
Oriol Colomés

Week 1.
Computational
methods for
ODEs

▪

“Baseball players or cricketers do not need to be
able to solve explicitly the non-linear differential

equations which govern the flight of the ball.
They just catch it”

Paul Ormerod

Following this unit you will avoid the need of
years of training

Learning objectives

At the end of this week you will be able to:

Define and analyse numerical methods to solve Ordinary Differential Equations (ODEs). This entails:

1. Define a simple solver to approximate solutions of ODEs based on Taylor Series

2. Quantify the numerical error of an approximated solution

3. Define adaptive time stepping approaches to control the numerical error

4. Distinguish between different ODE solvers

Introduction

1.1

Introduction

Let’s say we solved the following problem analytically and obtained its displacement 𝑢(𝑡):

𝑚 ሷ𝑢 + 𝑐 ሶ𝑢 + 𝑘𝑢 = 𝐹(𝑡)

with Initial Conditions (IC):

𝑢(0) = ሶ𝑢(0) = 0

From the analytical solution we can evaluate the displacement at any given point in time 𝑡∗: 𝑢∗ = 𝑢(𝑡∗)

Question: What do we do if we cannot (don’t know how to) obtain an analytical solution to the problem?

Answer: Numerical solution

Question: Can we evaluate the numerical solution at any point 𝑡∗ and still get the same result as the analytical

solution?

Answer: It depends on the properties of the numerical and analytical solutions

Introduction

Question: Do we need the solution 𝑢(𝑡) at all points?

Answer: Often, we only need a “close-enough” solution: ෤𝑢(𝑡)

Notation

Let’s define some notation that we will use in this first week:

▪ For simplicity we assume we discretize in time using a constant time step Δ𝑡

▪ We aim to find the solution in the time interval [0,𝑇] using a total of 𝑁 time steps. Then

Δ𝑡 =
𝑇

𝑁

▪ This results in a set of 𝑁 + 1 points in time. We will index these points in time with index 𝑛: 𝑛 = 0,1, …𝑁

▪ Therefore, these points are located at 𝑡𝑛 = 𝑛Δ𝑡.

▪ The total set of points in time is:

𝒕 = 𝑡0, 𝑡1, … , 𝑡𝑛, … , 𝑡𝑁
𝑇

▪ We will use the following notation for brevity:

𝑢 𝑡𝑛 = 𝑢𝑛, ሶ𝑢 𝑡𝑛 = ሶ𝑢𝑛, …

Taylor Series

1.2

Taylor Series

Let’s start refreshing some theory…

A Taylor Series (TS) is “a representation of a function based on an infinite sum of terms that are calculated from the
function’s derivatives at a single point”

For an arbitrary function 𝑓(𝑥) and a given point 𝑎:

𝑓 𝑥 = ෍

𝑖=0

∞
𝑓 𝑖 𝑎

𝑖!
𝑥 − 𝑎 𝑖

Or equivalently…

𝑓 𝑥 = 𝑓 𝑎 + 𝑓′ 𝑎 𝑥 − 𝑎 +
𝑓′′ 𝑎

2
𝑥 − 𝑎 2 +

𝑓′′′ 𝑎

6
𝑥 − 𝑎 3 + …

The TS is exact as long as we include infinitely many terms

Taylor Series

Let’s use the TS for a simple function:

𝑓 𝑥 = ෍

𝑖=0

∞
𝑓 𝑖 𝑎

𝑖!
𝑥 − 𝑎 𝑖 = 𝑓 𝑎 + 𝑥 − 𝑎

ሶ𝑓 𝑎

1!
+ 𝑥 − 𝑎 2

ሷ𝑓 𝑎

2!
+ 𝑥 − 𝑎 3

ሸ𝑓 𝑎

3!
+⋯

sin 𝑥 = ?

Taylor Series

Let’s use the TS for a simple function:

𝑓 𝑥 = ෍

𝑖=0

∞
𝑓 𝑖 𝑎

𝑖!
𝑥 − 𝑎 𝑖 = 𝑓 𝑎 + 𝑥 − 𝑎

ሶ𝑓 𝑎

1!
+ 𝑥 − 𝑎 2

ሷ𝑓 𝑎

2!
+ 𝑥 − 𝑎 3

ሸ𝑓 𝑎

3!
+⋯

sin 𝑥 = 0 + ⋯

Taylor Series

Let’s use the TS for a simple function:

𝑓 𝑥 = ෍

𝑖=0

∞
𝑓 𝑖 𝑎

𝑖!
𝑥 − 𝑎 𝑖 = 𝑓 𝑎 + 𝑥 − 𝑎

ሶ𝑓 𝑎

1!
+ 𝑥 − 𝑎 2

ሷ𝑓 𝑎

2!
+ 𝑥 − 𝑎 3

ሸ𝑓 𝑎

3!
+⋯

sin 𝑥 = 0 + x…

Taylor Series

Let’s use the TS for a simple function:

𝑓 𝑥 = ෍

𝑖=0

∞
𝑓 𝑖 𝑎

𝑖!
𝑥 − 𝑎 𝑖 = 𝑓 𝑎 + 𝑥 − 𝑎

ሶ𝑓 𝑎

1!
+ 𝑥 − 𝑎 2

ሷ𝑓 𝑎

2!
+ 𝑥 − 𝑎 3

ሸ𝑓 𝑎

3!
+⋯

sin 𝑥 = 0 + x…

Taylor Series

Let’s use the TS for a simple function:

𝑓 𝑥 = ෍

𝑖=0

∞
𝑓 𝑖 𝑎

𝑖!
𝑥 − 𝑎 𝑖 = 𝑓 𝑎 + 𝑥 − 𝑎

ሶ𝑓 𝑎

1!
+ 𝑥 − 𝑎 2

ሷ𝑓 𝑎

2!
+ 𝑥 − 𝑎 3

ሸ𝑓 𝑎

3!
+⋯

sin 𝑥 = 0 + x + 0 + ⋯

Taylor Series
Let’s use the TS for a simple function:

𝑓 𝑥 = ෍

𝑖=0

∞
𝑓 𝑖 𝑎

𝑖!
𝑥 − 𝑎 𝑖 = 𝑓 𝑎 + 𝑥 − 𝑎

ሶ𝑓 𝑎

1!
+ 𝑥 − 𝑎 2

ሷ𝑓 𝑎

2!
+ 𝑥 − 𝑎 3

ሸ𝑓 𝑎

3!
+ ⋯

sin 𝑥 = 0 + x + 0 −
x3

6
+ ⋯

Taylor Series
Let’s use the TS for a simple function:

𝑓 𝑥 = ෍

𝑖=0

∞
𝑓 𝑖 𝑎

𝑖!
𝑥 − 𝑎 𝑖 = 𝑓 𝑎 + 𝑥 − 𝑎

ሶ𝑓 𝑎

1!
+ 𝑥 − 𝑎 2

ሷ𝑓 𝑎

2!
+ 𝑥 − 𝑎 3

ሸ𝑓 𝑎

3!
+ ⋯

sin 𝑥 = 0 + x + 0 −
x3

6
+ 0 + ⋯

Taylor Series
Let’s use the TS for a simple function:

𝑓 𝑥 = ෍

𝑖=0

∞
𝑓 𝑖 𝑎

𝑖!
𝑥 − 𝑎 𝑖 = 𝑓 𝑎 + 𝑥 − 𝑎

ሶ𝑓 𝑎

1!
+ 𝑥 − 𝑎 2

ሷ𝑓 𝑎

2!
+ 𝑥 − 𝑎 3

ሸ𝑓 𝑎

3!
+ ⋯

sin 𝑥 = 0 + x + 0 −
x3

6
+ 0 +

x5

120
+ ⋯

Taylor Series

Let’s use the TS for a simple function:

𝑓 𝑥 = ෍

𝑖=0

∞
𝑓 𝑖 𝑎

𝑖!
𝑥 − 𝑎 𝑖 = 𝑓 𝑎 + 𝑥 − 𝑎

ሶ𝑓 𝑎

1!
+ 𝑥 − 𝑎 2

ሷ𝑓 𝑎

2!
+ 𝑥 − 𝑎 3

ሸ𝑓 𝑎

3!
+ ⋯

We can approximate a function 𝑓(𝑥) in the vicinity of some point 𝑎, if we know the derivatives of 𝑓(𝑥) at 𝑎.

sin 𝑥 = x −
x3

6
+

x5

120
+ ⋯

sin 𝑥 ≈ x −
x3

6
+

x5

120

Since we truncated the expansion, we introduced a truncation error which

grows with distance from 𝑎

Exercises

𝑓 𝑥 = ෍

𝑖=0

∞
𝑓 𝑖 𝑎

𝑖!
𝑥 − 𝑎 𝑖 = 𝑓 𝑎 + 𝑥 − 𝑎

ሶ𝑓 𝑎

1!
+ 𝑥 − 𝑎 2

ሷ𝑓 𝑎

2!
+ 𝑥 − 𝑎 3

ሸ𝑓 𝑎

3!
+⋯

Exercise: Apply the same process for the function cos(𝑥)

Exercise: Follow the same process as explained in the Jupyter Book and approximate the function cos(𝑥). Plot the
approximation and the error

Approximating ODEs using
Taylor Series

1.3

Using Taylor series to solve ODEs

Let’s see how we can use the Taylor series to solve an ODE. We start with our model problem:

𝑚 ሷ𝑢 + 𝑐 ሶ𝑢 + 𝑘𝑢 = 𝐹(𝑡)

with Initial Conditions (IC):

𝑢 0 = 𝑢0, ሶ𝑢(0) = ሶ𝑢0

From the equation of motion, we can also get the second derivative (acceleration):

ሷ𝑢 0 = ሷ𝑢0 =
𝐹 0 − 𝑘𝑢0 − 𝑐 ሶ𝑢0

𝑚

We want to find an approximation to the solution 𝑢 (෤𝑢) using the Taylor series

𝑓 𝑥 = ෍

𝑖=0

∞
𝑓 𝑖 𝑎

𝑖!
𝑥 − 𝑎 𝑖

Using Taylor series to solve ODEs

Let’s take the expansion of 𝑢(𝑡) at a given time 𝑡∗:

𝑢 𝑡 = 𝑢 𝑡∗ + 𝑡 − 𝑡∗
ሶ𝑢 𝑡∗

1!
+ 𝑡 − 𝑡∗ 2

ሷ𝑢 𝑡∗

2!
+ 𝑡 − 𝑡∗ 3

ഺ𝑢 𝑡∗

3!
+ ⋯

Question: How do we select 𝑡∗?

Using Taylor series to solve ODEs

Let’s take the expansion of 𝑢(𝑡) at a given time 𝑡∗:

𝑢 𝑡 = 𝑢 𝑡∗ + 𝑡 − 𝑡∗
ሶ𝑢 𝑡∗

1!
+ 𝑡 − 𝑡∗ 2

ሷ𝑢 𝑡∗

2!
+ 𝑡 − 𝑡∗ 3

ഺ𝑢 𝑡∗

3!
+ ⋯

Question: How do we select 𝑡∗?

Answer: At a point where we can evaluate the function and its derivatives, 𝑡∗ = 𝑡0

𝑢(𝑡) = 𝑢0 + 𝑡 − 𝑡0 ሶ𝑢0 + 𝑡 − 𝑡0
2

ሷ𝑢0
2!

+ 𝑡 − 𝑡0
3
ഺ𝑢0
3!

+ ⋯

Using Taylor series to solve ODEs

Let’s take the expansion of 𝑢(𝑡) at a given time 𝑡∗:

𝑢 𝑡 = 𝑢 𝑡∗ + 𝑡 − 𝑡∗
ሶ𝑢 𝑡∗

1!
+ 𝑡 − 𝑡∗ 2

ሷ𝑢 𝑡∗

2!
+ 𝑡 − 𝑡∗ 3

ഺ𝑢 𝑡∗

3!
+ ⋯

Question: How do we select 𝑡∗?

Answer: At a point where we can evaluate the function and its derivatives, 𝑡∗ = 𝑡0

𝑢(𝑡) = 𝑢0 + 𝑡 − 𝑡0 ሶ𝑢0 + 𝑡 − 𝑡0
2

ሷ𝑢0
2!

+ 𝑡 − 𝑡0
3
ഺ𝑢0
3!

+ ⋯

If we evaluate the function at 𝑡1 = 𝑡0 + Δ𝑡, we have

𝑢 𝑡1 = 𝑢1 = 𝑢0 + Δ𝑡 ሶ𝑢0 + Δ𝑡2
ሷ𝑢0
2!

+ Δ𝑡3
ഺ𝑢0
3!

+⋯

Using Taylor series to solve ODEs

𝑢 𝑡1 = 𝑢1 = 𝑢0 + Δ𝑡 ሶ𝑢0 + Δ𝑡2
ሷ𝑢0
2!

+ Δ𝑡3
ഺ𝑢0
3!

+ ⋯

Question: Can we evaluate this expression?

Using Taylor series to solve ODEs

𝑢 𝑡1 = 𝑢1 = 𝑢0 + Δ𝑡 ሶ𝑢0 + Δ𝑡2
ሷ𝑢0
2!

+ Δ𝑡3
ഺ𝑢0
3!

+ ⋯

Question: Can we evaluate this expression?

Answer: We can only evaluate up to the third term, we don’t know ഺ𝑢0. We can approximate the solution by truncating

the expansion

𝑢1 ≈ ෤𝑢1 = 𝑢0 + Δ𝑡 ሶ𝑢0 + Δ𝑡2
ሷ𝑢0
2!

Using Taylor series to solve ODEs

෤𝑢1 = 𝑢0 + Δ𝑡 ሶ𝑢0 + Δ𝑡2
ሷ𝑢0
2!

We have the approximated solution at 𝑡1, let’s see if we can get 𝑢 𝑡2

෤𝑢2 = ෤𝑢1 + Δ𝑡 ሶ෤𝑢1 + Δ𝑡2
ሷ෤𝑢1
2!

We know that ሷ෤𝑢1 =
1

𝑚
𝐹1 − 𝑘 ෤𝑢 − 𝑐 ሶ෤𝑢 , so we just need to find ሶ෤𝑢1. Using another Taylor expansion we have that

ሶ𝑢1 = ሶ𝑢0 + Δ𝑡 ሷ𝑢0 +
Δ𝑡2

2
ഺ𝑢0 + ⋯

ሶ𝑢1 ≈ ሶ෤𝑢1 = ሶ𝑢0 + Δ𝑡 ሷ𝑢0

Using Taylor series to solve ODEs

This process can be generalized to all discrete points in our time interval 𝑡𝑖 for 𝑖 = 1, … , 𝑁. That is, knowing the solution

෤𝑢𝑖 and its time derivative ሶ෤𝑢𝑖, we can get the solution at 𝑡𝑖+1 as:

1. Compute acceleration at 𝑡𝑖

ሷ෤𝑢𝑖 =
1

𝑚
𝐹𝑖 − 𝑘 ෤𝑢𝑖 − 𝑐 ሶ෤𝑢𝑖

2. Approximate solution at 𝑡𝑖+1

෤𝑢𝑖+1 = 𝑢𝑖 + Δ𝑡𝑖 ሶ𝑢𝑖 + Δ𝑡𝑖
2 ሷ𝑢𝑖
2!

3. Approximate time derivative at 𝑡𝑖+1

ሶ෤𝑢𝑖+1 = ሶ𝑢𝑖 + Δ𝑡𝑖 ሷ𝑢𝑖

Exercise

Implement the algorithm described before to solve the ODE from 𝑡 = 0 to 𝑡 = 1.0 with Δ𝑡 = 0.01:

3 ሷ𝑢 + 0.5 ሶ𝑢 + 0.1𝑢 = 10

with Initial Conditions:

𝑢 0 = ሶ𝑢(0) = 0

Numerical errors

1.4

Local truncation error

The exact expansion of a function and its derivative is:

𝑢𝑛+1 = 𝑢𝑛 + Δ𝑡 ሶ𝑢𝑛 +
Δ𝑡2 ሷ𝑢𝑛
2

+
Δ𝑡3ഺ𝑢𝑛
3!

+ ⋯

ሶ𝑢𝑛+1 = ሶ𝑢𝑛 + Δ𝑡 ሷ𝑢𝑛 +
Δ𝑡2ഺ𝑢𝑛
2

+ ⋯

The truncated Taylor series (approximation):

𝑢𝑛+1 ≈ ෤𝑢𝑛+1 = 𝑢𝑛 + Δ𝑡 ሶ𝑢𝑛 + Δ𝑡2
ሷ𝑢𝑛
2

ሶ𝑢𝑛+1 ≈ ሶ෤𝑢𝑛+1 = ሶ𝑢𝑛 + Δ𝑡 ሷ𝑢𝑛

Local truncation error

The exact expansion of a function and its derivative is:

𝑢𝑛+1 = 𝑢𝑛 + Δ𝑡 ሶ𝑢𝑛 +
Δ𝑡2 ሷ𝑢𝑛
2

+
Δ𝑡3ഺ𝑢𝑛
3!

+ ⋯

ሶ𝑢𝑛+1 = ሶ𝑢𝑛 + Δ𝑡 ሷ𝑢𝑛 +
Δ𝑡2ഺ𝑢𝑛
2

+ ⋯

The truncated Taylor series (approximation):

𝑢𝑛+1 ≈ ෤𝑢𝑛+1 = 𝑢𝑛 + Δ𝑡 ሶ𝑢𝑛 + Δ𝑡2
ሷ𝑢𝑛
2

ሶ𝑢𝑛+1 ≈ ሶ෤𝑢𝑛+1 = ሶ𝑢𝑛 + Δ𝑡 ሷ𝑢𝑛

Question: What is the error between 𝑢𝑛+1 and ෤𝑢𝑛+1?

Local truncation error
The truncations introduced an error 𝜖(𝑡):

𝜖𝑢 𝑡1 = Δ𝑡3
ഺ𝑢 𝑡0
3!

+ ⋯ = 𝑂 Δ𝑡3

𝜖 ሶ𝑢 𝑡1 = Δ𝑡2
ഺ𝑢 𝑡0
2!

+ ⋯ = 𝑂 Δ𝑡2

Since the system converges as Δ𝑡 decreases (the error become smaller), we are mainly interested in the rate of converge (how

fast does the error reduces when reducing Δ𝑡).

The symbol 𝑂(Δ𝑡𝑟) indicates the order of the truncation.

Example: Let’s say we computed response using Δ𝑡 and it was not accurate enough. We reduce Δ𝑡 by a factor 10 in order to

improve the converge. This reduces the error by a factor:

Δ𝑡
10

3 ഺ𝑢0
3!

Δ𝑡3
ഺ𝑢0
3!

=
1

103
≪

Δ𝑡
10

2 ഺ𝑢0
2!

Δ𝑡2
ഺ𝑢0
2!

=
1

102

Local truncation error

Question: What can we conclude about the order of the truncation error of our ODE solver?

Local truncation error

Question: What can we conclude about the order of the truncation error of our ODE solver?

Answer: The higher the order of the solver, the quicker it will converge to the correct solution. Therefore, a higher order

improves to accuracy of the solver.

Local truncation error

Question: What can we conclude about the order of the truncation error of our ODE solver?

Answer: The higher the order of the solver, the quicker it will converge to the correct solution. Therefore, a higher order

improves to accuracy of the solver.

Based on this logic we would want to have to order as high as possible.

Question: Why is this not always the case in reality?

Local truncation error

Question: What can we conclude about the order of the truncation error of our ODE solver?

Answer: The higher the order of the solver, the quicker it will converge to the correct solution. Therefore, a higher order

improves to accuracy of the solver.

Based on this logic we would want to have to order as high as possible.

Question: Why is this not always the case in reality?

Answer:

- Increased calculation time.

- Higher orders make use of higher derivatives, which require the function to be very smooth.

Local truncation error

Both errors, 𝜖𝑢 and 𝜖 ሶ𝑢, are added to together while evaluating the acceleration:

ሷ𝑢𝑛 =
1

𝑚
𝐹𝑛 − 𝑐 ሶ𝑢𝑛 − 𝑘𝑢𝑛

ሷ𝑢𝑛 =
1

𝑚
𝐹𝑛 − 𝑐 ሶ෤𝑢𝑛 + 𝜖 ሶ𝑢 − 𝑘(෤𝑢𝑛 + 𝜖𝑢) ∼ 𝑂(Δ𝑡2 + Δ𝑡3)

Local truncation error

Both errors, 𝜖𝑢 and 𝜖 ሶ𝑢, are added to together while evaluating the acceleration:

ሷ𝑢𝑛 =
1

𝑚
𝐹𝑛 − 𝑐 ሶ𝑢𝑛 − 𝑘𝑢𝑛

ሷ𝑢𝑛 =
1

𝑚
𝐹𝑛 − 𝑐 ሶ෤𝑢𝑛 + 𝜖 ሶ𝑢 − 𝑘(෤𝑢𝑛 + 𝜖𝑢) ∼ 𝑂(Δ𝑡2 + Δ𝑡3)

Question: Which error will become governing if we keep decreasing Δ𝑡, 𝜖𝑢(𝑡1) = 𝑂(Δ𝑡3) or 𝜖 ሶ𝑢(𝑡1) = 𝑂(Δ𝑡2)?

Local truncation error

Both errors, 𝜖𝑢 and 𝜖 ሶ𝑢, are added to together while evaluating the acceleration:

ሷ𝑢𝑛 =
1

𝑚
𝐹𝑛 − 𝑐 ሶ𝑢𝑛 − 𝑘𝑢𝑛

ሷ𝑢𝑛 =
1

𝑚
𝐹𝑛 − 𝑐 ሶ෤𝑢𝑛 + 𝜖 ሶ𝑢 − 𝑘(෤𝑢𝑛 + 𝜖𝑢) ∼ 𝑂(Δ𝑡2 + Δ𝑡3)

Question: Which error will become governing if we keep decreasing Δ𝑡, 𝜖𝑢(𝑡1) = 𝑂(Δ𝑡3) or 𝜖 ሶ𝑢(𝑡1) = 𝑂(Δ𝑡2)?

Answer: 𝜖 ሶ𝑢 𝑡1 because it is of a lower order! Mathematically: 𝑂 Δ𝑡3 + 𝑂 Δ𝑡2 = 𝑂 Δ𝑡2

Local truncation error
Both errors, 𝜖𝑢 and 𝜖 ሶ𝑢, are added to together while evaluating the acceleration:

ሷ𝑢𝑛 =
1

𝑚
𝐹𝑛 − 𝑐 ሶ𝑢𝑛 − 𝑘𝑢𝑛

ሷ𝑢𝑛 =
1

𝑚
𝐹𝑛 − 𝑐 ሶ෤𝑢𝑛 + 𝜖 ሶ𝑢 − 𝑘(෤𝑢𝑛 + 𝜖𝑢) ∼ 𝑂(Δ𝑡2 + Δ𝑡3)

Question: Which error will become governing if we keep decreasing Δ𝑡, 𝜖𝑢(𝑡1) = 𝑂(Δ𝑡3) or 𝜖 ሶ𝑢(𝑡1) = 𝑂(Δ𝑡2)?

Answer: 𝜖 ሶ𝑢 𝑡1 because it is of a lower order! Mathematically: 𝑂 Δ𝑡3 + 𝑂 Δ𝑡2 = 𝑂 Δ𝑡2

Since there is a cost associated with this third order error, namely evaluating Δ𝑡2
ሷ𝑢𝑛

2
, and we have just shown that there

is no benefit, let’s improve the efficient of our algorithm:

𝑢𝑛+1 ≈ ෤𝑢𝑛+1 = 𝑢𝑛 + Δ𝑡 ሶ𝑢𝑛

ሶ𝑢𝑛+1 ≈ ሶ෤𝑢𝑛+1= ሶ𝑢𝑛 + Δ𝑡 ሷ𝑢𝑛

Local truncation error
Both errors, 𝜖𝑢 and 𝜖 ሶ𝑢, are added to together while evaluating the acceleration:

ሷ𝑢𝑛 =
1

𝑚
𝐹𝑛 − 𝑐 ሶ𝑢𝑛 − 𝑘𝑢𝑛

ሷ𝑢𝑛 =
1

𝑚
𝐹𝑛 − 𝑐 ሶ෤𝑢𝑛 + 𝜖 ሶ𝑢 − 𝑘(෤𝑢𝑛 + 𝜖𝑢) ∼ 𝑂(Δ𝑡2 + Δ𝑡3)

Question: Which error will become governing if we keep decreasing Δ𝑡, 𝜖𝑢(𝑡1) = 𝑂(Δ𝑡3) or 𝜖 ሶ𝑢(𝑡1) = 𝑂(Δ𝑡2)?

Answer: 𝜖 ሶ𝑢 𝑡1 because it is of a lower order! Mathematically: 𝑂 Δ𝑡3 + 𝑂 Δ𝑡2 = 𝑂 Δ𝑡2

Since there is a cost associated with this third order error, namely evaluating Δ𝑡2
ሷ𝑢𝑛

2
, and we have just shown that there

is no benefit, let’s improve the efficient of our algorithm:

𝑢𝑛+1 ≈ ෤𝑢𝑛+1 = 𝑢𝑛 + Δ𝑡 ሶ𝑢𝑛

ሶ𝑢𝑛+1 ≈ ሶ෤𝑢𝑛+1= ሶ𝑢𝑛 + Δ𝑡 ሷ𝑢𝑛

Forward Euler method!

Local truncation error

Question: What can we conclude about the order of the truncation error of our ODE solver?

Answer: The higher the order of the solver, the quicker it will converge to the correct solution. Therefore, a higher order

improves to accuracy of the solver.

Based on this logic we would want to have to order as high as possible.

Question: Why is this not always the case in reality?

Answer:

- Increased calculation time.

- Higher orders make use of higher derivatives, which require the function to be very smooth.

Global truncation error

The Forward Euler method has a local truncation error with a quadratic order of convergence (𝑂 Δ𝑡2).

The global error of convergence is the error at the final step, which will have all the local step error accumulation. For

a solution from 𝑡 = [0, 𝑇] with 𝑁 time steps, i.e. Δ𝑡 =
𝑇

𝑁
, we have that the total error will be:

𝜖 𝑇 = ෍

𝑖=1

𝑁

𝜖𝐿 ∼ 𝑁𝜖𝐿 =
𝑇

Δ𝑡
𝜖𝐿 ∼

1

Δ𝑡
𝑂 Δ𝑡2 = 𝑂 Δ𝑡

Then, the global error will be of order 1, 𝑂 Δ𝑡

Exercise

Workshop / Tutorial in jupyter book

Time stepping and error
control

1.5

Time stepping

We have seen that the time step influences the error of the solution. How do we choose Δ𝑡?

Question: We want to solve the displacement of a system with a natural frequency of 𝜔𝑛 = 2𝜋. Which Δ𝑡 should we

choose?

Answer: It depends on the balance accuracy-computational time.

-2

-1

0

1

2

0 1 2 3 4 5 6 7

Sin(t) @ dt=1.00s

-2

-1

0

1

2

0 1 2 3 4 5 6

Sin(t) @ dt=0.50s

-2

-1

0

1

2

0

0
.7

5

1.
5

2
.2

5 3

3
.7

5

4.
5

5
.2

5 6

6
.7

5

Sin(t) @ dt=0.25s

Time stepping

We have seen that the time step influences the error of the solution. How do we choose Δ𝑡?

Question: If we have a system with many frequencies. Which frequency will limit the Δ𝑡?

Answer: The highest frequency will govern the time step size. To capture the high frequency signal we need small time

steps.

Error control

Previously we found that the Forward Euler solver has the following truncation error:

𝜖𝑢(𝑡𝑛+1) =
Δ𝑡
2

2
ሷ𝑢𝑛 + 𝑂 Δ𝑡

3 𝜖 ሶ𝑢(𝑡𝑛+1) =
Δ𝑡
2

2
ഺ𝑢𝑛 + 𝑂 Δ𝑡

3

We established that we can control this error by reducing the time step. Let’s say we want out error to be below a

certain tolerance.

𝜖𝑢 𝑡𝑛+1 ≤ 𝜖𝑡𝑜𝑙 , 𝜖 ሶ𝑢 𝑡𝑛+1 ≤ 𝜖𝑡𝑜𝑙

Question: In a function like the one shown below, which part of the simulation will be governing for deciding Δ𝑡? Why?

Answer: We have to use a variable time step.

Answer: The part with the highest ሷu𝑛 and ഺ𝑢𝑛.

Question: How can we avoid this issue?

Error control

Let’s say we want the error to be smaller than some tolerance 𝜏 (for both 𝜖𝑢 and 𝜖 ሶ𝑢). Here we’ll do the analysis for 𝜖𝑢:

Δ𝑡2

2
ሷ𝑢𝑛 + 𝑂 Δ𝑡3 ≤ 𝜏

Ignoring the higher order terms and solving for Δ𝑡 gives:

Δ𝑡𝑛 ≤ 2
𝜏

ሷ𝑢𝑛

Question: Does this step size guarantee the error is smaller than the tolerance?

Answer: No, we cannot guarantee that because we didn’t account for the 𝑂 Δ𝑡3 error.

Error control

To also account for𝜖 ሶ𝑢, the time step should be:

Δ𝑡𝑛 ≤ min 2
𝜏

ሷ𝑢𝑛
, 2

𝜏

ഺ𝑢𝑛

But we don’t know ഺ𝑢𝑛. We can approximate it by:

ഺ𝑢𝑛 ≈
ሷ𝑢𝑛 − ሷ𝑢𝑛−1
Δ𝑡𝑛−1

Error control

How do we choose the tolerance 𝜏?

We can establish a relative tolerance with respect to the solution: 𝜏 = 𝜖𝑟𝑒𝑙|𝑢𝑛|

Δ𝑡𝑛 ≤ min 2
𝜖𝑟𝑒𝑙|𝑢𝑛|

ሷ𝑢𝑛
, 2

𝜖𝑟𝑒𝑙| ሶ𝑢𝑛|

ഺ𝑢𝑛

Question: What if the solution and the time derivative go to zero?

Answer: Add an absolute tolerance to prevent the time step to go to zero

𝜏 = max 𝜖𝑟𝑒𝑙 𝑢𝑛 , 𝜖𝑎𝑏𝑠

-1.5

-1

-0.5

0

0.5

1

1.5

0

0.
55 1
.1

1.
65 2
.2

2.
75 3
.3

3.
85 4
.4

4.
95 5
.5

6.
05 6
.6

Sin(t) 𝜖𝑎𝑏𝑠 =0.5

Error control

Implementation details:

▪ At the start of a calculation it is unclear how “fast” the system moves. Therefore, the solver must first find a suitable

time step.

▪ To achieve this, we can iterate until it find a time step that meets the specified tolerances.

▪ Unless the system has a very abrupt change in its “speed”, the solver can keep using a similar / the same step size.

Types of ODE solvers

1.6

Types of ODE solvers

Going back to the compact form of our Forward Euler scheme:

𝒒𝑛+1 = 𝒒𝑛 + Δ𝑡 ሶ𝒒𝑛 + 𝑂 Δ𝑡2

We can make it more abstract:

𝒒𝑛+1 = 𝑓𝐹𝐸 𝒒𝑛, ሶ𝒒𝑛 + 𝑂 Δ𝑡2

Where 𝑓𝐹𝐸 is a function (in this case for our Forward Euler scheme) that takes the current state 𝒒𝑛 and its derivative ሶ𝒒𝑛

as input and computes the state at the next time-step with some error. And since ሶ𝒒𝑛 can be computed from 𝒒𝑛 (using

the EOM):

𝒒𝑛+1 = 𝑓𝐹𝐸 𝒒𝑛 + 𝑂 Δ𝑡2

An example of other solver:

Using this form we can look at other ODE solvers. For instance, the 5th order Runga-Kutta scheme that you will be

mostly using during the course:

𝒒𝑛+1 = 𝑓𝑅𝐾45 𝒒𝑛 + 𝑂 Δ𝑡5

Types of ODE solvers

Forward Euler Runge-Kutta 45

One stage vs multi-stages:

Forward Euler uses 1 stage Runge-Kutta 45 uses 4 stages

𝒒𝑛+1 = 𝑓𝐹𝐸 𝒒𝑛 + O Δ𝑡
2 𝒒𝑛+1 = 𝑓𝑅𝐾45 𝒒𝑛 + O Δ𝑡

5

Question: Why not always use RK45?

Answer: An improved accuracy always requires using more points and therefore reduce the speed of the system.

However, they also allow for larger time steps.

𝑡𝑛
𝑡𝑛+1

1

The Forward Euler method

𝑡𝑛 𝑡𝑛+1𝑡𝑛 + Δt/2

1 2

3

4

The Runge–Kutta method

https://en.wikipedia.org/wiki/Euler_method
https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods

Types of ODE solvers

Forward Euler Runge-Kutta 45

multi-step methods

One step vs multi-step:

Forward Euler uses 1 step Runge-Kutta 45 uses 1 step

𝒒𝑛+1 = 𝑓𝐹𝐸 𝒒𝑛 + O Δ𝑡
2 𝒒𝑛+1 = 𝑓𝑅𝐾45 𝒒𝑛 + O Δ𝑡

5

Explicit multi-step methods:

2 step: 𝒒𝑛+1 = 𝑓?? 𝒒𝑛, 𝒒𝑛−1 + O Δ𝑡
?

3 step: 𝒒𝑛+1 = 𝑓?? 𝒒𝑛, 𝒒𝑛−1, 𝒒𝑛−2 + O Δ𝑡
?

𝑡𝑛 𝑡𝑛+1

𝑡𝑛 𝑡𝑛+1𝑡𝑛−1𝑡𝑛−2

https://en.wikipedia.org/wiki/Euler_method
https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods
https://en.wikipedia.org/wiki/Linear_multistep_method

Types of ODE solvers

Forward Euler Runge-Kutta 45

Backward Euler

Explicit vs implicit:

Forward Euler uses 1 step Runge-Kutta 45 uses 1 step

𝒒𝑛+1 = 𝑓𝐹𝐸 𝒒𝑛 + O Δ𝑡
2 𝒒𝑛+1 = 𝑓𝑅𝐾45 𝒒𝑛 + O Δ𝑡

5

Implicit methods: (example Backward Euler)

𝒒𝑛+1 = 𝑓?? 𝒒𝑛, 𝒒𝑛+1 + O Δ𝑡
?

Implicit methods have better stability properties, but they are often more expensive

𝑡𝑛 𝑡𝑛+1

https://en.wikipedia.org/wiki/Euler_method
https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods
https://en.wikipedia.org/wiki/Backward_Euler_method

Thank you for your attention
Oriol Colomés

	Slide 1
	Slide 2
	Slide 3
	Slide 4: Learning objectives
	Slide 5
	Slide 6: Introduction
	Slide 7: Introduction
	Slide 8: Notation
	Slide 9
	Slide 10: Taylor Series
	Slide 11: Taylor Series
	Slide 12: Taylor Series
	Slide 13: Taylor Series
	Slide 14: Taylor Series
	Slide 15: Taylor Series
	Slide 16: Taylor Series
	Slide 17: Taylor Series
	Slide 18: Taylor Series
	Slide 19: Taylor Series
	Slide 20: Exercises
	Slide 21
	Slide 22: Using Taylor series to solve ODEs
	Slide 23: Using Taylor series to solve ODEs
	Slide 24: Using Taylor series to solve ODEs
	Slide 25: Using Taylor series to solve ODEs
	Slide 26: Using Taylor series to solve ODEs
	Slide 27: Using Taylor series to solve ODEs
	Slide 28: Using Taylor series to solve ODEs
	Slide 29: Using Taylor series to solve ODEs
	Slide 30: Exercise
	Slide 31
	Slide 32: Local truncation error
	Slide 33: Local truncation error
	Slide 34: Local truncation error
	Slide 35: Local truncation error
	Slide 36: Local truncation error
	Slide 37: Local truncation error
	Slide 38: Local truncation error
	Slide 39: Local truncation error
	Slide 40: Local truncation error
	Slide 41: Local truncation error
	Slide 42: Local truncation error
	Slide 43: Local truncation error
	Slide 44: Local truncation error
	Slide 45: Global truncation error
	Slide 46: Exercise
	Slide 47
	Slide 48: Time stepping
	Slide 49: Time stepping
	Slide 50: Error control
	Slide 51: Error control
	Slide 52: Error control
	Slide 53: Error control
	Slide 54: Error control
	Slide 55
	Slide 56: Types of ODE solvers
	Slide 57: Types of ODE solvers
	Slide 58: Types of ODE solvers
	Slide 59: Types of ODE solvers
	Slide 60: Thank you for your attention

