
Luís Cruz
L.Cruz@tudelft.nl

ML Testing
Release Engineering for Machine Learning Applications 
(REMLA, CS4295)

Sebastian Proksch
S.Proksch@tudelft.nl

REMLA 2022

mailto:l.cruz@tudelft.nl
mailto:S.Proksch@tudelft.nl

Outline

• ML Testing Landscape

• What to test?

• How to test?

• Mutamorphic Testing

• Tools and Resources

2

ML Testing Landscape

https://arxiv.org/abs/
1906.10742

3

https://arxiv.org/abs/1906.10742
https://arxiv.org/abs/1906.10742

ML Testing
Zhang et al. (2019)

• Definition 1 – ML Bug: any imperfection in a machine learning item that causes a
discordance between the existing and the required conditions.

• Definition 2 – ML Testing: any activities designed to reveal machine learning bugs.

4

ML Testing
Publications during
2007–2019
(⚠ Cumulative plot)

5

Zhang et al. (2019)

6

Natural language inference
Machine translation
Autonomous driving

Privacy
Interpretability
Fairness
Efficiency
Robustness&Security
Model Relevance
Correctness

Framework testing
Learning program testing
Data testing

Debug and repair
Test prioritisation and reduction Bug report analysis
Test adequacy evaluation
Test oracle generation
Test input generation

Why to test: MLT properties
Where&What to test: MLT components
How to test: MLT workflow
Comparison with software testing
Definition

Open-source tools
Data sets
Machine learning properties
Machine learning categories

Application Scenario

Testing properties (why to test)

Testing components (where&what to test)

Testing workflow (how to test)

Contents of Machine Learning Testing
Preliminary of Machine Learning

Research Direction
Analysis and Comparison

Ways of Organising Related Work

Introduction of MLT

Machine Learning Testing

Zhang et al. (2019)

Automated ML testing

• Ensure that all the executions are exactly the same, in the same environment
(no more “it works on my machine, I swear!”).

• Run tests faster: let’s say that you have one thousand models in your pipeline.
Running one by one for sure is not the best way to spend your time.

• Easier debugging: detect model’s malfunctioning earlier, avoiding deploying it
into production.

7

Feature
Extraction

Model
Monitoring

Data Quality

ModellingTrained Model

Tests for…

Data Cleaning

8

What should we test?

9

ML Test Score

https://research.google/pubs/
pub45742/ 10

https://research.google/pubs/pub45742/
https://research.google/pubs/pub45742/

ML Test Score

• 4 main angles:

• Tests for features and data.

• Tests for model development.

• Tests for ML infrastructure.

• Monitoring tests for ML.

11

⚠ Disclaimer
Some tests are not covered but are not less important.

Check the paper for the full list.

Test that the distributions of each feature
match your expectations.

Tests for Features and Data
13

Test the relationship between each feature
and the target, and the pairwise correlations
between individual signals.

Tests for Features and Data
14

Test the cost of each feature.

Tests for Features and Data

• Latency

• Memory usage

• More upstream data dependencies

• Additional instability

15

Test that a model does not contain any
features that have been manually determined
as unsuitable for use.

Tests for Features and Data
16

Test that your system maintains privacy
controls across its entire data pipeline.

Tests for Features and Data

(not only in raw data but also in intermediate stages)

17

Test all code that creates input features, both
in training and serving

Tests for Features and Data

E.g., methods used to clean date formats; methods use to remove stop words.

18

Test that every model specification undergoes
a code review and is checked in to a
repository

Tests for Model Development

mllint might be useful here

19

Test the relationship between offline proxy
metrics and the actual impact metrics

Tests for Model Development

For example, how does a 1% improvement in accuracy metrics translate
into effects on business metrics (e.g., user satisfaction)?

Theory Practice

20

Test the impact of each tunable
hyperparameter.

Tests for Model Development

What’s the oracle?

21

Test the effect of model staleness.

Tests for Model DevelopmentFigure credits: Clemens Mewald, 2018

22

Test against a simpler model as a baseline

Tests for Model Development
23

Test model quality on important data slices.

Tests for Model Development
24

Test the model for implicit bias.

Tests for Model Development
25

Test the reproducibility of training.

Test non-determinism robustness.

Tests for Model Development
26

Tests for ML Infrastructure

Integration test the full ML pipeline.

Tests for ML Infrastructure
27

Test models via a canary process before they
enter production serving environments.

Tests for ML Infrastructure
28

Example: AB testing

Test how quickly and safely a model can be
rolled back to a previous serving version.

Tests for ML Infrastructure
29

Test that data invariants hold in training and
serving inputs.

Monitoring Tests for ML
30

E.g., shape of distributions of features should be the same in training data and serving data. 
…

Test for model staleness.

Monitoring Tests for ML
31

Test for dramatic or slow-leak regressions in
training speed, serving latency, throughput, or
RAM usage.

Monitoring Tests for ML
32

Test for regressions in prediction quality on
served data.

Monitoring Tests for ML
33

Final score
ML test score
• 1 point. If you do the test manually.

• 2 points. If you do the test automatically. ⭐

• Meaning of the final score sum:

• 0 points: More of a prototype project than a productionized system.

• 1-2 points: Not totally untested, but it is worth considering the

possibility of serious holes in reliability.

• 3-4 points: There’s basic productionization, but additional

investment may be needed.

• 5-6 points: Reasonably tested, but it’s possible that more of those

tests and procedures may be automated.

• 7-10 points: Strong levels of automated testing and monitoring,

appropriate for critical systems.

• 12+ points: Exceptional levels of automated testing and monitoring.

34

But really, how should we test?
(a few basic examples)

❌ ✔ ❌ ❌ ✔ ✔

35

https://research.google/pubs/pub45742/

PyTest – basic example

/my_project_folder
 ...
 /src

train_model.py
 /tests

test_trained_model.py

$ pytest

Project structure

Run the tests

36

./tests/test_trained_model.py

from sklearn.externals import joblib

def test_something_in_the_model():
 model = joblib.load('trained_dummy_model.sav')
 // ...
 assert ...

Duplicates
Unit test

./tests/test_data_cleaning.py

@pytest.fixture()
def df():
 df = pandas.read()
 yield df

def test_no_duplicates(df):
 assert len(df['id'].unique())==df.shape[0]
 assert df.groupby(['date','id']).size().max()==1

37

Preprocess methods
Unit test

./tests/test_data_cleaning.py

@pytest.fixture()
def df():
 df = pandas.read()
 yield df

def test_preprocess_missing_name(df):
 assert preprocess_missing_name("10019\n") is None

def test_preprocess_city(df):
 assert preprocess_city("amsterdam") == "Amsterdam"
 assert preprocess_city("AMS") == "Amsterdam"
 assert preprocess_city(" Amsterdam ") == "Amsterdam"

38

Value ranges
Unit test

./tests/test_data_cleaning.py

@pytest.fixture()
def df():
 df = pandas.read()
 yield df

def test_value_ranges(df):
 assert all (df['percentage']<=1)
 assert df.groupby('name')['budget'].sum()<=1000
 assert all (df['height'] >= 0)

39

Test Non-determinism Robustness
Model Validation tests

• Performance stability when using
different random seeds.

• If a model is performant, it should
have little dependency on random
variance.

• Make seed an attribute in the
pipeline; test different seeds;
assert for low variability.

40

Test Non-determinism Robustness
Unit test

./tests/test_data_cleaning.py

@pytest.fixture()
def trained_model():
 trained_model = joblib.load('trained_model.sav')
 yield trained_model

def test_nondeterminism_robustness(trained_model):
 original_score = evaluate_score(trained_model) # score between 0..100
 for seed in [1,2]:
 model_variant = train_model(random_state=seed)
 assert abs(original_score - score(model_variant)) <=0.03

41

Test Noise Robustness

• 1- What happens to the performance when we change a few training
data points?

• 2- What happens to the performance when we add acceptable noise
to test data points? (E.g., add typos)

Noise

A few noisy data
points should not
completely change
the model

42

Test model quality on important data slices
Model validation tests

./tests/test_data_slice.py

@pytest.fixture()
def trained_model():
 trained_model = joblib.load('trained_model.sav')
 yield trained_model

@pytest.fixture()
def test_data():
 test_data = pandas.read_csv("test_data.csv")
 yield test_data

def test_data_slice(trained_model, test_data):
 original_score = evaluate_score(trained_model, test_data)
 sliced_data = test_data[test_data['city'] == 'Delft']
 sliced_score = evaluate_score(trained_model, sliced_data)
 assert abs(original_score - sliced_data) <= 0.05

⚠ Warning!
This test is highly dependent on

the problem.

43

What else?

• A lot of work is yet to be done in this area:

• There is not much documentation around this topic.

• What to test? Practitioners are looking out for testing best practices.

?
44

Mutamorphic testing and repair

https://arxiv.org/abs/1910.02688
45

https://arxiv.org/abs/1910.02688

Mutamorphic testing

• Metamorphic testing + mutation

• Metamorphic testing: derive new test cases based on properties of the
existing ones. 
E.g., commutative property: 
assertEqual(add(1, 2), 3) => assertEqual(add(2, 1), 3)

• Mutamorphic: the new test cases are not exactly based safe properties

• Black-/grey-box testing. 
No access to the model or its training codebase.

• Implemented for ML-based translators. 
“It is okay” and “It is fine” have a mutamorphic relationship 
(context-similar).

Mutamorphic Testing

1. Automatic Test Input Generation

Generate sentences by replacing 1
word with a context-similar word
(Mutation).

2. Automatic Test Oracle Generation

When the translation of the mutant
and the original sentence are fairly
different, we have a failing test.

3. Automatic Inconsistency Repair

Find a mutant sentence with a
translation that we can use to replace
the original translation.

(Only works for translations with
similar structure and word types)

47

⬆⬆⬇⬆⬆
⬆⬆⬆⬆⬆ ❌ ✔ ❌ ❌ ✔ ✔

✔ ✔ ✔ ✔ ✔ ✔
❌ ✔ ❌ ❌ ✔ ✔

1. Automatic Test Input
Generation

Mutamorphic Testing

2. Automatic Test Oracle
Generation

3. Automatic Inconsistency Repair

48

Useful tools

• TFDV. https://github.com/tensorflow/data-
validation

• mllint. https://github.com/bvobart/mllint

49

https://github.com/tensorflow/data-validation
https://github.com/tensorflow/data-validation
https://github.com/tensorflow/data-validation
https://github.com/bvobart/mllint

Wrap-up

50

Final Project

• What should you take from this class to
the final project?

