
Overview of exam questions
CIEM5110 Unit 2 Finite Elements for Structural Analysis

This document contains an overview of typical exam questions for Unit 2 Finite Elements for Structural
Analysis of the module CIEM5110. Percentages indicate the work load, where 100% would be the size of a
complete exam. The level of difficulty is representative for what you can expect in the actual exam. This
collection is not exhaustive in the range of topics that may be covered in the exam.

Questions with solutions

1.[15%] The semi-discretized format of the equation of motion is written as

Mä+Ka = f .

Starting from this equation, explain how the natural frequencies for free vibration are determined.

Solution: Free vibration occurs at f = 0.
Assume harmonic motion (a = ā sin(ωt− ϕ)).
Substitution results in eigenvalue problem

[
K− ω2M

]
ā = 0.

A non-trivial solution exists for those values of ω for which det
(
K− ω2M

)
= 0

2. (a)[5%] Expand the B-matrix for a 4-node element in two-dimensional elasticity in terms of shape functions
N1 to N4.

Solution:

B =

N1,x 0 · · · N4,x 0
0 N1,y · · · 0 N4,y

N1,y N1,x · · · N4,y N4,x


(b)[5%] Show the role of the Jacobian in the construction of the B-matrix for isoparametric elements.

Solution: The Jacobian linearizes the relation between (x, y) and (η, ξ)

J =

[
∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

]

Derivatives with respect to global coordinates are obtained with the inverse of J as[
Ni,x

Ni,y

]
= J−1

[
Ni,ξ

Ni,η

]
These then go into the B matrix as shown under (a).

(c)[5%] When evaluating the stiffness matrix, where does the term det(J) appear in the formulation?

Solution: In the integral in front of dξ dη∫∫
BTDB det(J) dξ dη

(d)[5%] Explain why the term det(J) is needed.
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Solution: It is there to correct for the fact that integration is performed over the reference element
while the stiffness matrix is defined in the physical element domain

Note that the questions do not require an explicit expression of the shape functions.

3. An analyst is tasked with assessing the vibration behavior of a pedestrian bridge and opts for performing
dynamics FE simulations using the Newmark method in the unconditionally stable regime. However,
the size and number of simulations to be performed start to create a computational bottleneck.

(a)[5%] The analyst decides to switch to a central difference scheme. For the same model and time step
size, how would this choice impact execution time, model accuracy and numerical stability?

Solution: Execution time would be significantly faster due to the explicit nature of the scheme.
Accuracy would scale with time step in a similar manner, but stability would now depend on mesh
density.

(b)[5%] Given the problem at hand, what other dynamics analysis technique would you recommend to the
analyst and why would that be a good fit for this problem?

Solution: Frequency analysis could also be used since one can expect avoiding or minimizing
resonance to be the main design driver

4.[25%] Starting from the following pseudocode for computing the element stiffness matrix of a general isopara-
metric element:

1

2 function get_element_stiffness (elem)

3 k_ele = 0.0;

4

5 % your code should come

6

7 % between these lines

8

9 return k_ele;

10

11 end function

12

13

Use the coding elements below to complete the function:

• for ip = 1..nip

• end for

• get_node_coordinates (arg)

• get_B_matrix (arg)

• get_ip_weight (arg)

• get_nodes_for_elem (arg)

• get_jacobian_at_ip (arg1, arg2)

• get_shapegrads_at_ip (arg)

• get_D_matrix ()

Note that some functions have arguments. When writing your answer, clearly indicate which arguments
are passed to each function. Assume all functions return a single variable to which you can assign a name
of your choice. You can then use these new variables as arguments for subsequent function calls. Make
sure to use all of the above elements when writing your code, adding more lines with basic mathematical
operations where necessary. You can also make use of the following operators:
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• matmul(A,b): matrix/vector product

• matmul(A,B): matrix/matrix product

• matmul(A,B,C): triple matrix product

• a * B: scalar product

• inverse(A): matrix inverse

• transpose(A): matrix transpose

• determinant(A): matrix determinant

Solution:

1

2 function get_element_stiffness (elem)

3 k_ele = 0.0;

4

5 nodes = get_nodes_for_elem (elem);

6 coords = get_node_coordinates (nodes);

7 dmat = get_D_matrix ();

8 thick = get_thickness ();

9

10 for ip = 1..nip

11 weight = get_ip_weight (ip);

12 jacobian = get_jacobian_at_ip (coords , ip);

13 pgrads = get_shapegrads_at_ip (ip);

14

15 grads = matmul(inverse(jacobian), pgrads);

16 bmat = get_B_matrix (grads)

17

18 k_ele = k_ele + matmul(transpose(bmat),matmul(dmat ,bmat)) * weight * thick *

determinant(jacobian)

19 end for

20

21 return k_ele;

22 end function

23

24
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5.[40%] The coupled partial differential equations for the Timoshenko beam are given as:

−EI
d2θ

dx2
−GAs

(
dv

dx
− θ

)
= ρI

d2θ

dt2

GAs

(
d2v

dx2
− dθ

dx

)
+ fy = ρA

d2v

dt2

Consider the 2-node Timoshenko element shown below:

When all degrees of freedom are gathered in a single dof-vector, the semi- discrete form for the dynamic
Timoskenko beam can be expressed as:

M
d2a

dt2
+Ka = f

Derive an expression for the consistent mass matrix in the semi-discrete form for a 2-node Timoshenko
beam element.1

Solution:

We start by deriving the weak form of the coupled problem. Multiplying the first PDE by a weight
function θ̄ and the second by a weight function v̄ and integrating over the domain Ω we get:

−
∫
Ω

θ̄EIθ,xx dΩ−
∫
Ω

θ̄GAs (v,x − θ) dΩ =

∫
Ω

θ̄ρIθ̈ dΩ, θ̄ ∈ Vθ (1)

∫
Ω

v̄GAs (v,xx − θ,x) dΩ+

∫
Ω

v̄fy dΩ =

∫
Ω

v̄ρAv̈ dΩ, θ̄ ∈ Vv (2)

To proceed we must balance the order of derivatives by applying integration by parts. Since this is a
semi-discrete approach, we only balance derivatives with respect to x but leave time derivatives intact:∫

Ω

θ̄,xEIθ,x dΩ+

∫
ΓM

θ̄T dΓ−
∫
Ω

θ̄GAs (v,x − θ) dΩ =

∫
Ω

θ̄ρIθ̈ dΩ (3)

−
∫
Ω

v̄,xGAs (v,x − θ) dΩ+

∫
ΓQ

v̄Fy dΓ+

∫
Ω

v̄fy dΩ =

∫
Ω

v̄ρAv̈ dΩ (4)

where the Neumann boundary conditions in terms of forces (Fy) and moments (T ) have already been
substituted.

1This question has been asked in an online open book exam. For a closed-book written exam, the question would likely be
broken down in smaller steps
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We now introduce a Galerkin solution on finite-dimensional function spaces Vh
θ and Vh

v spanned by
shape functions N:

vh = Nav v̄h = Ncv v̈h = Näv θh = Naθ θ̄h = Ncθ θ̈h = Näθ (5)

which can be substituted into the two weak forms to give:

cθ
(∫

Ω

BTEIB+NTGAsN dΩ

)
aθ−cθ

(∫
Ω

NTGAsB

)
av+cθ

∫
ΓM

NTT dΓ = cθ
(∫

Ω

NTρIN dΩ

)
äθ

(6)
and

−cv
(∫

Ω

BTGAsB dΩ

)
av + cv

(∫
Ω

BTGAsNdΩ

)
aθ + cv

∫
ΓQ

NTFy dΓ+cv
∫
Ω

NTfy dΩ =

cv
(∫

Ω

NTρANdΩ

)
äv

(7)

Finally, cancelling out cθ and cv and combining the two systems of equations into one, we get:

Mä+Ka = f (8)

where the contributions of each element to the system can be written as:

ae =


θ1
θ2
v1
v2

 äe =


θ̈1
θ̈2
v̈1
v̈2

 Ke =

[
Kθθ Kθv

Kvθ Kvv

]
Me =

[
Mθθ 0
0 Mvv

]
fe =

[
fθ
fv

]
(9)

with components given by:

Kθθ =

∫
Ωe

BTEIB+NTGAsN dΩ (10)

Kθv = −
∫
Ωe

NTGAsB dΩ (11)

Kvθ = −
∫
Ωe

BTGAsNdΩ (12)

Kvv =

∫
Ωe

BTGAsB dΩ (13)

Mθθ = −
∫
Ωe

NTρIN dΩ (14)

Mvv =

∫
Ωe

NTρAN dΩ (15)

fθ = −
∫

Γe
MNTT dΓ (16)

fv =

∫
Ωe

NTfy dΩ+

∫
Γe
Q

NTFy dΓ (17)

Since the question was about the mass matrix, only the derivation of M is considered in the grading.
Answers that do not include complete expressions for K can receive a full score for the question.
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6.[30%] Consider the following 8-node brick element, to which a surface load is applied on the face defined by
nodes 5, 6, 7 and 8:

[h]

Nodal coordinates in x-y-z space are given by:

Node x y z
1 0.0 0.0 0.0
2 3.0 0.0 0.0
3 3.0 2.0 0.0
4 0.0 2.0 0.0
5 0.0 0.0 1.0
6 3.0 0.0 1.0
7 3.0 2.0 1.0
8 0.0 2.0 1.0

and the DOFs are arranged in the element vector in the order:

a(e) =
[
ux1 uy1 uz1 · · · ux8 uy8 uz8

]T
The magnitude of the surface load varies in space and can be described in isoparametric coordinates as:

q = 1 + ξ2 + η2

while shape functions can be given by the compact expression:

Ni =
1

8
(1 + ξiξ) (1 + ηiη) (1 + ζiζ)

Based on the information given, answer the following:

• Compute the surface integral related to the load q to find the equivalent nodal forces acting
on the element. Perform the integration numerically and give the equivalent load vector computed
with 1x1 Gauss integration. Clearly show all steps taken

• How can this integral be evaluated exactly with numerical integration? Specify the number of
integration points that is needed and show the procedure for performing the numerical
integration (you do not need to work out the math to arrive)
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For integration points and weights, refer to the following definition of 1D Gauss integration:

# points location(s) weight(s)
1 0.0 2

2 ± 1√
3

1

3 ±
√

3

5

5

9

0
8

9

Solution:

The integral that gives the equivalent nodal forces for load q can be written as:

f =

∫
Γ

NTq dΓ (18)

where f has size [24× 1] and q =
(
0 0 q

)T
.

Noting that Γ corresponds to a Q4 element and q acts in the out-of-plane direction, we can evaluate
this integral in a straightforward way by writing in parametric coordinates:

f =

∫ +1

−1

∫ +1

−1

N
T
qj dξdη (19)

where now the force has size [4 × 1], the load q becomes a scalar and N is formed by arranging the
shape functions evaluated at ζ = 1 in a single row:

N =
[
N5 N6 N7 N8

]
(20)

and the shape functions are given by the compact expression:

Ni =
1

4
(1 + ξiξ) (1 + ηiη) (21)

In order to compute the integral, the determinant of the Jacobian j of the surface is needed:

J =

[
∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

]
=

[
3

2
0

0 1

]
⇒ j =

3

2
(22)

The question asks for a numerical integration of f with 1x1 Gauss integration. For that, we compute
the integrand at ξ = η = 0 and multiply it by a weight w = 4 (two-dimensional integral), giving:

f ≈

N
T
(ξ=0,η=0)︷ ︸︸ ︷
1

4


1
1
1
1

 · (1 + 0 + 0)︸ ︷︷ ︸
q(ξ=0,η=0)

·

j︷︸︸︷
3

2
· 2 · 2︸︷︷︸

w

=


3
2
3
2
3
2
3
2

 (23)
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which can then be placed in the full-size equivalent load vector for the brick element:

f =
[
0[1×12] 0 0 3/2 0 0 3/2 0 0 3/2

]T
(24)

For exact numerical integration, we need to look at the polynomial degree of the integrand. Since N
has linear terms, q has quadratic terms and j is constant, the integrand is of order 3. With Gauss
quadrature, it can be integrated exactly with 4 integration points (2x2):

f =

2∑
i

2∑
j

N (ξi, ηj) q (ξi, ηj) jwiwj (25)

with point locations and weights given by:

ξi ηj wi wj
1√
3

1√
3

1 1
1√
3

− 1√
3

1 1

− 1√
3

1√
3

1 1

− 1√
3

− 1√
3

1 1

7.[25%] Consider a 3-node line element for a bar problem with shape functions defined in the natural coordinate
frame as:

N1 =
1

2
ξ (ξ − 1) N2 = 1− ξ2 N3 =

1

2
ξ (ξ + 1)

The nodes of the element are positioned at x1 = 0, x2 = 1 and x3 = 4, as shown in the figure below.

Demonstrate that this element can represent infinite strain inside the element with finite nodal displace-
ments.2

Solution:

We start with the interpolation for strains:

ε =
∂N

∂x
ae (26)

since the shape functions are given in parametric coordinates, the chain rule must be applied:

dN

dx
=

dN

dξ

dξ

dx
(27)

2This question has been asked in an online open book exam. For a closed-book written exam, the question would likely be
broken down in smaller steps
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From the definition of isoparametric mapping and the given coordinates we have:

x = Ni(ξ)xi ⇒ x = 1 + ξ2 + 2ξ (28)

from which we can compute the jacobian:

j =
dx

dξ
= 2ξ + 2 (29)

Going back to the definition of strains and substituting j and the derivatives of the shape functions
with respect to ξ we have:

ε =
1

2ξ + 2

[
ξ − 1

2
−2ξ ξ +

1

2

]ux1

ux2

ux3

 (30)

from which we can see that if ξ → −1, the denominator 2ξ+2 → 0 and consequently ε → ∞, ∀ ae ̸= 0.
This distorted element can therefore represent an infinite strain at its left node even when the nodal
displacements are finite.

8.[35%] Derive the expression of the vector of nodal equivalent forces corresponding to the parabolic distributed
load q (x) for the 3-node bar element depicted below starting from the differential equation of the bar.
Use a 1- and 2-point quadrature rules in [−1; 1] (location ±1/

√
3 and weights equal to 1 for the two-point

rule).

Solution: Strong form
−EAu,xx = q(x)

Weak form equation

−
∫ L/2

−L/2

wEAu,xx dx =

∫ L/2

L/2

wq(x) dx

Discretize and divide by amplitudes (focus on RHS)

f =

∫ L/2

−L/2

NT q dx

Shape functions

N(x) =
[
− x

L + 2x2

L2 ,
x
L + 2x2

L2 , 1− 4x2

L2

]
or

N(ξ) =
[
1
2ξ

2 − 1
2ξ,

1
2ξ

2 + 1
2ξ, −ξ2 + 1

]
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or
N(ξ) =

[
2
L2x

2 − 3
Lx+ 1, 2

L2x
2 − 1

Lx,
4
L2x

2 + 4
Lx

]
Next, integration points have to be computed in x-coordinate if the first set of shape functions is used,
and the jacobian determinant (|j| = L/2) should be added to the integral. The integral is expanded as

f ≈
np∑
i=1

NT (ξi)q(ξi)|j|wi

Result with 1 point:
f =

[
0 0 1

]
q̄L

with 2 points:
f =

[
1
9

1
9

4
9

]
q̄L

(for node numbering with mid-node as third; mid-node as second is also allowed, as long as the num-
bering is consistent)

Questions without solutions

1. An equilibrium FEM problem is solved with a mesh of distorted Q4 elements, some of which can be seen
in the figure below.

x
y

(0,0)

(0,1)

(1,0)

(2,2)

(-1,-1) (1,-1)

(1,1)(-1,1)

ξ
η

(0.75,0.75)

1 2

3
4

The system is solved and a global DOF vector a is computed. From this global vector, the nodal
displacements of the element highlighted in the figure can be extracted:

a(e) =
[
0 0 0.2 0 0.4 0.1 0 0.3

]T
where DOFs are ordered as a(e) =

[
ax1 ay1 · · · ax4 ay4

]
. The shape functions for this element can

be written in the parametric system ξ − η as:

Ni =
1

4
(1 + ξiξ) (1 + ηiη)

and the two coordinate systems are related through the Jacobian matrix and its inverse:

J =

[
∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

]
J−1 =

1

detJ

[
∂y
∂η −∂y

∂ξ

−∂x
∂η

∂x
∂ξ

]
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For this problem, the material is modeled as linear-elastic with stiffness matrix given by:

D =

1000 0 0
0 1000 0
0 0 500


(a)[10%] Using isoparametric mapping, prove that the centroid of the element in ξ − η space corresponds to

the centroid of the distorted element in physical x− y space (shown in light red in the figure)

(b)[10%] Describe the procedure to compute the stress vector σ at an arbitrary location (ξ, η) inside the
element. Employ the isoparametric mapping formalism and for now assume general values for node
coordinates, a(e) and D.

(c)[20%] Use the procedure you just described to compute the value of the horizontal stress σxx at point
(0.75, 0.75) in physical space. You can simplify your calculations by taking advantage of the zero
entries in the values given above.

2. The following pseudo-code snippets and questions relate to coding aspects of the Finite Element Method.
Provide a short textual answer to each of them (do not write any code).

(a)[5%] Part of a loop for computing K(e) can be seen below:

1 # ...

2

3 elmat = 0

4

5 for each integration point:

6 B = compute_B_matrix (dN_dx)

7 D = compute_D_matrix (youngs_modulus , poisson_ratio)

8 thickness = get_thickness ()

9

10 elmat += transpose(B) * D * B * thickness

11

12 # ...

This code would not integrate a correct stiffness matrix. What is missing from it?

(b)[5%] Consider the following routine that implements the main loop of a FE solver:

1 # ...

2

3 K = 0

4 f = 0

5

6 for each element:

7 K += element_stiffness (element)

8 f += element_bodyforces (element)

9

10 f += point_loads

11

12 solution = invert(K) * f

13

14 # ...

This code would not compute a valid solution. What step is missing?

3.[20%] Consider the following matrix differential equation in time:

Mä+Cȧ+Ka = f ,
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where the superposed dot indicates differentiation with respect to time. Assume

än =
1

(∆t)
2 (an−1 − 2an + an+1) , ȧn =

1

2 (∆t)
(an+1 − an−1) .

(a) Derive the algebraic equations for the solution of an+1 in the form

Aan+1 = fn −Ban −Dan−1

(define A, B, and D in terms of M, C, and K).

(b) Is the integration scheme above explicit or implicit? Why?

4. (a)[5%] With reference to the three-point Newton-Cotes integration rule (NC3), derive the missing infor-
mation (?) in the table below.

location ξi weigth wi

1 ? 1/3
2 ? ?
3 ? ?

(b)[5%] Describe the procedure to perform numerical integration of a function in a generic one-dimensional
domain.

(c)[5%] Integrate I =

∫ 7

1

1

x
dx using NC3

5.[30%] Consider the one-dimensional equation of heat conduction with unit conductivity:

d2ϕ

dx2
+Q = 0 for 0 ≤ x ≤ L,

in which

Q =

{
1 0 ≤ x ≤ L/2
0 L/2 ≤ x ≤ L

and ϕ = 0 at x = 0 and x = L.

(a) Derive the weak form at element level.

(b) Derive the discrete weak form at element level.

(c) Determine the value of ϕ at x = L/2 using a two-element discretization.

Note:

- To apply the boundary conditions ϕ = 0 strike out corresponding rows and columns in the stiffness
matrix. This should generate a 1× 1 stiffness matrix.

- Consider a unit cross section.
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