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ABSTRACT

There are increasing calls for mathematics teachers to foster com-
putational thinking (CT) skills in their lessons and align them with
existing curricula and national educational policies. Algorithmic
thinking (AT) and generalization are two key elements of CT that
are often underrepresented in traditional mathematics lessons. This
study investigated how to address AT and generalization aspects
in 12th-grade calculus lessons using the dynamic mathematics soft-
ware GeoGebra. We present a six-lesson intervention designed by
an interdisciplinary team of researchers and teachers with a back-
ground in computer science and mathematics education that aims
to foster pre-university students’ AT and generalization skills in
calculus lessons. We evaluated the intervention in a 15 students
classroom in the Netherlands through the analysis of students’
workbooks, files, interviews, and the teacher’s logbook. The find-
ings suggest that the intervention was favorably seen by both the
teacher and the students, and that their learning and teaching ex-
perience was highly satisfactory. The most common challenges
for successfully completing the designed material included issues
related to getting familiar with GeoGebra, syntax, and effectively
using conditional statements. Finally, we report on the learning
and teaching experience and discuss strategies to address AT and
generalization aspects for teachers who wish to address such CT
aspects in mathematics lessons.
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1 INTRODUCTION

Computational Thinking (CT) is an essential skill for everyone in
an increasingly computing-oriented world. According to Wing [47],
it should be fostered as other crucial skills like “reading, writing
and arithmetic” (p. 33). After the popularization of Wing’s influ-
ential article, there are global efforts to foster CT in primary and
secondary education, in STEAM (Science, Technology, Engineering,
Arts, Mathematics) and humanities. In more than a decade, CT
research is evolving and focuses on specific CT elements that in-
clude abstraction, decomposition, pattern recognition, algorithmic
thinking, and generalization among other aspects.

In technology-rich mathematics education, computational tools
as a means of both learning and problem-solving offer promising
opportunities to foster CT within learning activities that are aligned
with existing curricula and educational policies. However, embed-
ding CT thinking elements and practices into mathematics lessons
is a complex and challenging process that needs to be tested and
refined before infiltrating schools’ curricula to prepare teachers for
the upcoming challenges that inevitably occur.

This work investigated how to address AT and generalization
aspects in 12th-grade calculus lessons using the dynamic math-
ematics software (DMS), GeoGebra [24]. We present a six-lesson
intervention designed by an interdisciplinary team of researchers
and teachers with a background in computer science and mathe-
matics education that aimed at fostering CT in pure mathematics
lessons through the use of GeoGebra. Even though the designed
intervention touches on various aspects of CT, we focus on AT
and generalization, two key CT elements that are often missing in
traditional mathematics lessons.
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We implemented and evaluated the designed intervention for
pre-university students in a calculus class in the Netherlands to
answer the following research questions:

e RQ1: How can AT and generalization aspects be addressed
using DMS in 12th-grade calculus lessons?

e RQ2: What challenges do students encounter in successfully
completing AT and generalization tasks using DMS in 12th-
grade calculus lessons?

To answer the research questions at hand, we used a mixed-
methods approach which we discuss in section 3. We hope that this
study will contribute to existing efforts for designing computation-
ally rich mathematics lessons that touch various aspects of CT. This
study aims at informing educators about the challenges that will
inevitably occur while addressing AT and generalization aspects in
calculus lessons.

2 THEORETICAL BACKGROUND
2.1 Computational Thinking

Computational thinking (CT) receives more and more attention
from educators, educational researchers, and policymakers in an
increasingly computational world. The term CT was popularized
in Wing’s influential article [47] where she argued that “to reading,
writing, and arithmetic, we should add computational thinking to
every child’s analytical ability”. However, Papert first introduced
the term [36], envisioning computer programming as a means for
developing children’s procedural thinking by algorithmically solv-
ing problems. Papert did not define CT, and a universal definition
seems to be missing in the academic literature [23]. Wing [47] ini-
tially highlights the importance of CT with respect to the impact of
computation and computer science in modern life: “computational
thinking involves solving problems, designing systems, and under-
standing human behavior, by drawing on the concepts fundamental to
computer scienc” (p. 33). In later work, Cuny, Snyder and Wing [14]
provide a working definition: “Computational thinking is the thought
processes involved in formulating problems and expressing its solution
as transformations to information that an agent can effectively carry
out”.

Even though there is no universal definition for CT, there are uni-
versally accepted CT elements like abstraction [30], decomposition
[23], AT [3], and generalization [2, 40], among other elements. In
this work, we focus on AT and generalization, two underrepresented
elements in CT embedded activities in mathematics education.

Assessing CT activities is a complex and challenging task be-
cause of multiple CT aspects that are at interplay, and because
there is a lack of concrete definitions, as well as different contexts
and focus in existing studies investigating CT [45]. The work of
Brennan and Resnick [7] presents a framework for assessing CT,
which includes computational concepts (e.g., loops and selection),
computational practices (e.g., testing and debugging), and compu-
tational perspectives (of individuals about their perception of the
world and themselves). Even though the framework is being used
with respect to the educational programming language Scratch,
it can also be used to assess computational activities in different
programming environments.

Studies focusing on specific CT aspects can benefit from a work-
ing model for “operationalizing” CT. Atmatzidou and Demetriadis
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[3] use a model that includes five main aspects of CT, namely “ab-
straction, generalization, algorithm, modularity and decomposition”
(p. 661) and various data collection methods, including pre and post-
tests, interviews, a think-aloud protocol, observations, and opinion
questionnaires.

2.2 Algorithmic Thinking and Generalization

Algorithmic thinking is a crucial component of computer science
[19] and CT [47]. It includes a wide range of thinking skills for
understanding and designing algorithms, including “the ability to
construct a correct algorithm to a given problem using the basic ac-
tions” and “the ability to think about all possible special and normal
cases of a problem” (p. 160) [19].

The design and construction of an algorithm can be implemented
using logical structures like sequence (a series of steps executed in
a specific order), selection (a logical construct where a section of
code is executed when a condition is met ), and loop (a structure
that repeats a sequence of instructions until a specific condition is
met). In computationally rich activities, several CT elements are
at interplay. For example, AT is required to consider special and
regular cases of a problem when finding a generalized solution to
the problem.

Generalization is also related to abstraction in the sense that
regular cases are formulated as general notions. Abstraction is
considered a key element of CT, and Wing [47] refers to it as the
“mental tool of computing”. However, the concepts of abstraction
and generalization are vital in mathematics [33] and have been
receiving focus in mathematics research for decades now. Even
though there are differences between CT aspects like abstraction
in mathematics and abstraction in computer programming [47],
there are parallels between CT and mathematical thinking that are
receiving increasing attention in order to address CT aspects in
mathematics [26] and science [44].

2.3 CT in Mathematics Education

After a relatively stable period of using graphing calculators, recent
developments in mathematics education include the use of tablets
and laptops, interactive whiteboards, and online interactive environ-
ments for learning and assessment. Despite the widely recognized
affordances of such tools, their productive exploitation for teaching
is complex [32]. Furthermore, using sophisticated computational
tools in the mathematics classroom requires the appropriate tech-
niques for using them and insights into what is happening and
what should be done [16]. However, the use of such sophisticated
tools in the classroom does not necessarily lead to the cultivation of
CT. Computational thinking-embedded activities should be aligned
with suitable didactical approaches and pedagogies [3, 20].
Initiatives have been taken to explore and research the inte-
gration of CT in mathematics education, in K-12 and in higher
education. The topics addressed show large diversity, from group
theory in grade 3-6 [21], geometry in grade 8-10 [28], to probabil-
ity and statistics [13, 17], and use a wide range of tools, such as
Scratch [10, 15], Logo-based tools [28], spreadsheets [29, 39] and
the graphical calculator [27]. However, studies related to secondary
education calculus lessons and CT are underrepresented. This field
is worthwhile to explore in more depth and the relation of CT and
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mathematics is also acknowledged in the OECD’s new Programme
for International Student Assessment survey (PISA) mathematics
framework. [34]. This framework argues that mathematical literacy
in the 21st century includes mathematical reasoning and aspects of
CT.

As informatics is still not a mandatory subject in K-12, there are
limited opportunities for fostering algorithmic design in the class-
room [43]. However, mathematics and science frequently require
the use of computational tools, and they provide rich opportunities
for fostering CT [25, 46]. Moreover, as mathematics and science are
more represented in school curricula, there are greater chances of
fostering CT - a fundamental skill for 21st-century citizenship - for
historically underrepresented populations [44].

3 METHODS

We designed, implemented and evaluated CT-embedded calculus
learning activities focusing on AT and generalization. This ex-
ploratory case study took the form of an educational design re-
search (EDR) approach [42, 49]. Below, we present the intervention
design and the educational context of the developed activities.

3.1 Intervention Design

3.1.1 Educational Context. The intervention took place physically
at a middle size secondary school (about 900 students) in a mid-
dle size village (about 30.000 inhabitants) in the Netherlands. The
intervention consisted of six calculus lessons of 45 minutes each
and took place in mandatory mathematics lessons. By the end of
the learning activity, students were expected to be able to use pa-
rameters, conditional statements, and iterations in the GeoGebra
environment (http://geogebra.org) to tackle problems in calculus-
related assignments.

3.1.2  Learning Activity. The learning activity is a part of a more
extensive study looking at students’ learning outcomes in CT in
pure and applied mathematics. It was designed by an interdisci-
plinary team of researchers and teachers with a background in
computer science and mathematics education. The mathematics
content (e.g., perpendicular bisector, focal points, tangents, zeros of
functions) and aspects (e.g., object formation, encapsulation) were
addressed in the learning activity under the lens of AT (e.g., the use
of logical structures such as sequences, selections, and loops) and
generalization (e.g., with the use of variables for finding a general
solution to a mathematical problem).

The teacher led the learning activity by introducing the designed
learning material to the students and helping them to tackle prob-
lems when needed. He was familiar with the used software GeoGe-
bra and was involved in the co-design of the lesson series.

3.1.3  Learning Materials and Tools. The activity included using
a workbook with tasks on paper and the open-source computer
program GeoGebra. Completing the designed assignments required
a good synergy of AT and generalization skills, and also using
computational concepts such as conditional statements, iterations,
and parameters.

The workbook consisted of seven chapters that guided the stu-
dents through functional algorithms in the GeoGebra environment.
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In Chapter 1 to 4, conditional statements were used. Examples of
using conditional statements included the calculation of the slope
of a line through points A and B, considering the case that the
line might be vertical, i.e., points A and B are directly above each
other. Another example is using a conditional statement so that the
perpendicular bisector of line segment AB is drawn in the exception
case of a horizontal line.

Chapter 5 and 6 used iterations, for example, to create a specific
number of tangent lines. Chapter 7 was a (voluntary) final task about
the Newton-Raphson method for calculating zeros of a function and
using iterations and a macro (a sequence of computing instructions).
For Chapter 7, the students could voluntarily make an end report.

All chapters required generalizing from a specific case to a more
general one by using parameters to create a general solution. For
example, creating a general solution by defining an equation that
depends on the coordinates of points A and B, so that when a
student drags the points A and B, the equation changes along with
them. All assignments required the combined use of generalization
and algorithmic thinking skills.

GeoGebra is dynamic mathematics software that is used for
geometry, algebra, statistics and calculus lessons in primary, sec-
ondary and higher education and can be downloaded or used online
for free on geogebra.org. It allows the creation of points, lines, seg-
ments, vectors, among other mathematical representations, which
can be dynamically altered once instantiated. GeoGebra can store
variables for mathematical objects such as numbers, points, line
segments, vectors, equations and fuctions. Objects can be entered
and modified by using buttons or by using input fields. Moreover,
GeoGebra allows the use of iteration lists and conditions and can be
used to introduce computational concepts in computing education.
In GeoGebra, generalization is practiced mainly through the use of
variables, which can be combined with conditional statements. An
example is when using variables in a general solution of a problem
that also includes special cases, e.g., the denominator of a fraction
in an equation being zero. One valuable feature of GeoGebra is
its visualization possibilities which enhances the exploration of
mathematics [1].

3.2 Participants

Our study sample consisted of 15 twelfth-grade pre-university stu-
dents (eleven female and four male) that were 17-18 years old. The
students did not have prior knowledge of the GeoGebra software,
but some had seen their teacher using it in previous lessons. The
students were informed about the study’s aims and could voluntar-
ily consent to use their data to evaluate their learning experience.
We took ethical considerations into account and put great efforts
into ensuring the implementation of good research practices for
underage populations. Eleven of the students have provided us with
complete data.

3.3 Data Collection

3.3.1 Workbooks and GeoGebra Files. We collected workbooks
and GeoGebra files of the students in order to identify how the
students tackled AT and generalization tasks and what challenges
they encountered in successfully completing them.
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3.3.2 Interviews. To better understand students’ learning expe-
rience with the designed learning activities, we conducted semi-
structured interviews with students who were willing to participate.
In total, 12 students participated in the interviews, which took place
during the course of the lesson series.

We asked students about their opinions on the learning activities,
how they solved the tasks and how they implemented CT concepts
and practices. All interviews were transcribed and were analyzed
using the developed codebook.

3.3.3 Teacher’s Logbook. To investigate the learning and teaching
experience of the educational experiment from the teacher’s per-
spective, we asked the teacher to fill in a logbook and take notes
regarding the teaching and learning experience.

The logbook manuscripts were analyzed using the codebook.
Additionally, the focus was on student understanding and learning
outcomes, and planning and instruction

3.4 Data Analysis

To tackle the research questions at hand, we followed a mixed-
methods approach to triangulate our findings. A mixed-methods
approach is suitable for investigating phenomena with novel ed-
ucational technologies and provides more robust evidence on the
impact of the designed intervention [38].

To capture and analyze CT aspects in practice in the different
data sources, we developed a codebook following a deductive and
inductive approach. Based on the design of the assignments, the
themes (1) generalisation and (2) algorithmic thinking with sub-
themes (2.1) translation of mathematical tasks into computational
steps in GeoGebra, and (2.2) logical structures (such as, sequences, se-
lections and loops) were predefined. From the interview transcripts
of students, their GeoGebra files and workbooks, and the teacher’s
logbook additional themes were derived: (3) students’ strategies
for AT and generalization, (4) perceived difficulty, (5) encountered
problems or challenges, and (6) resources to tackle problems.

We used data triangulation and investigator triangulation [12]
and analyzed the different types of data collaboratively. The re-
searchers worked in close cooperation and met weekly in an itera-
tive process to make notes on manuscripts and compare codes.

We analyzed the students’ successful completion rate using the
students’ workbooks and GeoGebra files, the students’ self-reported
strategies with respect to AT and generalization, respectively, as
expressed in the interviews, and the teacher’s experience from the
teacher’s logbook. Finally, we captured the encountered challenges
through the analysis of the workbooks and Geogebra files as well
as the interviews with the students.

4 RESULTS

4.1 Successful Completion of the Assignments

Overall, according to the teacher of the class the successful com-
pletion rates of the workbooks and GeoGebra files were highly
satisfactory. For evaluating the completion rates of students’ work,
we used the descriptions “incomplete” for assignments that included
less than half of the tasks successfully completed, “partially com-
plete” for the assignments that included at least half of the tasks
successfully completed but the rest were missing or had mistakes,

Sylvia van Borkulo, Christos Chytas, Paul Drijvers, Erik Barendsen, and Jos Tolboom

and “successfully completed” for the assignments that were fully
completed without mistakes. Seven students included parts of code
that were unnecessary and did not serve any purpose in solving the
calculus tasks, but we described them as “successfully complete”
in the case that the solution was working. Two GeoGebra files for
two chapters were not submitted by two of the students.

Successful completion of workbooks

W incomplete M partially completed successfully completed

10

8

STIRIEN]

Chapter1 Chapter 2 Chapter 3 Chapter4 Chapter5 Chapter& Chapter 7

Successfully completed Geogebra assignments

M incomplete M partially completed successfully completed

: il || i

Chapter 1 Chapter 2 Chapter 3 Chapter 4

Chapter & Chapter 6

Figure 1: Successful completion rates

Algorithmic thinking skills were captured under the lens of algo-
rithmic design and the use of logical structures that are necessary
to address computational problems: sequence, selection and loop.
The students used the logical structure of sequence by translating
calculus assignments into computational steps in Geogebra, the
loop through iterations to repeat the required steps that lead to the
intended results, and selection through conditional statements to
consider the particular cases for a general solution of problems.

The workbook guided the students in performing the steps in
solving the given problems by predefining the steps that had to
be filled in. Filling in the steps required an excellent synergy of
understanding how to use the logical structures and mathematics
knowledge (for example using AT to consider the special case for a
general solution). The usual workflow was to fill in the steps in the
workbook and then complete the task in GeoGebra as illustrated in
Figures 2 and 3.
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Figure 3: Example of Geogebra assignment

Generalization was a manifest part of chapters 1 to 6. In the
workbooks, the tasks about the specific and general cases were
generally sufficiently filled in.

4.2 Students’ Experience on AT and
Generalization

Students’ overall reflections in the interviews indicate that they

welcomed the use of computational tools in their calculus lessons.

They perceived the benefits of using dynamic mathematics software
as more significant than the challenges new computational tools
bring. In addition, the students used AT and generalization skills to
a highly satisfactory degree in the assignments (as shown in Figure
1) and elaborated on them during the interviews.

4.2.1 Students’ Self-Reported Strategies for AT. Defining the steps
in the workbook to solve a problem and the implement the designed
solution in GeoGebra was mentioned as useful and handy in the
interviews by 10 students:

“Yeah, because ... if you write it down, it is easier to

memorize. And then put it all in the computer in one

go” (Student14, lesson 3)
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“It is handy, because you can fall back on it if you
get lost, if you are overwhelmed by the numbers”
(Student9, lesson 5).

However, one of the students had an explicit preference for first
working out the task in GeoGebra and then writing down the steps
in the workbook.

“Well, I actually do it the other way round. I first fill
it in (GeoGebra), and then I look if it is correct, and
then I write it down. But I find it useful ... because
... you can see step by step what you do” (Student5,
lesson 3 ).

Translating the calculus assignments into computational steps
in GeoGebra, also required decomposition skills to break down the
problem into smaller, more manageable parts that some students
refer to as “steps”, as Student5 illustrated:

“In the exercise, it is stated that you need to do it step
by step and it becomes more clear to me...It just helps
me very much” (Student5, lesson 3).

In the Chapter 7 end report, a student described the steps of the
Newton Raphson method, expressing his understanding of using
commands for the implementation of the computational steps in
GeoGebra:

“After entering the above steps, such as derivative
and tangent, into GeoGebra, point B had been calcu-
lated, using the Iteration option of GeoGebra ... these
steps were repeated five times, thus the zero point
was accurately determined” (End report of Student10
explaining the steps to calculate zero point).

In the Chapter 7 end report, a student showed understanding of
the advantage of using a macro in GeoGebra by explaining:

“To do these steps for each point on the function is
not practical. GeoGebra has a solution for this: you

take all these steps together in a so-called ‘macro’.
(End report Student14).

4.2.2  Students’ Self-Reported Strategies for Generalization. Stu-
dents worked on calculus tasks starting with a specific solution
and then proceeded with finding a general solution. The shift to
finding the general solution seemed natural to most students. In
the interviews, seven students mentioned it as easy. Student4 (in
lesson 6) explained:

“[Generalising] went well, because you started with
an example, with all the intermediate steps, so you
only had to replace it with letters”.

Another student (Studentl, lesson 4) also mentioned that it is
handy and easy to use letters. On the other hand, a student (Stu-
dent13, lesson 4) explained she did not find it easier, but she sees it is
handy to only fill in letters. One of the five students who completed
the whole series, including the more challenging and voluntary
chapter 7 final report, reflected on the Newton-Raphson method’s
general use for calculating zeros of a function. She described the
limitations of the method with regards to generalization as:

“There are some limitations to this method, though:

... If the derivative is equal to zero. To calculate the
new x-value (x1) you must divide by the derivative.
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If it is 0 the method does not work since dividing by
zero is not possible” (Student12).

4.3 Teacher’s View on Addressing AT and
Generalization

With respect to AT and using formulas, the teacher encouraged
students to let the computer do the work and stressed the advantage
of using functions in GeoGebra:

“Calculate y’(x), while GeoGebra can do it, is a pity....
Because then the function is no longer adaptable into
something else”.

Overall, the students showed a good understanding of the logic
structures of sequence, loop and selection. The teacher was partic-
ularly satisfied with the successful completion rate of the assign-
ments that required the use of iterations and conditional statements.

With respect to generalization, the teacher experienced that
using variables in GeoGebra triggered insight about the usefulness
of variables. He described in the logbook:

“Many don’t realize that if you define... ‘a’, then you
can then call ‘a’. So they just type in the formula
again... For some, this is really an ‘eye-opener’””.

4.4 Encountered Challenges

4.4.1 Common Mistakes in Workbooks and GeoGebra. The eval-
uation of the students’ workbooks and GeoGebra files aimed to
identify which computational concepts and practices of the de-
signed material were challenging or problematic for the students.
Therefore, this evaluation does not seek to characterize the students’
learning outcomes in AT and generalization. Instead, it captures
students’ ways of using these skills and their potential misconcep-
tions related to using logical structures (e.g., selections and loops)
and parameters or variables.

The workbook analysis in Figure 4 shows that the tasks that were
the most challenging for the students were related to a) conditional
statements (11 students), iteration mistakes (e.g., wrong steps) (7
students), wrong equation being used (4 students), missing the
general case (4 students) and incorrect use of variables (3 students).

conditional iteration wrong missing incorrect use
mistakes mistakes equation  general case of variables
used

Figure 4: Workbook mistakes
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The GeoGebra tasks that appeared to be the most challenging
(Figure 5) for the students were related to missing part of the so-
lution (9 students), even though it is unclear if students did not
understand the assignment - 6 of the students did not include their
own example in chapter 6. Seven students included parts of code
that did not serve a purpose to the solution of the given problems.
Other issues included the use of iterations (3 students) and condi-
tional statements (3 students). Some students did not manage to
properly save their file (3 students exported one assignment file as
a picture).

E’II

something is unnecessary mistake in  mistake in exported wrong
missing iteration condition image equation

-

)

Figure 5: GeoGebra issues

4.4.2  Perceived Difficulties by the Students. The interview analysis
suggests that students did not meet significant hurdles that were too
challenging to address during the learning activity. Most students
(10 out of 12) stated that the assignments were not particularly hard
but “manageable”. However, two students (Student5 and Student13)
found the workbook assignments and the computational environ-
ment very challenging halfway during the lesson series. Still, in
the interview in the last lesson, one of the two students (Student13)
stated that she is now more familiar with using GeoGebra and
the calculus tasks, and the assignment isn’t that frustrating as she
initially thought.

Most students (9 out of 12) stated that it took some time to get
used to the GeoGebra syntax. Three students mentioned that they
did not have particular problems with the syntax of the commands,
and it was simple to fix typos. In addition, some of the students (7
out of 12) mentioned getting used to the GeoGebra environment
(e.g., buttons, functions and navigating the GeoGebra environment)
was quite difficult.

Encountered problems were related to the translation of normal
language into formulas, as explained by a student:

“I think it’s more that I know ... what it should be, but
I don’t know how to formulate” (Student12, lesson 4).

Students especially struggle with the exact syntax. There are
quotes by students related to struggles using commas and periods
(Student13, lesson 6), lower- or uppercase (Studentl, Student13
in, lesson 4), typing in long formulas and not knowing what is
wrong (Student5, lesson 4), or unexpected things happening while
executing the code (Student2, lesson 5). Occasionally, there were
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unknown issues that were solved by asking the teacher or peers
for help (Student9, lesson 5), or trying again (Student2, lesson 5).

Seven students mentioned problems when implementing their
solution in GeoGebra in the beginning of the lesson series. Specif-
ically, 4 students mentioned conditional reasoning is difficult. A
student (Student5) who worked out the conditional statements on
paper first, while she was the one who preferred to work in GeoGe-
bra before writing down in the workbook while reflecting on the
use of the if-then-else construct, stated:

“That was something I found really difficult! That was
the most difficult thing”, “because ... on the one hand,
you can think logically, but I find that difficult, to
think if you do this what happens or what happens
otherwise. I find that the most difficult”.

One student got frustrated in GeoGebra:

“I'm getting so super frustrated with this that I've
almost thrown the computer 3 times already” ... “Then
I type one thing wrong and then I don’t see what 'm
typing wrong. And then suddenly an ‘area’ comes up
and then I do it three times and three times again an
area comes up. And then something just goes wrong
and I don’t see what goes wrong” (Student13, lesson
4).

She characterizes herself as being not precise. Later in the lesson
series, this frustration disappeared and she expressed what she
learned from the lesson series:

“..that I start thinking more precisely in terms of how
I should write it down and that my notation becomes
more (precise) than it was at first” (lesson 6).

Some students struggled with using variables. For example, a
student (Student5, lesson 4) explicitly stated that she found it chal-
lenging to work with “letters” instead of numbers:

“That you have to work a lot with letters and not with
numbers. I find that difficult. So today, we had a + b +
¢, and I find that more complicated than if you don’t
use that. That you kind of have a lot of unknowns
then”.

Two of the students stated they encountered problems in prop-
erly saving the GeoGebra files. This was also reflected in the teacher’s
logbook and the lower number of GeoGebra files we collected (11
out of 15 students handed in their GeoGebra files).

The students mentioned different resources for tackling the prob-
lems they encountered during the learning activities. All students
used workbooks that included hints or detailed explanations and
could discuss with their teachers and peers. In particular, most
students (7 out of 12) explicitly mentioned their teacher’s support
for tackling occurring issues, assistance from their peers (4 out of
12), and the use of the workbook’s hints (4 out of 12).

5 DISCUSSION

In this study, we aimed to answer the following research questions:

e RQ1: How can AT and generalization aspects be addressed
using DMS in 12th-grade calculus lessons?

WiPSCE ’21, October 18-20, 2021, Virtual Event, Germany

e RQ2: What challenges do students encounter in successfully
completing AT and Generalization tasks using DMS in 12th-
grade calculus lessons?

With respect to the first research question about how the aspects
of generalization and algorithmic thinking can be addressed in the
lesson series, we found that students managed to solve problems
that required generalization skills and the employment of algo-
rithmic thinking skills in GeoGebra. Therefore, we infer that these
aspects were fruitfully employed by the students during the lessons.
Apparently, the design of using a workbook to define steps on paper
and implementing the algorithms in the dynamic mathematics soft-
ware GeoGebra successfully addressed the aspects of generalization
and algorithmic thinking. This is in line with studies that advocate
to teach CT both plugged and unplugged [6, 9]. The combination
of plugged and unplugged work seemed a successful strategy to
address aspects of CT.

The students perceived the lesson series as manageable with
some challenges along the way, and eventually fun to do. This was
confirmed by the teacher, who experienced that the students gradu-
ally completed the tasks with more ease and were very enthusiastic.

With respect to the second research question about the chal-
lenges students encountered, we found that students mainly had
difficulties in getting to know the software and finding out the
specific syntax rules. This is in accordance with previous findings
related to novices using computational tools (especially in pro-
gramming) and the required time to familiarize themselves with
commands, e.g., [37]. An idea to overcome the difficulties in defining
formulas and commands in GeoGebra and support understanding
of the logic might be to offer help in structuring the formula and
highlighting elements, as done in programming environments, for
example by annotating functions and thereby putting focus on de-
composition of the function [41]. This scaffolding might shorten
the initial phase of learning how to use the technology and enable
a larger focus on the content and the related CT aspects.

Another challenge students encountered was for the part of
algorithmic thinking the use of logical structures with regard to
formulas and commands on GeoGebra. Logical reasoning skills is
a known crucial skill in general [8] and specifically in learning to
program [22]. As such, this finding indicates that teachers who want
to address CT might need to provide extra support or scaffolding
for the learning of this aspect of CT.

The teacher was highly familiar with the materials, the tool, and
the concept of CT to be taught. In general, there are less favorable
circumstances and teacher training and guidance is necessary, to
use ICT and CT effectively in the classroom [5]. To help teach-
ers integrate CT in the classroom, workshops and co-designing
a CT enhanced curriculum have proved to be fruitful means [48].
Moreover, teachers who are less experienced in CT might practice
CT partly and miss some aspects of CT [31], and thereby provide
limited opportunities to foster CT. In order to facilitate the teach-
ing of the lesson series for teachers who are less familiar with CT,
we developed a teacher guide to provide advice for the didactical
approach and support for the use of the lesson series with respect
to the intended aspects of CT.
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We implemented the lesson series in a small-scale case study
with a single class of 15 students. This limits the power of our find-
ings. While we have an indication of the learning process and the
challenges involved in the setting of our study, further research on
a larger scale is required with different types of classes, different
levels of experience of the teacher, and different teaching circum-
stances. Especially, the case of online education involves more
challenges, as was experienced during the COVID-19 pandemic
and which may be part of our future education [11].

Our focus was explicitly on the aspects of generalization and
algorithmic thinking for the topic of calculus in dynamic mathe-
matics software GeoGebra. The learning of functions is complex
and very suitable to learn about processes that require input and
produce output, and to see the relation between the varying input
and accordingly changing output [35]. However, there is a broad
range of topics within mathematics useful for the development
of CT skills that have been addressed in research previously and
need to be further explored, for example geometry and algebra
[4] and statistics [18]. Our study is an in-depth exploration of ad-
dressing CT aspects within 12th-grade calculus, providing ideas for
opportunities and next steps to address CT aspects in mathematics
education research and practice.

6 CONCLUSION AND FUTURE WORK

In conclusion, GeoGebra seemed to be an appropriate tool to address
CT aspects such as algorithmic thinking and generalization in a
270-minutes lesson series for 12th-grade students about calculus.
The students and the teacher have a positive perception of the CT
lesson series and the related learning process, and students fruitfully
worked on the tasks, after overcoming initial challenges with the
technology and getting acquainted with the CT ideas behind the
design of the materials.

Future research might focus on larger scale teaching experiments
with elaborated lesson series, covering a wider variety of topics
within mathematics. For more insight into the learning outcomes of
CT, targeted assessment and standardized pre- and post tests need
to be designed to capture CT skills in more detail. Finally, teachers’
professional development might enhance a better integration of CT
in mathematics education.
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