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Abstract
Nowadays, mathematics teachers in K–12 strive to promote their students‘ math-
ematical knowledge and computational thinking (CT) skills. There is an increasing 
need for effective CT-embedded mathematics learning material and a better under-
standing of students’ views toward them. In this work, we present the results of a 
research study, which included the design of a six-lesson learning activity aimed at 
fostering 16- to 17-year-old secondary students’ CT skills in calculus lessons using 
the dynamic mathematics software GeoGebra. Our goal was to investigate how 
students experienced the CT-embedded calculus lessons with GeoGebra and what 
challenges they faced during their interaction with the learning material and soft-
ware. We collected and analyzed data from students’ code in GeoGebra, workbooks, 
semi-structured interviews, and questionnaires. Our findings suggest that most stu-
dents mastered using CT concepts in calculus activities to a satisfactory degree and 
could reason about their computational solutions using GeoGebra and the generated 
graphs. Students’ understanding of the mathematical content knowledge introduced 
was essential to complete the lesson series successfully and unnoticed gaps in prior 
knowledge emerged. Our study shows that students appreciate the CT-embedded 
calculus lessons and GeoGebra’s exploratory approach to mathematics problems 
when provided with appropriate support. We conclude that an integrated approach 
to mathematics education and CT is viable and can contribute not only to fostering 
CT but also to increasing interest in mathematics.
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Introduction

There is a widespread and growing agreement among academics and educators 
that computational thinking (CT) should be taught to everyone, and that it is an 
important part of scientific literacy. In her impactful article, Wing (2006) argues 
that CT should be fostered as a basic literacy skill like “reading, writing and 
arithmetic” (p. 33). The popularization of Wing’s article led to global efforts to 
embed CT in school and out-of-school learning environments. Moreover, there 
are increasing calls to promote CT in computing and other STEAM (science, 
technology, engineering, the arts, and mathematics) subjects, including humani-
ties and arts (Perković et al., 2010).

Since informatics/computer science courses are often elective across countries 
and states (Yadav et al., 2022), integrating CT into STEAM subjects can poten-
tially broaden participation in computing and provide a more realistic representa-
tion of the domains of science and mathematics as potential future career options. 
For this reason, many researchers see CT as a means to increase participation 
in computer science and to integrate computing into different disciplines (Wein-
trop et al., 2016), which offers promising opportunities for promoting interdisci-
plinary learning. The integration of CT into mathematics education is a natural 
fit that enables real-world applications through computational tools and provides 
opportunities for developing problem-solving skills in a systematic way, cogni-
tive processes, and transposition (Kallia et  al., 2021). Additionally, in contrast 
to computing, mathematics has a long-standing tradition as a mandatory subject 
in formal education, and integrating CT into mathematics education ensures that 
students from historically underrepresented backgrounds in computing can gain 
more exposure to the necessary skills and mindsets essential to thrive in a digital 
and technology-driven world.

As powerful computational tools become commonplace in mathematics and 
science, there are promising opportunities for fostering CT in non-programming 
tasks and unplugged learning activities (Dagienė & Sentance, 2016). Modern 
mathematics tools intended for education offer opportunities for fostering CT 
within mathematics learning activities aligned with current curricula and educa-
tional policies. Additionally, they provide fruitful visualization and interactivity 
opportunities for learning (Adelabu et  al., 2019). The use of educational tech-
nology to foster CT dates decades back to the vision of progressive educators 
for using powerful programming tools that are accessible to a wide variety of 
students (Papert, 1980). According to Wilensky et  al. (2014), such technologi-
cal innovations in education allow students to explore mathematical concepts and 
“create” mathematics themselves.

This work builds on existing efforts for integrating CT into calculus lessons. 
There is little research on how secondary students perceive such CT-embedded 
learning activities and how these can be integrated into mathematics education. 
Overall, academic literature on the integration of CT into mathematics education 
shows promising results in terms of both learning gains and students’ motivation. 
However, even though studies report findings on CT integration, they seldom 
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use Wing’s (2006) working definition and do not explicitly address specific CT 
aspects such as abstraction and decomposition (Lv et al., 2023) and how students 
used such skills. Additionally, Rich et al. (2020) highlight the necessity for teach-
ers to ensure students are well-acquainted with classroom digital tools and to 
be equipped with diverse and appropriate didactic approaches for teaching both 
computational and mathematical aspects effectively.

For this reason, integrating CT aspects into calculus lessons is a challenging task 
that requires designing, testing, and refining the developed material before being 
implemented into curricula. This work presents the results from a research study 
on a CT-embedded calculus lesson series (van Borkulo et  al., 2021). The lesson 
series took place in mandatory mathematics lessons for calculus in the Netherlands 
(referred to as Mathematics B in the Dutch educational system). Mathematics B 
deals with more theoretical aspects of mathematics, especially algebra, calculus, and 
geometry. The subject is particularly suitable for students considering studying in 
scientific fields, enabling them to apply for more STEM-oriented study programs in 
tertiary education. Our study followed a mixed-methods approach to answer the fol-
lowing research question:

RQ: How do students experience a GeoGebra-based intervention aimed at fos-
tering CT in calculus lessons and what challenges do they face when engaging 
in CT-embedded activities?

To tackle the research question at hand, we examine the feasibility of implement-
ing CT-embedded calculus lessons in youth’s formal education. Moreover, we con-
tribute to existing efforts in developing computationally rich learning experiences 
that allow educators to bring CT into calculus lessons using accessible yet powerful 
tools like GeoGebra.

Theoretical Background

CT skills are now widely considered essential for everyone. Educators in K–12 
strive to foster their students’ CT skills and digital literacy to prepare them for pro-
fessional life and active participation in society. According to Wing (2006), CT 
involves aspects fundamental to computer science, but it is not a skill explicitly tar-
geted at technical experts:

Computational thinking is a fundamental skill for everyone, not just for com-
puter scientists [...] involves solving problems, designing systems, and under-
standing human behavior, by drawing on the concepts fundamental to com-
puter science. (p. 33)

CT research is growing fast, but there is no consensus on what CT is. In later 
work, Wing (2011) revised the definition as follows:

Computational thinking is the thought processes involved in formulating prob-
lems and their solutions so that the solutions are represented in a form that can 
be effectively carried out. (p. 20)
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Early research on CT focused on elements such as abstraction, decomposition, 
pattern recognition, algorithmic thinking, and generalization (Selby & Woollard, 
2013). Besides the different definitions of CT in academic literature, it is widely 
accepted that CT involves processes fundamental to computer science and compu-
tational problem solving, such as making abstractions of the most critical elements 
of a problem (Wing, 2017), algorithmic thinking (Futschek, 2006) which focuses 
on understanding and designing algorithms to solve problems, decomposing prob-
lems into smaller, more manageable parts (Rich et al., 2019), and pattern recogni-
tion to identify common characteristics between problems (Wing, 2006). For more 
than a decade, CT research has been evolving, and researchers address additional 
CT aspects like automation (Lee et  al., 2014) and modularization (Atmatzidou & 
Demetriadis, 2016).

Another way of CT classification is included in the CT assessment framework of 
Brennan and Resnick (2012). The authors classified CT aspects in terms of compu-
tational concepts (e.g., loops), computational practices (e.g., testing and debugging), 
and computational perspectives (e.g., how learners connect computational activi-
ties with their lives). These aspects are fundamental in computing and especially 
programming.

Weintrop et al. (2016) argued about the significance of CT in mathematics and 
science and developed a taxonomy of CT practices in these fields. These practices 
include data practices, modelling and simulation practices, computational problem-
solving practices, and systems thinking practices. Additionally, there is consensus 
that CT is an integral part of the STEM disciplines (Henderson et  al., 2007), and 
integrating computing and CT into such subjects in K–12 is a natural fit. Science 
and mathematics are becoming increasingly computational, and CT (Wing, 2017) is 
now considered a scientific practice in education (Weintrop et al., 2016). Fostering 
CT in K–12 is an efficient way to prepare future scientists and responsible citizens 
in an increasingly computational world. Integrating CT into science classes, e.g., by 
using tools for agent-based modelling in science education, could equip more stu-
dents with CT skills, considering that computer science is still an elective course for 
many students in secondary education (Wilensky et al., 2014).

Progressive ideas for including computing in education have a long history, dating 
back to the 1960s and 1980s when Alan Perlis argued that it is essential to introduce 
students of all disciplines to the theory of computation (Guzdial, 2008). In addition, 
Papert (1980) envisioned children and youth developing procedural thinking skills 
and learning programming and mathematics with Logo. Integrating CT into STEM 
subjects is often linked to higher learning gains in the respective subject. For exam-
ple, a study in CT-embedded mathematics lessons for sixth graders by Calao et al. 
(2015) showed that integrating CT into mathematics lessons can lead to statistically 
significant increases in the learning outcomes of students, in terms of mathematical 
processes such as modelling, problem formulation, and problem-solving and reason-
ing among other processes. In general, educational mathematics software is linked 
with higher learning gains in mathematics and fostering mathematical and computa-
tional thinking (van Borkulo et al., 2021).

A study on the effectiveness of the educational mathematics software GeoGe-
bra showed that high school students achieved better learning outcomes and 
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welcomed its use, which broadened their perspectives about mathematics learn-
ing (Arbain & Shukor, 2015). According to the National Council of Teachers of 
Mathematics, technology plays a key role in modern mathematics education:

An excellent mathematics program integrates the use of mathematical tools 
and technology as essential resources to help students learn and make sense 
of mathematical ideas, reason mathematically, and communicate their math-
ematical thinking. (Brahier et al., 2014, p. 656)

Digital tools are becoming commonplace in K–12 as vehicles to explore and 
verify mathematical ideas. Moreover, visualization and interactive elements can 
enhance learning and provide excellent opportunities to promote mathematical 
thinking (Drijvers, 2018) and CT (van Borkulo et al., 2021). Digital tools for CT-
embedded mathematics learning activities in different grades include program-
ming languages like Python (Jenkins et  al., 2012), programming languages that 
are more common in education like Scratch (Calao et al., 2015), Logo-based tools 
like MaLT (Kynigos & Grizioti, 2018), and spreadsheets (Sanford & Naidu, 2016; 
van Borkulo et al., 2023), among other tools.

In line with the educational practice discussed above, our lesson series focuses 
on fostering pre-university students’ CT skills using accessible computational 
tools that many mathematics teachers in the Netherlands are already familiar 
with. CT skills can be fostered with or without digital tools and can go far beyond 
computer programming (Bell & Lodi, 2019; Caeli & Yadav, 2020). To provide 
a comprehensive understanding of CT in the context of this study, we use the 
revised definition of CT by Wing (2011, p. 20): “the thought processes involved 
in formulating problems and their solutions so that the solutions are represented 
in a form that can be effectively carried out.” In formulating a problem, a person 
needs to understand and define the problem in a clear and precise manner, often 
by breaking it down into smaller sub-parts. Expressing such a problem in ways 
that a computer, human, or machine would understand requires appropriate use 
of language (e.g., appropriate syntax in the case of computer programming lan-
guages or a mathematical formula in a mathematics context) and the design of 
algorithms, as a set of instruction steps to solve the potential problem at hand.

We position CT as a cognitive framework that comprises key CT elements 
universally accepted across academic literature (Dong et  al., 2019; Kynigos & 
Grizioti, 2018): decomposition, pattern recognition, abstraction, and algorith-
mic thinking that are likely to be facilitated through the basic logical structures 
of sequence, selection, and loops (van Borkulo et  al., 2021) through computa-
tional concepts (e.g., iteration, conditional statements, and variables, among oth-
ers). These provide opportunities to engage students in developing computational 
practices (practices they develop when working with computational concepts 
such as testing and debugging) and form computational perspectives (Brennan & 
Resnick, 2012). By focusing on these core aspects, we have operationalized our 
study to the learning goals of our developed activities which provided us with a 
concrete foundation to investigate the challenges students encounter and potential 
mathematics content knowledge gaps they might have. The chosen aspects are 
intended to provide a working definition of CT for our study and do not aim to 
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discount the importance and relevance of other CT dimensions across academic 
literature.

Our work will hopefully be of value to educators and mathematics teachers who 
wish to address CT aspects in calculus lessons.

Method

We designed and implemented CT-embedded calculus learning activities in four 
classes of 16- to -17-year-old secondary students following an educational design 
research approach (Gravemeijer & Cobb, 2006; Yazan, 2015) that focuses on 
designing and evaluating CT-embedded calculus activities. Below, we present the 
educational context and provide information about the study’s participants. Then, 
we describe the learning activity, the materials/tools used by the student partici-
pants, and our design rationale. Finally, we present the data collection and analysis 
procedures.

Study Context

For three of the four classes, the intervention took place in a physical classroom set-
ting at three schools in the Netherlands. The intervention took place online for the 
fourth class to prevent the spread of COVID-19. The intervention that took place 
online consisted of five 45-min calculus lessons (including post-experiment activi-
ties, e.g., interviews and filling in questionnaires), and the interventions that took 
place physically consisted of six lessons of 50 min. The lesson series took place in 
mandatory mathematics lessons for calculus (referred to as Mathematics B in the 
Dutch educational system), and the students could work alone or in pairs.

There are different mathematics courses in secondary education in the Neth-
erlands, including mathematics A and B. Mathematics B (or Wiskunde B) is 
addressed to pre-university students in the VWO (Voorbereidend Wetenschappelijk 
Onderwijs) education and prepares them for studying in scientific fields and ena-
bling them to apply for more STEM-oriented study programs in tertiary education. 
It includes topics like algebra, geometry, trigonometry, and calculus. The course 
also includes more advanced content like functions, derivatives, integrals, and dif-
ferential equations.

Description of the Lesson Series

The lesson series was developed as part of a larger project on introducing computa-
tional thinking in mathematics education. The calculus content covered in the les-
son series focused on the perpendicular bisector, focal points, tangents, and zeros of 
functions, among other topics. The students were expected to use CT concepts (e.g., 
variables, conditional statements, and iterations) and practices (e.g., debugging, 
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testing, and evaluating) to find general solutions to calculus problems using the 
GeoGebra environment.1

The research team supported the teachers during the co-design and implementa-
tion of the lesson series in the Mathematics B classroom. GeoGebra is a popular 
software program in Dutch education, and the teachers in our study were already 
familiar with it, having used it previously in their lessons. Teachers’ prior experience 
with GeoGebra, and GeoGebra being accessible (free, open-source) and providing 
visualization and interactivity possibilities, were determinant factors in choosing 
this tool.

Digital Tools: GeoGebra

GeoGebra can be downloaded and used as software or directly used online on its 
official website (geogebra.org). It is an accessible and open-source mathematics 
tool, which makes it an attractive choice for teaching calculus, geometry, and alge-
bra (among other subjects) in school and out-of-school settings in primary, second-
ary, and tertiary education. GeoGebra allows students to generate points, lines, seg-
ments, and vectors, among other mathematical representations. Such mathematical 
representations can be dynamically altered afterward. It enables the use of variables 
for storing mathematical objects (e.g., numbers, points, and line segments) that can 
also be modified via buttons and input fields. Furthermore, it is also possible to use 
GeoGebra to introduce computational concepts in computing education, e.g., by 
using iteration lists and conditional statements. GeoGebra is gaining increasing pop-
ularity among mathematics teachers in the Netherlands, which made it an appealing 
choice for our research. Its advantages are its interactive graph generation capabili-
ties, which allow learners to explore mathematics concepts through visualization 
(Adelabu et al., 2019).

Learning Materials: Workbooks

The learning activity included using a workbook that we developed and addresses 
CT and mathematics content using GeoGebra as described in Table 1, which pre-
sents the mathematics content and CT focus of the learning activity with brief exam-
ples. The successful completion of the developed activities required both mathemat-
ical and computational thinking. Employing abstraction, decomposition, algorithmic 
thinking, and generalization skills was key to efficiently completing the designed 
tasks. The workbooks with the activities served as a scaffolding tool for tackling the 
CT-embedded calculus problems that the students were asked to solve. The work-
books also included a short introduction to the GeoGebra environment and hints for 
tackling common problems.

Chapters  1–4 focused on using conditional statements, while chapters  5–7 
focused on combining conditional statements with iterations. To generate the 

1  The activities can be found in the following link: https://​www.​fisme.​scien​ce.​uu.​nl/​toepa​ssing​en/​29236/.

https://www.fisme.science.uu.nl/toepassingen/29236/
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intended graphs, the students needed to be precise and fully understand the con-
cept of iterations and conditional statements, as well as the respective mathemat-
ics content.

Fig. 1   Example of a workbook activity



	 Digital Experiences in Mathematics Education

1 3

In Figs. 1 and 2 below, we provide examples of the workbook tasks and the gen-
erated graphs of students in the GeoGebra environment. In the task illustrated in 
Fig. 1, the students need to determine if the line is vertical and then graph the line 
accordingly. The students need to recognize that a vertical line occurs when two 
points have the same x coordinate and that when this happens, the line’s slope is 
undefined and the line equation cannot be written in the form of y = mx + b. By 
using the conditional statement “if–then-else,” they will check if the x coordinates 
of point A and point B are equal. If they are equal, they declare that the line is ver-
tical. Otherwise, in the case that the x coordinates are not equal, they will use the 
slope-intercept form to define the line. The students are expected to transform their 
pseudocode in their workbooks into functional code in GeoGebra using the hints 
and syntax provided in the workbooks. After writing the code in the GeoGebra envi-
ronment, they can execute it and test it. If necessary, they can make adjustments or 
debug their code until they get the desired outcome.

In chapter 6, the students could computationally experiment with their own func-
tions and find general solutions to the calculus problems they chose. The seventh 
chapter about the Newton–Raphson method was designed as the most challenging 
task. It required using iterations/macros and a deep understanding of the aforemen-
tioned method to calculate the zeros of functions. The students were encouraged to 
write a report about this method where they explained how it works, but it was not 
mandatory.

Each chapter involved generalizing from a specific case to a more general one 
using parameters/variables and conditional statements. An example would be cre-
ating a general solution in which the equation changes when students drag points 
A and B. Therefore, students should consider the special cases and use appropriate 
conditional statements to generate the graphs and possibly evaluate them by drag-
ging the points and testing their equations.

Design Rationale

A team of mathematics and computing education teachers and researchers co-
designed these activities to address specific CT aspects, as illustrated in Table 1.

The design of the lesson series offers computationally rich and extensive opportu-
nities for fostering key CT elements as it encompasses essential computational con-
cepts such as iterations, conditional statements, and variables (see Table 1). These 

Fig. 2   GeoGebra generated interactive graph—a line through two given points
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concepts facilitate tasks like decomposition, pattern recognition, abstraction, and 
algorithmic thinking (see Table 2), which are universally accepted core CT elements 
across academic literature (Dong et  al., 2019; Kynigos & Grizioti, 2018). Due to 
time and resource constraints, we did not directly observe every individual student’s 
progress with the developed CT-embedded activities, but we employed a structured 
assessment approach for evaluating their learning outcomes on the design tasks and 
the specific CT elements at play. Tables 1 and 2 systematically describe which chap-
ters corresponded to which computational concepts with examples (Table  1) and 
how students were expected to apply specific elements of CT that were needed in 
all the chapters successfully to complete the developed activities (Table 2). Table 2 
also describes the CT skills required in the lesson series and the intended student 
behavior.

In the developed lesson series, the activities ask students to transfer their CT-
embedded activities from their workbooks into GeoGebra. The workbooks address 
CT aspects of the activities as well, but transposing the activities to GeoGebra ena-
bles students to experiment and test their solutions in real-time and adjust them 
where needed. To do that, the students had to use the basic logical structures to 
translate the written mathematics exercises into a format understood by GeoGebra.

Most parts of decomposition are already offered as a scaffold so that the students 
can focus on understanding mathematics content and using the logical structures 
of sequence, selection, and loop to solve the computational problems of the lesson 
series. The students had to break equations apart by calculating the slope or other 
sub-parts of equations, decomposing iteration lists, formulating conditional state-
ments, and adjusting variables/parameters to consider special cases when creating 
general solutions. The students were expected to use pattern recognition to iden-
tify, reuse, and generate the intended graphs in the GeoGebra environment. Students 
need to create functions and equations which represent mathematics concepts by 
abstracting the essence of the concepts at hand into digital representations (abstrac-
tion) that can be manipulated and reused.

The activities require students to use algorithmic thinking/design skills to trans-
late the calculus activities of the workbooks into computational solutions in the 
GeoGebra environment. They need to use the basic logical structures (sequence, 
selection, and loop), which are integral elements to solving every algorithmic prob-
lem. The logical structure of sequence can be used to translate the steps of the work-
books into computational steps in GeoGebra. The logical structure of loop can be 
used to generate iterative graphs (chapters 5–7) like a tangent bundle in the respec-
tive activities. The selection structure can be used to consider the special cases of 
equations that can lead to general calculus solutions (e.g., considering if the frac-
tion’s denominator in an equation is zero). Considering such special cases requires 
crucial elements of algorithmic thinking and generalization. The workbooks also 
provide hints for considering the special cases in the first chapters.

The developed activities begin with simple tasks and progress to more complex 
ones, accompanied by hints and scaffolding so that the students can familiarize 
themselves with GeoGebra and proceed to more sophisticated activities. The activi-
ties were designed to enable students to complete independently the tasks at hand 
individually or in small groups, with minimal intervention from the teacher. The 
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teacher takes the role of the facilitator, supporting students as needed while refrain-
ing from directly disclosing answers and writing code. This approach is aimed at 
mitigating frustration and ensuring a smooth flow of the learning process.

Participants

Our study participants were 52 eleventh-grade secondary students who were 
16–17 years old. All but one student had no prior experience using GeoGebra, even 
though some students had seen their teacher generating graphs to help them visual-
ize mathematical concepts. We informed the students about the study’s aims and 
asked for their consent to use their data to evaluate their learning experience. We 
assured students that we would handle their data anonymously and respect their pri-
vacy, and we took ethical considerations into account to ensure good research prac-
tices for underage populations.

Data Collection

Workbooks and GeoGebra Files

To understand better the feasibility of integrating CT-embedded learning activities 
into calculus lessons, we examined the workbooks and GeoGebra files of students 
during both the plugged (working on GeoGebra) and unplugged (working on work-
books) phases of the learning activity. Evaluating CT-embedded activities allows us 
to identify potential common mistakes in students’ work. At the end of the lesson 
series, we collected all workbooks and GeoGebra files from students. We commu-
nicated to the students in advance and provided clear instructions on the procedure 
for returning their workbooks and uploading their GeoGebra files. Regarding the 
upload of files to our online repository, students had the option to upload individual 
files after each lesson or to submit all their files at the end of the series. We provided 
clear guidelines for both options and were available to assist with any questions or 
technical issues that may arise. The first two authors checked and cataloged each 
submission to ensure all workbooks and files were accounted for. However, students 
could choose not to share their files with us. Their decision was completely volun-
tary and did not impact their participation in any way.

Artifact‑Based Interviews

Qualitative methods are an appropriate choice for examining complex and sophisti-
cated thinking skills like CT in a comprehensive way. To better understand students’ 
learning experiences  with the designed learning activities, as well as which kind 
of strategies they employed to tackle the computational problems at hand, we con-
ducted one-on-one semi-structured, artifact-based interviews (Brennan & Resnick, 
2012) with them. The workbooks and GGB files were the foundation for reflec-
tion on the developed activity during the interviews. The main questions and the 
respective topics can be found in Table 3. The final part of the conducted interviews 
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included questions regarding students’ reflections on their experience with GeoGe-
bra and how they perceived the lesson series.

In total, 25 students participated in the interviews, which took place at the end of 
the lesson series. Each interview lasted between 10 and 25 min. During the semi-
structured interviews, we asked students about (1) their opinions on the learning 
activities, (2) the difficulties they encountered, (3) how they overcame them, (4) 
how they implemented CT concepts and practices, and (5) their experience with CT-
embedded calculus lessons.

Data Analysis

Workbooks and GeoGebra Files

We evaluated the CT-embedded activities on three levels similar to previous evalu-
ations of computationally rich learning activities (Chytas et al., 2018; van Borkulo 
et al., 2021): “incorrect” for activities in which less than half of the tasks were cor-
rectly completed, “partly correct” for activities in which at least half of the tasks 
(but not all) were correctly completed, and “correct” for activities without mistakes 
(e.g., when the code of students accurately generated the intended graphs, such as a 

Table 3   Main questions in semi-structured interviews

Question topic Question

General How did it go? What issues did you run into (regarding GGB, formulas, syntax, 
conditions, etc.)?

How were you able to solve the problems that occurred (workbook, alone, peers, 
or teacher)?

What do you think about GeoGebra? What advantages/disadvantages do you 
see?

How was it to first write down your steps and then work in GeoGebra?
On the assignments 

(artifact-based ques-
tions)

How was it to define variables and functions in GeoGebra and use commands? 
(show GeoGebra, if–then-else, row, macro, and iteration list)

How did you take the step from a specific to a general solution? (shown in 
GeoGebra)

How did you evaluate when you were done with the task? (show in GeoGebra, 
exception(s))

Look back at chapter 7: How did you fill in the flow chart to describe the New-
ton–Raphson method? (7.1, show workbook/paper)

How do you think you can use GeoGebra to approximate the other zero point 
using the Newton–Raphson method? (7.9)

How did you go about approximating the golden ratio? How did you reuse your 
earlier solution? (7.10)

How did exploring the effect of changing the starting value go? When does it go 
wrong? (7.11)

Reflection What do you think of the lesson series? Any tops and tips?
Can you describe what you learned in general in this lesson series and how it 

might help you in solving problems in the future?
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parabola). Additionally, we also took into account the methods used to achieve the 
results including mathematical accuracy and efficiency of the commands used.

Each task in the workbook was designed with clear mathematical and compu-
tational objectives, such as constructing a perpendicular line of a graphing a line 
between two given points. The GeoGebra files and Workbook analysis respected the 
diversity of approaches to engaging in mathematical problem solving using GeoGe-
bra to explore, visualize, and analyze mathematical and CT concepts. Some students 
wrote code that was not needed for solving the calculus problems at hand, but we 
still coded their activity as “correct” if their solution worked. Some students missed 
classes, did not save their GeoGebra files, or chose not to upload them for our data 

Fig. 3   Workbook analysis results (physical class)

Fig. 4   GeoGebra file analysis results (physical class)
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analysis. Therefore, we coded them as “absent.” The seventh chapter was the most 
challenging one and not mandatory for the students, but only 12 files of the students/
groups were absent (Figs. 3 and 4).

For the activities that were evaluated as “incorrect” and “partly correct,” we also 
included notes regarding the mistakes of the students, which we later coded induc-
tively. An example of such coding could be when students did not consider the spe-
cial case of a general solution, e.g., in situations where the denominator of a fraction 
becomes zero, as it leads to an undefined result.

The assessment of the activities focused on ensuring the solutions accurately 
addressed the mathematical and CT concepts being tested and identifying errors that 
affected the accuracy of the solution and incomplete tasks. Thus, the workbooks and 
GeoGebra file analyses did not aim at evaluating the learning outcomes but at iden-
tifying common mistakes and encountered difficulties when using GeoGebra in CT-
embedded calculus learning activities.

Interviews

The semi-structured interviews were analyzed using inductive and deductive coding 
approaches. Our preliminary set of deductive codes included codes from previous 
work (van Borkulo et al., 2021) focusing on participants’ previous experience, per-
ceptions of the learning activities, encountered problems, and computational think-
ing aspects, e.g., algorithmic thinking and strategies to tackle computational prob-
lems in GeoGebra.

Wherever possible, we triangulated the data from different sources to provide 
robust evidence of our findings. We used data triangulation and investigator triangu-
lation (Carter et al., 2014) in iterative circles of design and analysis. The research-
ers worked in close cooperation and met weekly to compare codes and themes that 
emerged from the collected data.

Results

We present the study’s findings with insights into how students perceive the integra-
tion of CT into calculus lessons with GeoGebra and what challenges they face in 
successfully completing the developed activities. In the next sub-sections, we take a 
closer look at the respective data sources one by one to provide a more comprehen-
sive picture of the results.

Findings from the Analysis of Workbooks and GeoGebra Files

According to the teachers who implemented the lesson series in their classes, the 
learning outcomes of the lesson series were satisfactory. This is also supported 
by the analysis of workbooks and GeoGebra files, which shows that the students 
started getting more familiar with GeoGebra and computational problem-solving. 
The decreasing frequency of mistakes in the later chapters, despite the progressive 
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increase in the difficulty of the activities, suggests a positive development in stu-
dents’ learning in terms of mathematics content knowledge and use of CT skills. 
The later chapters introduce more sophisticated computational concepts (e.g., using 
iteration lists and macros) and algorithms (e.g., the Newton–Raphson method) 
which also require students to build more extensive and complex code in GeoGebra.

The most common mistakes in the workbooks were related to generalization and 
the students not creating a general solution for the activity (e.g., by not using vari-
ables and conditional statements to consider the special cases). For example, when 
calculating the slope of the original line to find the negative reciprocal for the per-
pendicular bisector, students might forget to check for a zero denominator, which 
would lead to an undefined slope. Very often, the students used the wrong formula 
for equations which led to wrong solutions.

For example, a student trying to create a line through two given points might mis-
takenly calculate the slope of the line using the wrong formula and end with a wrong 
line equation as a result. Considering that the problems at hand provided space for 
students to test their solutions, there are indications of students’ mathematical con-
tent knowledge gaps. Therefore, such gaps could become barriers to moving to more 
sophisticated computational endeavors with GeoGebra. This is also illustrated in 
Figs. 5 and 6.

The most common mistakes in the workbooks were related to mistakes in 
creating general and specific solutions to the problems. Miscalculations of for-
mulas and wrong use of computational concepts were also commonly found 
mistakes, using wrong conditional statements for considering special cases and 
using wrong conditions for the iteration lists (conditional loops). For example, 
in the final assignment, students might have used the wrong iteration statement 
not updating the x-value correctly. This could be related to students’ lack of 

Fig. 5   Students’ mistakes in workbooks
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understanding of mathematical concepts being applied, e.g., the properties of a 
parabola or the Newton–Raphson algorithm.

Another reason could be that students did not have adequate time to familiar-
ize themselves with computational concepts like iterations and conditional state-
ments; in the later sessions, the GeoGebra file analysis shows that they devel-
oped a better understanding of such concepts. Finally, some students might have 
lacked attention to the details and did not evaluate their solution, as long as the 
generated graph in GeoGebra seemed functional at first look.

The students in the online class encountered more issues than in the classes 
that took place at school. The rates for absent files (Janssen, 2021) were sig-
nificantly higher than in the classes that took place physically, and the students 
seemed more frustrated when working on GeoGebra. This finding was antici-
pated because the lesson series was shorter, and the teacher of the online class 
created online rooms for every student or pair of students. Furthermore, the 
teacher could not efficiently address all arising questions besides the ones in the 
first and last 5  min of each lesson when all students were in the same online 
room. The students of the online class who engaged in the lesson series made 
similar mistakes to the students in the physical class (Figs. 7 and 8). 

Findings on Encountered Problems from Artifact‑Based Interviews

In addition to the student mistakes identified in the workbooks and GeoGebra 
file analysis, students reported problems they encountered during the interviews. 
Below, we present some key themes that emerged.

Fig. 6   Students’ mistakes in GeoGebra 
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Getting Familiar with GeoGebra

Eight students mentioned the initial difficulties they faced when using GeoGebra, 
which led to frustration and discouragement with using the software.

It’s more the program GeoGebra […] Bit of trouble with that to fill in 
everything.

Getting familiar with GeoGebra’s interface was vital to engaging in computa-
tional problem-solving in the developed activities and using the core elements of 
CT as seen in Table 1 and 2. A particular frustration of students when they first 
used the software was that they had trouble with mathematical problems that they 

Fig. 7   Workbook file analysis (online classes)

Fig. 8   GeoGebra file analysis (online classes)
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could easily solve with pen and paper (e.g., drawing a tangent) and took longer 
times to do so with GeoGebra.

Yes, for example, drawing up a tangent or something, that’s not very difficult. 
Sometimes it did take a long time to draw up a tangent and you could actually 
do that very quickly, but otherwise it was just necessary.

However, after multiple attempts, students got used to the software, something 
that is also captured in the GeoGebra file analysis (despite the activities’ increasing 
difficulty, the students made fewer mistakes in the later chapters).

Well, in the beginning, I sometimes didn’t know how to fill something in 
GeoGebra, but after a few tries it just worked. And the steps were just clear in 
that booklet.

Clear instructions and clarity in using GeoGebra in additional resources such as 
the workbooks were beneficial for the students who grew confidence and compe-
tence in using the software.

Syntax

Many students communicated with us the challenges of using GeoGebra and the dif-
ficulty they had filling in the information correctly. In certain cases, students showed 
frustration with receiving error messages and felt unsure about what they were doing 
because of the interface and syntax of the GeoGebra environment, which required 
time to get used.

Well, I do find it difficult. Yes, I don’t know [...] I do have trouble filling in 
things and also when I fill it in, I get one of those triangles saying it’s wrong 
and then I get a bit mad, I think: well, why not? What am I doing wrong again? 
Because of course you have to fill in exactly what the computer wants.

Yeah I wasn’t very specific but then in GeoGebra you need to be specific so I 
think that that also changed a little bit if I need to do that exercise again, I will 
be maybe more specific with every little thing because normally you just think 
‘oh, that’s kind of easy’ say ‘it is normal, you forget that’ […] But in GeoGe-
bra you need to be [...] It doesn’t work that way. You need to be very specific 
and that also [..]. In the first exercise I really didn’t do that actually, I think.

Well, you really had to complete everything step by step because, of course, 
the computer doesn’t immediately know everything you think how it works, so 
that took some getting used to […].

Overcoming syntax issues required students to debug and refine their approach 
to solve the calculus problems at hand, break them down into smaller sub-problems, 
and become more precise when using commands in the GeoGebra environment. 
Debugging GeoGebra code provided opportunities for understanding how algo-
rithms work and why something might go wrong.
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Gaps in Mathematical Content Knowledge

Students showed a good understanding of how to use computational concepts in 
GeoGebra, but often mathematics content knowledge gaps hindered, effectively 
applying them in computational problem solving in the developed activities. In 
many cases, students understood computational concepts in GeoGebra (e.g., iter-
ations and conditional statements) to a satisfactory degree but failed successfully 
to complete the developed activities due to gaps in mathematics content knowl-
edge. Without a solid foundation in the mathematics content, students were una-
ble to use computational concepts and enter the right information into GeoGebra, 
leading to errors and wrong results. During the interviews, five students specifi-
cally referred to mathematics content knowledge gaps or the need to refresh their 
memory in order to recall definitions of mathematical terms, characteristics, and 
properties of shapes (e.g., parabolic geometry).

At the beginning, I had to think for a moment […] okay, what is a parabola 
again? How do I set it up? And so on […] Just a bit of that sort of thing.

Yes, setting up tangents and stuff. Of course, we knew that, but it took some 
time getting used to it again.

Well [...] It’s been a while so I’m just trying to think of what it was again.” 
[referring to parabolas]

During the interviews, seven students mentioned they needed their teach-
er’s support to tackle occurring problems. Eleven students mentioned that their 
classmates helped them with activities, and six students specifically mentioned 
that they were able to tackle an occurring problem by using the hints of the 
workbooks.

Findings on Students’ Learning Experience

Most students welcomed the idea of using GeoGebra in CT-embedded mathematics 
lessons. In the interviews of students in the classes that took place physically, the 25 
students mentioned positive aspects of the experiences with the lesson series while 
seven students mentioned negative experiences with the developed learning activity.

Positive Attitudes Toward Working with GeoGebra

A “Different” Approach to Mathematics

Seven students stated they liked the developed lesson series for different reasons, 
including the possibility of addressing mathematics problems with digital tools, 
which makes the activity more fun.
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I actually found it quite fun because normally we do the same things, and 
now we do something different with math [...] I’ve never done anything else 
than just in a book. Because with biology, you have bio practices, of course, 
but never with mathematics. So, it’s nice to do something different for a 
change.

But I think it’s nice that you don’t have a normal lesson with your book and 
your notebook. That you are doing something different, something new, so to 
speak. So, I like that.

Such statements indicate that students have a positive attitude toward using 
GeoGebra in their mathematics lessons, as they find it to be a fun and engaging 
change from traditional book-based learning. Moreover, as they have never used 
anything other than a book to learn mathematics in the past, they highly appreciated 
the opportunity to use technology to learn and enjoyed trying something new and 
different. Such preference of students toward different teaching approaches can be 
an opportunity for introducing interactive learning activities that turn abstract math-
ematical concepts into more tangible and attractive learning experiences.

The possibility to enable students to take a more active role in learning was also 
appreciated by the students. Two students stated:

I thought it was anyway sincerely a fun series because it’s more fun than just 
sitting in class and just listening to the teacher and doing assignments. So, it 
was something different and that was kind of fun. 
I liked it more than just normal mathematics, because it is more problem solv-
ing than just ‘here you have the same problem, do it 100 times over [...]’. It is 
more thinking than doing, which I like.

Typical CT-embedded mathematics learning activities with digital tools can fos-
ter autonomy by enabling students to explore, engage in computational experimenta-
tion, and discover problem solutions independently.

Structured and Clear Learning Material

16 students connected their positive experiences with being able to complete the 
activities successfully and follow the workbook in a clear and structured way besides 
miscalculations and the need for test and debugging. One student stated:

It’s going pretty well, I would say. Most of it is finished. It just worked out. 
Well, with most of them I just read the assignment and I could figure most of it 
out. And also GeoGebra worked just fine. It was pretty clear how that worked 
[…] And my biggest problem was [...] Sometimes I messed up a command and 
I couldn’t figure out what went wrong for a while, but I eventually got every-
thing. 

Like with every learning activity, structured and clear learning materials are vital 
in CT-embedded mathematics learning activities and can be effective tools for sup-
porting the learning process. The students appreciated the developed workbooks that 
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provided examples of how GeoGebra works, syntax hints, and connections to what 
was learned in previous sessions, gradually enabling students to advance to more 
computationally complex assignments independently in the last chapters.

Features of GeoGebra

The advantages students saw were related to computational aspects of GeoGebra 
enabling visualization, evaluation through testing, automating processes, being ver-
satile and useful, and promoting different ways of working and thinking about math-
ematics problem-solving.

Yes, because sort of, you don’t have to draw it [the graph] yourself and it’s 
right [...] It gives the points right away and you can move lines and then it 
gives the points with it and you can test your solution, that’s very convenient.

Well, GeoGebra shows it [the graph] when you fill in something and you see 
what happens. With mathematics, you don’t normally see it in front of you and 
this is very useful.

Such statements indicate that students perceived the software as being useful 
and convenient for learning mathematics and solving mathematics problems, espe-
cially those that are difficult to visualize. The software’s feature that enables plot-
ting graphs and displaying points quickly and accurately, as well as its ability to 
adjust lines dynamically and testing, were perceived as major advantages. Interac-
tive exploration and experimentation with GeoGebra enabled students to formulate 
hypotheses (through algorithm design), test them, and refine them (through debug-
ging their code) when necessary.

A student also mentioned that, with a tool like GeoGebra, you can create general 
solutions, so that, if you make a mistake, you can revise the activities without having 
to start from scratch.

The advantage is that when you get a new problem you can easily adjust the 
lines by just dragging the points around, which is a lot faster than just having 
manually to adjust everything again. So, if you are doing a similar problem 
multiple times, that would be easy. Yeah, just the calculating and you get to 
see the lines without having to draw it […].

The student saw the interactivity and ease of use of GeoGebra as a major advan-
tage and noted that being able to adjust lines quickly by simply dragging points is 
faster and more efficient than manual adjustment. This feature makes it easier to 
work on similar problems repeatedly, so the student appreciated being able to calcu-
late and visualize lines without having to draw them by hand. Hence, GeoGebra is 
perceived to be a time-saving and efficient tool for working on mathematical prob-
lems. Moreover, this feature provides opportunities for fostering pattern recognition 
skills. By manipulating the GeoGebra-generated lines, students can experiment with 
the underlying mathematical principles and patterns of the programs’ behavior and 
understand them in more depth than text and oral explanations.
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Negative Attitudes Toward Working with GeoGebra

During the reflection questions in the last part of the interviews, the following 
themes emerged.

Unexpected Outcomes, Slow Loading Times, and Technical Errors

Despite GeoGebra being a reliable and powerful tool, four students experienced 
technical issues such as software crashing, slow loading times, compatibility 
issues with their devices, and unexpected outcomes that significantly hindered 
their progress.

Sometimes there was just something not coming out […] GeoGebra was 
loading for too long or you accidentally clicked something [...] Did you kind 
of have to copy something and then you clicked back, only then you can’t 
continue again in the same formula box, because that’s already been used, 
so then you have to fill it out all over again. So that took a lot of time.

When you opened another thing, it didn’t keep the other one that you had 
done before. And it didn’t load sometimes. You couldn’t click on it because 
it was maybe too much at once, so that was [annoying] [...] But the rest was 
okay.

Such technical issues had a negative impact on the learning experience of stu-
dents and required valuable time to tackle them. Smooth, user-friendly, and sta-
ble software environments are essential in engaging students in computational 
problem-solving with mathematical tools, and commonly found issues should be 
addressed by teachers and mentioned in learning material.

Seven students saw disadvantages in using GeoGebra in their lessons because 
they sometimes do not manage to use the program as intended, they might get 
stuck in some parts, and they did not know how to proceed using GeoGebra. 
According to them, in contrast to working with pen and paper, technical issues 
like errors, long loading times in complex assignments, confusing interfaces, 
and teachers sometimes being unable to help students tackle technical issues that 
occur when working with GeoGebra were too frustrating.

A disadvantage of it. Sometimes it gets stuck when you enter things [...] 
With that graph, the computer can’t handle it [...] Especially that tangent, 
then it gets a little stuck.

Well, sometimes it didn’t quite do what it was supposed to do. So some-
times it wasn’t very easy.



1 3

Digital Experiences in Mathematics Education	

Difficulty with Troubleshooting

In some cases, students experienced frustration and difficulties when trying to 
find help with certain problems, and there was no one able to support them.

As with chapters five and six, you occasionally encounter problems where you 
need help finding a solution. But you cannot find any help, and that is frustrat-
ing because you have the idea of what you do not understand, but no one can 
help you [...] and then it’s up to you [...] but then it’s just a tiny thing, and you 
are like ‘oh, here I made a mistake’ [...].

Consequently, students might feel frustrated and are ultimately forced to rely 
upon themselves to find a solution, even if the solution is fixing a small mistake. 
This experience highlights the importance of having access to support and resources 
when encountering problems in the learning process. Three students shared that they 
had an overall negative experience with the lesson series due to the difficulty of the 
mathematics content, code errors, and the complexity of the activities. These chal-
lenges might have potentially hindered their learning outcomes.

Discussion

Several studies have reported on the benefits of using GeoGebra in mathematics 
classrooms, in terms of developing mathematics content knowledge and mathemati-
cal thinking (Arbain & Shukor, 2015). The current study identified advantages and 
challenges in working on CT-embedded, 11th-grade calculus tasks using GeoGebra. 
The aim of the developed lessons series was to foster CT skills in calculus lessons, 
but issues like students’ mathematics knowledge gaps and inexperience in comput-
ing created challenges in engaging them in computational problem-solving.

Previous studies with GeoGebra focused explicitly on students acquiring math-
ematics content knowledge. Our study considered the CT dimension in the lesson 
series which benefited from the same advantages in previous studies with GeoGe-
bra, e.g., visualization, evaluation, testing, automating processes, being versatile 
and useful, and promoting different ways of working and thinking about mathemat-
ics and problem-solving. Visualization can be a powerful feature for comprehend-
ing mathematics (Drijvers, 2018) and CT aspects in learning activities. The results 
of this study showed that interactivity and visualization are particularly useful in 
understanding and mastering mathematics content knowledge and CT skills through 
computational experimentation.

Since a universally accepted definition for CT does not exist in the academic lit-
erature, our developed activities focused on specific aspects of CT that are most fre-
quently considered as its core elements: decomposition, pattern recognition, abstrac-
tion, and algorithmic thinking/design (Dong et al., 2019; Kynigos & Grizioti, 2018). 
We presented how these aspects can be addressed in CT-embedded calculus activi-
ties with accessible mathematics software that tends to be popular in educational 
practice, in our case GeoGebra. GeoGebra is widely used by mathematics teachers 
in the Netherlands, and its features provide abundant opportunities to introduce CT 



	 Digital Experiences in Mathematics Education

1 3

to secondary students. Even though many mathematics teachers in the Netherlands 
use GeoGebra in their lessons, our interviews with students showed that about one-
fourth of the students take a passive role in the classroom before participating in 
the lesson series with the teachers using the software for demonstration purposes 
only. Our approach puts students in a more active role with mathematics tools and 
ideas and focuses on promoting CT skills in calculus lessons through computational 
experimentation.

We collected data during the developed lesson series from different sources 
including workbooks, GeoGebra files, and artifact-based interviews with students. 
The data analysis of different sources provided unique insights from the respec-
tive data and methods that allowed us to capture and evaluate the students’ learning 
experiences and the challenges they encountered. The analysis of students’ activi-
ties in GeoGebra and the workbooks allowed us to identify common mistakes and 
content knowledge gaps about mathematics content knowledge and computational 
concepts and practices, e.g., when students were trying to generate graphs under 
specific conditions—often students used false conditions, macros, and parameters 
due to their gap in mathematics content knowledge. In addition, during the inter-
view phase, the students reflected on their learning experiences and problems they 
encountered during the lesson series.

Our findings suggest that the students participating in the online classes struggled 
more with the lesson series than the students attending the physical classes. Moreo-
ver, the teacher of the online class mentioned that his students were strong in both 
mathematics and computing, which raises concerns about the instruction approach 
in the online setting and time distribution for the learning activities. The developed 
material was designed considering the teacher as a facilitator, not an instructor, but 
it seems that it would be beneficial to include more scaffolding, as well as more time 
for computational experimentation to get familiar with GeoGebra and basic compu-
tational practices. Students stated they particularly struggled with learning the syn-
tax for GeoGebra. They had to adapt to the software’s limitations and realize that 
the computer did not immediately understand their intentions.

Using correct syntax when using the software can be a constructive opportunity 
to develop CT (Wing, 2011), as students need to be precise and define a problem 
and express its solution(s) in ways that GeoGebra can interpret. In doing so, students 
may need to engage in CT practices like testing and debugging (Brennan & Resnick, 
2012) and approach errors systematically. Teachers should provide adequate support 
in addressing syntax issues with step-by-step examples, interactive demonstrations, 
GeoGebra cheat sheets, and appropriate scaffolding. Our GeoGebra file analysis 
may provide a starting point for analyzing common mistakes that students make in 
such activities and discussing them in the classroom. Such discussions can focus 
both on CT and mathematical content knowledge.

During artifact-based interviews (Brennan & Resnick, 2012), we were able to 
capture students’ encountered challenges and understand better aspects that they dis-
liked. Such insights are important not only for education researchers but also for 
teachers who strive to equip their students with digital literacies like CT. This calls 
for adaptations in evaluating the CT learning outcomes of students through simpli-
fied pre- and post-tests, and looking more in-depth at the learning process and CT 
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implementation of students, identifying and addressing the problems that inevita-
bly occur when working with computational tools. Using different methods and 
data sources enabled us to triangulate our data to understand student-encountered 
challenges better. The findings on understanding students’ common mistakes and 
encountered challenges in our developed activities reinforce the argument that cap-
turing CT skills requires various assessment methods (Brennan & Resnick, 2012). 
In our view, artifact-based interviews and reflection reports can provide valuable 
insights into students’ experiences and challenges in working on such activities that 
might not be captured using typical assessment methods due to the complexity of 
CT skills.

The analysis of the GeoGebra files also revealed that, despite the activities’ 
increasing difficulty, the students made fewer mistakes. Our data analysis also 
showed that, despite students mentioning encountering difficulties in the interviews, 
they got used to the software and were able to address the CT-embedded calculus 
problems with more confidence. This is also aligned with feedback from the teach-
ers of the classes, according to whom most students successfully engaged in the 
developed activities. This indicates that the designed lesson series could potentially 
contribute to developing pre-university students’ CT skills, but more research is 
needed to evaluate its impact effectively.

With regard to our developed GeoGebra activities, we refer to generalization as 
part of the algorithmic design/thinking, contrary to our previous work (van Borkulo 
et al., 2021). That is because, in order to translate calculus problems into GeoGe-
bra code, students were required to use variables, loops, sequences, and selection 
structures to consider special cases in the equations, which are crucial aspects of 
algorithmic thinking/design.

The interviews with students indicated that digital tools like GeoGebra are wel-
comed by most students, as they add a more fun and independent learning dimen-
sion to calculus lessons. The GeoGebra environment enables students to work more 
efficiently on the activities under the condition that there is adequate support and 
that the tasks are structured and clear. Our findings suggest that successfully com-
pleting the activities and overcoming technical difficulties is rewarding for the stu-
dents. Considering mathematics content knowledge gaps of students and providing 
adequate resources for tackling technical issues are key to having a positive learning 
experience.

While our study focused on the feasibility of integrating CT into calculus les-
sons using GeoGebra, its findings have implications that can be extended to various 
areas within mathematics where GeoGebra or similar tools can be used. Computa-
tional concepts that GeoGebra supports, e.g., iterations, can be used to approximate 
solutions of equations with the Newton–Raphson method for finding roots (like in 
our activity), as well as exploring reflections, translations, and rotations of shapes 
in geometry lessons, etc. In the same way, computational concepts like conditional 
statements can also be used in probability simulations (among other areas) to deter-
mine outcomes, behavior, and interactions of the generated scenarios. GeoGebra’s 
features provide promising opportunities for computationally rich mathematics 
activities that can potentially engage students in real-world problem-solving and 
enhance learning through interactivity and visualization. We hope that our study 



	 Digital Experiences in Mathematics Education

1 3

will seed ideas for creative ways to integrate CT aspects into diverse areas of mathe-
matics education through GeoGebra or similar dynamic mathematics software tools.

Conclusion, Limitations, and Future Work

Addressing CT aspects in CT-embedded mathematics education is challenging due 
to their core similarities with mathematical thinking. In the Netherlands, computing 
and CT are adequately addressed only in elective computer science courses in sec-
ondary education, despite being essential for preparing students for employment and 
digital citizenship. Therefore, introducing CT in mandatory mathematics lessons is 
beneficial in addressing equity issues and promoting more opportunities for under-
privileged and underrepresented students by increasing participation in computing.

Our study showed that powerful tools that are accessible to teachers could be 
assets in fostering CT skills in pre-university students during mathematics lessons. 
The students have managed to solve the computational problems in GeoGebra to a 
satisfactory degree. The didactical approach and providing sufficient time for famil-
iarizing the students with new tools are key to addressing successfully the developed 
activities. Sufficient scaffolding during the lessons series is essential, and adjust-
ments for providing enough support for students with no sufficient experience in 
computing and mathematics content knowledge gaps need to be considered.

There is a need for continued practice or review of mathematical content knowl-
edge to maintain students’ skills and knowledge before introducing computational 
concepts and practices. Additionally, it is critical to consider that understanding 
mathematical content knowledge today also requires understanding and using digital 
tools for mathematics (Geraniou & Jankvist, 2019). Successful learning in calculus 
using tools like GeoGebra depends on both mathematical and digital competences, 
including the ways that these tools function and understanding their capabilities and 
limitations.

Before discussing the implications of these conclusions for educational prac-
tice and research, we should mention the study’s limitations. First, because of the 
COVID-19 pandemic, some students being absent in some lessons, and students not 
providing consent to analyze their data, our sample was smaller than expected, and 
the participation of students in the lesson series was not always consistent despite 
our efforts to provide online alternatives. Moving to online education led to a shorter 
lesson series and hindered student observation as teachers were overloaded with 
work and were limited by time constraints.

Due to time and resource constraints, we were unable directly to observe every 
individual student’s progress with the developed CT-embedded activities. Even 
though our assessment method approach can provide us with insights about the suc-
cessful completion rates and common mistakes of students, it has certain limitations. 
Direct observations of students in real-time could provide us with a more compre-
hensive picture of how students used the problem-solving methods they mentioned 
and navigated through the developed learning activities as well as the cognitive pro-
cesses involved.
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Performing the teaching experiments under more favorable conditions and 
quantitatively assessing students’ learning gains would offer more constructive 
opportunities to investigate the learning gains of students in more depth. Even 
with these limitations, the GeoGebra files and workbook analysis, as well as the 
artifact-based interviews, contributed valuable insights on the feasibility of using 
GeoGebra or similar tools for integrating CT into secondary education calculus 
lessons and the challenges that inevitably occur.

Additionally, the study had a small scale character, which implies that its 
results must be interpreted and extrapolated with caution, especially because 
the teachers and schools involved in the study volunteered to participate. There-
fore, the results may not represent the average high school in the Netherlands or 
Europe. More teacher professional development opportunities might be needed to 
equip teachers with the necessary pedagogical content knowledge and familiar-
ize them with computational tools to embed them into their lessons. Cooperation 
with more experienced internal or external colleagues might be needed too.

The study’s conclusions provide a basis for the topic of integrating compu-
tational and mathematical thinking into calculus lessons. There is evidence that 
notions of computational problem-solving form a common foundation for simul-
taneously addressing mathematical and computational thinking goals. Future 
work could investigate the possible integration of notions from the didactical 
theories in both computing and mathematics domains. For example, how do 
the notions of object formation (reification and encapsulation) commonly used 
in mathematics education connect to the core CT elements? Even if a start has 
been made to investigate this interplay, further elaboration in research is needed. 
Also, more research on the feasibility of the educational approach followed in this 
study for more scaled-up research designs, including a quantitative measurement 
of learning gains, would be a valuable contribution to our knowledge in the field.
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