CIEM1110-1: FEM, lecture 2.2

FEM for the diffusion equation

luri Rocha, Martin Lesueur
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Poisson equation

A relatively simple PDE with several practical applications:
e Steady-state heat conduction

e Steady-state flow or mass diffusion
e Electrostatic/gravitational force fields, etc
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Poisson equation: strong form

| h
As always, we start with the strong form: "4 u, f %

—-V-q+f=0 in
U =g atl’,

—q-n=~h atI'y,
Fk =

The flux q is related to the scalar field « through:

q=—krVu

e Heat conduction (Fourier's law): u is temperature, q is heat flux, f is heat source
e Water diffusion (Fick's law): u is water concentration, q is water flux, f is chemical source/sink
e Pressurediffusion (Darcy’s law): wis hydraulic head, qis discharge rate, f is pressure source/sink
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From Poisson equation to diffusion equation

The Poisson equation is only concerned with steady-state response. But why is time important?

Example of swelling phenomenon, showing the water concentration field in the row above
and stress field below

t = 0 days t = 10 days t = 50 days (steady state)
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Diffusion equation: strong form

As always, we start with the strong form:

—V-q—pcu+ f=0 in €2 pC

U =g atl’y,

—q-n=nh atI'y,

u(x,0) = up(x) att =0 u(x;,0) = ug(x;)

The flux q is related to the scalar field « through:

q=—kVu
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Diffusion equation: weak form

Building up the weak form requires pre-multiplication by w and integration over €2:

wpcudﬂ+/wfdQ:O, YVw eV

—V-q—pcu+f=0 = —/w(v-q)dﬂ—/
Q Q

Q

Note that this is a mix between the two previously treated cases:
e the domain Q2 can have more than one dimension (e.g. 2D, 3D)

e but the solution u is a scalar field, so w is also a scalar field
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Removing derivatives of q — Integration by parts

Derivative of a scalar-vector product:

/v-(ab)dQ:/Va-bdﬂ+/a(v.b)dﬂ /abi,idQ
Q Q Q2 Q2
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Removing derivatives of q — Integration by parts

Derivative of a scalar-vector product:

/V-(ab)dQ:/Va-bdQ+/a(V-b)dQ /abi,idﬂ
Q Q Q Q

Divergence (Gauss) Theorem:

/V-(ab)dQ:/ab-ndF
Q r
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Removing derivatives of q — Integration by parts

Derivative of a scalar-vector product:

/QV-(ab)dQ:/QVa,-bdQJr/Qa(V-b)dQ

Divergence (Gauss) Theorem:

/V-(ab)dQ:/ab-ndF
Q r

Substitute back and we are done:

/a(V-b)dQ:—/Va-bdQ+/ab-ndF /abmdﬂ
Q Q r Q

/w(V-q)dQ:—/Vw-qu+/wq-ndF /wqiﬂ;dQ
Q Q T Q
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Diffusion equation: weak form

We now use integration by parts to move V from q to w:

—/ w(V-q) dﬂ—/ wpczldQ%—/ wfdQ=0 = / Vw-qu—/ wpczldQ%—/ wfdﬂ—/ wq -ndl' =0
Q Q Q Q Q Q r,

—/wqi,idﬂ /w,iqidﬂ / waq;n;dl’
Q Q L'y

Note that:

the derivative of V - q is now gone!

a new surface integral appears, but only where Neumann BCs are applied
actually, the remaining surface vanishes because w =0atI'yandI' =T'y U T,
we did not touch the time derivative
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Diffusion equation: weak form

The final weak form is obtained by substituting the Neumann BC and the constitutive relation:

—/Vw-mVudQ—/wpcﬂdQ—I—/wfdQ%—/ whdl' =0 Yw eV
Q Q Q T,

Note that:
e any solution to the weak form is still a valid and exact solution

e but this is only guaranteed because V is infinite dimensional
e weak solutions only obey the original PDE in a "distribution” (integral) sense
e but now we get a whole new set of possible solutions with lower-order differentiability

]
TUDelft 819



Diffusion equation: semi-discretized form

We now introduce the actual approximation through the Galerkin Method:
e theinfinite-dimensional function space V is reduced to a finite one V),

e by consequence, the set of possible solutions for u now moves from space S to space Sy,

More specifically, we introduce finite-dimensional function spaces based on shape functions:
ul = ZNn(X)CLn, uh = Z Ny (x)an wh = ZNn(X)Cn,
After which the weak form becomes:

—/th-nVuth—/whpcuth—l—/whfdﬂ+/ whhdl = 0
Q Q Q Ty
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Diffusion equation: semi-discretized form
We express summations over nodal values in matrix-vector form:
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Diffusion equation: semi-discretized form
We express summations over nodal values in matrix-vector form:

u" = Na, u = Na, wh = Ne¢
with ¢ \ ¢ \
ai C1
a9 C9o
N:[Nl Ny Nnn] a=+« . ¢ C:< >
L Ann | L Cnn
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Diffusion equation: semi-discretized form
We express summations over nodal values in matrix-vector form:

u" = Na, u = Na, wh = Ne
with ¢ \ ¢ \
ai C1
a9 C9o
N:[Nl Ny Nnn] a=+« . ¢ C:< >
L Ann | L Cnn
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Diffusion equation: semi-discretized form
We express summations over nodal values in matrix-vector form:

u" = Na, u = Na, wh = Ne
Wlth ( ) 4 3
ai C1
a9 C9o
N:[Nl Ny Nnn] a=+«K _ CZ{ >
\ann } \Cnn }
and
Vu" = Ba, Vuw" = Be
with
B = Nl,a: NQ,CE Tt Nnn,aj
Nl,y NQ,y T Nnn,y
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Diffusion equation: system of equations

Substituting these back into the discretized form, we have:

—/th-nVuth—/whpcathJr/whfdﬂ—f—/ whhdl' =0, Ve =
Q Q Q T,

= - / (Be)' kBadf) — / (Nc)' pcNadQ + / (Nc)' fdo + / (Nc)' hdl' =0, Ve
Q Q Q I

h
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Diffusion equation: system of equations

Finally, taking a and c out of the integrals:

—ct ( / BTanQ> a—c’ ( / NTchdQ) atct ( / N fdQ) +ct ( NThdF) =0, Ve
Q 0 Q Ty,
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Diffusion equation: final system of equations

The formulation ends by cancelling out c to arrive at:

Ka+ Ma="f
where:
K:/BTK,BdQ, M:/NTchdQ, f:/NdeQ+ N1 hdT
Q 0 Q Ty,
Note that:

e in practice, we compute these integrals element by element and assemble the contributions

e isoparametric mapping and numerical integration carry over unchanged to this new problem

e inthis case we do have a clean definition of Bas B — J-1 |1 NV2&  Nang
Nip Nog -+ Npng
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What to do about time?

This time we need to solve for both a and a. But how?
e No discretization in time assumed throughout the formulation

e Time-dependent shape functions would be an option, but are not used here
e Discretized form tacitly assumes we have access to either a or a

]
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What to do about time?

This time we need to solve for both a and a. But how?
e No discretization in time assumed throughout the formulation

e Time-dependent shape functions would be an option, but are not used here
e Discretized form tacitly assumes we have access to either a or a

The way out is to define a time stepper:
e Independent from original FEM formulation, so a range of schemes can be used

e Different strategies yield different accuracy and stability properties
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A short detour — recap of MUDE week 1.5

Taylor expansion of an arbitrary function f around x:
/ h? " h? " h" (n) n+1
fla+h)=flz) +hf(z) + ) + = f7(@) + o+ (@) + O™

e Of course we can also do this for time, just with h = At

]
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A short detour — recap of MUDE week 1.5

Taylor expansion of an arbitrary function f around x:

h? h3 h"
flo+h) = f(@) + b @) + @) + @) oo @) + O
e Of course we can also do this for time, just with h = At

Using the Taylor approximation to define time steps for a transient problem:

u(ty) = up, u(t) =1u,, u(t+ At)=1uyst1

]
TUDelft 15-19



A short detour — recap of MUDE week 1.5

Taylor expansion of an arbitrary function f around x:

/ h? " h? " h'" (n) n+1
Fle+h) = f(@)+hf' (@) + 5 f"(@) + =f" @) + -+ (@) + O

e Of course we can also do this for time, just with h = At

Using the Taylor approximation to define time steps for a transient problem:
u(ty) = up, u(t) =1u,, u(t+ At)=1uyst1

e Forward Euler solver (explicit):

Upt1 = Up + Aty
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A short detour — recap of MUDE week 1.5

Taylor expansion of an arbitrary function f around x:

/ h2 1" h3 " h'" n n+1
@ +h) = f(@) +hf'(x) + 5" (@) + =" @) 4o+ — 0 (@) + O(h™)

e Of course we can also do this for time, just with h = At

Using the Taylor approximation to define time steps for a transient problem:
u(ty) = up, u(t) =1u,, u(t+ At)=1uyst1

e Forward Euler solver (explicit):

Upt1 = Up + Aty

e Backward Euler solver (implicit):

Unp+1 = Up T Atun-l—l
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Forward Euler integration for the diffusion PDE
Forward Euler update:

a1 = a, + Ata,
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Forward Euler integration for the diffusion PDE
Forward Euler update:

a1 = a, + Ata,
Substitute in the discretized form:

Mén_|_1 + K (an + Atan) = In+1

]
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Forward Euler integration for the diffusion PDE

Forward Euler update:
a1 = a, + Ata,
Substitute in the discretized form:
Ma,, .1 + K (a, + Ata,) = f,41
Solve for velocities at nodes:

A

an1 =M with f=f,, —K(a,+ Ata,)
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Forward Euler integration for the diffusion PDE

Forward Euler update:
a1 = a, + Ata,
Substitute in the discretized form:
Ma,, .1 + K (a, + Ata,) = f,41
Solve for velocities at nodes:

an1 =M with f=f,, —K(a,+ Ata,)

Store a,, 1 for the next step and advance in time
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Forward Euler integration for the diffusion PDE
Forward Euler update:
a1 = a, + Ata,
Substitute in the discretized form:
Ma,, .1 + K (a, + Ata,) = f,41
Solve for velocities at nodes:

a1 =M  with f=f,11—Ki(a,+ Ata,)

Store a,, 1 for the next step and advance in time

e We solve for velocities, Dirichlet BCs should be consistent
e Solving can be accelerated by lumping the M matrix
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Backward Euler integration for the diffusion PDE

Backward Euler update:

Ap4+1 — Ap

At

]
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Backward Euler integration for the diffusion PDE

Backward Euler update:

Ap4+1 — Ap

At

an+1 = aAn + Até—n—H =4 é-n—|—1 —
Substitute in the discretized form:

Apn+1 — Ap
M Ka,,1 =1,
( A )+ an+1 +1

]
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Backward Euler integration for the diffusion PDE

Backward Euler update:

. . a — a
Apt+1 = &y + Atan+1 =  Ap4+]l = n+1At =
Substitute in the discretized form:
dn+1] — A
M ( A n) PR = e
Solve for the main field at the nodes:
. . , . 1 A 1
Kan_|_]_ = f with K=K + K‘[;M f = frn_|_1 -+ EMan
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Backward Euler integration for the diffusion PDE

Backward Euler update:

. . A —a
Apt+1 = &y + Atan+1 =  Ap4+]l = n+1At =
Substitute in the discretized form:
dn+1] — A
M ( A n) PR = e
Solve for the main field at the nodes:
. . , . 1 A 1
Kan_|_]_ = f with K=K + KtM f = frn_|_1 -+ EMan

Store a,, 1 and a,, 1 for the next step and advance in time
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A range of time steppers — trapezoidal integration

Generalizing the two previous time steppers:

: : : 1 1—46
ant1 = ap + At((1—0)a, +0any1) =  anp = OAt (An+1 —ap) — ( 6 |

an

]
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A range of time steppers — trapezoidal integration

Generalizing the two previous time steppers:

. . . 1 1-06
api1 = an + At ((1 —0)ap +0an41) = app1 = OAt (An+1 —an) — ( 6 |

an

Substitute in the discretized form:

1 1—-0).
M(@ (an—l—l_an)_( 0 )an>+Kan—|—1: n+1
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A range of time steppers — trapezoidal integration

Generalizing the two previous time steppers:

. . . 1 1—-0).
ant1 =a, +At((1 —0)a, +0a,11) = a4 = AL (apt1 —ay) — ( 7 )an
Substitute in the discretized form:
1 1—-6).
M (@ (an—l—l — an) — ( 0 )an> + Kan—l—l = In+1
Solve for the main field at the nodes:
R n A 1 n 1 1—0
Ka,.1=f with K=-—M+K f:fn+1+—Man+( )Man

YA\ JAN; 0
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A range of time steppers — trapezoidal integration

Generalizing the two previous time steppers:

. . . 1 1—-0).
ant1 =a, +At((1 —0)a, +0a,11) = a4 = AL (apt1 —ay) — ( 7 )an
Substitute in the discretized form:
1 1—-6).
M (@ (an—l—l — an) — %an> + Kan—}—l = In+1
Solve for the main field at the nodes:
R n A 1 n 1 1—0
Ka,,1=f with K=—M+K f=f,,1+-—Ma,+ ( )Man

YA\ JAN; 0

Store a,, 1 and a,, 1 for the next step and advance in time
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Outlook

Workshop tomorrow:
e Setting up and solving a diffusion problem in pyJive

e Investigating the stability and accuracy of the time steppers we have seen today

Next week:
e Introduction to nonlinear FEM

e Path-following techniques
e Nonlinear material models

]
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