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A Practitioner’s Perspective
* Chemical Process Control
* Shell, BP, Exxon, DuPont, ICI PLC

* Building Climate/Energy Control (HVAC)

* Siemens, Carrier
- * DAIMLERCHRYSLER

* Power Electronics, Electrical Power Systems

* ABB
AL ED ER Umted
AP SIEMENS Technologies

* Automotive Systems
* Ford, Daimler-Chrysler

* Aircraft Systems
* United Technologies




MPC Workshop 1998

Nonlinear Model Predictive Control Workshop
Frank Allgower, Alex Zheng
Ascona, 1998

Dominated by Process Control




MPC Workshop 2008
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INTERNATIONAL WORKSHOP ON
ASSESSMENT AND FUTURE DIRECTIONS OF

& &
‘“.t - NONLINEAR MODEL PREDICTIVE CONTROL
September 5-9, 2008 University of Pavia
Pavia, Italy CeRS - IUSS Pavia

Lalo Magni, Davide Raimondo,
Frank Allgower

Process Control has almost disappeared

Applications in automotive, power electronics,...



Applications in Automotive

V‘ Research & Advanced
Engineering

Developments in Predictive and

Optimization-Based Control of Ford MgtorGompany,
Automotive Powertrain Systems

llya Kelmanoyvsky
Ford Research and Advanced

Engineering ETH, November 2008

* Model Predictive Control of engine idle speed
* Preview control of boosted gasoline engines
* Optimal and predictive control of Hybrid Electric Vehicles



Applications in Power Electronics

g i

Tutorial on Model Predictive Control
of Power Converters and Drives

José Rodriguez, Patricio Cortés
Departamento de Electrdnica

Universidad Técnica Federico Santa Maria, Valparaiso, Chile
(jose.rodriguez@elo.utfsm.cl, patricio.cortes@elo.utfsm.cl)

o Feyg April 2008 AT

:
Universidad Técnica Departamento
Federico Santa Maria de Electrdnica




Speedup of software for MIPs

Progress in MIP Solvers MILP Speedups

Calculations

Improvement in MIP Software from 1988-2017

@ Algorithms: 147650x
@ Machines: 17120x

http://preshing.com/20120208/a-1look-back-at-single-threaded-cpu-performance/

@ NET: (Algorithm x Machine): 2,527,768,000x

What Does This “Mean”?

o A “typical” MILP that would have taken 124 years to solve in 1988
will solve in 1 second now.

@ This is amazing, but your mileage may vary

Linderoth (UW ISyE) Quo Vadis MIP FOCAPO 12 / 58



Computation / Software

Formal specification | ( Control law |
* YALMIP | * Explicit MPC
* HYSDEL L~ Fixed-complexity solutions
* Linear + Hybrid models _

Verified controller | ( Software synthesis |

* Real-time workshop
— « Bounded-time solvers
* Verifiable code generation

s}t

Multi-Parametric Toolbox (MPT)
* (Non)-Convex Polytopic Manipulation

* Multi-Parametric Programming
» Control of PWA and LTI systems




Methods and Tools for Embedded MPC
under leadership of S. Richter and A. Domahidi

Learning Binary
Decision Rules

Certified Learning of
MPC Control Laws
£
% e Goal:
Enable advanced
= MPC formulations
> 1 on embedded
platforms
Code Generation Code Generation
° for First-order Methods for Multistage QCQPs
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IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 59, NO. 12, DECEMBER 2014

Embedded Online Optimization for Model
Predictive Control at Megahertz Rates

Juan L. Jerez, Student Member, IEEE, Paul J. Goulart, Stefan Richter,
George A. Constantinides, Senior Member, IEEE, Eric C. Kerrigan, Member, IEEE, and
Manfred Morari, Fellow, IEEE

Abstract—Faster, cheaper, and more power efficient optimiza-
tion solvers than those currently possible using general-purpose
techniques are required for extending the use of model predictive
control (MPC) to resource-constrained embedded platforms. We
propose several custom computational architectures for different
first-order optimization methods that can handle linear-quadratic
MPC problems with input, input-rate, and soft state constraints.
We provide analysis ensuring the reliable operation of the re-
sulting controller under reduced precision fixed-point arithmetic.
Implementation of the proposed architectures in FPGAs shows
that satisfactory control performance at a sample rate beyond
1 MHz is achievable even on low-end devices, opening up new
possibilities for the application of MPC on embedded systems.

Index Terms—Embedded systems, optimization algorithms,
predictive control of linear systems.



ABB introduces ACS6080 drive for
high performance motor control

Press release | Zurich, Switzerland | 2019-03-07
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with MP3C
Model Predictive Pulse Pattern Control




Model Predictive Control in Power Electronics

Search string: “predictive AND control AND (inverter OR converter)” in the abstract

500 Second product release:
OPP-based MPC (MPC)

450 for 3-level inverter drives

8 400 Second pilot installation:
= OPP-based MPC (MP3C)
- for 3-level inverter drives
» 350

c

2 First product release:

g 30 Indirect MPC for LCI drives
e

3

5 20 First pilot installation:

u; Indirect MPC for LCI drives

‘5 200

o Further publications:

- . J. Rodriguez:

2 = Further publications: 1-step predictive control

First publications: R Kenngl: .
J. Holtz Generalized predictive control

Cost function and bounds

First symposium:
PRECEDE

1830 1885 1990 1995 2000 2005 2010 2015 2020
Year

e The number of annual publications doubles every three years A"




MPC Outlook

e Robust MPC
e Stochastic MPC
e Hierarchical / decentralized MPC

« MPC with “economic” objective function
* Output feedback MPC

« MPC for nonlinear systems
« Switched / hybrid systems
« Adaptive / Learning MPC



Embracing the Machine Learning
and Artificial Intelligence contributions

PROJECT.
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Over the next decade, the biggest generator of data is
expected to be devices which sense and control the physical

world.

This explosion of real-time data that is emerging from the physical world requires a rapprochement of areas such as machine
learning, control theory, and optimization. While control theory has been firmly rooted in tradition of model-based design, the
e foundations of our discipline. From a

machine learning perspective, one of the main challenges going forward is to go beyond pattern recognition and address



A Practitioner’s Perspective
Manfred Morari

Mahvyar Fazlyab, Alex Robey, Hamed Hassani, George J. Pappas

LADC - Learning for Dynamics & Control, MIT
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* Looking back

* Looking forward

* Some research directions



ldea: Get rid of “Modeling” ...
..iIn Model-Based-Design

e Kalman (1958): Design of a self-optimizing control system. Trans. ASME
* Bellman (1961): Adaptive Control Processes
e Astrom & Wittenmark (1973): On Self-Tuning Regulators. Automatica

* Landau (1974): A survey of model reference adaptive techniques,
Automatica

* Narendra & Valavani (1976): Stable adaptive observers and controllers.
Proc IEEE

e Astrom, Borisson, Ljung, Wittenmark (1977): Theory and applications of
self-tuning regulators. Automatica



ASEA Novatune introduced in 1982...




...and mostly abandoned by 1995

“Even if Novatune in many cases provides very good control, the
experience is that the effort it takes, to make it work that well, is
discouraging. It is worth the effort in some cases, but not as a general
tool. What is needed is a tool that is much easier to use. You shouldn’t
be required to set any parameters, except to state what kind of result
you desire.”

Per Erik Maden (1995) Experiences with Adaptive Control since 1982. CDC Proc.



Why did Adaptive Control “fail”?
--- [t was not appropriate

Easy

* NO Specs

* model simple

* general solution




Why did Adaptive Control “fail”?
--- [t was not appropriate

Dash PDM Tough

* tight specs

* model complex

* specific solution

Courtesy: Insulet Corporation



Why did Adaptive Control “fail”?
--- [t was not appropriate

Nothing works

Anything works

* NO specs e tight specs

* model simple * model complex

* specific solution

* general solution




Why did Adaptive Control “fail”?
--- [t was not appropriate

Anything works Nothing works

* NO Specs * tight specs

Learning Control

* model simple

* model complex

* general solution

* specific solution




Why did Adaptive Control “fail”?
-—- |t was too complicated

* PID is optimal
for most simple linear dynamic processes and performance specs
* Low order dynamics, stable + integrator

* PID is “practically optimal” for many more dynamic processes
e Approximated by low order dynamics, e.g. first order + dead time

Books: Morari & Zafiriou (1989), Astrom & Hagglund (1995),
Skogestad & Postlethwaite (2005),



Why did Adaptive Control “fail”?
-—- tuning all the time not needed

e Astrom & Hagglund (2000). Supervision of adaptive control algorithms
* PID Autotuner: Tune on demand only

Commercial Autotuners

» One-button autotuning

» Three settings: fast, slow,
delay dominated

» Automatic generation of gain
schedules

» Adaptation of feedback gains

» Adaptation of feedforward
gain

» Many versions

Single loop controllers
DCS systems

» Robust

» Excellent industrial
experience

» Large numbers

Thanks: Karl Astrom




Explore and Exploit - Tuning

* Essentially no prior knowledge needed

* Automatic generation of test signals specifically to estimate
2-4 parameters affecting the tuning

* Original ideas by Ziegler & Nichols from the 1940s extended by
Astrom & Hagglund R —

,,,,,

Relay feedback creats oscillation at @1gp!
Automation of ZN frequency response method modified ZN tuning rules




* Looking back

* Looking forward

* Some research directions



Learning Controllers

* Model-based vs. model-free

 |f you do not have a model, how can you verify the performance of the
closed-loop control system?

* |f you do have a model, why would you use a model-free learning method?

* Policy learning based on reward function
e Curse of dimensionality
* Specification guarantees via definition of reward function



Design # Optimization
Design = Constraint Satisfaction

Propositional Logic Control Specifications for Refrigeration Cycle
Manipulated Inputs Ui min < Ui € Uj max i=1,2,3
Controlled / Monitored Outputs Vi= Viset 1=1,2,3 /2= 7 i=1,..4
Prioritized Objectives

212 Zymin , 23<Z3max |, 23<Z3max . Y37 Y3set

< Zymax | Za<Zgmax = Za<Zgmax | Y27 Y2,set

Y1= Y1 set Z4 2 Zamin | 22 2 22 min
Y2= Yo set Y3 = Y3 set

Specification guarantees via definition of reward function?



DEEPMIND'S LOSSES AND THE
FUTURE OF ARTIFICIAL
INTELLIGENCE

Cm

“...In some ways, deep reinforcement learning is a
kind of turbocharged memorization; systems that
use it are capable of awesome feats, but they have
only a shallow understanding of what they are
doing. As a consequence, current systems lack
flexibility, and thus are unable to compensate if the
world changes, sometimes even in tiny ways.”



Energy-Based Approaches
To Representation Learning

Yann LeCun
New York University
Facebook Al Research
http://yann.lecun.com

facebook
ificial Intelligence Research




Proposed Learning Controllers

* Learn Discrepancy Model
* Design robust MPC

MPC provides
guarantee of closed loop stability and specifications by design

Note: simpler alternatives may be preferable
with more transparent architectures



* Looking back

* Looking forward

* Some research directions



Some Research Directions

 MPC Approximation via Neural Networks
* Robustness Analysis of Learning Enabled Components

e Gaussian-Process based Model Predictive Control



MPC Theory : Properties

1) Recursive feasibility: Input and state constraints are satisfied

2) Stability of the closed-loop system

MPC = Nonlinear control synthesis
with feasibility / stability guarantees by design !!!

Assumption: real-time trajectory optimization problem
is solved to e-optimality



Neural Network MPC Controllers with Guarantees

Steven Chen!, Tianyu Wang?, Nikolay Atanasov?, Vijay Kumar!, Manfred Morari’

Objective: Learn a recursively feasible (RF) and asymptotically
stable (AS) MPC control law for large systems

Y

Approach:

Offline (Learning):
* Generate a labeled dataset using correlated sampling

 Fit a neural network to optimal primal variables z (trajectory)

Online (Guarantees):
 Initialize a primal active set method with the neural network

* Terminate after achieving primal feasibility and suboptimality criteria
» These criteria guarantee RF and AS

Combining deep learning with traditional optimization
provides guarantees by construction and scales to large systems

Chen et al. Learning Neural Network Model Predictive Control Law with Guarantees. arXiv: 1910.10835
1. University of Pennsylvania 2. UC San Diego



Generating a dataset in high dimensions

We need to sample x € X, to train and evaluate the neural network

Challenge: Computing X, for large systems is computationally intractable

X is defined by a membership oracle

Naive Approach: Rejection sampling will not scale (0.4% points feasible)
Our Approach: Utilize ideas in geometric random walks and quasi Monte Carlo

3 Sobol States 10 Sobol States 20 Sobol States
2 2 2
o]
O
1 7 &o 1 7 *o °°a.' 1 .
> °°o .. '°o o°3p:;°
‘:'_: °°o $°%0,, ':o‘%o
2 0 7 o°.°o 0 7 o° °°°°df°.°. 0 i
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Position Position Position
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Our approach efficiently queries states x inside X



Generating a dataset in high dimensions

We need to sample x € X, to train and evaluate the neural network
Challenge: Computing X, for large systems is computationally intractable

X is defined by a membership oracle
Naive Approach: Rejection sampling will not scale (0.4% points feasible)
Our Approach: Utilize ideas in geometric random walks and quasi Monte Carlo
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It is designed to fill up the volume of X



Example: Oscillating Masses

18 oscillating masses [1]

s
l 3

State dim: 36 F

1

Action dim: 9

|_.u1 <—] U2 [

HOI'iZOI’II 50 6 mass version

Training Set Size 2,500,000
Testing Set Size 250,000

# Training Epochs 200 Epochs (~40 hour)
Neural Network Depth 7 layers

Neural Network Hidden Width 128-512

# Neural Network Parameters 1,668,554

[1] Y. Wang and S. Boyd. Fast Model Predictive Control Using Online Optimization. IEEE Transactions on Control Systems Technology. Vol 18, No. 2, 2010.



Example: Oscillating Masses
(preliminary results)

4.00% A
B ET NN Warm Start
3.50% A . Optimal NN Warm Start
B ET Cold Start
0, =
3.00% EEm Optimal Cold Start
a 2.50% -
o
3 2.00% -
O
e
L 1.50% -
1.00% A
0.50% - |
0.00% . M". ;
0 500 1000 1500 2000 2500
lterations

Our method reduces the number of required iterations by 98% and
computation time by 90%



Some Research Directions

 MPC Approximation via Neural Networks
* Robustness Analysis of Learning Enabled Components

e Gaussian-Process based Model Predictive Control



Robustness Analysis of PGDII
Learning Enabled Components (LECs)

1. Safety Verification and Robustness Analysis of Neural Networks via
Quadratic Constraints and Semidefinite Programming

M. Fazlyab, M. Morari, G.J. Pappas arXiv:1903.01287



Safety Verification of Neural Networks

X - f() - V= f(&X)

o O

O O

Locally Robust



Safety Verification of Neural Networks

X - f() - YV =f(X)

O O

Not Locally Robust



Safety Verification of Neural Networks

safe region for (x,y)

- ===

- ===

Learning forward kinematics of robotic arms [Xiang et al., 2018]



Safety Verification of Neural Networks

Guarantee YC S



Safety Verification of Neural Networks

Problem is NP complete

Exact (complete) verifiers
Inexact (incomplete) verifiers
Survey: Liu, Arnon, Lazarus, Barrett, Kochenderfer arXiv:1903.06758
Our work: convex relaxation by adapting tools from robust control

Cf. Raghunathan, Steinhardt, Liang, NeurIPS 2018 [RSL]

—=>Allows direct analysis of NN in closed loop context



DARPA Project: Assured Autonomy
Unmanned Underwater Vehicle (UUV)

* Sonar data
* NN to locate pipeline on sea floor
e Steering control loop

Linear System

S ?;fﬂ‘rl > — £

e

Neural

Network

General Interconnection of Linear System and

Kothare, Morari, Automatica (1999) Quadratically-Constrained Nonlinearity



Big Picture of Our Result

» Key ldea: replace the activation functions by the “quadratic” constraints they impose on their
input-output pairs
— Quadratically Constrained Linear Network (QCLN)

Original NN QCLN

Q Transform
v | Y O z! Y
| 1O

(e
\‘.E“‘..\“

L
HA
ci—l
S S]] |
-8
—
O
—
Lo
R |
vV
o
ﬁb—-‘
1
<
[~

Certificate for the original NN

Verify
via semidefinite programming

» Key Insight: any property (safety, robustness, Lipschitz continuity, etc.) that we can prove for
QCLN will hold for the original NN as well

14



ReLU Function

» Precisely described by 3 constraints

y = max(0, x) y? = xy y >0 Yy >
!

A

» Relaxation: for any (\,v,n7) € R x Ry x Ry
AMy* —ay) + vy —2) +ny >0

A=-10, v=2 n=1 A=-2 v=2 7=0 A=2 v=2 =1 A=2 =0, p=1

M gt

19



Quadratic Constraints Possible
for Other Activation Functions

Leaky RelLU )
max(0.1x, x)
tanh ’
tanh(z ELU J
{x x>0

Suynoui

ae®—-1) <0 -
RelLU
maan:



Numerical Experiments

e CVX and Mosek in MATLAB
e 4-core CPU with 16GB of RAM

* Comparison with
[RSL] Raghunathan, Steinhardt, Liang, NeurlIPS 2018



» Network: one-layer with architecture (2-100-...-100-2) with £ =1,2,4,6, 8,10

>
>

ayers.

Effect of Number of Layers

RelLU activation function

nput set: {oo-norm: X = {x

e =0.1.
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Solve Time

» Comparison between the solve times? of the SDP, and the SDR? of
[Raghunathan et al., 2018b] for a varying number of neurons. The SDR
approach runs out of memory (OOM) for networks larger than 1600
neurons.

Number of neurons Solve time

SDP (this paper) | SDR
200 3.2 2.7
400 11.3 20.4
800 78.6 149.1
1200 311.2 799.1
1600 1072.6 OOM
2000 1249.7 OOM
3000 3126.5 OOM

2CVX overhead included
3Semidefinite Relaxation



Robustness Analysis of PGDD
Learning Enabled Components (LECs)

2. Efficient and Accurate Estimation of Lipschitz Constants for Deep
Neural Networks

M. Fazlyab, A. Robey, H. Hassani, M. Morari, G.J. Pappas
NeurlPS — Spotlight (2019) arXiv:1906.04893



Lipschitz Constant for
Robustness Analysis of Neural Networks

|z —a*|2 < e

[f (@) = f(@*)ll2 < Lallz — 2|2 [f(x) = flz*)ll2 <9

activations activations

OO

Linear Linear f(x)

0000

O
hd




Numerical Experiments

Platform: MATLAB, CVX toolbox, and MOSEK on a 9-core CPU with 16GB of RAM

LipSDP: Lipschitz constant estimation using semidefinite programming

* LipSDP-Network

* LipSDP-Neuron

* LipSDP-Layer
CPLip: Combettes, Pesquet. "Lipschitz Certificates for Neural Network Structures
Driven by Averaged Activation Operators." arXiv:1903.01014(2019).

Seqlip: Virmaux, Scaman. "Lipschitz regularity of deep neural networks: analysis
and efficient estimation." Advances in Neural Information Processing Systemes.
2018.



Tightness
of Lipschitz bound

Comparison of LipSDP to other methods

-8 Naive Upper

-8— CPLip

—&— LipSDP-Neuron
-@— LipSDP-Layer
400 + —®— SeqLip

500 A

w
o
o

Lipschitz constant

200 +

100 -

20 40 60 80 100
Number of hidden units per layer

(a) Comparison of the Lipschitz constant found by
various formulations for various five hidden-layer neu-
ral networks trained on the MNIST dataset with the

Adam optimizer. Each network had a test accuracy
above 97%.



Numerical Experiments

* Training Methods: two robust and one standard training procedures

 Adam: Kingma, Ba. "Adam: A method for stochastic
optimization." arXiv:1412.6980 (2014).

e LP-Train: Wong, Kolter. "Provable defenses against adversarial
examples via the convex outer adversarial
polytope." arXiv:1711.00851 (2017).

* PGD-Train: Madry et al. "Towards deep learning models resistant
to adversarial attacks." arXiv:1706.06083 (2017).



Estimation of Input Perturbation €
leading to Misclassification

Misclassification histogram for regular and robust training

[

B PGD-Train
[ LP-Train
. Adam

Frequency
=
ul
o

0.00 0.01 0.02 0.03 0.04
Epsilon

(b) Histograms showing the local robustness (in £
norm) around each correctly-classified test instance
from the MNIST dataset. The neural networks had
three hidden layers with 100, 50, 20 neurons, respec-
tively. All classifiers had a test accuracy of 97%.



Conclusions: Quadratic Constraints
to bound activation functions in NN

* Tight Safety Analysis via SDP
* Analysis of more general properties with NN in closed loop
* Computation costly

 Tightest reported bounds on Lipschitz constant
* Demonstrated Lipschitz constant as effective robustness measure

* Powerful Real time monitoring for possible misclassification via
Lipschitz constant

 Computation cheap



Some Research Directions

 MPC Approximation via Neural Networks
* Robustness Analysis of Learning Enabled Components

e Gaussian-Process based Model Predictive Control



Gaussian-Process based Model Predictive Control

Prof. Melanie Zeilinger
Institute for Dynamic Systems and Control

ETH Zurich

osc.  ETHzUrich



Challenge: Model Uncertainty
Performance & Safety Require Good Model

x=f(x,u,t d)

Goal: Data-driven model improvement

min
> st

—» Model learning

v ¢

objective
model

constraints

Dynamical
System

Modeling challenged by complexity, variability, external disturbances

Example: Autonomous racing

= Difficult parameter tuning, in particular of
tire models
» Properties of cars/track change over time

——

ORCA platform @IfA, ETH Zurich. Courtesy of Alex Liniger



Challenge: Model Uncertainty
Performance & Safety Require Good Model

x=f(x,u,t d) Modeling challenged by complexity, variability, external disturbances

Goal: Data-driven model improvement Model learning in MPC

*  “Nominal” models
(e.g. neural networks)

“ @ Model learning

vy 1 + Robust models
min objective Key;]rl F({)c(ejséildual (e.g. set-membership techniques)
> st GP model uncertainty * Stochastic models
_ (e.g. Gaussian Processes)
constraints
Dynamical
System

Related work: Kocijan, Findeisen, Ostafew, Schéllig, Koller, Berkenkamp, Deisenroth, Borrelli, ...



Race Car Modeling with Gaussian Processes (GPs)

X1 = F(Xk, Ux) + Bad(xx, ux)

Bicycle model with L}ncer‘tamty Model mismatch: Tire
. ; in velocity
nonlinear tire forces forces are complex and vary
states
States: Position, orientation,
longitudinal and lateral velocity, yaw rate
Inputs: Motor duty cycle, steering angle
Constraints:  Track boundaries, input constraints
. 4
GP model: _ Measured model error
= oL e T GP prediction
= with 20
5 confidence
4 interval
_4 | | '\. | X
6 8 10 12
time [s]

[Hewing & Zeilinger, ECC 2018]



GP-based MPC for Autonomous Miniature Race Cars
Experimental Results with ORCA Platform (@ IfA, ETHZ)

- Nominal MPC (20 laps) . GP-based MPC (20 laps)
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Laptime (mean): 10.1397s Laptime (mean): 9.6922s
Solvetime (mean): 17.8 ms, 96.87% <20ms Solvetime (mean): 17.4 ms, 96.57% <20ms

Controllers implemented with FORCES Pro: A. Domahidi and J. Jerez, embotech AG



Learning-based Motion Planning for AMZ Driverless Race Car
With Online Learning

Not Real Time

GP update Data
—+ Selection

features

Real Time Control

v

Loop :
GPMPC control , Dynamical
input System
measurement e
S Juraj Kabzan Lukas Hewing

Collaboration with Academic Motorsports Club Zurich (AMZ)



AMZ Electric Race Car

Learning-based Model Predictive Control
for Autonomous Racing

Juraj Kabzan
Lukas Hewing
Alexander Liniger
Prof. Melanie Zeilinger

: e
FMNZ a
driverless.amzracing.ch ‘

https://ieeexplore.ieee.org/document/8754713

https://www.youtube.com/watch?v=bjlT-6KVQ7U &t



https://ieeexplore.ieee.org/document/8754713
https://www.youtube.com/watch?v=bjlT-6KVQ7U&t

Conclusions

* In 50 years MPC has moved from PhD proposal to become the most
widely used advanced high performance control method.

* The reasons for the success:
* Intuitive concept
* General applicability
* Full use of designer (model) information
* Complex specification guaranteed by design

* The remaining challenges:
e Computation for stochastic, uncertain and switched systems
* Learning and adaptation



