

Events and tracking selection in ALICE

D. Caffarri - P. Christakoglou NIKHEF (Amsterdam) davide.caffarri@nikhef.nl

Pb-Pb @ sqrt(s) = 2.76 ATeV 2011-11-12 06:51:12 Fill : 2290 Run : 167693 Event : 0x3d94315a

A Large Ion Collider Experiment (ALICE)

CE coordinate systems

Kinematic variables

Δη is Lorentz invariant under boost along longitudinal axis

ALICE Trigger

Due to the high luminosity of the LHC, not all pp collisions can be registered:
 Trigger is fundamental, in particular for ATLAS, CMS, LHCb
 Important also for ALICE but our scheme are simpler.

A trigger is an online selection that decide if an event has to be stored or not
★ usually based on an algorithm that decide if an event is "interesting" or not.
★ looking for "special signatures" in the event (H → 2Z → 4µ)
★ important to be fast and efficient

Triggers allow to enhance the number of rare probes wrt a general sample of events without any selection

ALICE Trigger

- * In ALICE we have few triggers the ones you might be interested: * Minimum Bias (the looser we have) kMB - 1 hits in the SPD | 1 in one of the two scintillators of the VO
 - kINT7 at least 1 hit per V0 hodoscope
 - Centrality trigger. Used in PbPb 2011 data to enhance the number of events in central and semicentral collisions.

High Multiplicity Trigger threshold on the number of tracks in the events Used to enhance High multiplicity events

- * Muon triggers single muons, di-muons, ...
- Electron Trigger EMCAL, TRD
- Jet trigger EMCAL

*...

In your analysis be sure which trigger your are selecting!

ALICE trigger detectors

The VZERO detector

* located at z ~340 cm (V0A)

scintillators

and -90 cm (V0C)

* 2.8 < η < 5.1 (VOA)

 $-3.7 < \eta < -1.7$ (VOC)

ALICE Trigger

In your analysis be sure which trigger your are selecting!

* In your AddTask or RunMacro add the line:

myTask -> SelectCollisionCandidates(AliVEvent::kINT7)

method of AliAnalysisTaskSE that takes into account the trigger selection

if you plan to run over different data samples (that might have different trigger) think how to do this configurable...

Recap: ALICE tracking devices

Max No of Time Projection Chamber 6

Time Projection Chamber:
x,y from MWPC at the endcaps
z from drift velocity and time

Max Nb of "points" in the TPC: 159

TOF

Track Finding Efficiencies

- TPC efficiency = Nb of reconstructed tracks / Nb of generated tracks
- Very similar results in pp, peripheral Pb-Pb and central Pb-Pb collisions
- Drop at 500 MeV due to energy loss in the material

ITS Prolongation Efficiencies

 Nb of tracks matched in the ITS / Nb of tracks reconstructed in the TPC
 Very similar results in pp and Pb-Pb collisions. Very good agreement between data and MC.

* Dependency on the requirement you make on the track itself.

TOF

- The tracks reconstructed are mainly primaries
 - \star Tracks coming from the primary collision
- The tracking algorithm is also able to reconstruct tracks that do not originate from the primary vertex:
 - ★ Secondary tracks ⇒ products of weak decays of particles (e.g. $\Lambda \Rightarrow p\pi^{-}$)
 - ★ Background tracks → products of the interaction of a particle with the detector material
- In the majority of the analyses we are interested in primaries
- How do we distinguish between those three categories? How do we "get rid" of the other guys?
 - ★ Applying a dca (distance of closest approach) cut we can reduce the contamination from both secondary and background tracks

Type of reconstructed tracks

- The tracks reconstructed are mainly primaries
 - \star Tracks coming from the primary collision
- The tracking algorithm is also able to reconstruct tracks that do not originate from the primary vertex:
 - ★ Secondary tracks ⇒ products of weak decays of particles (e.g. $\Lambda \Rightarrow p\pi^{-}$)
 - ★ Background tracks ⇒ products of the interaction of a particle with the detector material
- In the majority of the analyses we are interested in primaries
- How do we distinguish between those three categories? How do we "get rid" of the other guys?
 - ★ Applying a dca (distance of closest approach) cut we can reduce the contamination from both secondary and background tracks

Type of reconstructed tracks

- The tracks reconstructed are mainly primaries
 - \star Tracks coming from the primary collision
- The tracking algorithm is also able to reconstruct tracks that do not originate from the primary vertex:
 - ★ Secondary tracks ⇒ products of weak decays of particles (e.g. $\Lambda \Rightarrow p\pi^{-}$)
 - ★ Background tracks ⇒ products of the interaction of a particle with the detector material
- In the majority of the analyses we are interested in primaries
- How do we distinguish between those three categories? How do we "get rid" of the other guys?
 - ★ Applying a dca (distance of closest approach) cut we can reduce the contamination from both secondary and background tracks

Strongly depends on p_T and particle species!!!

Primary tracks vs dca cuts

Fraction of particles coming from the primary vertex
with two different dca cuts
majority comes from low-pT

- Tracks with "good quality"
 - \star Apply selection criteria that define a "good" track
- Primaries
 - **\star** Apply a p_T-dependent dca cut
- Identified (e.g. pion, kaon, proton)
 - ★ Wait until next week

- Tracks with "good quality"
 - \star Apply selection criteria that define a "good" track
- Primaries
 - ★ Apply a p_T-dependent dca cut
- Identified (e.g. pion, kaon, proton)
 - ★ Wait until next week

All these selection criteria are already applied for the analysers when filtering the ESD to create an AOD

- Standalone TPC tracks
- Standalone ITS tracks
- Global tracks with loose dca cuts
- Global tracks with tight dca cuts
- Hydrid tracks
 - \star combination of TPC standalone and global tracks
 - **★** used to ensure a uniform ϕ -acceptance

- Standalone TPC tracks
- Standalone ITS tracks
- Global tracks with loose dca cuts
- Global tracks with tight dca cuts
- Hydrid tracks

0

. . .

- \star combination of TPC standalone and global tracks
- \star used to ensure a uniform φ-acceptance

All these lists are characterised by a unique identifier: **filter bit**

- Standalone TPC tracks
- Standalone ITS tracks
- Global tracks with loose dca cuts
- Global tracks with tight dca cuts
- Hydrid tracks

0

. . .

- \star combination of TPC standalone and global tracks
- **★** used to ensure a uniform ϕ -acceptance

All these lists are characterised by a unique identifier: **filter bit**

Knowing what tracks you are using means you know what e.g. kind of selection criteria filter bit 512 consists of

- Standalone TPC tracks
- Standalone ITS tracks
- Global tracks with loose dca cuts
- Global tracks with tight dca cuts
- Hydrid tracks

0

- \star combination of TPC standalone and global tracks
- \star used to ensure a uniform φ-acceptance

All these lists are characterised by a unique identifier: **filter bit**

Knowing what tracks you are using means you know what e.g. kind of selection criteria filter bit 512 consists of

Know what you are talking about

Filter Bit definition

Bit	Cuts	Methods
Bit 0 (001)	Standard cuts on primary tracks	GetStandardTPCOnlyTrackCuts() (*)
Bit 1 (002)	I <u>TS</u> stand-alone tracks(<u>ESD</u> Track Cuts)	SetRequireITSStandAlone(kTRUE)
Bit 2 (004)	Pixel OR (necessary for the electrons) AND Standard track cuts (<u>SetFilterMask</u> (1) of <u>AliESDtrackCuts</u>)	SetClusterRequirementITS(AliESDtrackCuts::kSPD, AliESDtrackCuts::kAny)
Bit 3 (008)	PID for the electrons AND Pixel Cuts (<u>SetFilterMask</u> (4) of <u>AliESDpidCuts</u>)	SetTPCnSigmaCut(AliPID::kElectron, 3.5)
Bit 4 (016)	Standard Cuts with very loose DCA	GetStandardITSTPCTrackCuts2011(kFALSE) SetMaxDCAToVertexXY(2.4) SetMaxDCAToVertexZ(3.2) SetDCaToVertex2D(kTRUE)
Bit 5 (032)	Standard Cuts with tight DCA cut	GetStandardITSTPCTrackCuts2011()
Bit 6 (064)	Standard Cuts with tight DCA but with requiring the first <u>SDD</u> cluster instead of an SPD cluster tracks selected by this cut are exclusive to those selected by the previous cut	<u>GetStandardITSTPCTrackCuts2011()</u> <u>SetClusterRequirementITS(AliESDtrackCuts</u> ::kSPD,AliESDtrackCuts::kNone) <u>SetClusterRequirementITS(AliESDtrackCuts</u> ::kSDD,AliESDtrackCuts::kFirst)
Bit 7 (128)	TPC only tracks, constrained to SPD vertex in the filter	GetStandardTPCOnlyTrackCuts esdfilter->SetTPCOnlyFilterMask(128)
Bit 8 (256)	Extra cuts for Hybrids: - first the global tracks we want to take	AliESDtrackCuts::GetStandardITSTPCTrackCuts2011(kFALSE) SetMaxDCAToVertexXY(2.4) SetMaxDCAToVertexZ(3.2) SetDCAToVertex2D(kTRUE) SetMaxChi2TPCConstrainedGlobal(36) SetMaxFractionSharedTPCClusters(0.4) esdfilter->SetHybridFilterMaskGlobalConstrainedGlobal((1<<8)); // these normal global tracks will be marked as hybrid
Bit 9 (512)	Than the complementary tracks which will be stored as global constraint, complement is done in the ESDFilter task	SetClusterRequirementITS(AliESDtrackCuts::kSPD,AliESDtrackCuts::kOff) SetRequireITSRefit(kTRUE) esdfilter->SetGlobalConstrainedFilterMask(1<<9); // these tracks are written out as global constrained tracks esdfilter->SetWriteHybridGlobalConstrainedOnly(kTRUE); // write only the complement
Bit 10(1024)	Standard Cuts with tight DCA cut, using cluster cut instead of crossed rows	<u>GetStandardITSTPCTrackCuts2011</u> (kTRUE,0) (**)

Filter Bit definition

(**) GetStandardITSTPCTrackCuts2011(Bool_t selPrimaries, Int_t clusterCut){

```
if(clusterCut == 0) SetMinNClustersTPC(50);
else if (clusterCut == 1){
SetMinNCrossedRowsTPC(70);
SetMinRatioCrossedRowsOverFindableClustersTPC(0.8);
}
SetMaxChi2PerClusterTPC(4);
SetAcceptKinkDaughters(kFALSE);
SetRequireTPCRefit(kTRUE);
SetRequireITSRefit(kTRUE);
SetClusterRequirementITS(AliESDtrackCuts::kSPD, AliESDtrackCuts::kAny);
if(selPrimaries) SetMaxDCAToVertexXYPtDep("0.0105+0.0350/pt^1.1");
if(selPrimaries) SetMaxChi2TPCConstrainedGlobal(36);
SetMaxDCAToVertexZ(2);
SetMaxDCAToVertex2D(kFALSE);
SetRequireSigmaToVertex(kFALSE);
SetMaxChi2PerClusterITS(36);
```


Filter Bit selection

AliAODTrack::TestFilterBit(UInt_t filterBit)

fAODTrackCutBit can be 768, 96, ...

Back up

D. Caffarri - NIKHEF - Events and tracks selection in ALICE