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Poisson equation
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A relatively simple PDE with several practical applications:
• Steady-state heat conduction

• Steady-state flow or mass diffusion

• Electrostatic/gravitational force fields, etc



Poisson equation: strong form
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h

Γh

n

As always, we start with the strong form:

−∇ · q+ f = 0 in Ω −qi,i + f = 0
u = g at Γg u = g

−q · n = h at Γh −qini = h

The flux q is related to the scalar field u through:

q = −κ∇u

qi = −κiju,j

• Heat conduction (Fourier’s law): u is temperature, q is heat flux, f is heat source

• Water diffusion (Fick’s law): u is water concentration, q is water flux, f is chemical source/sink

• Pressure diffusion (Darcy’s law): u is hydraulic head, q is discharge rate, f is pressure source/sink



From Poisson equation to diffusion equation

3-19

t = 0 days t = 10 days t = 50 days (steady state)

The Poisson equation is only concerned with steady-state response. But why is time important?

Example of swelling phenomenon, showing the water concentration field in the row above
and stress field below



Diffusion equation: strong form
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h

Γh

n

As always, we start with the strong form:

−∇ · q− ρcu̇+ f = 0 in Ω −qi,i−ρcu̇+f = 0
u = g at Γg u = g

−q · n = h at Γh −qini = h

u(x, 0) = u0(x) at t = 0 u(xi, 0) = u0(xi)

The flux q is related to the scalar field u through:

q = −κ∇u

qi = −κiju,j



Diffusion equation: weak form
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Building up the weak form requires pre-multiplication by w and integration over Ω:

−∇ · q− ρcu̇+ f = 0 ⇒ −

∫

Ω
w (∇ · q) dΩ−

∫

Ω
wρcu̇dΩ +

∫

Ω
wfdΩ = 0, ∀w ∈ V

−qi,i − ρcu̇+ f = 0 ⇒ −

∫

Ω
wqi,idΩ−

∫

Ω
wρcu̇dΩ +

∫

Ω
wfdΩ = 0, ∀w ∈ V

Note that this is a mix between the two previously treated cases:
• the domain Ω can have more than one dimension (e.g. 2D, 3D)

• but the solution u is a scalar field, so w is also a scalar field



Removing derivatives of q — Integration by parts
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Derivative of a scalar-vector product:

∫

Ω
∇ · (ab) dΩ =

∫

Ω
∇a · bdΩ +

∫

Ω
a (∇ · b) dΩ

∫

Ω
(abi),i dΩ =

∫

Ω
a,ibidΩ+

∫

Ω
abi,idΩ
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Removing derivatives of q — Integration by parts
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Derivative of a scalar-vector product:

∫

Ω
∇ · (ab) dΩ =

∫

Ω
∇a · bdΩ +

∫

Ω
a (∇ · b) dΩ

∫

Ω
(abi),i dΩ =

∫

Ω
a,ibidΩ+

∫

Ω
abi,idΩ

Divergence (Gauss) Theorem:

∫

Ω
∇ · (ab) dΩ =

∫

Γ
ab · ndΓ

∫

Ω
(abi),i dΩ =

∫

Γ
abinidΓ

Substitute back and we are done:
∫

Ω
a (∇ · b) dΩ = −

∫

Ω
∇a · bdΩ +

∫

Γ
ab · ndΓ

∫

Ω
abi,idΩ= −

∫

Ω
a,ibidΩ +

∫

Γ
abinidΓ

∫

Ω
w (∇ · q) dΩ = −

∫

Ω
∇w · qdΩ +

∫

Γ
wq · ndΓ

∫

Ω
wqi,idΩ= −

∫

Ω
w,iqidΩ +

∫

Γ
wqinidΓ



Diffusion equation: weak form
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We now use integration by parts to move ∇ from q to w:

−

∫

Ω
w (∇ · q) dΩ−

∫

Ω
wρcu̇dΩ+

∫

Ω
wfdΩ = 0 ⇒

∫

Ω
∇w · qdΩ−

∫

Ω
wρcu̇dΩ+

∫

Ω
wfdΩ−

∫

Γh

wq · ndΓ = 0

−

∫

Ω
wqi,idΩ−

∫

Ω
wρcu̇dΩ +

∫

Ω
wfdΩ = 0 ⇒

∫

Ω
w,iqidΩ−

∫

Ω
wρcu̇dΩ +

∫

Ω
wfdΩ−

∫

Γh

wqinidΓ= 0

Note that:
• the derivative of ∇ · q is now gone!

• a new surface integral appears, but only where Neumann BCs are applied

• actually, the remaining surface vanishes because w = 0 at Γg and Γ = Γg ∪ Γh

• we did not touch the time derivative



Diffusion equation: weak form
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The final weak form is obtained by substituting the Neumann BC and the constitutive relation:

−

∫

Ω
∇w · κ∇udΩ−

∫

Ω
wρcu̇dΩ +

∫

Ω
wfdΩ +

∫

Γh

whdΓ = 0 ∀w ∈ V

−

∫

Ω
w,iκiju,jdΩ−

∫

Ω
wρcu̇dΩ +

∫

Ω
wfdΩ +

∫

Γh

whdΓ = 0 ∀w ∈ V

Note that:
• any solution to the weak form is still a valid and exact solution

• but this is only guaranteed because V is infinite dimensional

• weak solutions only obey the original PDE in a ”distribution” (integral) sense

• but now we get a whole new set of possible solutions with lower-order differentiability



Diffusion equation: semi-discretized form
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We now introduce the actual approximation through the Galerkin Method:
• the infinite-dimensional function space V is reduced to a finite one Vh

• by consequence, the set of possible solutions for u now moves from space S to space Sh

More specifically, we introduce finite-dimensional function spaces based on shape functions:

uh =

nn
∑

n

Nn(x)an, u̇h =

nn
∑

n

Nn(x)ȧn wh =

nn
∑

n

Nn(x)cn,

After which the weak form becomes:

−

∫

Ω
∇wh

· κ∇uhdΩ−

∫

Ω
whρcu̇hdΩ +

∫

Ω
whfdΩ +

∫

Γh

whhdΓ = 0

−

∫

Ω
wh
,iκiju

h
,jdΩ−

∫

Ω
whρcu̇hdΩ +

∫

Ω
whfdΩ +

∫

Γh

whhdΓ = 0



Diffusion equation: semi-discretized form
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We express summations over nodal values in matrix-vector form:

uh = Na, u̇h = Nȧ, wh = Nc

uh = Nnan, u̇h = Nnȧn, wh = Nmcm



Diffusion equation: semi-discretized form
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We express summations over nodal values in matrix-vector form:

uh = Na, u̇h = Nȧ, wh = Nc

uh = Nnan, u̇h = Nnȧn, wh = Nmcm

with

N =
[

N1 N2 · · · Nnn

]

a =



















a1
a2
...

ann



















c =



















c1
c2
...

cnn
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c1
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and
∇uh = Ba, ∇wh = Bc

uh,j = Nn,jan, wh
,i = Nm,icm



Diffusion equation: semi-discretized form
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We express summations over nodal values in matrix-vector form:

uh = Na, u̇h = Nȧ, wh = Nc

uh = Nnan, u̇h = Nnȧn, wh = Nmcm

with

N =
[

N1 N2 · · · Nnn

]

a =



















a1
a2
...

ann



















c =



















c1
c2
...

cnn



















and
∇uh = Ba, ∇wh = Bc

uh,j = Nn,jan, wh
,i = Nm,icm

with

B =

[

N1,x N2,x · · · Nnn,x

N1,y N2,y · · · Nnn,y

]



Diffusion equation: system of equations
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Substituting these back into the discretized form, we have:

−

∫

Ω
∇wh

· κ∇uhdΩ−

∫

Ω
whρcu̇hdΩ +

∫

Ω
whfdΩ +

∫

Γh

whhdΓ = 0, ∀c ⇒

⇒ −

∫

Ω
(Bc)T κBadΩ−

∫

Ω
(Nc)T ρcNȧdΩ +

∫

Ω
(Nc)T fdΩ +

∫

Γh

(Nc)T hdΓ = 0, ∀c

−

∫

Ω
wh
,iκiju

h
,jdΩ−

∫

Ω
whρcu̇hdΩ +

∫

Ω
whfdΩ +

∫

Γh

whhdΓ = 0, ∀cm ⇒

⇒ −

∫

Ω
Nm,icmκijNn,jandΩ−

∫

Ω
NmcmρcNnȧndΩ +

∫

Ω
NmcmfdΩ +

∫

Γh

NmcmhdΓ = 0, ∀cm



Diffusion equation: system of equations
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Finally, taking a and c out of the integrals:

−cT
(
∫

Ω
BT

κBdΩ

)

a−cT
(
∫

Ω
NTρcNdΩ

)

ȧ+cT
(
∫

Ω
NTfdΩ

)

+cT
(
∫

Γh

NThdΓ

)

= 0, ∀c

−cm

(
∫

Ω
Nm,iκijNn,jdΩ

)

an−cm

(
∫

Ω
NmρcNndΩ

)

ȧn+cm

(
∫

Ω
NmfdΩ

)

+cm

(
∫

Γh

NmhdΓ

)

= 0, ∀cm



Diffusion equation: final system of equations
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The formulation ends by cancelling out c to arrive at:

Ka+Mȧ = f Kmnan +Mmnȧn = fm

where:

K =

∫

Ω
BT

κBdΩ, M =

∫

Ω
NTρcNdΩ, f =

∫

Ω
NTfdΩ +

∫

Γh

NThdΓ

Kmn =

∫

Ω
Nm,iκijNn,jdΩ, Mmn =

∫

Ω
NmρcNndΩ, fm =

∫

Ω
NmfdΩ +

∫

Γh

NmhdΓ

Note that:
• in practice, we compute these integrals element by element and assemble the contributions

• isoparametric mapping and numerical integration carry over unchanged to this new problem

• in this case we do have a clean definition of B as B = J−1

[

N1,ξ N2,ξ · · · Nnn,ξ

N1,η N2,η · · · Nnn,η

]



What to do about time?
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This time we need to solve for both a and ȧ. But how?
• No discretization in time assumed throughout the formulation

• Time-dependent shape functions would be an option, but are not used here

• Discretized form tacitly assumes we have access to either a or ȧ



What to do about time?

14-19

This time we need to solve for both a and ȧ. But how?
• No discretization in time assumed throughout the formulation

• Time-dependent shape functions would be an option, but are not used here

• Discretized form tacitly assumes we have access to either a or ȧ

The way out is to define a time stepper:
• Independent from original FEM formulation, so a range of schemes can be used

• Different strategies yield different accuracy and stability properties



A short detour — recap of MUDE week 1.5
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Taylor expansion of an arbitrary function f around x:

f(x+ h) = f(x) + hf ′(x) +
h2

2
f ′′(x) +

h3

6
f ′′′(x) + · · ·+

hn

n!
f (n)(x) +O(hn+1)

• Of course we can also do this for time, just with h = ∆t
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Using the Taylor approximation to define time steps for a transient problem:

u(t0) = u0, u(t) = un, u(t+∆t) = un+1
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A short detour — recap of MUDE week 1.5
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Taylor expansion of an arbitrary function f around x:

f(x+ h) = f(x) + hf ′(x) +
h2

2
f ′′(x) +

h3

6
f ′′′(x) + · · ·+

hn

n!
f (n)(x) +O(hn+1)

• Of course we can also do this for time, just with h = ∆t

Using the Taylor approximation to define time steps for a transient problem:

u(t0) = u0, u(t) = un, u(t+∆t) = un+1

• Forward Euler solver (explicit):

un+1 = un +∆tu̇n

• Backward Euler solver (implicit):

un+1 = un +∆tu̇n+1



Forward Euler integration for the diffusion PDE
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Forward Euler update:

an+1 = an +∆tȧn



Forward Euler integration for the diffusion PDE
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Forward Euler update:

an+1 = an +∆tȧn

Substitute in the discretized form:

Mȧn+1 +K (an +∆tȧn) = fn+1
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Forward Euler integration for the diffusion PDE
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Forward Euler update:

an+1 = an +∆tȧn

Substitute in the discretized form:

Mȧn+1 +K (an +∆tȧn) = fn+1

Solve for velocities at nodes:

ȧn+1 = M−1f̂ with f̂ = fn+1 −K (an +∆tȧn)

Store ȧn+1 for the next step and advance in time

• We solve for velocities, Dirichlet BCs should be consistent

• Solving can be accelerated by lumping the M matrix



Backward Euler integration for the diffusion PDE
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Backward Euler update:

an+1 = an +∆tȧn+1 ⇒ ȧn+1 =
an+1 − an

∆t



Backward Euler integration for the diffusion PDE
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Backward Euler update:

an+1 = an +∆tȧn+1 ⇒ ȧn+1 =
an+1 − an

∆t

Substitute in the discretized form:

M

(

an+1 − an

∆t

)

+Kan+1 = fn+1
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Backward Euler update:
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1

∆t
Man



Backward Euler integration for the diffusion PDE
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Backward Euler update:

an+1 = an +∆tȧn+1 ⇒ ȧn+1 =
an+1 − an

∆t

Substitute in the discretized form:

M

(

an+1 − an

∆t

)

+Kan+1 = fn+1

Solve for the main field at the nodes:

K̂an+1 = f̂ with K̂ = K+
1

∆t
M f̂ = fn+1 +

1

∆t
Man

Store an+1 and ȧn+1 for the next step and advance in time



A range of time steppers — trapezoidal integration
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Generalizing the two previous time steppers:

an+1 = an +∆t ((1− θ)ȧn + θȧn+1) ⇒ ȧn+1 =
1

θ∆t
(an+1 − an)−

(1− θ)

θ
ȧn



A range of time steppers — trapezoidal integration

18-19

Generalizing the two previous time steppers:
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ȧn

)
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A range of time steppers — trapezoidal integration
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Generalizing the two previous time steppers:

an+1 = an +∆t ((1− θ)ȧn + θȧn+1) ⇒ ȧn+1 =
1

θ∆t
(an+1 − an)−

(1− θ)

θ
ȧn

Substitute in the discretized form:

M

(

1

θ∆t
(an+1 − an)−

(1− θ)

θ
ȧn

)

+Kan+1 = fn+1

Solve for the main field at the nodes:

K̂an+1 = f̂ with K̂ =
1

θ∆t
M+K f̂ = fn+1 +

1

θ∆t
Man +

(1− θ)

θ
Mȧn



A range of time steppers — trapezoidal integration
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Generalizing the two previous time steppers:

an+1 = an +∆t ((1− θ)ȧn + θȧn+1) ⇒ ȧn+1 =
1

θ∆t
(an+1 − an)−

(1− θ)

θ
ȧn

Substitute in the discretized form:

M

(

1

θ∆t
(an+1 − an)−

(1− θ)

θ
ȧn

)

+Kan+1 = fn+1

Solve for the main field at the nodes:

K̂an+1 = f̂ with K̂ =
1

θ∆t
M+K f̂ = fn+1 +

1

θ∆t
Man +

(1− θ)

θ
Mȧn

Store an+1 and ȧn+1 for the next step and advance in time



Outlook
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Workshop tomorrow:
• Setting up and solving a diffusion problem in pyJive

• Investigating the stability and accuracy of the time steppers we have seen today

Next week:
• Introduction to nonlinear FEM

• Path-following techniques

• Nonlinear material models
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