skills?


Why distance is a measure of complementarity?




Towards the Principled Complementarity Framework

"Two people or things that are complementary are different but together form a useful or 
attractive combination of skills, qualities or physical features.”


-Oxford Dictionary

G. Budel and M. Kitsak "Complementarity in Complex Networks", arXiv 2003.06665 (2023).
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"Two people or things that are complementary are different but together form a useful or 
attractive combination of skills, qualities or physical features.”


-Oxford Dictionary

There must be at least two different skills at play!

How do we describe skills?   Points in a metric space.  We need at least two metric spaces! 

Every node has a corresponding point in each space! 

Distances quantify similarities. Distances are defined within each space, not between spaces!
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"Two people or things that are complementary are different but together form a useful or 
attractive combination of skills, qualities or physical features.”


-Oxford Dictionary

One way to quantify “usefulness” is by introducing tasks!

Agents (nodes) complement each other in executing joint tasks.

Every task has a corresponding point in each space. 



Towards the Principled Complementarity Framework

NWO enw-M1 proposal, M.Kitsak (PI), 2022

"Two people or things that are complementary are different but together form a useful or 
attractive combination of skills, qualities or physical features.”


-Oxford Dictionary

Complementarity is the ability to co-execute tasks: 

each agent independently solves their part of the task

The closer you are to the given part of the task, the more likely you are to solve it.



Towards the Principled Complementarity Framework

Probability that i solves part 1 and j solves part 2: 
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II. TOWARDS PRINCIPLED COMPLEMENTARITY FRAMEWORK

To define complementarity from the first principles, we refer to the Oxford English Dictionary, which asserts that
”two people or things that are complementary are di↵erent but together form a useful or attractive combination of
skills, qualities or physical features”.

This definition implies that complementarity can be defined if each network node is characterized by at least two
di↵erent skill types or features that might be able to complement each other. These features are intrinsic properties
of network nodes that may or may not be readily observable. In the context of scientific collaborations, the features
are the expertise of researchers in di↵erent disciplines. In the context of molecular interactions, the features might
correspond to chemical properties of molecules of interest.

To define complementarity between nodes i and j we need to quantify the extent to which i and j form a useful
combination of features or skills. One way to define such ”usefulness” is through tasks or functions that nodes i and
j can jointly co-execute. Depending on a specific system of interest, the function can be either a scientific problem or
a mission in the case of a collaboration network, or a biological function that two molecules can execute by forming
a physical interaction, in the case of a PPI network. Therefore, we need to introduce another entity - task. Tasks
mediate complementarity between the agents and are also characterized by two features each.

All in all, to introduce a complementarity-based network we introduce N nodes, each of which is characterized by
two skills x1

i and x2
i , i = 1, . . . , N , and T tasks that are also characterized by two skills each, x1

k and x2
k, k = 1, . . . , T .

To quantify the complementarity between any two nodes i and j, we need to be able to compare their skills. To
do so, we postulate that skills are nothing else but points in two latent spaces M1 and M2. Therefore, distances can
be defined between features of the same type but not necessarily between the features of di↵erent types. In the case
of scientific collaboration, for instance, it is straightforward to compare two skill sets within the same discipline but
not the skill sets from two di↵erent disciplines. Thus, in agreement with the similarity intuition, we postulate that
the distance between two nodes i and j in space Ma, d(xa

i ,x
a
j ) quantifies the similarity between the features xa

i and
xa
j : the smaller distance d(xa

i ,x
a
j ) the larger the similarity between i and j with respect to type a.

We are now in a good position to define complementarity. The complementarity between any two nodes i and j

with respect to task k is the probability p(ij|k) that the two agents i and j can execute k jointly. In the most basic
setting, one can think of task k consisting of two independent parts corresponding to M1 and M2 respectively. Then,
task k can be executed either as a result of node i executing part 1 and node j executing part 2 of task k or vice
versa:
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Here ra (d [xa
i ,x

a
k]) is the probability that node i can independently execute part a of task k, a = 1, 2. Our physical

intuition suggests that connection probabilities r{1,2}(d) are decreasing functions of distances d since the smaller the
distance the similar the agent’s expertise xa

i is to the task requirements xa
k in Ma. Assuming the independence

between available tasks, the complementarity between agents i and j is the probability pij they can co-execute at
least one task:

pij = 1�
Y

k

(1� p(i, j|k)) (2)

Equations (1) and (2) serve as a foundation for the general framework for modeling and learning complementarity
representations in real networks, which we summarize in Fig. 2a. From the modeling perspective, the complementarity
framework can be used to generate both bipartite (when both agents and tasks are present) and conventional networks
(when only agents are considered). To generate a complementarity-based model network one needs to define latent
spaces M1 and M2, connection probabilities r1(d) and r2(d), and the mechanism of distributing nodes in tasks in the
latent space. Since connections between the nodes are functions of node positions in latent spaces, and network links
are established independently of one another, the complementarity framework belongs to the class of network models
with hidden variables [32, 33] – with node positions serving the roles of hidden variables – allowing for analytical
treatment.

From the learning perspective, obtaining a complementarity representation of a real network includes learning latent
spaces M1 and M2, connection probability functions r1(d) and r2(d), as well as coordinates of agents and tasks in
two latent spaces from the observed adjacency matrix A of the network of interest.

Probability that j solves part 1 and i solves part 2: 
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Equations (1) and (2) serve as a foundation for the general framework for modeling and learning complementarity
representations in real networks, which we summarize in Fig. 2a. From the modeling perspective, the complementarity
framework can be used to generate both bipartite (when both agents and tasks are present) and conventional networks
(when only agents are considered). To generate a complementarity-based model network one needs to define latent
spaces M1 and M2, connection probabilities r1(d) and r2(d), and the mechanism of distributing nodes in tasks in the
latent space. Since connections between the nodes are functions of node positions in latent spaces, and network links
are established independently of one another, the complementarity framework belongs to the class of network models
with hidden variables [32, 33] – with node positions serving the roles of hidden variables – allowing for analytical
treatment.

From the learning perspective, obtaining a complementarity representation of a real network includes learning latent
spaces M1 and M2, connection probability functions r1(d) and r2(d), as well as coordinates of agents and tasks in
two latent spaces from the observed adjacency matrix A of the network of interest.
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Equations (1) and (2) serve as a foundation for the general framework for modeling and learning complementarity
representations in real networks, which we summarize in Fig. 2a. From the modeling perspective, the complementarity
framework can be used to generate both bipartite (when both agents and tasks are present) and conventional networks
(when only agents are considered). To generate a complementarity-based model network one needs to define latent
spaces M1 and M2, connection probabilities r1(d) and r2(d), and the mechanism of distributing nodes in tasks in the
latent space. Since connections between the nodes are functions of node positions in latent spaces, and network links
are established independently of one another, the complementarity framework belongs to the class of network models
with hidden variables [32, 33] – with node positions serving the roles of hidden variables – allowing for analytical
treatment.

From the learning perspective, obtaining a complementarity representation of a real network includes learning latent
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Probability i and j solve task is the union of two probabilities:
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Equations (1) and (2) serve as a foundation for the general framework for modeling and learning complementarity
representations in real networks, which we summarize in Fig. 2a. From the modeling perspective, the complementarity
framework can be used to generate both bipartite (when both agents and tasks are present) and conventional networks
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Complementarity = Pr-ty i and j solve at least one task k:
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Equations (1) and (2) serve as a foundation for the general framework for modeling and learning complementarity
representations in real networks, which we summarize in Fig. 2a. From the modeling perspective, the complementarity
framework can be used to generate both bipartite (when both agents and tasks are present) and conventional networks
(when only agents are considered). To generate a complementarity-based model network one needs to define latent
spaces M1 and M2, connection probabilities r1(d) and r2(d), and the mechanism of distributing nodes in tasks in the
latent space. Since connections between the nodes are functions of node positions in latent spaces, and network links
are established independently of one another, the complementarity framework belongs to the class of network models
with hidden variables [32, 33] – with node positions serving the roles of hidden variables – allowing for analytical
treatment.

From the learning perspective, obtaining a complementarity representation of a real network includes learning latent
spaces M1 and M2, connection probability functions r1(d) and r2(d), as well as coordinates of agents and tasks in
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Highlights: 

The principled complementarity framework contains the minimal framework as a special case.


Complementarity contains similarity as a special case. 


(When two points corresponding to a node are the same.)

Open Questions: 

Is the Principled Complementarity Framework Learnable in its General Form?


Simplified Versions of the Principled Complementarity Framework for Efficient Learning?
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Back to High Level: Implications for Shortest Paths

Complementarity-based intuition:

shortest path is not a trajectory.


You may have a trajectory, it is much more likely 
that the trajectory is broken. 
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Similarity-based intuition:

shortest path is a trajectory.


By traveling along a path you hop from one 
node to another, and neighboring nodes are 
relatively close to each other.
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Back to High Level: Implications for Communities/Cliques/Modules

Similarity-based intuition:

community is a collection of 
nodes that is localized in a region 
of space. 


Complementarity-based intuition:

communities are rarely localized.

Possible but unlikely

Likely

a

b



Implications for (Representations) of Real Networks

Biomedicine:

Missing PPI interactions.

(Better) functional classification of proteins.

Uncovering relationships between cellular pathways.

Interpreting existing drug-target relationships and identifying novel drug 
targets.

……….

Science of Science:

Success in interdisciplinary collaborations.

Scientific trajectories. 

Relations between subfields of related disciplines.

Uncovering relationships between scientific problems.

……….

Your feedback, and intuition, and collaboration is very welcome! 

G. Budel and M. Kitsak "Complementarity in Complex Networks", arXiv 2003.06665 (2023).



Take-Home Message

1.Geometric representations of complementarity-driven nets possible. 

But one needs more than 1 point per node. 


2. A minimal null model with 2 points per node shows significant improvement at 
predicting missing links in biological and ecological networks.


3. Important implications for Biomedicine and Science of Science.

Our intuition in network science comes almost exclusively from social networks, which 

are governed by the similarity rule.


We need to rethink/adjust our approaches for complementarity-based networks: 
biological, collaboration, ecological etc.

Interpretable Complementarity Framework is coming soon!

Similarity is the special case of Complementarity!

G. Budel and M. Kitsak "Complementarity in Complex Networks", arXiv 2003.06665 (2023).


