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Outline

1) Problem Statement;

2) Linear Time-Invariant (LTI) State-Space Model;

3) Application of the LTI Model to Time-Evolving Networks;

• Periodic Graph Dynamics;

• Non-Periodic Graph Dynamics.
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Problem Statement

𝐺1 𝐺2 𝐺3 𝐺4 𝐺𝑇

Time 𝑘

…

Process

?
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Linear Time-Invariant (LTI) State Space Model

Model

Input 𝑢[1] Output 𝑦[1]

Input 𝑢[2] Output 𝑦[2]

Input 𝑢[𝑇] Output 𝑦[𝑇]
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𝑢 1 , … , 𝑢 𝑇  are 𝑚 × 1 vectors;

𝑦 1 , … , 𝑦 𝑇  are 𝑑 × 1 vectors.



Linear Time-Invariant (LTI) State Space Model

B Δ C

A

D

Input 𝑢[𝑘] Output 𝑦[𝑘]𝑥[𝑘]𝑥[𝑘 + 1]
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𝑛 × 𝑛

𝑑 × 1𝑚 × 1

𝑥[𝑘 + 1]
𝑦[𝑘]

=
𝐴 𝐵
𝐶 𝐷

∙
𝑥[𝑘]
𝑢[𝑘]

= 𝑄 ∙
𝑥[𝑘]
𝑢[𝑘]

• 𝑥[𝑘] – state vector at discrete time 𝑘; 

• Δ – delay;



Subspace Method for System Identification
Compact form of the equation is

𝑌1,𝑠,𝑁 = 𝛤𝑠𝑋1,𝑁 + 𝐻𝑠𝑈1,𝑠,𝑁

where 𝑌𝑖,𝑠,𝑁, 𝑈𝑖,𝑠,𝑁 - block Hankel matrices:

𝑌1,𝑠,𝑁 =

𝑦[1]
𝑦[2]

⋮
𝑦[𝑠]

𝑦[2]
𝑦[3]

⋮
𝑦[𝑠 + 1]

⋯ 𝑦[𝑁]
⋯ 𝑦[𝑁 + 1]

⋱
⋯

⋮
𝑦[𝑁 + 𝑠]

, 𝑋1,𝑁 = 𝑥[1] … 𝑥[𝑁] , 𝑈1,𝑠,𝑁 =

𝑢[1]
𝑢[2]

⋮
𝑢[𝑠]

𝑢[2]
𝑢[3]

⋮
𝑦[𝑠 + 1]

⋯ 𝑦[𝑁]
⋯ 𝑦[𝑁 + 1]

⋱
⋯

⋮
𝑦[𝑁 + 𝑠]

,

𝑠, 𝑁 – parameters and 𝛤𝑠, 𝐻𝑠 - observability and controllability matrices:

𝛤𝑠 =

𝐶
𝐶𝐴…

𝐶𝐴𝑠−1

,  𝐻𝑠 =

𝐷
𝐶𝐵

⋮
𝐶𝐴𝑠−2𝐵

0
𝐷
⋮

𝐶𝐴𝑠−1𝐵

⋯ 0
⋯ 0
⋱
⋯

⋮
𝐷]

.

N4SID Algorithm: a Numerical algorithm for subspace state space system identification,

developed by Van Overschee & De Moor (1994).
6



Linear Time-Invariant (LTI) State Space Model

LTI model
(Q, x)

Input 𝑢[1] Output ො𝑦[1]

Input 𝑢[2] Output ො𝑦[2]

Input 𝑢[𝑇] Output ො𝑦[𝑇]

7What is the input/output for graphs?

𝑥[𝑘 + 1]

ො𝑦[𝑘]
= 𝑄 ∙

𝑥[𝑘]

𝑢[𝑘]



Graph Representation
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𝐺1 𝐺2 𝐺3 𝐺4 𝐺𝑇

…

𝑻 timeslots

𝑳 links

𝑎[1] 𝑎[𝑇]



Application to Time-Evolving Graphs

LTI model
(Q, x)

Input 𝑎[𝑘] Output 𝑎[𝑘 + 1]

Input: Graph 𝐺𝑘, 𝐿 × 1 binary vector 𝑎[𝑘].

Output: Graph 𝐺𝑘+1, 𝐿 × 1 binary vector 𝑎[𝑘 + 1].
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Linear Time-Invariant (LTI) State Space Model

LTI model
(Q, x)

Graph 𝐺1 Graph ෠𝐺2

Graph 𝐺2 Graph ෠𝐺3

Graph 𝐺𝑇−1 Graph ෠𝐺𝑇
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Input: Graph 𝐺𝑘, 𝐿 × 1 binary vector.

Output: Graph ෠𝐺𝑘+1, 𝐿 × 1 binary vector.

How to generate more than 1 graph?



Application to Time-Evolving Graphs

…

LTI model

LTI model

𝑎[1] LTI model ො𝑎[2]

ො𝑎[3]

ො𝑎[𝑇]

Subspace Graph Generator (SG-Gen)
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Graph 𝑮𝟏 Graph ෡𝑮𝟐

Graph ෡𝑮𝟑

Graph ෡𝑮𝑻

𝑘-th output:
𝑥[𝑘 + 1]

ො𝑎[𝑘 + 1]
= 𝑄𝑘 𝑥[1]

𝑎[1]



Performance of the Model

Mean square error (MSE):

𝑀𝑆𝐸 𝑎, ො𝑎 =
1

𝑇 − 1
෍

𝑘=1

𝑇−1

෍

𝑖=1

𝐿

𝑎𝑖 𝑘 − ො𝑎𝑖 𝑘 2 ,

• 𝑎[𝑘] – real vector corresponding to the graph 𝐺𝑘+1;

• ො𝑎[𝑘] – estimated vector corresponding to the graph 𝐺𝑘+1.

• 𝑇 – number of graphs, 𝐿 – dimension of 𝑎[𝑘] and ො𝑎 𝑘 .
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Periodic Graph Dynamics
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Periodic Graph Dynamics

14

𝑻 timeslots

𝑳 links

Period 7



Application to Periodic Graph Dynamics

▪ Observation: ANY periodic graph dynamic can be modelled 
accurately by SG-Gen:

𝑥[𝑘 + 1]

𝑎[𝑘 + 1]
= 𝑄𝑘 𝑥[1]

𝑎[1]

Intuition:

Let 𝑣 𝑘 =
𝑥[𝑘]

𝑎[𝑘]
. 

If 𝑣 𝑘 is periodic with period 𝑝, the SG-gen model can be rewritten as

𝑣 2  𝑣 3  … 𝑣 𝑝  𝑣[1] = 𝑄 ∙ 𝑣 1  𝑣 2  … 𝑣 𝑝 − 1  𝑣[𝑝] .

Vector is fixed (𝑮𝒌)

?
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Application to Periodic Graph Dynamics

𝑣 2  𝑣 3  … 𝑣 𝑝  𝑣[1] = 𝑄 ∙ 𝑣 1  𝑣 2  … 𝑣 𝑝 − 1  𝑣[𝑝] .

Lemma. If 𝑣 1 , … , 𝑣[𝑝] are linearly independent in ℝ𝑝, then any 
periodic graph sequence can be modelled by the LTI model with

𝑄 = 𝑣 1  𝑣 2  … 𝑣 𝑝 − 1  𝑣 𝑝
−1

∙ 𝑣 2  𝑣 3  … 𝑣 𝑝  𝑣[1]

16



Application to Periodic Graph Dynamics

𝑣 2  𝑣 3  … 𝑣 𝑝  𝑣[1] = 𝑄 ∙ 𝑣 1  𝑣 2  … 𝑣 𝑝 − 1  𝑣[𝑝] .

Is it possible to map vectors 𝒗 𝟏 , … , 𝒗[𝒑] onto ℝ𝒓 with 𝒓 < 𝒑?

• YES (for some graph dynamics).
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Application to Periodic Graph Dynamics

Theorem. Let 𝑣 1 , … , 𝑣 𝑝  be an 𝑟 × 1 vectors with 𝑟 ≤ 𝑝. Then 
the minimal order 𝑟 of the system matrix 𝑄 is defined as

𝑟 = 𝑟𝑎𝑛𝑘

𝑎 1 𝑎 2

𝑎 2 𝑎 3
⋯

𝑎 𝑝 − 1 𝑎 𝑝

𝑎 𝑝  𝑎 1
 

⋮ ⋱ ⋮
𝑎 𝑝 𝑎 1 ⋯ 𝑎 𝑝 − 2 𝑎 𝑝 − 1 𝑝∙𝐿×𝑝

,

where 𝑎 1 , …, 𝑎 𝑝 - input vectors corresponding to 𝐺1, … , 𝐺𝑝.

Algorithm: Linear Periodic Graph Generator (LPG-gen)
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Non-Periodic Graph Dynamics
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Non-Periodic Graph Dynamics

What if the graph sequence 𝐺1, … , 𝐺𝑇 is not periodic?

▪ Linear Graph Generator (LG-gen).

Idea: 

• 𝐺1
(𝑖)

, 𝐺2
(𝑖)

, … , 𝐺𝑇
(𝑖)

 a i-th periodic graph sequence with period 𝑝𝑖;

• Construct 𝑙 periodic graph sequences such that for ∀𝑘 = 1, … , 𝑇

𝐺𝑘 ≈ 𝐺𝑘
1

+ 𝐺𝑘
2

+ ⋯ + 𝐺𝑘
𝑙

.

• Each periodic graph sequence is modelled by LPG-gen.
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LG-gen: Periodic Transform

• 𝜋(𝑥𝑖−1, 𝒫(𝑥𝑖−1, 𝒫𝑝𝑖
) – projection of 𝑥𝑖−1 onto a 𝑝𝑖-periodic subspace 𝒫𝑝𝑖

;

• 𝑥0 = [𝑎 1 , 𝑎 2 , … , 𝑎[𝑇]] initial sequence.

𝑝𝑖 𝑝𝑖 𝑝𝑖 𝑝𝑖
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𝑥𝑖 = 𝑥𝑖−1 − 𝜋(𝑥𝑖−1, 𝒫(𝑥𝑖−1, 𝒫𝑝𝑖
), 



LG-gen: Identification of Periodic Sequences

Period length

𝑀𝑆𝐸 𝑦, ො𝑦

Period 𝒑∗
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Artificial Graph Dynamic: Results of LG-Gen

▪ Periodic dynamic with 𝑟 random changes per time slot.

▪ LG-gen provides a good performance;

▪ 7 periodic graph sequences are sufficient to provide an ideal 

performance of the model, i.e., 𝐺𝑘 = 𝑟𝑜𝑢𝑛𝑑 σ𝑖=1
7 𝐺𝑘

𝑖
.

23



Graph Dynamic: LyonSchool

▪ Contact events between 242 individuals (232 children and 10 teachers) 
during two days in October 2009. 

▪ The total number of contacts is 6,594,492 (29,161 unique links).
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Graph Dynamic 4: Results of LG-Gen

Type of model
Number of periodic graphs sequences l

1 2 3 4 5 6 7 8 9 10 11

No rounding 26.5 20.6 16.4 15.1 13.1 11.8 11.2 10.9 10.7 9.7 9.3

With rounding 37 16.7 6.8 3.4 1.07 0.3 0.1 0.04 0.01 0.0006 0

No rounding: 𝐺𝑘 ≈ 𝐺𝑘
1

+ 𝐺𝑘
2

+ ⋯ + 𝐺𝑘
𝑙

With rounding: 𝐺𝑘 ≈ 𝑟𝑜𝑢𝑛𝑑 𝐺𝑘
1

+ 𝐺𝑘
2

+ ⋯ + 𝐺𝑘
𝑙
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Graph Dynamic 4: Results of LG-Gen

▪ For 𝑙 = 5, the MSE is 
1.07 (≈1 incorrect 
contact per timestamp).

▪ For 𝑙 = 11, the LG-gen 
generates the 
LyonSchool network 
exactly.
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Results

▪ We modeled the graph dynamics as a linear process.

▪ Any periodic graph sequence can be modelled accurately by the LTI 
model.

▪ We proposed two algorithms, called LPG-gen and LG-gen, to model 
periodic and non-periodic graph sequences and discuss their 
efficiency.

▪ LPG-gen and LG-gen algorithms provided a good performance on 
various artificial and real graph sequences.
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▪

Thank you!
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