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Chapter “Introduction” 

Author: S.N. Jonkman 
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1  Introduction 

1.1 General 

Almost all activities in life are characterized by some level of risk1. Examples of risk-bearing 

activities are riding a bike or car, boarding an airplane, or living below sea level behind flood 

defences. Particularly within the field of civil engineering risk and safety are key concepts that 

need to be taken into account explicitly in the design and management. Failures of systems such 

as dikes, buildings and other infrastructures are expected to occur with small probability, but can 

lead to large consequences. On the other hand, many engineering systems, such as transportation 

infrastructure, flood defences and buildings, provide many benefits to mankind.  

 

In order to determine how safe a structure or system should be, an acceptable level of risk needs 

to be defined.  The eventual decision about acceptable risk is predominantly a political one, but 

engineers can have an important role in the discussion and decision-making. They can provide 

information on failure probabilities and consequences (economic, life loss etc.) of a given system 

and highlight trade-offs between investments in safer systems and risk reduction (see chapter 3 for 

further details). Risk plays an important role in many current societal discussions. Examples are 

recent discussions related to the use of nuclear power or shale gas exploration. Both activities 

bring various benefits (energy generation) but also introduce additional risks to the population and 

environment.  A systematic analysis of risks  of (proposed) projects can help to inform the broader 

societal discussions. 

 

                                                   
1 Risk refers to the combination of probability and consequences of undesired events (see chapter 3 for further definitions).  
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Risks have to be considered in the various stages of a project: during construction, regular use and 

decommissioning. Every phase has characteristic set of risks. For example, risks of injuries 

amongst workers and budget overruns during the construction phase, and small probabilities of 

failure during the regular lifetime. 

 

For standard applications and systems that are frequently constructed, codes are available that 

define acceptable safety levels. For example, in the Eurocode for structures so-called target values 

for the failure probability for structures of different safety classes are given. Also, procedures are 

given to derive design loads and resistances are derived in such a way that the failure probability 

of a structure can be expected to be sufficiently small (see Figure 1.1).   

 

Figure 1.1: Probability density functions showing the variations in load (red, left) and 

resistance (green, right). The design load and resistance are chosen in such a way that a 

structure with a sufficiently low probability of failure can be designed. The failure 

probability is proportional to the overlapping area of the two curves. Codes and 

guidelines provide information on the load and resistance factors (’s) that can be used to 

derive these values – see chapter * on level I techniques for more information. 

However, for other applications, e.g. special structures or new applications, no standard codes or 

guidelines are available and a more explicit analysis of the reliability and risk of the system is 

required. An example from the past is the design of the Eastern Scheldt barrier. The acceptable 

probabilities of failure of the structure and non-closure of the gates were determined based on the 

acceptable risk of flooding of Zeeland. These probability values formed the basis for the so-called 

probabilistic design of the barrier in the 1970’s. 

 

There are various examples of relevant recent developments in the field of risk-based design in 

civil engineering the Netherlands. A first example is the discussion about the gas extraction in the 

north of the Netherlands which leads to additional risk for the population. A thorough analysis of 

the probability of earthquakes, the structural safety of various infrastructures (houses, dikes, 

hospitals, pipelines) and the resulting level of risk is required and ongoing. A second example, 

concerns the field of flood management. New safety standards for primary flood defences in the 

Netherlands have been introduced in the year 2014. These new safety standards are formulated as 

a tolerable failure probability of dike segments. Future dike reinforcements have to be designed 
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according to these new standards. This implies that advanced knowledge of probabilistic design of 

flood defences is needed in all these reinforcement projects.  

 

In light of all these developments, it is crucial that civil engineers are able to understand  and 

apply the concepts of risk and reliability in civil engineering. These lecture notes aim to provide 

(future) civil engineers with some of the basic techniques and concepts in the field.  

1.2 Objectives 

These lecture notes are part of the course CIE4130 probabilistic design at TU Delft. After 

completion of the course, students are expected to be able to: 

 Perform a risk analysis of a (simplified) civil engineering system and evaluate the risk of a 

system – using relevant techniques such as fault and event trees, and criteria to support 

risk evaluation (e.g. economic optimization, individual and societal risk).    

 Perform reliability calculations for at the element level, using relevant techniques, such as 

level III, II, I and analysis. 

 Perform reliability calculations at the system level (using fundamental and Ditlevsen 

bounds for systems with various levels of correlation).  

 Apply the main safety concepts of relevant design codes (Eurocode) and to derive design 

values for load and strength for civil engineering structures.  

1.3 Structure of the lecture notes 

These lecture notes have been organized in three parts. An overview of the structure can be found 

in Figure 1.2. The first part focuses on fundamentals and general principles. It introduces the 

objectives of the course and lecture notes (this chapter 1) and a general recap of probability theory 

required for the course (chapter 2). Also, general concepts for systems and risk analysis and risk 

evaluation are introduced in chapter 3. 

 

Part II summarizes approaches for analysing the reliability of an element. After the introduction of 

some general concepts (chapter 4), different so-called levels for reliability analysis, level III, II 

and I and time dependence of loads are treated (chapters 5 - 8). Also methods for the reliability 

analysis of systems are summarized (chapter 9).  

 

Part III focuses on application and implementation. Chapter 10 describes the implementation of 

reliability and safety in design codes for structures in civil engineering. The final chapter 11 

presents applications of reliability analysis for project planning, maintenance and correctable 

systems.  
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Figure 1.2: Structure of these lecture notes for the course CIE4130. 

Previous work& basis of these lectures notes 

Parts of these lecture notes are based on previous versions of lecture notes of this course.  

 CUR (2015) CUR190: Probability in civil engineering. Version January 2015 

 Vrouwenvelder A.C.W.M., Vrijling J.K. (1982) Dictaat b3, probabilistisch ontwerpen, TU 

Delft (lecture notes b3: Probabilistic design – in Dutch) 

 Prof. dr. ir. Luc Taerwe; Prof. dr. ir. Robby Caspeele, Risk Analysis of Construction 

Processes, Department of Structural Engineering, Ghent University 

Some parts of these documents have been used (with permission) as a basis for the current lecture 

notes. A special word of thank to the professors Taerwe and Caspeele from Ghent University for 

their kind cooperation. 

About the draft version November 2017 

These lecture notes are the fourth version of the new lecture notes for the course on probabilistic 

design (CIE4130) and they have been prepared in the summer and autumn of the year 2017. As 

such they are an update of the previous version of the lecture notes, i.e. the CUR 190 book. This is 

work in progress, and the lecture notes will continue to be updated in the coming year. Feedback 

and suggestions by students and readers is most welcome and can be sent to 

d.paprotny@tudelft.nl and s.n.jonkman@tudelft.nl. 

Further reading 

Additional information on various topics introduced in this course can be found in various 

sources. In every section a reference list is given. The references below cover a broad range of 

topics.  
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 Bedford, T. Cooke R. (2001) Probabilistic risk analysis: foundations and methods. 

Cambridge University Press, 2001. 

 Benjamin, J. R., & Cornell, C. A. (1970). Probability, Statistics and Decision for Civil 

Engineers. New York: McGraw-Hill. 

 Baecher, G. B., & Christian, J. T. (2003). Reliability and Statistics in Geotechnical 

Engineering. West Sussex, UK: Wiley. 

 Faber M.H. (2012) Statistics and probability – in pursuit of engineering decision support. 

Springer Science and business media 

 Faber M.H. (2001) lecture notes on risk and safety in civil engineering. ETH Zurich, 

available at: http://e-collection.library.ethz.ch/eserv/eth:25307/eth-25307-01.pdf 

 Vrouwenvelder, A. C. W. M. (1997). The JCSS probabilistic model code. Structural 

Safety, 19(3), 245–251. doi:10.1016/S0167-4730(97)00008-8 

 Also, the previous lecture notes (CUR, 2015; Vrouwenvelder and Vrijling, 1982) provide 

useful information.  
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Chapter “Probability Calculus” 
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2 Probability calculus 

In this chapter a summary of basic probability theory and statistics which is important for these 

lectures is given. The axiomatic1 structure of probability theory is briefly discussed. Also, the 

methods in which a single random variable is described as well as generalizations to multiple 

random variables are presented. The lecture notes are consistent with applications in reliability 

analysis. For more information, regarding probability theory we refer to Hoel et al (1971). 

2.1 Axiomatic presentation 

Kolmogorov (1956) is recognized as the first to formalize probability theory as an axiomatic 

discipline similar to algebra, geometry and other branches of mathematics.  A formal derivation of 

probability theory as a mathematical discipline is out of the scope of these notes, however the 

main results concerning this derivation are presented.  The main axioms of probability theory 

following Kolmogorov (1956) are: 

 Let Ω be a collection of elementary events ξ, ζ, η… and ℱ a set of subsets of Ω; the elements of 

the set ℱ will be called random events. 

Axiom I: ℱ is a field2 of sets 

Axiom II: ℱ contains Ω 

Axiom III: To each set A in ℱ a non-negative real 

number 𝑃(𝐴) is assigned; 𝑃(𝐴) is called 

the probability of event A 

Axiom IV: 𝑃(Ω) = 1 

Axiom V: If A and B have no element in common, 

that is 𝐴 ∩ 𝐵 =  ∅, then  

𝑃(𝐴 ∪ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵) 

A system of sets ℱ together with a definite assignment of numbers 𝑃(𝐴) satisfying Axiom I till 

Axiom V is called a probability field. 

The first and second axioms will not be discussed. Axiom III indicates that the probability 𝑃 for a 

random event 𝐴 is greater than or equal to 0. Axiom IV states that the probability of Ω is equal to 1. 

According to Axiom V, the probability of the occurrence of (A or B or both) is equal to the sum of 

the probabilities of A and B separately, provided that A and B are mutually exclusive. Notice that 

∅ denotes the empty set. For an overview of all the symbols see the list of symbols and Figure 2.1. 

 

Strictly speaking, the given axioms, especially Axiom V, are only valid as long as we restrict 

ourselves to outcomes with a finite number of outcomes. The extension to more general axioms 

(see Kolmogorov 1956) contains no viewpoints that are important for this course and therefore are 

excluded. 

 

                                                   
1
 An axiom is roughly a proposition that is self-evident and is accepted without a proof. In geometry for 

example, the concept of a “point” and a “line” are accepted as self-evident and are used in order to prove other 

more elaborate propositions.  
2
 A system of sets is called a field if the sum, product and difference of two sets of the system also belong to the 

same system. Every non-empty field contains the empty set . 
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In the above, the probability is introduced as a mathematical quantity. This says little about the 

interpretation of the notion of probability. This interpretation is essentially a philosophical 

problem. The main interpretations of probability are:  

2.2 Interpretations of probability 

Four of the main interpretations of probability are the classical, the logical, the frequentist and the 

subjective.  

1. The classical interpretation of probability is attributed to the French scientist Laplace 

(Laplace), who defined probability as, “the number of favourable cases divided by the 

number of equi-possible cases”. Examples from coin tossing and dice-throwing were used 

to illustrate what is meant by “equi-possible”. This interpretation however has been 

criticized regarding the operational definition of “equi-possible” (for insurance companies 

death cases may not be equi-possible) and hence has fallen into disuse.  

2. The logical interpretation was proposed in Keynes (1973). The idea was that conditional 

probability should be interpreted as partial entailment. This interpretation however is also 

in disuse and to a large extent forgotten.  

3. The frequentist interpretation (Von Misses 1936) introduces probability as limiting 

relative frequencies in a “collective” or “random sequence”. Where, roughly, a random 

sequence is one which passes all “recursive statistical tests”. For example the frequency of 

1’s in a very large random sequence of 0’s and 1’s. 

4. Finally the subjective interpretation. One of the main proponents is Savage (see Savage 

1956) and the interpretation of probability is in terms of degree of belief of a subject. 

Different subjects can have different degrees of belief for one and the same event. Again, 

very loosely, the theory would state that if a subject prefers A to B, for rational subjects 

this would entail that he or she assigns greater probability to A than to B.  

2.2.1 Propositions 1 to 7 

Starting from the axioms from section 2.1, some propositions can be derived. These propositions 

may seem quite trivial and their proof superfluous. Still, these proofs, on the basis of the Venn 

diagrams from Figure 2.1 show the reasoning used in probability theory. 

1.             (2.1) 

Because ( ) ( )P A P    from Axiom V: .  

Furthermore,  resulting in .  

Combining these results gives . 

 

2.       (2.2) 

Due to  (see Figure 2.1e) it follows according to Axiom IV & 

Axiom V: . 

 

3.              (2.3) 

The left inequality follows directly from Axiom III. Again, due to Axiom III it follows that

. The right inequality follows from proposition 2. 

 

4.           (2.4) 

( ) 0P  

( ) ( ) ( )P A P A P   

A A ( ) ( )P A P A 

( ) 0P  

( ) ( ) 1 (where  is the complement of  or not )P A P A A A A 

Ω and A A A A   

( ) ( ) ( ) (Ω) 1P A P A P A A P    

0 ( ) 1P A 

( ) 0P A 

If  then ( ) ( )A B P A P B 
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Since  (see Figure 2.1f). Applying Axiom V:

. With  (Axiom III) it follows

. 

 

5.           (2.5) 

If (see Figure 2.1f), from which the proposition follows 

directly. 

 

6.           (2.6) 

is valid (see Figure 2.1g), as long as  are mutually 

exclusive. Due to Axiom V: . Then is 

valid (see Figure 2.1h), with also being mutually exclusive.  

Due to Axiom V: . The substitution of proves this 

proposition. 

 

7.          (2.7) 

For the left inequality  is used (see the proof of proposition 6, 

first step). Since  (Axiom III) it holds that . In exactly the 

same way one may show that . 

The right inequality follows from proposition (1-6) and the fact that  (from 

Axiom III).  

   

It is now interesting to relate the various propositions regarding . Proposition 6 

gives an exact expression, but has the disadvantage that has yet to be determined 

(see section 2.2). Proposition 7 shows an upper and a lower limit expressed in terms of

. The upper limit is exact if  are mutually exclusive (see Axiom V or 

proposition  6); the lower limit is exact if or vice versa (see proposition 

5). 

 
  

 is ( )  and ( )A B B A A B B A A      

( ) (( ) ) ( ) ( )P B P B A A P B A P A      ( ) 0P B A 

( ) ( )P B P A

If  then ( ) ( )A B P A B P B  

 holds then A B A B B  

( ) ( ) ( ) ( )P A B P A P B P A B    

( )A B A B A     and ( )A B A

( ) ( ) ( )P A B P A P B A    ( ) ( )B A B B A   

( ) and ( )A B B A 

( ) ( ) ( )P B P A B P B A    ( )P B A

{ ( ); ( )} ( ) ( ) ( )Max P A P B P A B P A P B   

( ) ( ) ( )P A B P A P B A   

( ) 0P B A  ( ) ( )P A B P A 

( ) ( )P A B P B 

( ) 0P A B 

( )P A B

( )P A B

( ) and ( )P A P B  and A B

 implies event A B
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a. Union of event   

  

 
b. Intersection of   

  

 

 
c.  

   

 

 
d.   

 
e.     

  

 
f.   

                          

                          

 
g.   

  

 
h.   

  

 
Figure 2.1. Venn Diagrams to use in the clarification of propositions 1 to 7. 

 and : ;A B A B

(  or )A B

 and :A B A B

(  and )A B

 is a subset of :A B A B

(  part of  or  contains )A B B A

 and  are mutually exclusive: A B A B 

Ω , A A 

A A 

If  then: ( ) ,A B A B A B   

( ) ,A B A  

A B B 

( ) ,A B A A B   

( )A B A  

( ) ( ) ,B A A B B   

( ) ( )B A A B   
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Example 2.1 

A certain dike would fail if the water level exceeds the height of the dike, or there is a partial 

structural failure and the dike does not have enough retaining power. Use the following 

definitions:  

 = Failure of the dike 

 = The event of a higher water level than the height of the dike 

 = The dike observes partial structural failure and has insufficient retaining power. 

 

Assume: . For the event of failure of the dike it states: 

      (2.8) 

Knowing these boundaries is sufficient for many problems. Note that the boundaries can get 

closer together if one of the probabilities is much larger than the other.  

2.2.2 Propositions 8 to 11 

Some of the propositions can now be extended to multiple events. A proof is only given for 

proposition 8; all other propositions can be proven via the same approach. 

8.    (2.9)  

This is an extension of Axiom V. For the proposition is proven as follows: 

   

In this proof Axiom V is first applied to . The 

extension to etc. continues in the same manner. 

 

9.   

            (2.10) 

This is an extension of proposition 2 and a special case of proposition 8. 

 

10.   as an extension to proposition 5:  

            (2.11) 

11.     (2.12)  

This is an extension of proposition 7. The probability that at least one of the events

occurs is greater than the probability that the most probable event occurs and smaller than 

the sum of the probabilities of the separate events. The lower bound occurs when one of 

the events includes every other event. The upper bound occurs when all events are 

mutually exclusive (see Figure 2.2). A special case is the case when every probability

is equal: 

    (2.13) 

F

A

B

4 4( ) 2 10  and ( ) 3 10P A P B    

4 4

{ ( ); ( )} ( ) ( ) ( )

3 10 ( ) 5 10

Max P A P B P A B P A P B

P F 

   

   

1 2 1 2If  for every  then: ( ... ) P(A ) ( ) ... ( )i j n nA A i j P A A A P A P A        

3n 

1 2 3 1 2 3 1 2 3 1 2 3( ) (( ) ) ( ) (A ) ( ) ( ) ( )P A A A P A A A P A A P P A P A P A          

1 2 3 1 2( ) and  and then again to  and A A A A A

4,  5n 

1 2 1 2If  for every  and ( ... A ) Ω then: ( ) ( ) ... ( ) 1i j n nA A i j A A P A P A P A          

If  for every i jA A i j  1 2( ... ) ( )n jP A A A P A   

1 2For an arbitrary  it applies: { ( )} ( ... ) ( )i i n iA Max P A P A A A P A    

iA

( )iP A

1 2( ) ( ... A ) ( )i n iP A P A A nP A    
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Figure 2.2: In proposition 11 the lower bound occurs when one of the events contains 

all other events, while the upper boundary occurs when all events are mutually 

exclusive 

 

Example 2.2 

Take a six-sided fair die. Let , denote the event that a throw of the die yields the result . The 

events are mutually exclusive. Since the die is fair , it follows on the basis of 

proposition 9 that for every . 

 

Example 2.3 

The probability of throwing a 4, 5 or a 6 in one throw is, according to proposition 11: 

.  

Because the event are mutually exclusive, we know from proposition 8 that the right 

equality holds, that is . 

 

Example 2.4 

The probability of throwing a 6 in one throw is . Because of proposition 11 the probability of 

throwing at least one 6 in three throws is greater than but smaller than . None of these 

bounds is accurate, why not? 

 

Example 2.5 

A construction will be built for a service life of 100 years. Each year the probability of failure is 

estimated at . For the probability of failure in 100 years it applies:

. Notice that there are two orders of magnitude between these 

bounds. 

 

In the next section some of the examples will be discussed further. 

1 2( ... ) max{ ( )}n iP A A A P A    1 2( ... ) ( )n iP A A A P A   

iA i

iA ( ) ( )i jP A P A

( ) 1/ 6iP A  i

4 5 61/ 6 ( ) 3 / 6P A A A   

4 5 6,  and A A A

4 5 6( ) 3 / 6P A A A  

1/ 6

1/ 6 3 / 6

510

5 310 (failure in 100 years) 10P  
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2.3 Conditional Probabilities – dependence and independence 

An important concept in probability theory is the concept of conditional probability defined as 

follows: 

          (2.14) 

Conditional probability (equation (2.14)) is obviously only defined if . Before we discuss 

the interpretation of the conditional probability we first show it is most certainly a probability. 

In other words: it will be shown that  Axiom III, Axiom IV and Axiom V hold for the definition of 

conditional probability according to equation (2.14).  

 

Proof. 

Axiom III follows naturally. Because  it must follow that . 

Consider next Axiom IV; the proof that this axiom holds is as follows: 

       (2.15)

 

In order to appreciate the statement above see Figure 2.4 (b).  Finally it must be shown that 

equation (2.14) coincides with Axiom V. We use the Venn-diagram from Figure 2.3. The mutual 

exclusive events are shown. It can be concluded that: 

      (2.16)  

Since are mutually exclusive, are also mutually exclusive. This 

means:  

      (2.17) 

If we divide the left part as well as the right part of the equation above by :  

      (2.18) 

Then, using the definition of conditional probability (equation (2.14)) : 

      (2.19) 

This last equation is Axiom V for conditional probabilities which concludes the proof.  

 

( )
( | )

( )

P A B
P A B

P B




( ) 0P B 

( ) 0 and ( ) 0P A B P B   ( | ) 0P A B 

(Ω ) ( )
(Ω | ) 1

( ) ( )

P B P B
P B

P B P B


  

1 2 and  and event A A B

1 2 1 2{( ) } ( ) ( )A A B A B A B     

1 2 and A A 1 2( ) and ( )A B A B 

1 2 1 2P{( ) } ( ) ( )A A B P A B P A B     

( ) 0P B 

1 2 1 2{( ) } ( ) ( )

( ) ( ) ( )

P A A B P A B P A B

P B P B P B

   
 

1 2 1 2P{( ) | } ( | ) ( | B)A A B P A B P A  
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Figure 2.3: If are mutually exclusive, then are also 

mutually exclusive. 

 

   

   

(a) (b) (c) 

Figure 2.4: The different possible computations of , given .   

 

From the fact that the conditional probability coincides with the axioms of probability theory it 

follows that, all propositions for common probabilities can be rewritten for conditional 

probabilities. For example: 

         (2.20) 

( | ) 1P A B             (2.21) 

           (2.22) 

And so on. 

 

It is possible to interpret the conditional probability theory as common probability theory where 

the total sample space Ω is reduced to subarea . An important argument for this interpretation is: 

        (2.23) 

In this case, event  plays the role of the event  which has a probability of occurrence of 1. 

This bring us to the interpretation of as a “given”. For some reason or another the event  can 

be considered to have occurred. 

1 2 and A A 1 2(A ) and ( )B A B 

( | ) 0P A B 
( ) ( )

( | )
( ) ( )

P A B P A
P A B

P B P B


 

( )
( | )

( )

P A B
P A B

P B




A B

( | ) ( | ) 1P A B P A B 

( | ) 0P B 

B

( ) ( )
( | ) 1

( ) ( )

P B B P B
P B B

P B P B


  

B Ω

B B
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We now discuss conditional probability in terms of Figure 2.4: 

- The conditional probability of an event A given an even B which is mutually exclusive 

with A is zero (Figure 2.4 a); 

- The probability of an event A given B when A implies  is this probability of that event 

divided by . This procedure normalizes every probability on event  with respect to

 without compromising their ratios (Figure 2.4 b). 

- If an event , then  can be broken down in the separate events

. This leads to equation (2.14). The resulting probability  is 

usually called the probability of event  given event  (Figure 2.4 c). 

2.4 Dependence and independence  

In general will not be the same as .  In the special case that this holds we speak of 

independence. Two events,  and  are independent if:  

          (2.24) 

is independent of if the fact that event occurs does not influence the probability of 

occurrence of event .  

The rules for AND and OR probabilities in case of independence are as follows: 

         (2.25) 

       (2.26) 

Mathematically it is better to define (1-20) as a definition by itself instead of a result of 

independence. This definition is then easily extended to “𝑛” number of events. 

The events are independent if: 

       (2.27) 

Calculating with independent events is mathematically trivial though could be computationally 

expensive. On the other hand the adequate assignment of probabilistic dependence usually proves 

to be a challenging task. Therefore, there is a tendency to work under the assumption of 

independence. In practise, independence, or rather dependence, is based on physical attributes of 

the events or variables under consideration. Assuming independence when in fact the contrary is 

true may lead to large inaccuracies.  Modelling of dependence is thus becoming increasingly 

important. Decision makers have realized the importance of more accurate probabilistic models 

and the traditional tools of probability and statistics need to be extended with models for 

dependence if we want to meet the challenge placed by the questions of interest of decision 

makers.  

 

B

( )P B iA

iA B

( )A B  A

( ) and ( )A B A B  ( | )P A B

A B

( | )P A B ( )P A

A B

( | ) ( )P A B P A

A B B

A

( ) ( ) ( )P A B P A P B  

( ) ( ) ( ) ( ) ( )P A B P A P B P A P B    

iA

( ... ) ( ) ( )... ( )1 2 n 1 2 nP A A A P A P A P A   
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Example 2.6 

Denote by  the event of showing a 1, … , 6 in a throw of an even die. Denote by  the 

event that the throw results in an even number. Then we have the following: 

       (2.28) 

Notice that, for example E and A6 are not independent because  . 

 

Example 2.7 

Following with the notation from Example 2.6, one may verify that the events  = “throw is 

even” and = “throw is a 5 or 6” are independent because: 

        (2.29) 

So it holds that      56 56P E A P E P A   . 

1 6,...,A A E

1 3 5

2 4

( | ) ( | ) ( | ) 0

( | ) ( | ) ( | ) 1/ 36

P A E P A E P A E

P A E P A E P A E

  

  

6 6( | ) (A )P A E P

E

56A

2 4 6

56 5 6

56 6

( ) ( ) 1 / 2

( ) ( ) 1 / 3

(E ) ( ) 1 / 6

P E P A A A

P A P A A

P A P A

   

  

  

Example 2.8 

In Example 2.4 a fair dice was thrown three times and required was the probability that at least 

one of those throws is a 6. Now, the assumption is made that those results are independent and the 

probability can be calculated. Notice that the assumption of independence results from the fact 

that the dice is fair. It is not true that probability theory indicates that these events should be 

independent. Assume: 

         (2.30) 

The example can be solved most easily by flipping the problem statement: What is the probability 

that none of the throws result in a 6? This can be described as: 

          (2.31) 

Because of the independency of  it holds (see equation (2.27)): 

1

2

3

1 2 3

first throw is a 6

second throw is a 6

third throw is a 6

B

B

B

B B B B







  

1 2 3B B B B  

iB
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Example 2.9 

Assume that the event of failure of the same structure as discussed in Example 2.5 is independent 

over the years. Let the failure in year  be noted as :  

1 2(Failure in any year ,  1... ) (F F ... F )nP i i n P          (2.33) 

Similar to the reasoning in Example 2.8: 

1 2

1 2

(No failure in any year ,  1... )

( ... )

( ) ( ) ... ( ) ( ) {1 ( )}

(failure in any year ,  1... ) 1 {1 ( )}

n

n n
n i i

n

i

P i i n

P F F F

P F P F P F P F P F

P i i n P F

 

   

     

   

      (2.34) 

With  and  it follows: 

        (2.35) 

Notice the similarity between the result and the upper bound of proposition 11, equation (2.13)

. This will be discussed later on. 

2.4.1 Law of total probability 

A widely used proposition within probability theory is the so called “Law of Total Probability” 

given by: 

         (2.36) 

Where all the are mutually exclusive and together they constitute a so-called partition of a 

sample space (their union corresponds to the total sample space and they are mutually exclusive). 

To clarify  for every  and . 

The proof lies on the basis of the following statements (see Figure 2.5): 

       (2.37) 

It now follows easily: 

i iF

5( ) 10iP F  100n 

(Failure in year 100) 0.0009995P 

5(Failure in year 100) 100 10P  

1

( ) ( | ) ( )
n

i i

i

P A P A B P B




iB

i jB B  i j 2 ... Ωi nB B B   

1 2{( ) ( ) ...

  for ever

( )}

( ) ( ) y 

n

i j

A A B A B A B

A B i jA B

      

    

        (2.32) 

See Example 2.4 for the upper and lower bound  and the  

Appendix 2.1 Solution to Alternative examples & exercises 

3

1 2 3

3

3

3

( ) ( ) ( ) ( ) ( )

1 ( ) {1 ( )}

( ) 1 {1 ( )}

( ) 1 {1 1/ 6} 0.42

i

i

i

P B P B P B P B P B

P B P B

P B P B

P B

 

  

  

   

1/ 6 ( ) 1/ 2P B 
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      (2.38) 

The final step follows on the basis of the definition of conditional probability (equation (2.14)). 

 

 

Figure 2.5 The events are   mutually exclusive and their union is event .   

 

Example 2.10 

A dice is thrown twice and required is the probability that the sum of two outcomes is equal to 9. 

Denote by  the event that “the outcome of the first throw is ” and by  the event that “the 

sum of the two outcomes is equal to 9”. The law of total probability is applied:  

         (2.39) 

If the first throw is a 1 or a 2, the probability of the sum of the outcomes in each throw is equal to 

9 is 0. If the first throw yields a 3, the second throw must be a 6, so . The 

same reasoning applies with 4, 5 and 6. Then, 

      (2.40) 

This results in: 

        (2.41) 

It is of course also possible to calculate this result with other approaches. 

2.4.2 Bayes’ Theorem  

This famous theorem bears the name of reverend Thomas Bayes (1701(?) to 1761) who was 

credited by Richard Price as the first one to formulate the theorem (see Bayes and Price (1763). 

Roughly, the theorem provides a technique of calculating a “posterior” distribution on the basis of 

a “prior”. With the same notation used in section 2.4.1 we have:  

1 2

1 2

( ) {( ) ( ) ... ( )}

( ) ( ) ( ) ... ( )

( ) ( )

( ) ( | ) ( )

n

n

i

i i

P A P A B A B A B

P A P A B P A B P A B

P A P A B

P A P A B P B

       

       

  







( )iA B A

iB i A

( ) ( | ) ( )i iP A P A B P B

3 3( | ) 1/ 6 ( )P A B P B 

1 2

3 4 5 6

( | ) ( | ) 0

( | ) ( | ) ( | ) ( | ) 1/ 6

P A B P A B

P A B P A B P A B P A B

 

   

( ) ( | ) ( )

( ) ( | ) 1 / 6

( ) 1 / 6 ( | ) 4 / 36

i i

i

i

P A P A B P B

P A P A B

P A P A B

 

  

  






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        (2.42) 

Which by equality implies that: 

         (2.43) 

This equation is known as Bayes’ Theorem. It can be perceived as a rule for “information 

processing”. The probability of event  in the presence of event  is the “prior” probability of 

event , that is , multiplied with the “likelihood” of  (which is ) and then 

normalized by .  

 

Richard Price (Bayes and Price (1763)) but also Laplace (1814) used this theorem to explain the 

probability that the sun will rise every day. Laplace writes: “Placing the most ancient epoch of 

history at five thousand years ago, or at 1826213 days, and the sun having risen constantly in the 

interval at each revolution of twenty-four hours, it is a bet of 1826214 to one that it will rise again 

tomorrow”. Which would end up in a probability of about 0.999999452419348 that the sun will 

rise the next day. We will come back to this problem in coming sections.   

2.5 Random Variables 

In previous sections we have already been dealing with random variables. What follows is an 

extension and classification of these. Intuitively speaking random variables are those that are 

subject to variation which may be described by a probability distribution function. In other words 

they are functions that take elements from a sample space and assign them a number in the 

interval [0,1]. Roughly speaking random variables may be discrete or continuous. In this section 

we will briefly discuss some of the most important discrete and continuous models describing 

random variables.  

2.5.1 Discrete random variables 

These are variables that can take values on a finite outcome space. These have already been 

discussed in previous sections. Think for example on successive throws of a coin. The outcomes 

of throwing a coin may be only heads or tails. The outcomes of throwing a die may be  

and so on. Someone interested in traffic applications may think on counting the number of 

vehicles passing by a certain point in a particular period of time. Also, someone interested in 

cyber security may be interested in the number of possible  cyber-attacks. In Physics the number 

of electrons emitted by a radioactive source may be relevant.  Notice that these last examples refer 

also to a discrete outcome which in principle may be very large or even infinite!  

2.5.2 Probability mass or density function (pdf) and cumulative distribution function (cdf) 

for discrete random variables 

Discrete random variables may take particular values with positive probability. The function 

describing this probability is called probability mass function or probability density function 

(pdf). We will denote it as in equation (2.44). 

         (2.44) 

( ) ( ) ( | ) or

( ) ( ) ( | )

i i

i i i

P A B P A P B A

P A B P B P A B

  

  

( | ) ( )
( | )

( )

i i
i

P A B P B
P B A

P A




iB A

iB ( )iP B A ( | )iP A B

( )P A

{1,...,6}

( ) ( )Xf x P X x 
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The pdf of discrete random variables has many properties. Two of the most important ones are 

given next without a proof.  

          (2.45) 

The cumulative distribution function is the function that described the probability that a random 

variable takes values less than or equal to a particular value. This function is given by equation 

(2.46). 

       (2.46) 

Notice that other probabilities of interest may be computed from the pdf or cdf. For example the 

probability that  lies between two possible outcomes:  

       (2.47) 

Or the probability that  is larger than a particular value : 

         (2.48) 

2.5.3 Expected Value and Variance for discrete random variables.  

Mathematical expectation or simply expectation is an important measure of central tendency for 

random variables. This measure is sometimes also referred to as the mean value of a random 

variable. The definition of expectation (when it is finite) is given by equation (2.49). 

        (2.49) 

Mathematical expectation has interesting properties that make it also useful as an operator. Some 

are given next without proof. Let  and be two discrete random variables with finite 

expectation and denote by  some real-valued function of the random variable  and let  and 

 denote two constants. Then 

 

           (2.50) 

Another important summary measure for discrete random variables is the variance. The variance 

is a measure of dispersion around the mean. The variance (just as mathematical expectation) is 

based on moments. Let  be a discrete random variable and let  be an integer. We say that 

 has a moment of order  if  has finite expectation and in that case  is defined as the 

-th moment of . The variance has to do with the relation between the first and second 

moments of a random variable.  

      (2.51) 

0 ( ) 1  for every 

( ) 1

X

Xx X

f x x

f x


 



{ }
( ) ( ) ( )X Xx X x

F x P X x f x
 

  

X

1 2
1 2 { }

( ) ( )Xx x X x
P x X x f x

  
  
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Exercise 2.11 shows that the last equality holds.  

 

The variance of X is often denoted as  or 2 ( )X  . The standard deviation is the squared root 

of the variance (  or ( )X ). In these lecture notes we will use both notations for the variance 

and standard deviation.  

 

The variance is thus the expectation of the squared deviations between the random variable and its 

expectation or alternatively the difference between the second moment and the squared expected 

value a.k.a. mean. The variance also has important properties (like expectation) that makes it 

attractive as mathematical operator. We will come back to these later.  

2

Xσ

Xσ

Example 2.11 The binomial distribution 

Consider an experiment which consist of 𝑛 identical trials with two possible outcomes in each 

trial. The probability of success (let the number 1 denote success) in one trial is  and is constant 

across trials. Each trial is independent and the variable of interest is 𝑋, the number of successful 

outcomes trials in 𝑛 trials. The random variable 𝑋 follows a binomial distribution. The density 

function of a binomial random variable is: 

       (2.52) 

An example of such variable is tossing a coin (perhaps not a fair coin) where the probability of 

“success” (observing heads) is given by . A possible sequence of 5 tosses is 1,1,1,1,1 that is, all 

outcomes are a success. Another one is 0,1,1,0,1, that is three successes in 5 tosses. Notice that in 

general there are  possible sequences of  successes in  trials all with probability . 

  

(a) Probability density or mass function 

(pdf) 

(b) Cumulative distribution function  

Figure 2.6 Probability density function and Cumulative Distribution function for a binomial 

random variable with 𝑝 = 0. 5  and . 

 

The mean and variance of a binomial random variable 𝑋 are given by:  

p
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Example 2.12  

Show that the expectation and variance of a binomial random variable are given by (2.53). 

Observe in Figure 2.6 that the expected number of heads in 20 tosses with a fair coin is 10.  

 

Next, Table 2.1 presents a summary of the most common parametric discrete probability 

distributions. Next section is concerned with continuous random variables.  

Table 2.1 Summary Parametric Discrete Probability Distributions 

Distribution 
Density function 

 
  Description 

Binomial    

Number of successful outcomes in 

𝑛 identical and independent trials 

with probability of success  

Geometric    

Number of trial in which the first 

success is observed. The 

probability of success is  

Hypergeometric 

 

  

Number of successes in a sample 

size of  from a population of size 

 with  possible successes in 

the population 

Poisson     
Number of successes appearing in 

a fixed interval of time or space.  

Negative 

Binomial 
   

Number of trial in which the r-th 

success is observed. The 

probability of success is  

2.5.4 Continuous random variables 

Up to now we have considered random variables that can take a finite number of values. For 

example the number of successes in a certain number of trials or the number of objects observed 

in a certain time or space interval. However there are many situations (theoretical and applied) in 

which the variables under investigation take values in a continuous space. In civil engineering and 

related fields this is usually the case. Variables often have units of length, time, or mass for 

example.  
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2.5.5 Probability density function (pdf) and cumulative distribution function (cdf) for 

continuous random variables 

Just like a discrete random variable, continuous random variable can be described by a 

distribution function that, by definition, describes the probability of observing different values of 

the random variable of interest: 

          (2.54) 

The distribution function is monotonic and non-decreasing from  until 

(see Figure 2.7). 

 

By differentiating the distribution function the probability density function is obtained: 

          (2.55) 

To interpret the probability density function it is necessary to notice that the two events 

 are mutually exclusive: 

       (2.56) 

It follows that: 

( ) ( ) ( )

( ) ( ) ( ) ( )X X X

P x X x dx P X x dx P X x

P x X x dx F x dx F x f x dx

       

      
       (2.57) 

The probability density function multiplied with an infinitesimal interval yields the probability 

that the stochastic variable will take on a value within the interval (see Figure 2.7). Notice 

however that the density function itself for continuous variables is not a probability! For 

continuous random variables  

 

Some properties of the probability density function are presented without proof: 

          (2.58) 

        (2.59) 

        (2.60) 

         (2.61) 
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(a) pdf (b) cdf 

Figure 2.7: Probability density function (pdf) and cumulative distribution function (cdf) 

for an arbitrary X 

2.5.6 Expected Value and Variance of continuous random variables 

Equation (2.49) and the properties of the expected value shown in (2.50) have their counterpart 

for continuous random variables where summation is replaced by integration. Notice that the strict 

equality  in (2.50) does not hold for continuous random variables. More generally if  is a 

random variable and  is a function of , then the expected value of  is defined as: 

         (2.62) 

It can be easily seen that  has the following properties: 

     (2.63) 

The most important examples of expected values are the mean and the variance of continuous 

random variables. Notice in equation (2.65) that the variance is the expected value of the “squared 

deviations” of the random variable from their mean. 

         (2.64) 

      (2.65) 

Similarly as with discrete random variables, the mean or expectation of   is a measure for the 

“central location” of a random variable. The square root of the variance, the standard deviation

, is a measure for the dispersion of a random variable. The coefficient of variation 

, is also widely used: 
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          (2.66) 

The coefficient of variation is a relative measure for the dispersion of the variable around the 

mean. Notice that the mean and variance are expected values but the standard deviation and the 

coefficient of variation are not. 

2.5.7 Linear Transformations 

If  is a random variable, then  is also a random variable. Given de probability density 

function of  the probability density function of  can be calculated. In most cases it is only 

necessary to determine the mean and standard deviation of . For a linear function g(X) it can be 

done exactly, for a nonlinear function it can be estimated. For a linear function of  

( ) we have: 

        (2.67) 

After some algebraic calculations one may show that: 

          (2.68) 

We will come back to (2.68) later when discussing dependence. Notice that these results are 

obtained solely by making use of the definition and properties of the expected values. Examples 

are given in Figure 2.8. Linear transformation of Gaussian random variables are still Gaussian 

(Figure 2.8a). This holds in general for different distributions. In Figure 2.8b a linear 

transformation of an exponential variable is presented. For the exponential distribution the mean 

and standard deviation are equal (see table ). In this case the mean and standard deviation of Y are 

different because Y becomes a two parameter exponential distribution (shifted by the intercept 

term in the linear transformation equal to 5).  

 

  

a) Linear transformation of Gaussian 

variable 

b) Linear transformation of exponential 

random variable 

Figure 2.8 Linear transformations of random variables. 

2.5.8 Non-Linear Transformations 

An example of a non-linear transformation of a log normal random variable is given in Figure 2.9. 

( )
( )

( )

σ X
V X

E X

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Figure 2.9 Non-linear transformation of a lognormal random variable. 

In Figure 2.9 we observe that due to the non-linearity of ln(X) the parametric family of the density 

of X is not preserved. This means that in practice knowing the distribution function of X (for 

example concrete strength, wind speed, etc) does not immediately gives us an idea of  Y = g(X) 

(for example a bending moment following from a model). 

 

One common method to approximate non-linear functions is through Taylor-polynomial. A tailor 

expansion evaluated in the point x0 is presented in equation (2.69) where 0( )n

n

g x

x




 denotes the n-th 

order derivative of g with respect to x: 

2
20 0 0

0 0 0 02

( ) ( ) ( )1 1
(X)  ( )   (X- )    (X-   ...    (X - ) )

2! !

n
n

n

g x g x g x
g g x x x x

x x n x

 
    

  
  (2.69) 

When a function is approximated by the first two terms of the Taylor-polynomial one speaks of a 

linear function. It is of particular interest where to choose exactly the point x0 in the linearization. 

In Figure 2.9 the linearization point  x0= E(X) is chosen. This is called the mean value 

approximation. In the case of Y = ln(X) we have the following expression for the mean value 

approximation: 

   
1

Y( )  ln ( )    - ( )  X E X X E X
X

         (2.70) 

Which corresponds to the line in Figure 2.9. Observe that while linearizing in the mean value 

gives a good approximation of the non-linear function ln(X) around the mean and therefore  
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   
1

( ) 0 ln ( )  ( ) ( ) ln(1.1331) 0.125
( )

E Y E X E X E X
E X

         (2.71) 

However with the mean value approximation, the “tail of the distribution”  is badly approximated. 

The line representing ( ) g X  deviates significantly from ln(X) for values of X away from the 

mean; only in the case of a very small σ(X) is the mean value approximation more accurate. If we 

are particularly interested to get a good representation of Y in the tales (e.g. for calculating failure 

probabilities) we should use a linearization in  x0  located in the tail region. We will come back on 

this in the Level II reliability calculations. By a similar argument as in (2.68) it may be shown that 

 
2

2( ( ))
Var(Y) Var( ( ) )  X

g E X
g X σ

x


 


  which for the case of Y = ln(X) with the example from 

Figure 2.9 gives

2 2

2 21 1
Var(Y) 0.5 0.6039 0.2840

( ) 1.1331
Xσ

E X

   
      

  
. 

2.6 Continuous Parametric Distributions 

Describing a random variable through a parametric distribution may have many advantages. For 

example, investigating probabilities not observed in a sample becomes possible. In many cases 

operations with random variables become traceable analytically when parametric distribution 

describe them. In this section some of the commonly used parametric distributions used in civil 

engineering are introduced.  

2.6.1 The Gaussian or Normal Distribution 

One of the most widely used distribution functions is the Gaussian (Normal) distribution. Figure 

2.7 is in fact an example of a Gaussian distribution. The probability density function is described 

by: 

         (2.72) 

Here  denotes the mean  and  denotes the standard deviation. A Normally distributed variable 

with a mean of 0 and a standard deviation of 1 is the Standard Normal distributed variable, 

usually denoted by . An arbitrary variable can be rewritten as: 

          (2.73) 

The distribution function of a Gaussian distribution has no closed form, however it has been 

studied extensively. Almost every computer software and scientific calculator may return values 

for a Normal Distribution. Another option is to approximate the probabilities of interest by 

searching in tables (see for example  

 

 

Table 2.2). For small probabilities it is usually sufficient to use the following approximation: 

        (2.74) 
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This approximation holds for . 

 

Example 2.13 

A certain material has a mean strength of with a coefficient of variation of 13.3%. 

What is probability that the strength of the material is less or equal to when assuming the 

variables are Gaussian distributed? 

The standard deviation is so it holds from equation (2.73): 

( 20) ( ( ) ( ) 20)P X P X Z X       and  

    (2.75) 

This result is obtained using table 2.1. 

Approximation equation (2.74) yields: . For some applications this 

approximation is sufficient. If the probability decreases, the approximation error also decreases. 

 

The Gaussian distribution emerges when a large number of independent random variables, from 

which none dominates any other, are created disregarding the output distributions of these 

variables (see Figure 2.12 for an example). This result is known as the central limit theorem. A 

consequence of this proposition is that the sum of two Gaussian distributed variables is also a 

Gaussian distributed variable. 

2.6.2 The uniform distribution 

The uniform distributions assigns equal density to all outcomes within an interval. This 

distribution is often used in applications to generate random numbers from other distributions. It 

is also useful as a “first guess” if no other information about a random variable X is known, other 

than that it is in [a, b]. The density and cumulative distribution functions of a uniform random 

variable are respectively:  

 

1

( )

0
X

a x b
f x b a

otherwise


 





             (2.76) 

And:   

0
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1

X

x a

x a
F x a x b

b a

x b





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


         (2.77) 

 

Plots of the pdf and cdf for a uniform [0,1] random variable are presented in Figure 2.10.  
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Table 2.2: Distribution of a Gaussian (Normal) distribution 

z  z  z  

0.0 0.5     

-0.1 0.46 -2.1 0.018 -4.1 0.21  

-0.2 0.42 -2.2 0.014 -4.2 0.13  

-0.3 0.38 -2.3 0.011 -4.3 0.85  

-0.4 0.34 -2.4 0.0082 -4.4 0.54  

-0.5 0.31 -2.5 0.0062 -4.5 0.34  

-0.6 0.27 -2.6 0.0047 -4.6 0.21  

-0.7 0.24 -2.7 0.0035 -4.7 0.13  

-0.8 0.21 -2.8 0.0026 -4.8 0.79  

-0.9 0.18 -2.9 0.0019 -4.9 0.48  

-1.0 0.16 -3.0 0.0013 -5.0 0.29  

-1.1 0.14 -3.1 0.00097 -5.1 0.17  

-1.2 0.12 -3.2 0.00069 -5.2 0.10  

-1.3 0.10 -3.3 0.00048 -5.3 0.58  

-1.4 0.080 -3.4 0.00034 -5.4 0.33  

-1.5 0.067 -3.5 0.00023 -5.5 0.19  

-1.6 0.055 -3.6 0.00016 -5.6 0.11  

-1.7 0.045 -3.7 0.00011 -5.7 0.60  

-1.8 0.036 -3.8 0.72  -5.8 0.33  

-1.9 0.029 -3.9 0.48  -5.9 0.18  

-2.0 0.023 -4.0 0.32  -6.0 0.99  

 

                                                                             (2.78) 

For  it follows:   

Example 2.14  

 is Gaussian distributed with  ; what is the probability of ?  

                                              (2.79) 
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(c) pdf (d) cdf 

Figure 2.10: Probability density function (pdf) and cumulative distribution function 

(cdf) for an uniformly distributed random variable  in [0,1] 

The expectation and variance of this random variable are given by: 

( )
2

a b
E X


           (2.80) 
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Var( )
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b a
X


           (2.81) 

2.6.3 The triangular distribution 

The triangular distribution is a three parameter continuous distribution.  Like the uniform 

distribution it is defined on a fix interval [a, c], however it has an extra parameter b which is the 

single mode (value where the density is highest) of the distribution.  The density and cumulative 

distribution functions are given by:  
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           (2.82)

And:   
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Plots of the pdf and cdf for a triangular random variable with parameters a = 0, b = 1 and c = 2 are 

presented in Figure 2.11.  

 

  

(a) pdf (b) cdf 

Figure 2.11: Probability density function (pdf) and cumulative distribution function 

(cdf) for an arbitrary triangular random variable 

The expectation and variance of this random variable are given by: 

( )
3

a b c
E X

 
           (2.84) 

2 2 2

Var( )
18

a b c ab ac bc
X

    
        (2.85) 

2.6.4 Sums of continuous random variables 

Let  and  be two independent continuous random variables with density functions  and 

, respectively. Assume that both  and  are defined for all real numbers. Then the 

convolution  of  f and g is the function given by 

 

 

( ) ( )

( ) ( )

f g f z y g y dy

f y g z y dy

  

 




         (2.86) 

       

X Y ( )f x

( )g y ( )f x ( )g y

 ( )f g z
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Example 2.15 

Let X and Y be uniformly distributed random variables on [0,1]. Required is the distribution of   

Z = X + Y their sum. Recall that the density of a uniform random variable on [a, b] is given by 

 Then we have:  

       (2.87) 

The density of the sum is   where  for  

and hence . The integrand in the last expression is 1 if . If 

 the integrand has value 1 on the set  and hence . If  

the integrand has value 1 on the set   and hence . The 

density is thus: 

        (2.88) 

To visually appreciate this example, see Figure 2.12.  Notice that after summing up 3 uniform 

[0,1] variables the distribution of the sum starts converging to a Gaussian distribution.  

2.6.5 Lognormal Distribution 

If X has a lognormal distribution then is Gaussian distributed. In other words, 

with Y being Gaussian distributed. The lognormal distribution is the result of a nonlinear 

transformation of a Gaussian distribution. If the mean and standard deviation of Y are known, the 

corresponding values for X can be determined: 

       (2.89) 

       2( ) exp{ } 1X E X Y E X Y    
      (2.90) 

The approximation equations (2.89) and (2.90) hold for values of the standard deviation much 

smaller (less) than the mean  ( ) ( )Y E Y  . The probability density function is then defined as: 

        (2.91) 

Where . The pdf and cdf of a lognormal distribution with  and  are 

presented in Figure 2.13. The cumulative distribution function cannot be written explicitly but has 

to be determined on the basis of the tables for the Gaussian distribution or computed numerically. 

The lognormal distribution is usually used for variables that, because of physical limitations, 

1 ( )a b

1 1
( ) ( )

0
X Y

x
f x f x

otherwise

 
  



if  0

 ( ) ( ) ( ) ( )Z X Y X Yf z f f z f z y f y dy    ( ) 1Yf y  [0,1]y

( ) ( )Z Xf z f z y dy  0 1z y  

0 1z  0 y z 
0

( )
z

Zf z dy z  1 2z 

1 1z y  
1

1
( ) 1 ( 1) 2Z

z
f z dy z z


     

, 0 1

( ) 2 , 1 2

0,

Z

z z

f z z z

otherwise

 


   



ln( )Y X XY e

21
( ) exp{ ( ) ( )} exp{ ( )}

2
E X E Y σ Y E Y  

2

2

(ln( ) )

21
( )

2

Y

Y

x μ

σ

X

Y

f x e
σ x π

  
 
  

( )Yμ E Y 0Yμ  2 1Yσ 
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cannot take on negative values. The Gaussian distribution is in such cases less applicable although 

with small coefficient of variation the difference is marginal. 

 

  

  

  

Figure 2.12: Illustration of the central limit theorem: The variables Xi are independent 

and have a uniform distribution on [0,1]. The sum of only four of these variables 

already gives a distribution (except from the tails) that is similar to the Gaussian 

distribution. 
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Figure 2.13: Lognormal pdf  and cdf.  

Finally, in the same way that the Gaussian distribution is the result of the sum of a large amount 

of variables, the lognormal distribution is the result of a multiplication of a large number of 

random variables.  

 

Example 2.16 

Consider the same problem in example 2.13, now with X being lognormally distributed. The 

material has a strength of  with a coefficient of variation of 13.3%. What is 

probability that the strength of the material is less than or equal to ? 

 Given are  from which  may be determined by applying the inverse 

of equations (2.89) and (2.90).  

 

First, the approximation equations yield  and . 

Substituting in the exact equations yield: 

        (2.92) 

The approximations are in this case close enough. Now, the probability of exceedance is 

calculated: 

 

( 20) {exp( ) 20}

( 20) { ln(20)}

( 20) {3.39 0.133 ln(20)}

( 20) { (3.00 3.39) / 0.13}

( 20) { 3.0} 0.0013

P X P Y

P X P Y

P X P Z

P X P Z

P X P Z

  

  

   

   

           (2.93)

 

Note that the probability of exceedance with the Gaussian distribution in example 2.13 was almost 

five times as high.  

 

( ) 30x MPa 

20 MPa

( ) and ( )E X σ X ( ) and ( )E Y σ Y

(Y) ln(30) 3.40E   (Y) 4 / 30 0.133σ  

2

2

Var( )
Var( ) ln 1 (0.133)

( )

1
( ) ln( ( )) Var( ) 3.39

2

X
Y

E X

E Y E X Y

 
   

 

  
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Example 2.17  

In general, a lognormal distribution provides a good description of the number of load changes Y 

until failure in a fatigue test. The results of fatigue tests on a series of welds indicate a mean 

 cycles and a standard deviation  cycles. Determine the pdf and cdf 

of the distribution of Y and calculate the 5th -percentile. 

 

The parameters of the lognormal distribution are calculated similarly as in Example 2.16: 

                   

2
2

2 2

( ) 215
( ) ln{1 } ln{1 } 0.2231 0.4724

( ) 430

1 1
( ) ln(E(X)) ( ) ln(430000) 0.2231 12.86

2 2

Var X
Var Y

E X

E Y Var Y

     

     

  (2.94) 

 

  

Figure 2.14: Lognormal pdf  and cdf from Example 2.17  
 

2.6.6 Extreme Value Distributions  

In many applications, the most interesting values of a large group of random variables are the 

largest, or smallest values. For example, values of a big wave, the maximum wind speed or the 

lowest strength. The distribution of maxima or minima of a number of variables moves to the so 

called extreme value distributions. This convergence is not absolute and is a fairly slow process; 

much slower than for example the convergence of the sum of variables to a Gaussian distribution. 

The first book devoted to the theory of asymptotic extreme value theory seems to be  the book by 

Gumbel (1958). In his book Gumbel cites page 141 of the President’s Water Resources Policy 

Commission (1950) regarding floods. The citation is famous in extreme value analysis and 

especially in hydrology and reads: “However big floods get, there will always be a bigger 

one coming; so says the theory of extremes, and experience suggests it is true”.     

Extreme value distributions, maxima as well as minima, are classified in three types: Type I, II 

and III. Table 2.3 provides an overview of the most important formulas regarding extreme value 

distributions. The most important difference between the various types is that type I is defined for 

430000Xµ  215000X 
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the range of  ; type II is bounded for maxima by a lower bound and for the minima by an 

upper bound; type III is precisely in an opposite relation.  

Type I for maxima is usually classified as a Gumbel-distribution, type II for maxima as a Frèchet 

distribution and type III for minima as a Weibull distribution. An interesting property of the 

extreme value distributions is (of course) that the maximum of two or more extreme value 

distributions (regardless whether they are from the same type or not) is also an extreme value 

distribution. We will illustrate this on the basis of an example. 

Notes:  

1. The type II and III distributions are given with lower (upper) boundary 0; an arbitrary 

different boundary can be introduced by means of parameter u.  

2. The gamma function is defined as: 1

0

Γ( )  with Γ( ) ( 1)! (for 0)r tr t e dt r r r



      . 

Furthermore, the following applies to : Γ( 1) 1 2 3 ...r r r      , the factorial function. 

3.  

Example 2.18 

Let  be independent identically distributed Frèchet (extreme value distributed of a type II 

maximum) random variables. Define . What is the distribution of X?   

 

 

1

1 2

1 2

1/

( ) ( ) (max( ,..., ) )

(  and  and ... and )

( ) ( )... ( )

( )

{exp ( / ) }

exp ( / )

exp / ( )

X n

n

n

n

Y

k n

k

k
k

F x P X x P Y Y x

P Y x Y x Y x

P Y x P Y x P Y x

F x

x α

n x α

x α n







   

   

   



 

 

  

      (2.95) 

Conclusion:  also has an extreme value distribution of a type II maximum with parameters 

. 

When looking at the means and standard deviations it follows that

. The mean increases but the coefficient of variation remains 

the same.   

 

 

 

 

 

 

 

( , ) 

1,..., nY Y

1max( ,..., )nX Y Y

X
1/ and kk α n

1/( ) ( )  and ( ) ( )kE X E Y n V X V Y  
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Table 2.3: Overview Extreme Value Distributions 

 Type I maxima (Gumbel) Type II maxima (Frèchet) Type III maxima 

( )XF x  
( )exp[ e ]α x u     exp ( ) /

k
x u α


     exp ( ) /

k
x u α   

( )Xf x  
( )exp[ ( ) e ]α x uα α x u     

 
     1 ( )

exp
kk x uk x u

α α α

          1 ( )
exp

kk x uk x u
α α α

  

 

Range ,  (- , ),  0x u α     ,  ,  0x α k   ,  0,  0u x k   

xμ  0,577 /μ u α   Γ(1 1/ k) (k 1)μ u     Γ(1 1/ k)μ u    

xσ  / 6σ π α  

2 2 2 Γ(1 2 / k) (k 2)σ μ u    

 

2 2 2 Γ(1 2 / )σ μ u k     

max

1 .. 

iX y

i n




 

,  

{ln( ) / }

x y

x y

α α

u u n α



 
 

1/
,  ,  yk

x y x yk k u u n   
1/

,  ,  yk

x y x yk k u u n


   

 

   

 

 Type I minima Type II minima Type III minima (Weibull) 

( )XF x  
( )1 exp[ e ]α x u      1 exp ( ) /

k
x u α


      1 exp ( ) /

k
x u α    

( )Xf x  ( )exp[ ( ) e ]α x uα α x u   

 

     1 ( )
exp

kk x uk x u
α α α

          1 ( )
exp

kk x uk x u
α α α

  
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,  

,  0

x

u α

 

    
 ,  0,  0x u k   ,  ,  0u x k   

xμ  0,577 /μ u α   Γ(1 1/ k) (k 1)μ u     Γ(1 1/ k)μ u    

xσ  / 6σ π α  

2 2 2 Γ(1 2 / k) (k 2)σ μ u    

 

2 2 2 Γ(1 2 / )σ μ u k     
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iX y

i n




 

,  

{ln( ) / }

x y
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α α
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

 
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,  yk
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
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Example 2.19 

Experimental measurements of the annual maximum flow rate (X) in a river over a long time 

frame have resulted in a mean  
X  10 m³/s and 

X   5 m³/s. Experience and previous statistical 

analysis suggests that the distribution of X is well approximated by a Type I (Gumbel) distribution 

so no further statistical analysis is required. The parameters of the distribution of interest 

according to Table 2.3 are: 

 while 
0.577

( ) 7.7505u E X
α

       (2.96) 

 

The probability density function is visualized in Figure 2.15a. 

  
a b 

Figure 2.15 Extreme value distributions of type I 

The probability that the maximum flow rate exceeds 20 m³/s is calculated as: 

     (2.97)

 

This flow rate has a return period of 1/0.043 = 23.3 years. The 100 year flow rate equals 25.77 

m³/s. 

Now assume that the mean and standard deviation from above relate to the minimum flow rate in 

the river. In this case α remains the same and  

The probability density function is visualized in Figure 2.15b. This graph clearly indicates that 

there is a significant probability of obtaining negative minimum flow rates, which is off course 

impossible. The model based on minima is thus not recommended. 

2.6.7 The Gamma distribution 

The gamma distribution is very common in applications. It is of special interest in the 

mathematical theory of reliability presented for example in Barlow and Proschan (1965). The 

gamma distribution is the foundation of the gamma process to be briefly discussed later in 

Chapter 10. The gamma density is defined as: 

0.2565
6 5 6X

π π
α

σ
  

 0.256(20 7.75)( 20) 1 (20) 1 exp 0.043XP X F e       

0.577
( ) 12.2495λ E X

α
  
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         (2.98) 

Where  with. The mean and standard deviation are defined as: 

        (2.99) 

Pictures for a Gamma density and cumulative distribution function are provided in Figure 2.16. 

For even numbers of  it holds that (2.98) is de density of: 

/2

12

k

ii

a
X Z


           (2.100) 

With 
iZ  being independent standard normal random variables. For and , the gamma 

distribution is equal to a chi-squared distribution with degrees of freedom. A summary of other 

important continuous distribution functions is provided in .  

 

  

a b 

Figure 2.16 Gamma pdf and cdf 

Distribution 
Density function 

 
  Description 

Uniform      
Equal probability all 

outcomes in an interval 

Exponential       

Continuous counterpart of 

the geometric distribution. 
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Beta     
Model for random 

variables  limited to 

intervals of finite length. 

Table 2.4 Summary Parametric Continuous Probability Distributions 

 

Having revised some of the most common continuous and discrete models for random variables, 

we come back to the sun rise problem. This is repeated below in Laplace’s words: “Placing the 

most ancient epoch of history at five thousand years ago, or at 182623 days, and the sun having 

risen constantly in the interval at each revolution of twenty-four hours, it is a bet of 1826214 to 

one that it will rise again tomorrow”. The solution according to Richard Price starts with letting 

the “sun rising” define a success in a series of Bernoulli experiments. The probability of observing 

x successes in n trials is given by a Binomial distribution  assume that p has a 

“prior” distribution which is uniform on [0,1]. The probability of observing x successes in n trials 

considering this uniform prior is then . We are interested in the probability 

that  given the sun has risen x times in n days. This conditional probability would be 

then: 

         (2.101) 

The difficult part for Bayes was to evaluate the integrals. Bayes showed that the denominator 

equals   regardless of the value of x. For the numerator the case where the successes are 

equal to the number of trials is considered: 

             (2.102) 

This quantity approaches 1 for any interval that includes p=1 and zero for any other interval. Thus 

as we experience more “sunrises” the probability of success should approach 1 more and more 

though never with absolute certainty.  

 

Laplace’s solution is commonly referred to as the “rule of succession” and follows a similar 

derivation. In modern statistical terms the likelihood function is:  

the prior is still uniform in [0,1]. The posterior distribution is  which is 
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the kernel of a Beta distribution with  and . The expected value is thus (see ): 

. From which the odds mentioned by Laplace follow.  

2.7 Two random variables X and Y       

2.7.1 The two dimensional probability density function 

To describe two random variables X and Y the two dimensional probability density function is 

introduced. It is defined as: 

               (2.103) 

 Properties of this function are: 

                    (2.104) 

                   (2.105) 

{ , }  

(( , )  ) ( , )XY

X Y A

P X Y A f x y dxdy


                   (2.106) 

A special case arises in the case that the variables are independent: 

( , ) (  and )

( ) ( )

( ) ( )

XY

X Y

f x y dxdy P x X x dx y Y y dy

P x X x dx P y Y y dy

f x f y dxdy

      

      



              (2.107) 

The two dimensional probability density function is the product of two single dimension 

probability density functions. With dependant variables this is not the case and, in general, not 

enough information is provided by the separate one dimensional probability density functions to 

shape the two dimensional probability density function. 

 

1a n  1b 

1
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
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

( , ) (  and )XYf x y dxdy P x X x dx y Y y dy      

( , ) 0XYf x y 
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In Figure 2.17 an example of a two dimensional probability density function is presented. In many 

cases only the contour plot is provided. The cumulative distribution function is also presented in 

Figure 2.17.  

2.7.2 Expected Value, Mean, Variance  

Like with the one dimensional distribution the expected value can also be defined for the two 

dimensional distribution: 

                (2.108) 

The most important properties are: 

                    (2.109) 

                   (2.110) 

                  (2.111) 

If  are independent it also holds: 

                 (2.112) 

The proof of the above follows: 

{ ( ) ( )} ( ) ( ) ( , )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

{ ( )} { ( )}

XY

x y

X Y

E g x h y g x h y f x y dxdy

g x h y f X f Y dxdy

g x f x dx h y f y dy

E g x E h y

   

   

   

 

 

 

 
               (2.113) 

To characterise the shared probability density function of X and Y the properties that usual 

summary measures (expectations and variances) are still used.  

                (2.114) 

- -

{ ( , )} ( , ) ( , )XYE g x y g x y f x y dxdy

 

 

  

( )E a a

( ) ( )E a g a E g  

( ) ( ) ( )E g h E g E h  

 and x y

{ ( ) ( )} { ( )} { ( )}E g x h y E g x E h y  

2 2( ) ( );  ( ) [{ ( )} ]μ X E X σ X E X μ X  

 

Figure 2.17: The two dimensional probability density function. At the right, the height 

contours are visualized. 
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                (2.115) 

These definitions are fully compatible with the earlier given, one-dimensional, definitions (2.64) 

and (2.65).  

2.7.3 Covariance 

Given the definitions for expected value and variance, it becomes obvious to define a third 

statistical measure. This third measure is the expected value of the product of the deviations of the 

random variables with respect to their corresponding mean: 

                (2.116) 

The covariance is a measure of linear dependence and is closely related to the bivariate Gaussian 

distribution. For perfect linear dependence the covariance would be positive and large. This is 

illustrated in Figure 2.18 a). Both random variables are normally distributed with  

and take an arbitrary value of X > 0, it corresponds to values of Y > 0, that is a value in the A 

quadrant in Figure 2.18a). In this case  and , hence 

. Similarly, take an arbitrary value of X < 0 (quadrant C). This value 

would correspond to values of Y < 0 and hence . Thus the 

covariance will be positive and large.  

 

 

a) Perfect positive linear dependence 

 

b) Perfect negative linear dependence 

 

c) Positive dependence 

 

d) Negative dependence 

Figure 2.18: Dependence patterns examples for bivariate Normal distribution. 

 

For negative dependence a similar analysis may be performed to verify that the Covariance in this 

case would be Negative and Large (see Figure 2.18b).  

2 2( ) ( );  ( ) [{ ( )} ]μ Y E Y σ Y E Y μ Y  

  cov( , ) ( ) ( )X Y E X E X Y E Y     

( ) ( ) 0E X E Y 

 ( ) 0X E X   ( ) 0Y E Y 

  ( ) ( ) 0E X E X Y E Y     

  ( ) ( ) 0E X E X Y E Y     
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In case there is not perfect dependence, for example for Figure 2.18c), it may be seen that X > 0 in 

quadrant D would correspond to Y < 0. In this case for the samples in quadrant D  

and , hence  for these samples. Conversely, for samples 

X < 0 in quadrant B  and , hence . The 

overall expected value however  still because there are more 

samples in quadrants A and C than in quadrants B and D. The magnitude of the covariance would 

however be smaller in the case of Figure 2.18c) than in Figure 2.18a)  because of the negative 

contribution of samples in quadrants B and D. An analogue situation may be verified for the case 

of Figure 2.18d) concerning negative covariance.  

 

A concept directly related to the covariance is the Pearson’s product moment correlation-

coefficient 𝜌𝑋𝑌 = 𝜌(𝑋, 𝑌) (both notations are widely used), which is defined as follows: 

cov( ) ( ) ( )

( ) ( ) ( ) ( )
XY

XY X E X Y E Y
ρ E

σ X σ Y σ X σ Y

  
   

 
                (2.117) 

The correlation coefficient has the following properties: 

If X and Y are independent: 𝜌𝑋𝑌 = 0                (2.118) 

If X and Y are completely linearly dependant: 𝜌𝑋𝑌 = ±1               (2.119) 

In general: −1 ≤ 𝜌𝑋𝑌 ≤ +1                  (2.120) 

The correlation coefficient is a nominal measure for the mutual dependency of two stochastic 

variables. The proof for the given properties is given below. 

a. If are independent it holds (see (2.112) and (2.116)):    

 cov( , ) { ( )}{ ( )}

{ ( )} { ( )}

0 0 0

X Y E X E X y E Y

E X E X E Y E Y

  

   

  

                (2.121) 

With this result it also holds that 𝜌𝑋𝑌 = 0; the fact that { ( )}E X E X  follows directly 

from the definition given in (2.64).  

b. Complete linear dependency means that Y can be written as a linear function of X with 

known coefficients: . For the expected value and standard deviation is holds:

.  

For the covariance of if follows: 

 
 

2

2

cov( , ) { ( )}{ ( )}

{ ( )}{ ( ) b}

{ ( )}

( )

X Y E X E X Y E Y

E X E X aX b aE X

aE X E X

a σ x

  

    

 

 

               (2.122) 

The correlation coefficient then is: 

                (2.123) 

 ( ) 0X E X 

 ( ) 0Y E Y    ( ) ( ) 0X E X Y E Y  

 ( ) 0X E X   ( ) 0Y E Y    ( ) ( ) 0X E X Y E Y  

  ( ) ( ) 0E X E X Y E Y     

 and x y

Y aX b 

( ) ( ) b  and ( ) ( )E Y aE X σ Y a σ X  

 and X Y

 

2cov( ) ( )
1

( ) ( ) ( ) a ( )
XY

XY aσ X a
ρ

σ X σ Y aσ X σ X
    
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c. Consider the inequality: 

                   (2.124) 

This inequality is based on the fact that the square (of real numbers) is always positive. 

This also holds for the expected value of a square. The result of this, with the help of the 

properties of the expected value and others, is: 

   (2.125) 

The inequality can be proven by assuming the square with a positive sign. 

 

Note: if are independent it follows that 𝜌𝑋𝑌 = 0, but from 𝜌𝑋𝑌 = 0 it cannot be concluded 

that are independent; some other non-linear dependencies can be in play. If X and Y are 

Gaussian distributed it can be determent that if 𝜌(𝑋, 𝑌) = 0, X and Y are independent. 

2

( ) ( )
0

( ) ( )

X E X Y E Y
E

σ X σ Y

   
   

   

2 2

( ) ( ) ( ) ( )
2 0

( ) ( ) ( ) ( )

1 2 1 0

1

XY

XY

X E X X E X Y E Y Y E Y
E

σ X σ X σ Y σ Y

ρ

ρ

           
           

         

  



1 XYρ 

 and X Y

 and X Y

Example 2.20 

If the variables are given as: 

                  (2.126) 

Asked are the expected values, variances and covariances of . 

One can directly notice that . The variance of s follows: 

               

2 2

2

2 2

2 2

(S) E[{S E(S)} ]

E[{X Y} ]

E(X ) 2 (XY) E(Y )

( ) 2cov(XY) ( )

1 2 4 7

E

X Y



 

 

 

  

  

   

                                                            (2.127) 

Determine yourself that 𝜎2(𝑇) = 4 − 4 + 4 = 4.  

Finally, the covariance is determined as follows: 

 

Determine yourself that . 

Finally the covariance is determined as follows: 

 and x y

( ) ( ) 0

( ) 1,  ( ) 2,  cov(XY) 1

E X E X

σ X σ Y

 

  

 and 2S X Y T X Y   

( ) ( ) 0E S E T 

2 ( ) 4 4 4 4σ T    
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2.7.4 Function of two variables 

Consider the function . If the mutual probability density function of is known 

then the probability density function of can be calculated. For many application it is sufficient 

to determine the expected value and the standard deviation.  

 

( , )Z g X Y  and X Y

Z

               (2.129) 

The correlation coefficient  and . 

Example 2.21 

Given are two independent variables with and . If

, then  and follows from:  

              (2.130) 

The covariance of is determined next: 

            (2.131) 

It follows that is:    

                           (2.132) 

Assume  leading to . If  then have 

much in common and  is high; if is small then do not have much in common and

.     

  

 

     2 2

cov( ) ( ) ( )

cov( ) ( )(2 )

cov(ST) 2

cov( ) 2 1 4 1

ST E S μ S T μ T

ST E X Y X Y

E X E XY E Y

ST

      

   

   

    

0.5XYρ  0.2STρ  

 and X Y ( ) ( ) 0μ X μ Y  ( ) ( ) 1σ X σ Y 

Z aX bY  ( ) 0μ Z  ( )σ Z

 
22

2 2 2 2 2 2 2

(Z) E

( ) E( ) 2abE( ) E( )

σ aX bY

σ Z a X XY b Y a b

 

    

 and X Z

  

 
2 2 2

cov( ) ( ) ( )

cov( ) ( )( )

cov( ) ( ) bE( ) ( ) cov( ) ( )

XZ E X E X Z E Z

XZ E X aX bY

XZ aE X XY aσ X b XY aσ X a

      

  

     

( )ρ XZ

2 2

cov( )
( )

( ) ( )

XZ a
ρ XZ

σ X σ Z a b
 



2 2 1a b  ( ) 1 and ( )σ Z ρ XZ a  1a  2 and 1X Z aX Y a  

( )ρ XZ a  and X Z

( ) 0ρ XZ 
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1.  is the sum of .   

In that case the expected value is determined by: 

       (2.133) 

The variance is determined as follows: 

   (2.134) 

If this simplifies to .  

 

2. An arbitrary linear function   

In the same manner as case 1. It can be determined that: 

        (2.135) 

      (2.136) 

 

3. Approximation of a nonlinear function 

If is a nonlinear function in many cases the following approximation, on the 

basis of linearization, can be used: 

    (2.137) 

   (2.138) 

(2.139) 

In the definitions above, are respectively the partial derivative 𝛿𝑔/𝛿𝑋 and 𝛿𝑔/𝛿𝑌. 

is the chosen linearization point. Sometimes this point is taken as , the so 

called mean value approximation.  

 

Z  and :  X Y Z X Y 

( ) ( ) E( ) E( )E Z E X Y X Y   

 

 

      

22

22

2 22

2 2 2

2 2 2

( ) ( )

( ) ( ) ( )

( ) ( ) 2 ( ) ( ) ( )

( ) ( ) 2cov( ) ( )

( ) ( ) 2 ( ) ( ) ( )

σ Z E Z E Z

σ Z E X Y E X E Y

σ Z E X E X X E X Y E Y Y E Y

σ Z σ X XY σ Y

σ Z σ X ρσ X σ Y σ Y

   
 

     
 

        
 

   

   

0ρ  2 2 2( ) ( ) ( )σ Z σ X σ Y 

Z a bX cY  

( ) a b ( ) ( )E Z E X cE Y  

2 2 2 2 2( ) ( ) 2 cov( ) ( )σ Z b σ X bc XY c σ Y  

( )Z g XY

0 0 0 0 0 0 0 0( ) ( ) ( ) ( ) ( )X YZ g X Y X X g X Y Y Y g X Y     

0 0 0 0 0 0 0 0( ) ( ) ( ( ) ) ( ) ( ( ) ) ( )X YE Z g X Y E X X g X Y E Y Y g X Y     

   
2 22

0 0 0 0 0 0 0 0( ) ( ) ( ) 2 ( ) ( )cov( ) ( ) ( )X X Y Yσ Z g X Y σ X g X Y g X Y XY g X Y σ Y     

 and X Yg g 

0 0( )X Y ( ( ), ( ))E X E Y
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Example 2.22 

Examine . We choose : 

    (2.140) 

The variance coefficient can be determined: 

   (2.141) 

 This result is quoted many times in the literature. 

 

Interesting to notice is that the exact solution of this example is known:  and

. Thus the approximation holds if 

are small.  

 

Example 2.23 

The bivariate distribution 

The density function of the bivariate normal distribution is given by:   

          

2 2

2

2 (x )(y ) y
( ) ( ) ( )

2(1 )

2

1
(x, y)

2 1

X XY X Y Y

X X Y Y

XY

x

X Y XY

e

    

   




  

   
 







                           (2.141) 

Notice that the bivariate normal distribution is parameterized by the individual means and 

variances and also by 𝜌𝑋𝑌. The corresponding cumulative distribution is thus: 

       (2.142) 

Figure 2.17 represents in fact a bivariate normal distribution with correlation 𝜌𝑋𝑌 = 0.4 . The 

samples presented in Figure 2.18 correspond to 𝜌𝑋𝑌 = 1  (a), 𝜌𝑋𝑌 = −1  (b), 𝜌𝑋𝑌 = 0.7 (c) and  

𝜌𝑋𝑌 = −0.7 (d). 

 

2.7.5 Spearman’s Rank correlation coefficient 

So far we have considered the covariance and Pearson’s product moment correlation coefficient 

as measures of statistical dependence. These measures are taken in the original units of variables. 

Spearman’s Rank correlation coefficient is a way to extend the concept of “linear dependence” to 

“monotonic dependence”. Spearman’s correlation coefficient  is:  

       (2.143) 

 with  and  being independentZ XY X Y 0 0( ) and ( )X E X Y E Y 

   

   
2 22

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

Z E X E Y X E X E Y Y E Y E X

E Z E X E Y

σ Z E Y σ X E X σ Y

    



 

2 2 2 2 2
2 2 2

2 2 2

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

σ Z E Y σ X E X σ Y
V Z V X V Y

E Z E X E Y


   

( ) ( ) ( )E Z E X E Y

2 2 2 2 2 2 2( ) ( ) ( ) ( ) ( ) ( ) ( )σ Z E Y σ X E X σ Y σ X σ Y   ( ) and ( )V X V Y

( , ) ( , )
x y

x y s t dsdt 
 

   

, ( , )X Yr r X Y

( , ) ( ( ), ( ))X Yr X Y ρ F X F Y
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Spearman’s coefficient is thus, Pearson’s product moment correlation computed with the “ranks” 

of variables X and Y. Notice that  and  would bring values of X and Y to the [0,1] 

interval. In practice  may be a parametric estimate (for example from a particular family 

discussed in section 2.6) or an empirical estimate: 

       (2.144) 

where N denotes the total number of samples and N+1 in the denominator is used to avoid values 

“too close” to 0 and 1 in small samples. Important properties of Spearman’s correlation 

coefficient are: 

1.  for a strictly increasing function G 

2.  for a strictly decreasing function G 

3. If  then there exists a strictly increasing function G such that X = G(Y) 

2.8 Bivariate copulas  

Modern statistics is shifting from the study of bivariate distributions to the study of copulas. 

Roughly speaking, bivariate copulas are the bivariate distribution corresponding to the “ranks” of 

the original variables. In this sense, the notion of ‘copula’ was introduced to separate the effect of 

dependence from the effect of marginal distributions in a joint distribution. And this property is 

precisely what is making the study of copulas the standard in modern statistics.  

 

More formally Sklar’s (1959) theorem states that random variables X and Y are joined by a copula 

C if their joint distribution can be written 

       (2.145) 

Every continuous bivariate distribution  can be represented in terms of a copula. Moreover, 

we can always find a unique copula C that corresponds to given continuous joint distribution. One 

of the most common copulas is the Normal or Gaussian Copula.  

( )XF X ( )YF Y

XF

# samples  ˆ ( )
1

X

x
F x

N






( , ) ( ( ), )r X Y r G X Y

( , ) ( ( ), )r X Y r G X Y 

( , ) 1r X Y 

 , ( , ) ( ), ( )X Y X YF x y C F x F y

,X YF
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Figure 2.19: Two dimensional Normal copula. 

Example 2.24 

For maintenance or installation operations of offshore wind turbines to be started, 

environmental variables need to be at certain levels. In particular variables 1X : mean wind 

speed ( / )m s  and 2X : significant wave height ( )cm  are of interest for a particular operation.  

It has been found that both these variables may be well approximated by a Gumbel 

distribution:    

             
( (

))
( )

i
i

i

e x

XF x e
 

 
                                                                                            (2.146) 

 

The parameters for wind speed and significant wave height are according to the following 

table: 

ix  i  i  

mean wind speed (m/s) 0.35 8 

significant waveheight (m) 0.016 155 

 

If the wind speed is 11( / )m s  or the wave height is  220( )cm  the mission may not ship. 

 

1. If the two variables wave height and windspeed are assumed to be independent, the 

probability of not being able to ship can be calculated through standard probability 

relations. 

 

 
1 2 1 2 1 2

1 2 1 2

( 11 OR 220) ( 11) ( 220) ( 11 AND 220)

( 11) ( 220) ( 11) ( 220)

P X X P X P X P X X

P X P X P X P X

        

       
                               

.                                                                                                                                       (2.147) 

       Using the Gumbel distribution with parameters as indicated in the table, we find: 

 

            

0.35(11 8)

0.016( 220 155)

1

2

( 11) 1 0.295

( 220) 1 0.298

e

e

P X e

P X e

 

 





   

   
                                                          (2.148) 
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     The chance of occurence of wheather conditions that hinder the offshore operations is: 

 

     1 2( 11 OR 220) 0.295 0.298 0.295 0.298 0.505P X X                                (2.149) 

 

 

Figure 20 Scatter plot of realizations taken from the joint distribution for wave height 

and wind speed. 

 

2. As can be seen in the scatterplot, it appears that the wind speed and the wave height are 

correlated. If it is known that Spearman's rank correlation coefficient between wave height 

and wind speed is 1 2( , ) 0.8r X X  , then the joint probability of exceedance of 

1 211 AND 0.22x x   can no longer be calculated from the marginal distributions only.  

 

The third term of equation (2.147) must then be expanded as: 

 

     1 2 1 2 1( 11 AND 220) ( 11) ( 220 | 11)P X X P X P X X                    (2.150) 

 

We also know that: 

  

 
 

1 2 1 2

1 2

1 2

1 2 1 2

,

( 11 AND 220 )

1 ( 11 OR 220)

1 ( 11) ( 220) ( 11 AND 220)

1 (11) (220) (11,2  20)X X X X

P X X

P X X

P X P X P X X

F F H

  

   

       

     

                                                                                                                                 (2.151) 

In general, we can denote  

 

     
1

2

1

2

( )

( )

X

X

F x u

F x v




                                                                                                        (2.152) 
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We know from (2.145) that the joint probability distribution can be obtained from 

substitution of the marginal distributions in the expression for a copula: 

 

      
1 2 1 2, 1 2 1 2( , ) ( ( ), ( )) ( , )X X X XH x x C F x F x C u v                                                  (2.153) 

 

Such that the second term in (2.150) can be rewritten as: 

 

      
 

2 2 1 1

1 ( , )
( | )

(1 )

u v C u v
P X x X x

u

  
  


                                               (2.154) 

 

3. We make use of the Gumbel copula to combine the two marginal distribution functions 

into a joint distribution function, as in (2.145).  

The Gumbel copula distribution function is given by: 

 

       

1

( ln( )) ( ln( ))
( , ; )

u v
C u v e

  


    
                                                                          (2.155) 

 

The parameter   can be related to Spearman's rank correlation as ( 0.8) 2.5r   , as can 

be seen from the graph below: 

 

Figure 21 The Gumbel copula parameter as a function of Spearman's rank correlation 

coefficient. 

With an expression for the copula distribution, the joint probability of exceedance can be 

calculated from (2.151): 

 

        1 2( 11 OR 220) (1 ) (1 ) 1 ( , )P X X u v u v C u v                            (2.156) 

 

With 1( 11) 0.705u P X   , 2( 220) 0.702v P X   and (0.705,0.702,2.5) 0.629C   

this becomes: 
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 1 2( 11 OR 220) (1 0.705) (1 0.702) 1 0.705 0.702 0.629

0.371

P X X         


(2.157) 

We can therefore conclude that the correlation between the two weather states positively 

influences the workability at sea, since the probability of occurrence of weather conditions 

that fall within the acceptable range for a mission to take place has increased from 

(1 0.505) 0.495   to (1 0.371) 0.629  . 

  

An algebraic expression for the copula distribution function, ( , )C u v  joining two marginal 

distributions, ( )XF x  and ( )YF y  could be obtained also from the joint probability density 

function, , ( , )X YH x y  if this one is known. The relationship is given by: 

                1 1( , ) ( ), ( )C u v H F u G v                                                                            (2.159) 

in which  , 0 1u v  and 
1F 
 and 1G  are the inverses of F  and G , which are the marginal 

cumulative distribution functions. When the joint cumulative probability distribution function is 

given by , ( , )X YH x y , the marginal distribution functions can be retrieved as:  

  

               
,

sup( )

,
sup( )

( ) lim ( , )

( ) lim ( , )

X X Y
y Y

Y X Y
x X

F x H x y

G y H x y








                                                                              (2.160) 

  

Where sup( )X  is the supremum of X , which on a closed interval is equal to max( )X  and on 

an open interval is equal to the upper interval boundary, or, if there is no boundary, sup( )X  . 

To clarify the procedure, an example will be given.  

 

 

    

Example 2.25 

Consider two random variables X  and Y  with a joint probability density function given by 

            
,

4
( , )

5
X Y

x y xy
h x y

a b a b a b

 
   

  
                                                                    (2.161) 

with 0 x a   and 0 y b  . 

First, the cumulative distribution function needs to be found.  

             , , 2 20 0
( , ) ( , ) 2 2

5

a b

X Y X Y

x y
H x y f x y dx dy a y b x x y

a b


      

                  (2.162) 

Then the marginal distribution functions can be found by obtaining limits of equation (2.162)

according to (2.160): 



Lecture Notes CIE4130   Chapter: Probability Calculus 

55  4𝑡ℎ Version 

 

            

 

 

, 2

, 2

( ) ( , ) 2 3
5

( ) ( , ) 2 3
5

X X Y

Y X Y

x
F x H x b a b b x

a b

y
G y H a y a b a y

a b

    


    


                                                   (2.163) 

Now the inverses of F  and G  need to be found. For this example, it is possible to find a 

closed form expression for the inverse on its domain. 

             

1

1

12 4
( ) 5 2

6 5 25

12 4
( ) 5 2

6 5 25

U

V

a x
F u

b y
G v





 
    

 

 
    

 

                                                                        (2.164) 

According to (2.159), These expressions in (2.164) must then be substituted for the arguments 

x  and y  of  (2.162) to obtain the copula: 

             
,

1
( , ) ((2 15 1 2)(2 15 1 2)(4 15 1 15 1

6480

20 15 1 20 15 1 44))

U VC u v u v u v

u v

      

    

      (2.165) 

 

 

The copula distribution function can be differentiated twice to obtain the copula density 

function:  

              

2

,

,

( , )
( , )

U V

U V

C u v
c u v

u v




 
                                                                                 (2.166) 

 

The copula density is plotted in Figure 22. 

 

Figure 22 The copula density function derived from the joint probability density 
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2.9 “n” random variables 

The extension from 2 to “n” variables holds, in principle, no new elements. The n-dimensional 

probability density function for the variables is defined as: 

   (2.167) 

For the event “ ” it holds: 

       (2.168) 

If the variables are independent,  is given by:   

       (2.169) 

The expected value of a function is defined as: 

       (2.170) 

The expected value, variances and covariances are on the basis of the above defined as: 

         (2.171) 

        (2.172) 

      (2.173) 

In the n-dimensional case, the correlation coefficient for each 

pair of variables i and j constitutes the entries of a matrix. This matrix is symmetric and has on its 

main diagonal only ones. With independent variables all non-diagonal terms are zero. 

 

The expected value and the standard deviation of an arbitrary function can in most cases 

be approximated using: 

 1....xnx x

1 1 1 1 1( ) ... (  and ... and )X n n n n nf x dx dx P x X x dx x X x dx      

 in X A

1(  in ) ... ( ) ... X n
A

P X A f x dx dx  

1....xnx ( )Xf x

1 21 2( ) ( ) ( ).... ( )
nX X X X nf x f x f x f x

( )g x

  1( ) ... ( ) ( ) ...X nE g x g x f x dx dx





  

( ) ( )i iμ X E X

 
22 ( ) ( )i i iσ X E X E X  

 

  cov( ) ( ) ( )i j i i j jX X E X E X X E X   
 

( ) cov( ) / ( ) ( )i j i j i jρ X X X X σ X σ X

( )z g X

function given by (2.161). 

 

Even though one might expect there to be a correlation between the two variables due to the 

mixed term in equation (2.162), the copula shows that this correlation is very weak, because 

the density function is for the largest part a horizontal surface parallel to the U,V plane. This 

indicates that all pairs of outcomes ( , )u v  are equally likely. Only on the borders of the 

intervals of interest, i.e. u  nearly zero while v  approximates 1 or v  nearly zero while u  

approximates 1, does the copula show a slightly higher probability of occurence. The steep 

drop of the surface to the origin ( , ) (0,0)u v   indicates that there are very few, if none, 

realizations possible in this neighbourhood. 

Indeed, Spearman's correlation coefficient is given by 
, 0.06X Y   , so the correlation 

between u  and v  is very weak.  
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                     (2.174)  

     

 
2 ' '

0 0( ) ( ) ( )cov(X X )i j i ji j
Z g X g X           (2.175)  

     

If all variables are independent: 

        (2.176) 

In this notation is a chosen approximation point and is the partial derivative of .  

  

iX

 
22

0( ) ( )i iσ Z g X σ

0X ig   to ig X
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Appendix 2.1 Solution to Alternative examples & exercises 

Example 2.4 

About Example 2.4.: The reason is that the events are neither mutually exclusive nor one event 

includes every other event. Solution is the sum of: 

 3 event in  which 6 happens in exactly one throw each with probability,  

  events in which 6 happens in exactly two throws each with probability,  

 1 event in which  6 happens in exactly three throw   

Answers Exercise 2.12 

  (2.177) 

Looking at the expected value: 

     (2.178) 

The first term of the summation equals zero, hence  

 
(2.179) 

The term with the summation starts to resemble a binomial pdf based on  trials. We introduce 

the variable  then:  

 (2.180) 

Notice that the term inside the summation is the binomial pdf of  based on  trials and 

hence it must sum to 1 which concludes the first part of the proof  

For the variance let us start with computing  and then 

: 

  (2.181) 

Similarly to the procedure above, the first two terms of the summation (  and ) equal 

zero, hence:  

     (2.182) 

We follow next a procedure similar as  and factorise the term : 
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   (2.183) 

We introduce the variable  then: 

   (2.184) 

As before, the term inside the summation is the binomial pdf of  based on  trials and hence 

it must sum to 1. We have thus,  and consequently  

. Finally , which concludes the proof.  
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Chapter “Risk analysis and risk evaluation” 

Author: S.N. Jonkman 

 

Parts of this chapter are based on the publication Cur 190 “Kansen in de civiele techniek” (CUR, 

1997; also the most recent version of 2015) 
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Learning objectives of this chapter: 

 Understand the basic concepts of risk, risk analysis, decision analysis 

 Be able to assess and quantity the risks for a (simplified) system with different risk 

metrics (individual, societal risk / FN curve, economic risk) 

 Be able to apply (simplified) cost benefit analysis, decision analysis and economic 

optimization for engineering projects 

 Be able to quantify understand, apply and derive safety standards for individual and 

societal risk   
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3 Risk Analysis and risk evaluation 

This section deals with the analysis and evaluation of risks. Firstly, the concepts of risk (section 

3.1) and risk analysis (3.2) are introduced. The sections after that introduce approaches for risk 

evaluation: general decision theory (3.3), cost benefit analysis (3.4) and safety standards that 

focus on the risk to life (3.5). The relationship between safety standards and engineering design is 

indicated in section 3.6. 

3.1 Risk 

3.1.1 General definition of risk 

Almost all activities in life are characterized by some level of risk. Especially in the design and 

management of engineering systems risk and safety are key concepts and need to be taken into 

account explicitly. In social discussions no unambiguous meaning is assigned to the concept of 

risk. Two definitions given in the Oxford dictionary are: 1) a situation involving exposure to 

danger; 2) the possibility that something unpleasant or unwelcome will happen. 

The first definition focuses on the consequences, the second on the possibility or probability. 

Quantifying and evaluating risks based on merely the probabilities or consequences is less 

realistic. For example, the risk of losing € 100 with a probability of 50% is different than the risk 

of losing € 1000 with the same probability. Also, the risk associated with losing a given sum of 

money will depend on the probability of the event. 

An often-used definition considers risk as expected value: 

Risk is the probability of an undesired event multiplied by the consequences 

The unit of risk now depends on the units of probability and consequences. The probability of an 

event is generally expressed as the probability per unit time, for example per year. The 

consequences of an undesired event are often multi-dimensional, i.e. they can consist of different 

types of consequences, such as material, ecological damages, injuries and fatalities (see section 

3.2.2 for further details). In many applications in engineering consequences are expressed by 

means of a monetary value. The unit of the risk (or expected value  E d ) then becomes € per 

year. For a case with one event scenario i  with probability ip it yields: 

A more general definition of risk has been given by Kaplan and Garrick (1981): 

Risk is a set of scenarios ( is ), each of which has a probability ( ip ) and a 

consequence ( id ) 

This definition of Kaplan and Garrick allows the use of various so-called risk metrics (or risk 

measures) to quantify or depict the risk. The expected value of the damage for a set of multiple 

discrete scenarios 1, ,n , can be expressed as: 

( ) i iE d p d           (3.1)  
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The expected value does not give insight in the magnitude of probability and consequences and 

the contribution of individual scenarios. Therefore, an often-used alternative risk metric is the risk 

curve. It shows the probability of exceedance of a certain magnitude of consequences. A well-

known example of such a risk curve is the FN curve, which displays the probability of exceedance 

of N  fatalities. The values on both axes are generally shown on a logarithmic scale, see Figure 

3.1 for an example. The FN curve was originally introduced for the assessment of the risks in the 

nuclear industry (Farmer, 1967; Kendall et al., 1977) and is now used to display and limit risks in 

various countries and sectors. Further information on the use of FN curves and a simple example 

of how to construct such a curve are included in section 3.5.1.  

3.1.2 Other risk definitions 

In the remainder of this lecture notes and the course the definitions from the previous paragraph 

will be applied. Since (civil) engineers will work in a broad domain of applications it is useful to 

highlight some risk concepts used in other domains. 

 

Within economics, risk is generally associated with a deviation from the expected return or the 

probability of loss. In social sciences risk is often considered as a contextual notion or social 

construct. Vlek (1996) has summarized 11 formal definitions used in social sciences, see Table 

3.1. In some of these definitions (e.g. numbers 2 and 4) the perceived seriousness of the undesired 

consequences plays an important role. Examples of other, more informal risk definitions used in 

psychology are “the lack of perceived controllability”, “set of possible negative consequences” 

and “fear of loss” (Vlek, 1996).  

 

Substantial research has focussed on the factors that determine the perception of risk (e.g. Slovic, 

1987, Vlek, 1996). Examples of factors that influence risk perception include: the degree of 

damage, the controllability of and familiarity with the hazards, the extent of benefits from an 

activity, and voluntariness of exposure.  

 

 
1i

n

i i

s

E d p d


           (3.2) 

 Probability of 
exceedance (1/yr) 

N (Fatalities) 

10 100 1000 

10
-3

 

10
-4

 

10
-5

 

 

Figure 3.1 FN curve, showing the probability of exceedance of a certain number of 

fatalities N on Log-Log scale. 



Lecture Notes CIE4130   Chapter: Risk Analysis and Risk Evaluation 

65  4𝑡ℎ Version 

  

1 Probability of undesired consequence 

2 Seriousness of (maximum) possible undesired consequence 

3 Multi-attribute weighted sum of components of possible undesired consequences 

4 Probability × seriousness of undesired consequence (‘expected loss’) 

5 Probability-weighted sum of all possible undesired consequences (‘average expected loss’) 

6 Fitted function through graph of points relating probability to extent of undesired 

consequences 

 

 

 consequences consequences consequences 

7 Semi variance of possible undesired consequences about their average 

8 Variance of all possible consequences about mean expected consequence 

9 Weighted sum of expected value and variance of all possible consequences 

10 Weighted combination of various parameters of the probability distribution of all possible 

consequences 

 

 outcomes consequences 

11 Weight of possible undesired consequences (‘loss’) relative to comparable possible desired 

consequences 

 

The definitions applied in the research on natural hazards, often define risk in terms of more 

qualitative concepts such as hazard, vulnerability and exposure1.  

 Hazard: A dangerous phenomenon, substance, human activity or condition that may cause 

loss of life, injury or other health impacts, property damage, loss of livelihoods and 

services, social and economic disruption, or environmental damage.  

 Vulnerability: The characteristics and circumstances of a community, system or asset that 

make it susceptible to the damaging effects of a hazard.  

 People, property, systems, or other elements present in hazard zones that are thereby 

subject to potential losses.  

3.2 Risk Analysis 

3.2.1 General 

The previous section made it clear that risk is a function of probabilities and consequences. The 

risk analysis therefore consists of an analysis of probabilities and consequences of undesired 

events in a given system. Alternative terms used in literature are risk assessment and quantitative 

risk analysis (QRA).   

 

A risk analysis is carried out because involved parties (e.g. designers, managers, decision makers) 

want to identify and evaluate the risks and decide on their acceptability. Outcomes of risk analysis 

can be used in the design process to decide on the required safety levels of new systems (e.g. a 

new tunnel) or to support decisions on the acceptability of safety levels and the need for measures 

in existing systems (e.g. a flood defence system). A quantitative measure of some form is needed 

to transfer decisions on acceptable safety into a technical domain (Voortman, 2004). Examples are 

choices in the design of civil structures, such as the height of a flood defence or the strength of a 

building. Also, risk analysis can be used to analyse the effectiveness of risk reduction measures, 

incl. management and maintenance strategies. Overall, the risk analysis aims to support rational 

                                                   
1
 UN ISDR (United Nations Office of Disaster Risk reduction) Terminology,  

http://www.unisdr.org/we/inform/terminology accessed 26-1-2015 

Table 3.1 Formal definitions of risk used in social sciences (Vlek, 1996) 
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decision-making regarding risk-bearing activities (Apostolakis, 2004). Moreover, a risk analysis 

provides insight in mechanisms of system failure and the associated failure probabilities and 

consequences. As such, it can also serve as a tool of communication and management. Insights of 

the risk analysis can be used to optimize system design and management and often there is a 

direct link to quality assurance.  

3.2.2 Elements in a risk analysis 

In general the following elements can be identified within risk analysis, see the scheme in Figure 

3.22 (Based on (CUR, 1997; CIB, 2001; Faber and Stewart, 2003; Jongejan, 2008):  

 System definition and setting the scope and objectives of the analysis; 

 Qualitative analysis of undesired events;  

 Quantitative analysis of the risk; 

 Risk evaluation (of the acceptability of the risk) 

 

Some more information on these steps is given in the following paragraph. In addition to the steps 

in risk assessment of a given system, risk management also includes the element ‘risk reduction 

and control’. Dependent on the outcome of the former phase measures can be taken to reduce the 

risk. This will lead to changes in the system configuration and the risk level. If the risk analysis is 

used in the design of systems, the steps are often repeated several times with adjusted system 

specifications to obtain an optimal design. It should also be determined how the risks can be 

controlled, for example by monitoring, inspection or maintenance. 

It is noted that a (probabilistic) risk 

analysis is different from a (deterministic) 

scenario analysis. A risk analysis is based 

on quantitative analysis of all (known) 

undesired events and their probabilities and 

consequences. A scenario analysis 

considers one (or a limited number) of 

design scenarios, often without considering 

its failure probability. Both approaches are 

complementary, as a scenario analysis 

considers one of the scenarios from the risk 

analysis.  

 

In the Netherlands, scenario analysis is 

often used for evaluating disaster 

preparedness and designing the capabilities 

of emergency management services. For 

example, in the design of the Green Heart 

Tunnel which is a part of the high speed 

rail line in the Netherlands, a single accident scenario was chosen to design the emergency exits 

out of the tunnel. Analysing a high impact, low probability scenario in detail may provide helpful 

clues about the effectiveness of particular safety measures or crisis management actions. While 

                                                   
2
 A more detailed framework of the steps of a risk analysis is included in appendix *. 

 Risk management 

Qualitative analysis 

Quantitative analysis 

Risk Evaluation 

Risk reduction and 
control 

Risk  
reduction 
measures 

System definition 

Risk analysis 

 

Figure 3.2 Schematic view of steps in risk 

assessment and risk management. 
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such analyses may be helpful, it would be wrong to assume that such high-impact, low probability 

scenarios should always be properly manageable by emergency responders. This is because the 

probability of harm should be an integral part of any cost-benefit or cost-effectiveness analysis 

(Jongejan et al., 2011).  

3.2.3 Steps in Risk management 

This section gives some more information on the steps in the risk analysis and some fundamental 

concepts in risk analysis. 

 

1. System definition 

This step entails the definition and description of the system as well as the scope and objectives of 

the analysis.  The process or system under consideration can usually be described as a so-called 

input-output element. Here the system is assumed to be failing if no output takes place. Usually a 

system is divided into components and subsystems, which can all be schematised as an input-

output elements. By means of the internal relations the components and subsystems together form 

a configuration that is representative of the total system. Further information on the 

decomposition and analysis of system is provided in section 3.5 of these lecture notes. 

 

A system can be represented in terms of physical components, organizations and users, and an 

external environment. In order to analyse failure and risks, not only physical components, but also 

organizations and operators and users need to be considered (see e.g. Bea, 1998). Different groups 

of organizations and persons will be involved in different roles. There are the professionals 

responsible for the operations and management of the system (e.g. the pilots and crew in an 

aircraft), potential users of a system (passengers), and external parties (people living near the 

airport exposed to risk and noise). Each of this group has a different “relationship” and attitude 

towards the risk and this could affect its acceptability. For example, a higher risk might be 

acceptable for pilots and crews in an aircraft (who have a direct benefit) than for regular 

passengers. Finally, the external environment (e.g. wind or waves) will determine the loads on the 

system and affect the potential failure mechanisms.  

 

2. Qualitative analysis 

In this step, potential hazards, undesired events, failure mechanisms and scenarios are identified 

and described. An important goal of this phase is to gain insight, as complete as possible, into all 

possible undesired events and their consequences. For most systems, multiple undesired events 

can be distinguished. For example, two events with different impacts that can both lead to 

flooding of a polder are 1) the inflow of large amounts of water due to a dike failure; 2) the inflow 

of smaller amounts of water when a sluice gate is not closed.  

 

When a system or part of it no longer fulfils one or more desired functions, this is known as 

failure. It means that the state of the system changes from normal operation of failure. The state of 

failure can be reached through different failure mechanisms (or failure modes). For example, a 

dike can fail due to overtopping, but also due to geotechnical failure mechanisms such as 

instability or piping. A limit state is a condition of a structure beyond which it no longer fulfils 

the relevant design criteria (Eurocode, 2001). In practice two types of limit states are 
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distinguished: the serviceability and the ultimate limit states abbreviated as SLS and ULS 

respectively.   

 In the case of the exceedance of ultimate limit state (ULS) failure or collapse of a system 

or structure occurs. This, for instance, occurs if the breakwaters of a harbour entrance are 

destroyed as a result of extreme conditions. An example from structural engineering is the 

collapse of a roof of a building 

 In the case of exceedance of the serviceability limit state (SLS) exceedance leads to 

temporary and/or partial failure. An example of this state is the non-workability in a 

harbour, due to waves that are temporarily too high. Another example could be too much 

vibration of a structure, so that the users experience discomfort.  

 

Further information on the use of the SLS and ULS concepts in civil engineering is included in 

chapter 10. 

 

In a risk analysis, it is very important to get an overview of the various undesired events and 

failures before proceeding with a quantitative analysis. In practice, many accidents are caused by 

failing to identify failure modes. 

Finding a list of threats and failing modes that is as complete as possible, is not an easy task. Aids 

are data banks, literature studies, interviews, experiences with comparable systems, brainstorm 

sessions et cetera. Techniques for systematically identifying undesired events (e.g. FMEA (Failure 

Modes and Effects Analysis) are treated in more detail in section 9.4 of the chapter on reliability 

of systems. 

 

3. Quantitative analysis 

The probabilities and consequences of the defined undesired events are determined in this step. 

The risk is quantified in a risk number or graph as a function of probabilities and consequences 

(see section 3.5.2 for an example). 

The probability of failure can be quantified using the (previously) introduced limit state. A limit 

state Z can be assessed by considering the resistance R and the loads S, i.e. 

Failure occurs when R S , so when 0Z  . Techniques for computing the probability of failure, 

i.e.  0P Z  , are treated in more detail in later sections of these lecture notes. 

After failure has been defined and analysed, the consequences of the event are quantified. First, 

the physical effects associated with the undesired event have to be considered, e.g. heat and / or 

smoke from fire, or inflow of water due to dike breach. Depending on whether people or objects 

are exposed to the physical effects, damages, life loss or other impacts can occur. 

As an example the failure of a dike for a set of discrete events is considered: 

 The probability that a dike fails,  1P E   

 The conditional probability that water flows into the polder given a dike breach  2 1|P E E   

 The probability of damage given dike breach and inflow into the polder 1 2( | )P D E E   

 

The probability of damage can now be computed by combining these terms 

Z R S             (3.3) 
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As introduced in section 3.1, multiple types of consequences can be caused by one disaster. Table 

3.2 gives an overview of the different types of consequences of the failure of large engineering 

systems. The damage is divided into tangible and intangible damage, depending on whether or not 

the losses can be assessed in monetary values. Another distinction is made between the direct 

damage, caused by physical effects of the event, and damages occurring outside the directly 

exposed area. The latter occurs when companies outside a flooded area experience damages, due 

to loss of demand from customers in the flooded area. In a risk analysis it is desired to take into 

account a complete set of impacts. Since a lot of the items from the table cannot be quantified 

easily, the quantitative analysis and risk evaluation are often focused on economic damages and 

life loss. 

 Tangible Intangible 

D
ir

ec
t 

 Residences 

 Structure inventory 

 Vehicles 

 Agriculture 

 Infrastructure and other public 

facilities 

 Business interruption  

 Evacuation and rescue operations 

 Reconstruction of flood defences 

 Clean up costs 

 Fatalities 

 Injuries 

 Animals 

 Utilities and communication 

 Historical and cultural losses 

 Environmental losses 

 

In
d

ir
ec

t 

 Damage for companies outside the 

exposed area 

 Substitution of production outside the 

area 

 Temporary housing of evacuees 

 Societal disruption 

 Damage to government 

 

4. Risk evaluation 

In the risk evaluation phase the decision is made whether the risk is acceptable or not and whether 

risk reduction measures need to be implemented. Or in other words, it is attempted to answer the 

question “how safe is safe enough?” (Starr, 1967). The results of the quantitative analysis provide 

input for risk evaluation and decision making.  

Different quantitative approaches can be used to support risk evaluation, which will be outlined 

more in detail in the coming sections. 

 

 Decision making under uncertainties (Section 3.3): Recording different variants, with 

associated risks, costs and benefits, in a matrix or decision tree, serves as an aid for making 

decisions. With this, the optimal selection can be made from a number of alternatives. 

 Cost benefit Analysis (section 3.4.1): the costs and benefits of risk reduction measures are 

considered.  When a very large number of design choices are possible, an economic 

optimization (section 3.4.2) can be applied to select an optimal system design, based on costs 

and benefits of risk reduction. 

 Safety standards (section 3.5): Comparing the risk with predetermined safety standards 

which often focus on loss of life.  

     1 2 1 1 2  | ( | )P D P E P E E P D E E        (3.4) 

Table 3.2 General classification of damages, based on (Vrouwenvelder and Vrijling, 

1996) 
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However, given the nature of the key question (how safe is safe enough?) several political, 

psychological and social processes play a role in the evaluation of risk. This means that risk 

evaluation is not a purely technical process, but will involve many subjective elements. One of the 

difficulties facing regulators is that people’s preferences and risk attitudes may diverge and that 

costs and benefits may not be distributed evenly. This means that a single, collective decision, in 

practice, has to be based on strongly divergent individual preferences. In practice, this implies that 

devising collective decision making procedures is inevitably political. This ambiguity can also be 

found in the numerous interpretations of “the” precautionary principle, which is interpreted by 

some as a decision making criterion that requires proof of harmlessness (a scientific 

impossibility), whereas it is seen by others as a decision making procedure that puts emphasis on 

dialogue and stakeholder involvement, e.g. Jongejan (2008). 

 

Risk reduction and risk control 

If the risks are considered unacceptable several forms of risk reduction can be implemented. 

These can be changes to the engineered system, or changes to the organization and management.  

From analysis of accidents it appears that human and organizational errors are still a major cause 

of failure in civil engineering. It seems that the only suitable way to reduce human errors is by the 

incorporation of sufficient control in the different phases of the construction process (Taerwe, 

1986) and by a thorough education of all personnel involved. Therefore, an extensive interaction 

between the safety methodology and the quality management is a necessity in order to guarantee 

the safety of our structures. 

3.3 Decision-making under uncertainties 

Decision-making under uncertain conditions is part of everyday life, e.g. when choosing to buy a 

lottery ticket or choosing to take an umbrella during cloudy weather. In contrast to the rather 

intuitive decision making in everyday matters, a structured analysis of different alternatives with 

associated risks, costs and benefits is very useful for decisions in (civil) engineering. This chapter 

offers a very basic introduction into the decision theory with applications to decision problems in 

the civil engineering domain. Further reference is made to the work by other scholars for more 

rigorous and detailed treatment of this topic, see for example Raiffa and Schlaifer, (1961); 

Benjamin and Cornell, (1970). 

3.3.1 Introduction and basics 

Making a decision is in fact choosing from alternatives. The decision theory3 is based on the 

classic “Homo Economicus” model. The Homo Economicus: 

 has complete information about the decision situation; 

 knows all the alternatives; 

 knows the existing situation; 

 knows which advantages and disadvantages each alternative provides, be it in the form of 

random variables; 

 strives to maximise that advantage (formally called utility). 

 

                                                   
3
 For the basis of decision theory, see for example (Von Neumann and Morgenstern, 1953). 
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The decision-making concept discussed in these lecture notes assumes this model. Decision-

making in practice is often different since the above conditions will not be fulfilled. There can be 

multiple decision makers and multiple objectives. Also, the decision maker does not know all the 

alternatives or their outcomes. For many practical cases this has led to an extension of the 

decision model, but not to a fundamental adjustment of the classical model.  

Within a decision problem the following characteristics can be distinguished:  

 the set of all possible actions or decisions ( a ), from which the decision maker can choose 

 the set of all (natural) circumstances ( θ ) that influence the outcomes 

 the set of the set of all possible results (ω ), which are functions of the actions and 

circumstances: (   )    ,ω f a θ . 

 

The actions, natural circumstances and the outcomes can be shown in a so-called decision tree 

(Figure 3.3). 

 
 

 

Based on the possible results a choice is made for an action. To be able to assess the different 

results, a numerical value is assigned to each outcome ofω , which can be used to establish the 

benefit of each outcome. This number can be a monetary value, a number on an arbitrary scale or 

utility - as long as the decision maker(s) can establish a consistent ranking of the outcomes with it. 

In the last two cases the benefit has no absolute value, but only gives the relative value of the 

different outcomes. Utility is a concept used to rank the possible outcomes according to the 

preferences of the decision maker. Utility ( u ) values are between  1( )0 u ω  . A utility function 

can be used to characterize the relative utility of various outcomes. The elaborations below are 

based on the monetary values as a measure for the outcomes and assume a risk neutral decision 

maker. This is a decision maker who is indifferent between choices with equal expected 

outcomes, even if one choice is riskier than the other. For example, a risk neutral decision maker 

would have the same preference for a € 400 pay out, or a 50/50 bet with a coin toss with outcomes 

of € 0 (head) or € 800 (tail). Utility and risk aversion are further discussed in section 3.3.3 

Figure 3.3 Decision tree 
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3.3.2 Decision rules 

Once a set of actions, circumstances and outcomes is known, various approaches can be used to 

come to a preferred decision. Various deterministic decision rules are available which do not take 

into account the probabilities of the possible circumstances and outcomes. One example of such a 

decision rule is the minimax criterion: a decision maker wants to minimize maximum losses. This 

is in fact a risk-averse criterion. Another example is the maximax criterion: a decision maker 

chooses the option with the maximum income and is risk seeking.  

 

Although these decision rules are helpful in some cases, the probability of occurrence of certain 

circumstances is a key feature of the decision problem. Information on the probability of 

outcomes is needed for an optimal choice of action(s). For example, when making a decision to 

start a business in soup or ice cream, the decision maker would want to know what the 

probabilities of rainy or sunny weather are. Selling ice cream in Dutch winter will probably not 

make a good (expected) profit, but it would be a profitable business in a Mediterranean summer. 

 

Therefore it is necessary to include information on the probabilities of circumstances and 

outcomes, in order to determine a rational action with the highest expected value of the benefit. 

This theory is known as the Bayesian decision theory. In a probabilistic or Bayesian decision 

framework the optimal action a* is defined as the one maximizing the expected utility. The 

following formula is found for the case with discrete outcomes. 

In which ,( )u a θ  – utility of action a under circumstance θ . ( )P θ is the probability that 

circumstance iθ  occurs. 

 

A rational decision is choosing the action with the highest expected (utility) value or highest 

benefit if outcomes are expressed in monetary values. This is illustrated in the example below. 

Note that other examples in these lecture notes will also be based on monetary values. 

      * :    max , max , i
a a

θ

a E u a θ u a θ P θ         (3.5) 

Example 3.1: buying shares or bonds? 

Suppose a person has EUR 1000 at his or her disposal and is given the choice to invest this money 

in bonds or in shares of a given company.  It is known that, on a yearly basis, 3 % of the current 

market value is distributed as interest on the bonds. The dividend of the shares depends on the 

company’s profit. Suppose that the board of directors have made the following agreements:  

 for a profit smaller than 5 % of the shareholders capital, no dividend is paid; 

 for a profit larger than 5 % of the shareholders capital, dividend is paid, the percentage of 

which corresponds to 3 % of the current market value of the shares; 

 for a profit larger than 10 % of the shareholders capital, the dividend corresponds to 6 % of the 

current market value of the shares. 

 

The set of actions A has two elements: 1a  = investing in shares AND 2a = investing in bonds 

The set or market circumstances N has three elements, namely:   

 1θ  = company profit ≤5 % 
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 2θ = 5 % < company profit ≤ 10 % 

 3θ = company profit > 10 % 

Assume the inflation amounts to 2 %. The set of outcomes ω contains three possible outcomes for 

the shares: 

 1ω  = return (0 % - 2 %) = -2 % per annum 

 2  ω = return (3 % - 2 %) =  1 % per annum 

 3  ω = return (6 % - 2 %) =  4 % per annum 

Note that for the bonds the net outcome always yields 2ω =1% (i.e. 3% interest – 2% inflation). 

The outcomes can be shown in a decision tree (see Figure 3.4) or in a table (see Table 3.3).  

Table 3.3 Outcomes given the decisions (a1,a2) and market conditions (θ1,θ2,θ3).  

 Market circumstances 

Actions  
1θ   2θ   3θ   

1 :a  buy shares -2 % 1 % 4 % 

2 :a  buy bonds  1 % 1 % 1 % 

 

Figure 3.4 Decision tree for the example of buying shares (a1) or bonds (a2). 

The deterministic decision rules can be applied to this example. Minimax would result in 

investing in bonds (a2), maximax would result in buying shares. 

The optimal decision can be found by taking into account the probabilities of the market 

circumstances. These three circumstances are assumed to be exhaustive and mutually exclusive 

(i.e. outcomes cannot overlap and the sum of probabilities equals 1). The probabilities are 

estimated at 1( )P θ = 0.2; 2( )P θ = 0.3; 3( )P θ = 0.5. These probabilities can now be included in the 

decision tree. The expected value of the return of the actions is as follows: 

Buying shares: 0.2(-2 %) + 0.3 (1 %) + 0.5 (4 %) = 1.9 %. 

Buying bonds: 1% 

In this case the expected outcome is larger for buying shares than for buying bonds. So for a risk 

neutral decision maker buying shares (a1) would be the preferred action. Note that this action also 

includes a probability of 0.2 of a loss. This is also expressed by a higher standard deviation of the 

expected outcomes for buying shares. The above example can also be extended by applying 
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In the previous example, the number of circumstances is limited and the probability distribution of 

the circumstances is discrete. For many decision problems this is not the case. The state of nature, 

for instance, can assume many values that cannot be made discrete. This, for example, would have 

been the case if the dividend in example 0 had been a percentage of the profit. In such cases a 

probability density function can be used to characterize the spectrum of outcomes. Using a 

continuous form of formula (3.5), the expected value of various actions, and the optimal action / 

decision can be identified.  

In taking decisions with uncertainties, it appears that probabilistic calculation techniques are a 

valuable aid to reach a rational choice. This is particularly the case if risks are dependent on the 

possible decisions. In such cases, Bayesian decision theory minimizes the total costs (i.e. 

investment costs plus risk in terms of potential losses). This can best be illustrated by means of an 

example from the civil engineering domain. 

different utility functions for various outcomes. 

Example 3.2: drainage of a construction site – decision tree 

In a river polder a basement has to be built in an excavated construction site. The construction site 

is made of sheet piling and the bottom is sealed off with a clay layer with a thickness (d) of, on 

average, dμ  2.5 m. The thickness is not known exactly; it follows from measurements that the 

thickness has a normal distribution and a standard deviation of dσ 0.2 m. 

The river cuts through the clay layer and the underlying sand layer is fed by the river (see Figure 

3.5). The groundwater potential in the upper layer equals the potential in the deep sand layer. The 

upward water pressure under the sealing layer is assumed to be a direct function of the river 

levels. The fluctuating river levels result in fluctuations of the upward pressure under the sealing 

layer. 

Measurements of the groundwater levels over a long period have given an insight into the extreme 

groundwater levels. The maximum upward pressure ( h ) under the sealing layer in the 

construction period has an a normal distribution with an expected value of hμ  4 m water column 

and a standard deviation of hσ  0.75 m water column. 

From these values the probability of flooding due to bursting of the clay layer due to upward 

water pressure can be calculated for the construction period. We define a limit state function

Z R S  .  

R is the strength consisting of the weight of the clay layer and  S  is the water pressure. We find: 

–c WZ ρ d ρ h           (3.6) 

In which: cρ  – density of clay (=20kN/m3); wρ  – density of water (=10 kN/m3)  

The probability of failure  0P Z  for this situation can be found by calculating the mean and 

standard deviation of Z : 

              –Z c d W hμ ρ μ ρ μ  = 20 2.5 – 10 4 = 10 kN/m2 

               σz = (ρc
2σc

2+ ρw
2σh

2 )0.5=8.5 kN/m2        (3.7) 

According to Chapter 2.6.1, we find      0 Φ Φ 1.17 0.12Z zP Z μ σ      . This is indicated as 
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the initial failure probability 
,0fP  . 

 

Figure 3.5 Situation: Excavation near a river 

The effect of a drainage system in the construction site (see Figure 3.6) on the groundwater levels 

has been reviewed using groundwater flow calculations. It appears that it reduces the mean value 

of the maximum water levels to 𝜇ℎ = 3.52m.  and the standard deviation remains the same. In this 

case the failure probability is reduced to 0.04. Such a drainage system costs EUR 150,000. 

 

Figure 3.6 Drainage around the excavation. 

The flooding of the construction site will result in the buoyancy of the basement resulting in 

damages are estimated at EUR 5,000,000. The designer of the construction site is faced with the 

choice whether or not to include drainage facilities in the design of the construction site.  

To provide insight the decision problem is illustrated with a decision tree. For this, the sets of 

actions, circumstances and outcomes have to be defined first:  

The set of actions A consists of: 

 1a  = excavation without drainage 

 2a  = excavation with drainage 
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3.3.3 Utility functions 

The elaborations in the previous sections were based on monetary values as a metric for outcomes 

and a risk neutral decision maker. This section will provide some basic information on utility 

functions and various risk attitudes. 

 

Utility is a concept used to rank the possible outcomes according to the preferences of the 

decision maker. Utility ( u ) values are between  1( )0 u ω  . A utility function can be used to 

characterize the relative utility of various outcomes. The utility function depends on the 

preferences and attitude of the decision maker. An example of three different utility functions is 

given in Figure 3.8 for an example of an activity with potential monetary benefits between € 0 and 

The set of circumstances N is formed by: 

 1θ  = the sealing layer remains intact  

 2θ = the water pressure exceeds the weight of the sealing layer 

The set of outcomesΩ  consists of: 

 1ω = nothing happens; loss = € 0 

 2ω = the construction excavation is flooded: loss =€5,000,000 

The previous eligibility analysis has shown that the probability of flooding of the excavation 

equals 
fP 0.12 for a situation without drainage and 

fdP  0.04 with drainage. 

Without drainage, the risk, defined as the expected value of the loss, is: 0.12 · € 5,000,000 = 

€ 600,000. With drainage the risk is: 0.04 · € 5,000,000 = € 200,000.Costs and probabilities can 

also be shown in the decision tree (see Figure 3.7). The expected values of the costs can be 

calculated for the different actions by adding the present values of the cost of actions and risk: 

 1 :a  expected value (additional) costs = risk =€ 600,000 

2 :a  expected value (additional) costs = extra costs + risk = €150,000 + € 200,000  

= € 350,000 

This implies that the construction of the drainage system is rationally speaking the best decision 

for a risk neutral decision maker. 

 

Figure 3.7 Decision tree with probabilities and costs. 
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€ 1000. In the case of a risk neutral decision maker the utility increases linearly with the benefits. 

In the case of the risk aversion relatively small benefits are already given a high utility. A risk 

seeking decision maker gives a relatively low value to smaller benefits, but high utility values to 

larger incomes.  
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Figure 3.8 Example of a utility function for monetary benefits. 

Example 3.3: a bet 

The utility functions can be applied to a simple example. Assume that a student has the chance to 

receive a guranteed payout of €400. Alternatively, a bet can be organized with a p 0.5 chance of 

a payout of € 800, and a  1 p 0.5 chance of no payout. A risk neutral decision maker would be 

indifferent between both choices, as they have the same expected outcome – i.e. €400 gain – and a 

utility value of        €400 · €800 1 €0u p u p u    0.4. 

We now apply the two other utility functions. For the risk averse function RAu we find the 

following: 

 

The expected utility of the direct payout equals RAu (€400) = 0.75 

The expected utility of the bet becomes:    0.5 €800 0.5 €0RA RAu u = 0.5 · 0.97 + 0.5 · 0 = 0.485 

 

In this case the expected utility of the direct payout is higher and this is the preferred decision of 

the risk averse decision maker. For the risk seeking function RSu we find the following: 

 

The expected utility of the direct payout equals  €400RSu = 0.1 

The expected utility of the bet becomes:    0.5 €800 0.5 €0RS RSu u = 0.5 · 0.57 + 0.5 · 0 = 0.285 

In this case the expected utility of the bet is higher. The preferred decision of the risk seeking 

decision maker is the bet. 
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So for the example of the bet, the risk neutral decision maker is indifferent between the bet and 

the direct payout. The risk averse decision maker would accept a lower payout, rather than taking 

the bet. The risk seeking decision maker accepts the bet, even if the guaranteed payout is higher 

than the expected outcomes of the bet. The same concept can also be applied to losses, a decision-

maker can be risk averse against events with large consequences. For example, a civil engineering 

company could be risk averse in making decisions about bidding for projects with financial risks 

that could threaten the financial stability of the company. On the other hand, a government with a 

large portfolio of projects may act more risk neutral. The various risk attitudes can also play a role 

in making investment decisions (see also 3.4.2). A risk averse investor would prefer investments 

(such as bonds or guaranteed loans with relatively low expected returns) over investments in 

stocks that have higher expected returns, but also a higher chance of losing money. The principle 

of risk aversion is also related to decisions about insurances. For example, most people are risk 

averse against losing their belongings in a large house fire. They are willing to pay an annual 

premium that is higher than the expected losses due to the fire. Finally, a further discussion of a 

related risk aversion concept regarding accidents with large numbers of fatalities is included in 

section 3.5.  

3.4 Cost Benefit Analysis and economic optimization 

3.4.1 Cost benefit analysis 

This section deals with simplified cost benefit analysis for risk reduction interventions in the 

engineering domain. An important question in evaluating (engineering) projects is whether the 

benefits outweigh the costs. Cost benefit analysis (CBA) is generally used for appraisal of a wide 

range of effects of projects or interventions in order to support decision making. The cost benefit 

analysis starts with defining the system and existing situation. Then, a broad range of effects of 

the proposed project and intervention can be identified. Table 3.4 below shows an overview of 

effects of the Delta works that were built after the 1953 flood disaster in the Netherlands. The 

main aim of the delta works was to provide flood protection to the Southwest of the Netherlands. 

However, other effects included the agricultural benefits to the region (benefits) and the effects on 

environmental quality in the estuaries in which dams were built (costs or negative effects). 

A choice has to be made which effects in the CBA are evaluated in monetary terms. For some 

items, such as construction costs or economic risk reduction (see below) this is straightforward. 

For other items such as environmental effects or reduction of risk to life, approaches for monetary 

evaluation exist, but they are not standardized or undisputed. 

Costs Benefits 

Construction and maintenance costs Reduction of flood risk (damage, loss of life) 

Loss of environmental quality Improvement of infrastructure 

 Recreation 

 Agricultural benefits 

 Economic stimulus for the region  

 Economic stimulus for the water engineering sector 

 National Pride 

Table 3.4: Costs and benefits of the delta works (Don en Stolwijk, 2003) 
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When considering investments that primarily focus on risk reduction (e.g. dike reinforcement or 

reinforcing of buildings for earthquakes), the main benefits will consist of the reduction of 

expected economic damages. For a measure to be cost effective, the investments should be 

smaller than the risk reduction. 

Where: I  – investments [€];  ΔE D  – present value of risk reduction [€] 

This formula can also be used to calculated the benefit/cost ratio, i.e.  Δ /E D I .  This ratio should 

be greater than 1 for cost effective projects. Note that all costs and the risk reduction are given in 

terms of present value with a unit of €. 

For investments that focus on prevention (i.e. reducing the failure probability of the system) 

equation (3.9) can be formulated as follows.  

Where:
,0fP – initial failure probability [-];

,f newP – failure probability after risk reduction investment 

 

Example 3.4: Drainage of a construction site – costs and benefits 

The example from the previous section could also be formulated as a simplified cost-benefit 

analysis. The same values for the variables are used. The costs of the drainage are € 150,000. The 

benefits are equal to the risk reduction, i.e.  

   ,0 ,Δ f f dE D P P D  = (0.12 – 0.04) € 5,000,000 = € 400,000   (3.10) 

This shows that costs are smaller than the risk reduction benefits, i.e.  ΔI E D  . The benefit/cost 

ratio equals € 400,000/€ 150,000 = 2.66 

 

One can easily show that the investment would just be acceptable if the benefits and costs are 

equal, i.e. when the benefit / cost ratio equals 1. This would still be the case if the probability of 

failure with drainage equals 
,f dP  0.09. 

 

Other types of interventions do not affect the probability of an accident, but focus on reducing the 

damages. They are often indicated as mitigation. An example in the field of flood management 

concerns raising buildings instead of reinforcing the dikes. In this case the criterion becomes: 

Where: 0D  – initial damage [€]; newD  – damage after investments in reducing the consequences [€] 

The foregoing assumes that both the costs and benefits are expressed in the same unit, generally in 

the form of a present value [€].The nett present value represents the sum of the present values of 

the benefit and cost cash flows over a period of time. In engineering we often deal with situations 

with larger initial investments, whereas the risk reduction benefits are spread out over a longer 

 ΔI E D            (3.8) 

 ,0 ,–f f newI P P D           (3.9) 

 ,0 0 –f newI P D D           (3.11) 
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time period. For example, when a government invests this year in flood protection, the costs are 

made in year 0, but the benefits will be spread over the coming decades.  

For such situations the failure probability is generally expressed per unit of time, mostly per year. 

That means that the risk (reduction) is expressed in terms of € per year, whereas the initial 

investments4 have the unit of €. The nett present value of cost or benefit values over a future range 

of years can be calculated with formula (3.12). To calculate the nett present value NPV [€] a 

discount rate r  should be used. The discount rate represents a required return on an investment.   

Where: 𝐶𝑡– costs in year t [€];T – reference period [years] 

The contribution of costs in a certain year to the nett present value depend on the discount rate  

and the reference year. Costs or benefits closest to the present will have the greatest contribution. 

Figure 3.9 below shows the value of  1/ 1
t

r for a given year t for different discount rate. The 

higher the discount rate, the smaller the contribution to the nett present value of costs or benefits 

that are far away from the present. For an infinite time horizon it can be shown that

 1/ 1  1/
t

r r  . This approximation can be used in evaluating engineering projects with a 

long life time.  

 

Economic Valuation of human life 

The previous paragraphs have focussed on the evaluation of economic costs and benefits of risk 

reduction interventions. Many of these interventions also directly focus on reducing injuries and 

fatalities. Examples are regulations and investments in traffic safety which have introduced 

measures such as airbags and seat belts.  

 

                                                   
4
 Note that there can also be yearly investments such as management and maintenance. 
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Figure 3.9 Normalized present value of a cost or benefit in year t for different discount 

rates. 
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In literature on risk management the economic valuation of human life is often depicted as a 

difficult problem as it raises numerous moral questions. Some claim it is unethical to put a price 

on human life because life is priceless. The actual expenditures on risk reducing prospects show 

however that the investment in the reduction of risks to humans is always finite. Different 

approaches are available for evaluating the costs of interventions in relation to the reduction of 

risk to human life, see Vrijling and van Gelder, (2000); Jongejan et al., (2005) for a further 

discussion of the various approaches. 

One of the options is to add the economic value d of N human fatalities to the economic 

damages, i.e. 𝐷 + 𝑁 ⋅ 𝑑. The value of the number of lives lost can be determined with different 

approaches.  

 

Several approaches are based on so-called stated preferences.  A survey can reveal how much 

people are willing to pay, e.g. for safety measures. In these cases the value of statistical life 

(VoSL) is obtained from the willingness to pay expressed by respondents in surveys. For example, 

in the cost benefit analysis for the flood defences in the Netherlands a value of a statistical life of 

€6.7 million per fatality is used (Deltares, 2013). The Value of a Statistical life lost in traffic 

accidents is estimated at €2.6 million (SWOV, 2012). 

 

One alternative approach is based on so-called revealed preferences. The costs of saving and extra 

(statistical) life ( CSX ) for actual life-saving interventions that have been taken in the past can be 

determined.  

Where: CSX – costs of saving an extra life [€/(life.year)];  ΔE N – reduction of the expected 

number of fatalities per year. 

 

An extensive study on CSX values in various sectors, see Tengs et al. (1995) showed that these 

vary widely across sectors and even within sectors. The highest CSX values are found for risks for 

small probability – large consequence events, for example in the nuclear domain. For such cases 

the expected number of fatalities is already small and investments in incremental safety are large.  

One other approach is to base the value of a human life on macro-economic indicators. Several 

metrics have been proposed that relate this value to a person’s economic production. 

Given the difficulties associated with economic valuation of human life and the associated risk 

reduction, it is decided in some domains to develop separate criteria for considering the risk to 

life. This topic is further elaborated in section 3.5. 

3.4.2 Economic optimization 

The previous sections have focussed on decisions for which the number of actions was limited, 

e.g. excavation with or without drainage and the associated costs and benefits. However, there are 

several situations in which the number of actions is unlimited. This occurs when the failure 

probability level has to be decided for a system that is yet to be designed, with an infinite number 

of design options. An example of this type of decision problem is the heightening of dikes, as in 

theory an unlimited amount of values can be chosen for the elevation, e.g. 2m, 5m, 5.1m, 5.11m, 

5.1111m 6m etc. 

 

 /ΔCSX I E N           (3.13) 
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For this situation an economic optimization that takes into account the costs of increasing the 

safety level and reducing the risks can be applied to derive an optimal level of safety (or the 

optimal “failure probability”). The economic optimization was developed and applied by van 

Dantzig (1956), to derive the optimal dike height for South Holland after the 1953 storm surge 

disaster, as will be further elaborated in the next section. 

In the economic optimization the total costs ( totC [€]) are determined, consisting of the 

investments I [€] in a safer system and the present value of the risk R [€]. 

The annual risk, or expected economic damage is found by: 

Where:  E D – expected value of the risk [€/yr];
fP – failure probability of the system per year 

([1/year]; D – damage in case of failure [€]  

In this approach it is thus assumed that all damages are expressed in monetary terms. Additional 

criteria for separately considering the loss of human life are included in the next section.  

The present value of the risk for an infinite time horizon can be found as follows: 

The risk can be reduced by constructing a safer system (a lower
fP ), or limiting the damage 

(smaller D ). In this case we assume prevention measures that focus on reducing the failure 

probability. The investments will become a function of the failure probability of the system, since 

increasing the safety will lead to an increase of costs.  

Figure 3.10 shows the costs and risks as a function of the accepted failure probability of a system. 

The economic optimum is found when the total costs are minimal. For this situation the following 

is valid: 

This approach can be applied to various decisions problems, such as the optimal dike height (see 

next section) but also the dimensioning of other interventions such as sprinklers or ventilation in 

tunnels to reduce fire risks. In cases where no continuous functions are available to create a figure 

like the one below, the analyst can consider a limited number of design options (e.g. no, small, 

medium or large sprinklers in a tunnel) and determine investments, risks and total costs for these 

options. 

 

In addition to the determination of the optimal failure probability, the cost benefit criterion should 

still be verified. (It is possible that we find an economic optimum with higher total costs than in 

totC I R             (3.14) 

  fE D P D            (3.15) 

fP D
R

r
            (3.16) 

 fI I P            (3.17) 

0tot

f

dC

dP
            (3.18) 
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the current situation without interventions). It is checked whether the benefits of risk reduction are 

larger than the costs of the dike heightening, i.e.    ,0 , ,f f opt f optP P D I P  . 

 

3.4.3 Application of the economic optimization: optimal dike heightening 

Before the major floods of 1953, dikes in the Netherlands were not designed for a specified safety 

level but mainly strengthened based on practical experience. One of the main questions after the 

disaster was the optimal dike height and the “acceptable” probability of flooding. Van Dantzig 

was a professor in mathematics and a member of the first Delta committee. He developed an 

econometric approach to determine the optimal probability of flooding (or protection level) and 

the corresponding dike height (van Dantzig, 1956). 

The approach only considers failure of the dikes due to overtopping. The probability distribution 

of water levels along the Dutch coast can be approximated by an exponential distribution. 

In which h  - water level [m]; ,A B – constants of the exponential distribution [m] 

Neglecting wave run-up, the probability of failure of the dikes – leading to flooding – can be 

approximated by the probability of exceedance of the dike height dh [m], i.e. 

It is assumed that there is total damage D  to all objects and infrastructures in the flooded area if 

the dikes fail. For the discount rate Van Dantzig applied a reduced interest rate ’r  = economic 

Figure 3.10 Economic optimization, costs, risks and total costs as a function of the 

failure probability of the system. 

    /
1–

h A B
F h e

 
           (3.19) 

    /
 dh A B

f dP P h h e
 

            (3.20) 
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growth – inflation. The net present value of the expected damages, i.e. the risk is found as follows 

(assuming an infinite time horizon). 

Note that the risk is thus dependent on the dike height. To limit the failure probability and thus 

risks, the dikes can be heightened further. The investments in dike heightening are determined by 

initial costs for mobilization and variable costs that are dependent on the level of dike heightening 

(see also Figure 3.11): 

Where: 0I  – fixed costs [€/m]; I  – variable costs per m heightening [€/m]; dh – new dike height 

after raising [m]; 0h – actual or initial dike height [m] 

 
 

 

Now, the total costs totC  are the sum of the investment costs and the risk. 

The optimal dike height is found when the total costs are minimal. This is the case when

/ 0tot ddC dh  . 

Since the
  /dh A B

fP e
 

 , we can find the optimal flooding probability
,f optP : 

The larger the damage D , the smaller the optimal failure probability and thus the higher the level 

of protection. If incremental protection is expensive – i.e. for high values of I – a higher optimal 

failure probability and thus a lower level of optimal safety will be found. The optimal failure 

' '

dh A

B
fP D e D

R
r r




            (3.21) 

 0 0dI I I h h             (3.22) 

Figure 3.11 Schematic view of dike heightening. 
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probability is also dependent on the discount rate ’r . Combination with equation (3.20) gives the 

optimal dike height 
,d opth :  

In addition to the determination of the optimal dike height the cost benefit criterion should still be 

verified. It is checked whether the benefits of risk reduction are larger than the costs of the dike 

heightening. 

Where:
,0fP  – flooding probability in the initial situation 

It can be easily shown that this is equivalent to a check of whether the total costs in the optimal 

situation are smaller than those in the original situation. The first Delta committee used the 

following values for South Holland: 

Using these values the following optimal dike height and optimal failure probability were derived: 

,d opth  = 5.83m; 
,f optP  = 8.10-6 per year. 

Although the optimal safety level was determined at a failure probability of 
,f optP   1/125,000 per 

year, in later political derivation a value of 1/10,000 per year was determined for the probability 

of exceedance of design water levels. This implied that the dikes of South Holland would need to 

be designed for hydraulic conditions (water levels and waves) with a probability of exceedance of 

– on average – 1/10,000 per year. In later decision-making safety standards have been derived for 

other dike rings (see Figure 3.12). For example, flood defenses in the river system are designed 

for a safety standard of 1/1250 per year. 

 , ,d opt f opth A B ln P            (3.26) 

   , ,0 , / ’d opt f f optI h P P D r          (3.27) 

D  = fl 24.2.109 [unit is Dutch guilders]; ’r =0.015; I = 40.1.106 fl/m; A = 1.96m; B = 

0.33m; 0h = 3.25m; 0I = fl 110.106. 
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It was expected that the actual failure probability for dikes designed for this design load, would be 

smaller than 1/10,000 per year.  Recent risk analysis in the project VNK have shown that this is 

not the case due to the geotechnical failure mechanisms. For most dike rings the estimated failure 

probabilities are larger than the probability of exceeding the design loads. For example, for 

riverine dike rings that have been designed for design levels with a probability of exceedance of 

1/1250 per year, failure probabilities are often in the order of magnitude of 1/100 per year (VNK, 

2014). 

 

Several extensions of and additions to the model have been proposed. For example, the inclusion 

of sea level rise (Vrijling and van Beurden, 1980), modelling of the damage as dependent on the 

water depth in the polder (van Dantzig, 1956), the inclusion of the economic value of loss of life 

as part of the damage, and inclusion of risk aversion by giving quadratic weight to the damages 

(van Gelder et al., 1997) 

 

The model by van Dantzig was primarily focused on finding what the optimal safety at that time 

(when van Dantzig published his model in the 1960’s) should have been. However, a single 

optimal level is not always the best solution. While considering longer timescales and changing 

conditions, such as economic growth and sea level rise, the model needs to address the possibility 

of multiple interventions during the period considered. This leads to questions regarding the 

timing of interventions (when? At which intervals?), as well as the optimal strengthening or 

raising of the dikes (how much?). Eijgenraam (2006) developed an economic decision model that 

takes into account both questions.  

Figure 3.12 Dike Rings in the Netherlands, showing probability of exceedance of the 

design water levels per dike ring. Note that dike rings along the River Meuse are not 

shown on this map. Most of these dike rings have a safety standard of 1/250 per year. 
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Figure 3.13 below depicts the “saw-tooth” curve that shows the periodic interventions: both the 

extent of the intervention (vertical) as well as the timing between interventions (horizontal). In 

between interventions, the safety will gradually decrease due to sea level rise and / or subsidence 

of the dike. Over a longer period of time, the dike heightening (or strengthening) should follow 

sea level rise. Additional dike heightening (lower the failure probability even further) could be 

considered in case of economic growth, which will lead to an increase of damages and increase of 

protection standards. The length of the optimal interval between interventions is largely dependent 

on the initial or mobilization costs. If these are high, for example in the case of structural 

interventions such as storm surge barriers, a long interval or life time of almost 100 years can be 

chosen. For regular dike reinforcements this interval will be more in the range of several decades 

(e.g. 50 years). For interventions with no or very small initial costs, such as nourishments along 

the coast, it is optimal to intervene more frequently. 

 

Corrective 
action 

Sea level 

Strength / 
resistance 

Time 

strong 

weak 

 

3.5 Safety standards 

When answering the question “how safe is safe enough” a merely economic treatment with cost 

benefit analysis or economic optimization is often not sufficient for activities with risks to people. 

Therefore, criteria have been developed that focus on risks to human life. This section focuses on 

safety standards and criteria for evaluating the risk to life.  

3.5.1 Introduction 

Two aspects are typically considered when evaluating and regulating risks to the public: the total 

or population-wide effects, and the distribution of effects within the affected population. Table 3.5 

summarizes these perspectives. The societal perspective is concerned with ‘total effect’ and the 

effects of large-scale accidents on the society, in terms of economic damages and life loss. The 

individual perspective is concerned with distributive justice (‘equity’), i.e. the distribution of harm 

over the population.  

As risk is often the by-product of an otherwise legitimate and advantageous activity, such as 

production or transportation, regulating risks is essentially a balancing act between economic and 

Figure 3.13 Periodic investments in dike reinforcement for a situation with sea level rise. 
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social activities on the hand and a sufficiently safe society on the other hand (e.g. Jongejan, 2008): 

just as too lenient regulations are suboptimal, too stringent ones are too. 

Aspect Relevant risk metric Rationale 

Equity 

(‘distributive justice’) 
Individual risk 

Regulation is to prevent that individuals are 

exposed to disproportionally large risks 

Total effect 
Societal and 

economic risk 

Regulation is to limit large-scale accidents and 

optimize the costs and benefits of risk reduction 

 

Based on this general concept, it has been proposed to evaluate risks based on three criteria 

(TAW, 1985; Vrijling et al, 1995; 1998): 

 To limit the individual risk to prevent that certain people are exposed to disproportionally 

large risks  

 To limit the societal risk to limit the risks of large scale accidents with many fatalities 

 Economic optimization to balance investments in risk reduction from an economic point of 

view 

 

The individual risk concerns the probability of death of a person due to an accident. Various 

related definitions exist. The “average individual risk” for a certain activity can be calculated, e.g. 

the individual risk due to smoking or the risk of an airplane crash for a frequent flyer. Table 3.6 

compares the probability of lethal accidents for various types of accidents. 

Activity Probability (per year) 

Mountain climbing 10-2 

Traffic (young men) 10-4 

Accidents at home 10-4 

Structural failures 10-7 

 

The individual risk due to an accident can be calculated with: 

Where: IR  – individual risk [per year];
fP – probability of an accident [per year];

|d fP – conditional 

probability of death given an accident. 

Both the individual risk and 
|d fP can be formulated as a function of a location near a risk source. If 

it is assumed that a person is permanently present at that location, the individual risk becomes a 

property of that location and it can be used for zoning and land use planning. This is applied in the 

industrial safety policy in the Netherlands (see next section). 

Societal risk refers to the probability of an accident with multiple fatalities. It is often graphically 

represented by an FN-curve that shows the exceedance probabilities of the potential numbers of 

Table 3.5: Overview of perspectives on risk evaluation. 

Table 3.6 Average probability of death due to several activities. (statistics based on 

various sources for the Netherlands and Europe) 

|f d fIR P P            (3.28) 
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fatalities ( ( ))P N n on double log scale. A simplified example of the calculation of an FN curve is 

given below.  

 

The economic optimization has already been discussed in detail in section 3.4.2. Possible criteria 

for acceptable individual and societal risk are discussed in the coming paragraphs.  

 

Example 3.5: difference between individual and societal risk 

To illustrate the difference between the individual and societal perspective, consider a fairly safe 

car that has a probability of 10-5
 per year of causing a fatality due to technical failure. This may 

well be acceptable to an individual. Such a probability is in the same range as the average death 

rate in traffic (650 fatalities / 17 million people which is about 4.10-5 per year). If only 1000 cars 

are sold in the Netherlands, the number of fatal accidents with this car is rare, i.e. 0.01 fatalities 

per year. However, when the car becomes popular and 10 million cars are sold, the average 

number of fatalities due to technical failure becomes 100 per year. This may well lead to public 

concerns and indignation. From a societal point of view this may no longer be acceptable, 

whereas the individual risk has not changed. 

 

Example 3.6: calculation of an FN curve 

The following example shows the composition of an FN curve for a system with two mutually 

exclusive event scenarios. 

Accident 1 with 1N =10 fatalities and a probability of 1P =10-2 per year 

Accident 2 with 2N =100 fatalities and a probability of 2P =10-3 per year 

Based on this information the probability mass function can be formed (first graph). 

Consequently, the cumulative distribution function can be made (second graph). Finally, the 

probability of exceedance or the FN curve is made (third graph). 

Finally, we note that the expected value of the number of fatalities equals: 

  1 1 2 2E N PN P N   0.2 fatalities per year 

 

This value will also be found when the surface of the area under the FN curve is computed 

(Vrijling and van Gelder, 1997). 
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3.5.2 Limits for individual and societal risk 

Safety standards can be used to set limits to the individual and societal risk. A limit value can be 

set for individual risks. Such a limit value is to avoid disproportionate exposures by laying down 

a minimum safety level for all individuals. In various fields of applications limit values in the 

range of 10-4 to 10-6 per year are used (see below for more information). To put the stringency of 

the individual risk criteria into perspective, one could consider the effect of the probability of an 

accident on life expectancy. When an average person would be constantly exposed to a maximum 

allowable level of risk of 10-6
 per year, the decrease of his or her life expectancy would be only 1 

day as shown in Table 3.7. 
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Figure 3.14 Composition of an FN curve for a simplified example. 
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Additional probability 

of death in a year 

Life expectancy 

in years 

Decrease of life 

expectancy in years 

Decrease of life 

expectancy in days 

10-3 

10-4 

10-5 

10-6 

10-7 

74.97 

77.81 

78.10 

78.13 

78.13 

3.16 

0.32 

0.03 

0.00 

0.00 

1153 

117 

11 

1 

0 

 

Societal risk can be evaluated by means of an FN limit line. The calculated FN curve of the 

system should, in principle, not exceed the limit line. An FN-criterion is defined by three 

variables: (1) its base point (the exceedance probability of 1 fatality, i.e. C), (2) its slope (), and 

(3) its probability and/or consequence cut-off (  and A B ).  Figure 3.15 shows the different 

constraints that could make up an FN limit line.  

 

 

 

 

The general formulation for such a limit line without horizontal or vertical cut-off equals: 

Where: C – constant that determines the vertical position of the limit line; α - coefficient that 

determines the steepness of the limit line 

The limit line is called risk neutral5 if α =1, since it places equal weight on exceedance 

probabilities and numbers of fatalities. If α = 2, the limit is risk averse. This means that that the 

exceedance probability of 10 times as many fatalities should be 100 times lower. This has been 

motivated by public aversion to large numbers of fatalities. For example, the loss of 1000 people 

                                                   
5
 It should be noted that the usage of the term “risk neutral” to describe the FN-curve limit line for α =1 is 

widespread but, strictly speaking, incorrect in the context of decision theory (see section 3.3). This is because the 

cost of risk bearing to a risk neutral decision maker equals expected loss (i.e. the product of probabilities and 

damages). The FN-curve shows cumulative probabilities, however. Also, an individual crossing of the limit line 

would not necessarily disturb a risk neutral decision maker, provided the other accident scenarios have relatively 

small probabilities.  

Table 3.7: Relationship between the additional individual risk and life expectancy 

Figure 3.15 A fictitious FN-curve (grey) and different FN limit lines. 

 1 / α

NF n C n            (3.29) 

n fatalities 

P(N≥n)  

C 

C/n
 

P(N≥n)≤A 

n≤B 

B 

A 

Calculated 

FN curve 
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in one accident (e.g. a major explosion) could be valued differently than  1000 losses of 1 person 

in separate accidents (e.g. in traffic). 

 

For different applications limit lines have been developed with varying constants and steepness. 

Examples of application areas include industrial risks in the Netherlands (next section), dams in 

the United States and Canada, and chemical risks in Hongkong and the UK (Jonkman et al., 

2003).  

Example 3.7 Risk matrix 

Risk matrices are often used in various industries for risk evaluation and decision support, for 

example for the evaluation of health and safety risks within a facility. For a given undesired event 

the extent of probability and consequences are estimated on a qualitative or semi-quantitative 

scale, see Figure 3.16 for an example. Ranges of failure probabilities or consequences can be 

assigned to the qualitative terms on the axes in the example. The combination of probability and 

consequence estimates determines whether the risk is acceptable or whether it requires more 

attention and risk reduction efforts. However, unlike the FN curve, the cumulative effects of 

multiple possible events are generally not considered in a risk matrix. 

  

 

 
           Figure 3.16 Example of a risk matrix (Source:      

           http://www.eimicrosites.org/heartsandminds/ram.php ) 

3.5.3 The Dutch safety standards for industrial major hazards  

The Dutch major hazards policy deals with the risks to those living in the vicinity of major 

industrial hazards such as chemical plants and LPG-fuelling stations. The development of the 

Dutch major hazards policy was strongly incident driven, as were European efforts aimed at the 

prevention of major industrial accidents. After a number of severe industrial accidents, including 

the Bhopal accident in 1984 which killed an estimated 3000 people and severely injured over 

200.000, a European directive was drafted concerning the prevention of major accidents: the 1982 

Seveso Directive. This was later replaced by the Seveso II Directive. 
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The cornerstones of the Dutch major hazards policy are a) the use of quantitative risk analysis 

(QRA); b) comparison of QRA outcomes with limits to individual and societal risks 

(Bottelberghs, 2000).  

 

Within the Dutch major hazards policy, individual risk is defined as the probability of death of an 

average, unprotected person that is constantly present at a certain location. It is thereby a property 

of location and iso-risk contours can be plotted on a map (see Figure 3.17). Individual risk is 

therefore also named local risk (“plaatsgebonden risico”) in the Netherlands. The shape of the risk 

contours for other applications will look different. For airports the contours will follow the shape 

of the runway and flight paths, for polders and flooding the risk contours will be highest in the 

deepest part of the polder. 

 

 

A distinction is made between vulnerable objects such as schools and houses and limitedly 

vulnerable objects such as small offices. The following criteria apply. For new situations a limit of 

10-6 per year applies. A comparison with Table 3.8 shows that this individual risk value has a 

negligible effect on life expectancy. 

 

The criterion for societal risk that is used in the Netherlands for evaluating the third party risks 

posed by major industrial hazards is shown in Figure 3.18 below. It serves as a reference in the 

broader assessment of third party risks by competent authorities. Exceedances of the criterion line 

also have to be motivated by competent authorities. When the criterion line is not exceeded, the 

acceptability of the third party risk still has to be motivated.  

 

Figure 3.17 Example of a schematic individual risk contour (circles) for a chemical 

installation. 

Table 3.8 Individual risk criteria used in the Netherlands. 

  Individual (or local) risk criterion 

Existing situations Vulnerable 610  per year 

Limitedly vulnerable 510 per year, strive for 610 per year 

New situations Vulnerable 610 per year 

Limitedly vulnerable 610 per year 
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The limit line is characterized by 310C  and a steepness of α 2, making it a risk averse 

criterion. The criterion is used to assess the acceptability of the risks of individual facilities.   

 

3.5.4 The TAW model: a general model for deriving safety standards 

Engineers are sometimes faced with the question 'how safe is safe enough'. For systems for which 

no regulations are available, this can be a difficult question to resolve. A model has therefore been 

developed by the Technical Advice Committee for Water (TAW)6 defences for deriving safety 

standards on the basis of accident statistics (TAW, 1985; Vrijling et al 1995; 1998). The 

assumption underlying the model is that accident statistics are the result of a process of societal 

optimisation and that they thereby reflect what is apparently considered acceptable by society at 

large. Such an approach is commonly referred to as a 'revealed preference' approach. 

 

Individual risk 

Accident statistics reveal that the extent to which participation in the activity is voluntary strongly 

influences the level of risk that is accepted by individuals. Relatively high individual risks are 

accepted for activities that are voluntary and have a (personal) benefit, such as mountain climbing. 

Much smaller individual risk values are accepted for involuntary activities for which the risks are 

imposed by others, e.g. for chemical and nuclear industry. A policy factor ( β ) is therefore 

introduced to account for voluntariness of exposure. This factor is set at 1β  for an individual risk 

value of 10-4 per year. This represents the “baseline” individual risk for the group of young men 

who are most at risk from traffic. 

 

 

 

 

 

                                                   
6
 TAW is nowadays called ENW: Expertise Network on Flood Protection. 

Figure 3.18 FN limit line used for installations in the Netherlands.   
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Prob. Of death (per year) Example / application β Voluntariness Benefit 

10-2 Mountain climbing 100 Voluntary Direct benefit 

10-3 Driving a motor cycle 10 Voluntary Direct benefit 

10-4 Driving a car 1 Neutral Direct benefit 

10-5 Flooding 0.1 involuntary Some benefit 

10-6 Factory / LPG station 0.01 involuntary No benefit 

 

The proposed individual risk limit becomes: 

An appropriate value for the policy factor β can be chosen depending on the characteristics of the 

activity. If the conditional probability of death due to an accident 𝑃(𝑑|𝑓) is known, the acceptable 

failure probability can be computed: 

Note that the Dutch individual risk criterion for hazardous installations would be obtained for β 

0.01 and a conditional probability of death of 1 (
| 1d fP  ). 

 

Societal risk 

The societal risk criterion proposed by the TAW is based on the thought that societal risk should 

be evaluated primarily at a national level as local developments may lead to a situation that is 

considered unacceptable by society as a whole (Vrijling et al., 1995). The societal risk criterion at 

a national scale proposed by the TAW is: 

Where: 

  E N    Expected number of fatalities per year 

 k    Risk aversion index (proposed value, k = 3) 

  σ N    Standard deviation of the number of fatalities per year 

 β    Policy factor 

 

A risk aversion index k  has been introduced to account for risk aversion. For accidents with small 

probabilities and large consequences the standard deviation  σ N  is large relative to  E N , see 

example below. The total risk takes a risk aversion index k [-] into account. For 1k  , the “cost of 

risk bearing” exceed expected loss, implying a risk averse attitude. 

 

Table 3.9 Accident statistics and proposed policy factor and characteristics of the activity 

(Sources: CUR, 2015; Vrijling, 2001; Vrijling et al., 1998). 

410IR β              (3.30) 

|

4  10 /  f d fP β P            (3.31) 

     100E N kσ N β            (3.32) 
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Example 3.8: Expected value and standards deviation for two systems 

We consider two systems 

1. This system has a high failure probability of 0.01 per year and 1 fatality 

2. The second system has a smaller failure probability of 0.0001 per year but a higher number of 

100 fatalities. 

For both systems a Bernoulli distribution of the number of fatalities is applied meaning that the 

number of fatalities in case of failure is exactly known. The expected value and standard deviation 

of the number of fatalities are found as follows 

 

   2 21

f

f f

E N P N

σ N P P N



 
         (3.33) 

The resulting expected value and standard deviation are shown in Table 3.10 below. Although 

both systems have the same expected value, the standard deviation for the “small probability – 

large consequence” event for system 2 is higher. Taking into account the standard deviation in the 

TAW criterion thus accounts for risk aversion against accidents with large numbers of fatalities. 

Table 3.10 Calculation of expected value and standard deviation for two activities. 

 

fP   N   E N    σ N   

1 10-2 1 10-2 0.099 

2 10-4 100 10-2 0.99 

 

The next step would be to distribute this maximum allowable level of societal risk over individual 

installations. After all, locally imposed societal risk criteria are necessary for achieving the 

desired national level of societal risk. The translation of the nationally acceptable level of risk to a 

criterion for a single local installation depends on the type of probability distribution of the 

number of fatalities. In Vrijling et al (1998) a formulation of the risk acceptance at a local level is 

presented conform equation (3.29): 

 1 / α

NF n C n            (3.34) 

For a binomial distribution this yields: 

2

100

A

β
C

k N

 
  
 
 

          (3.35) 

in which: aN is the number of independent locations where the activity takes place. 

This requirement corresponds to the requirement set for chemical installations if

   0.03,    1  000 and    3aβ N k   . 

 

Combination of individual and societal risk 

According to the approach by TAW the three approaches (individual, societal and economic risk) 

lead to three acceptable failure probabilities. The most stringent of the three criteria can be chosen 

to determine the acceptable probability of failure of the system and to make sure that all three 

conditions are fulfilled. This can best be illustrated with an example (see below). The principles of 
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this approach have been applied to derive the proposed new safety standards for flood defences in 

the Netherland by the Delta Program (2014).  

Example 3.9: Combination of individual, societal and economic risk for a dike ring area 

We consider application of the three criteria to the case of dike rings in the Netherlands. There are 

about 100 dike rings in the Netherlands of different sizes. A dike ring is a flood prone area 

protected from flooding by flood defences and high grounds. The conditional probability of death 

given flooding depends on the depth of the polder and flood characteristics. Research on loss of 

life due to floods shows that a conservative estimate would lead to 
| 0.1d fP   

 

First, we consider the individual risk. A value of β 0.1 is proposed as being exposed is 

considered as an involuntary activity with some benefit (i.e. living in a prosperous delta). This 

leads to an acceptable individual risk value of 10-5 per year. This limit has also been proposed by 

the Dutch government in the year 2014 (“basisveiligheid”). 

The acceptable flooding probability according to the individual risk becomes: 

|

4 4 4  10 / 0.1 10 / 0.1 10 per yearf d fP β P             (3.36) 

The societal risk criterion can be determined according to equation (3.29). Assuming a risk averse 

criterion α 2. We can determine the constant C of the limit line for AN   100 installations and

 β 0.1. 

2 2

100 0.1 100
0.11

3 100A

β
C

k N

   
         

        (3.37) 

The limit line for societal risk becomes   21 0.11/NF n n  . Both the individual and societal risk 

criteria are plotted in Figure 3.19 below. As a third criterion the economic optimization can be 

added. The optimal or acceptable probability of failure depends on the damage and investment 

costs. A relationship with the graph below can be established by assuming that the number of 

fatalities is related to the economic damages. A dike ring with many inhabitants and potential 

fatalities will generally also represent a large economic value. For the sake of the example we 

assume that every fatality corresponds to an economic damage of € 5 ⋅ 107 (note: this is not equal 

to the value of a human life). To calculate the economic optimum for the example we assume 

arbitrary values of 𝑟 = 0.025  and I  €  5 ⋅ 106; B  0.33. Figure 3.19  shows the combination 

for the three criteria.  

For a given number of fatalities in a dike ring the acceptable failure probability according to the 

three criteria can be derived. The individual risk criterion is independent on the number of 

fatalities. The economic criterion shows a linear relation between the failure probability and 

damage or number of fatalities. The societal criterion is risk averse so shows a decreasing 

quadratic relationship between acceptable failure probability and consequences. 

 

For a given number of inhabitants and potential fatalities for a dike ring, the acceptable failure 

probability can be determined. For dike rings with between 1 and 10 fatalities – generally small 
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One field of application where these concepts have been applied concerns the flood protection 

standards in the Netherlands. In the year 2014 new safety standards have been proposed for 

primary flood defences in the Netherlands. These have been derived based on a risk assessment, 

and standards have been formulated as a (tolerable) probability of failure of the flood defences. 

More information on this field of application will be given during the lectures.  

3.6 Probabilistic design: the relationship between safety standards and 

engineering design 

The overall objective of probabilistic design is to design (and maintain) systems with an 

acceptable risk level in an optimal way. The first part of this description entails the consideration 

of acceptable risk in deriving the safety level (or failure probability) of the system. This topic has 

been the focus of the previous sections on safety standards – see for example the section on the 

economic optimization. 

 

The first step is to derive an accepted failure probability  (also called target value for the 

reliability). These values are generally expressed by means of failure probability or reliability 

index β. These values also depend on the reference period to which they are applied. Further 

details regarding typical target reliability values are given in section 10.3. 

 

areas-the individual risk criterion is the most stringent. For dike rings with large numbers of 

fatalities, the risk averse societal risk criterion becomes dominant.  

 

Several extensions of this model are possible. One can consider to add the economic value of life 

loss or consider a different distribution of the nationally acceptable societal risk over dike rings 

with different sizes.  

 

Figure 3.19 Combination of the individual, societal and economic risk criteria for a 

hypothetical example. 
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For complex systems, consisting of multiple elements with multiple failure mechanisms, the 

acceptable failure probability needs to be distributed over failure mechanisms and elements. A 

“failure probability budget” can be established for this distribution. Once the target reliability 

values for individual elements and failure mechanisms have been identified, partial factors for 

load and strength, the so-called ’γ s, can be derived as a basis for practical engineering design (see 

section 8.4 for further details). Examples of these partial factors are the material and load factors 

used in structural design. 

 

Preferably, the distribution over failure modes and elements is chosen in such a way that an 

economical design results. In this respect, it is noted that the design choices will affect the costs of 

the system. Since the failure probability that follows from the economic optimization is a function 

of the costs, there can be interactions between the design choices and the optimal safety standard.   

The following sections will focus on more technical aspects of analysis of failure probabilities of 

individual elements and systems, as well as the derivation of design values for load and resistance. 

 

 

Figure 3.20: Relationship between acceptable risk, failure probability of a system and 

system design. Adopted from Schweckendiek et al. (2013). 
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Appendix 3.1 More detailed scheme for risk assessment (CUR 190) 

The scheme below was developed in the book “probability in civil engineering” (CUR 190). It 

uses roughly the same main groups of steps as introduced in the main text of these lectures notes: 

qualitative and quantitative analysis and risk evaluation. 

 

 
  

Figure 3.21 Detailed scheme for risk assessment 
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Appendix 3.2 FN curves for different distribution types  

From (CUR, 2015) 

 

Different distribution types can be used for the number of fatalities and some options are shown 

below.  

 

Note that every activity has a non-zero probability of zero deaths (no accident) and a non-zero 

probability of deaths. The differences in the probability density functions lay in the assumed 

distributions of the number of fatalities given an accident. The first function in Figure 3.22 is the 

Bernoulli-distribution which has only two possibilities: N deaths, with a probability ,p or zero 

deaths, with a probability1 p . This distribution is suitable as a boundary condition for activities 

where failure leads to a loss that is known exactly. The second function in Figure 3.22 is the 

exponential distribution which is continuously and exponentially distributed over the interval 

between zero and infinity. This distribution is suitable for modelling economic losses or the 

number of dead as a result of an activity. The third is the less well-known inverse square Pareto-

distribution. This distribution corresponds to the Dutch standards using. The Pareto distributed 

variable can assume the value zero or every value between one and a specified maximum.  

 

 

Figure 3.22 Multiple distributions that can be used for the number of fatalities 
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4 Reliability Calculations, Basics 

4.1 The problem Z=R-S 

Often, the reliability of a system can be assessed by comparing two stochastic quantities: the 

resistance R of the system on the one hand and the load (or solicitation) S on the other1. Some 

examples of these quantities are given below: 

R S 

Flow capacity of a river bed Discharge of the river 

Flow capacity of a sewage pipe Discharge of waste water 

Bending resistance Existing bending moment 

Permissible deflection of beam Existing deflection of beam 

Soil cohesion and shear strength Stresses in soil due to external loads 

Traffic capacity of a road junction Intensity of traffic 

 

In these lecture notes the focus will be on the reliability analysis of structures, but the examples 

above illustrate that this reliability analysis can also be applied in other fields of civil engineering, 

such as hydraulic, geotechnical and traffic engineering. In its simplest format, the safety of the 

system can be assessed by verifying if the resistance is larger than the load, such that no failure 

occurs. In terms of the examples: the river does not overflow its banks, the beam does not fail, the 

slope does not become unstable, the traffic does not come to a standstill, there is no electrical 

power failure, etc. Thus, a reliable system complies with the following statement: 

R S            (4.1) 

Traditionally, the verification of structural safety follows deterministic patterns. A certain value 

rd of the resistance of a structural component is derived from a number of characteristic values. In 

a similar manner a defined value sd representing the load effects is derived from a number of 

characteristic values of loads. In order to check for safety or failure these two single values rd and 

sd are then compared: 

 

  
d dr s            (4.2) 

 

However, in the probabilistic approach advocated here, resistance and load effects are not 

regarded as deterministic quantities, but as random variables, which can each be described by a 

certain distribution type and accompanying parameters. Indeed, the strength of the applied 

materials is – within certain boundaries– different from element to element and the loads acting 

on a structure not only show a certain spatial variation, but also a variation in time. The ultimate 

aim is therefore to keep the probability low that a rather low resistance and a very high load occur 

at the same time. In case the probability density function of R and S are known, the failure 

probability Pf can be calculated as the probability that S is larger than R: 

                                                   
1
 It is noted that in some other sources alternative terms are used for resistance and load. For example capacity 

or strength for resistance, and solicitation or demand for loads. In these lecture notes mainly load and resistance 

will be used. 
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  fP P S R            (4.3) 

The same problem can be formulated by means of a limit state. This is a condition beyond which 

the structure or part of the structure does no longer fulfil one of its performance requirements. 

The limit state Z can be assessed by considering the resistance R and the loads S, i.e. 

Z R S             (4.4) 

Failure occurs when R S , so when 0Z  . The probability of failure equals Pf = P[Z<0] = 

P[S>R].  

 

In case of one-dimensional problems and simple distribution functions (normal, lognormal, 

extreme value distributions…) Pf can be easily calculated – often using analytical methods. 

However, in practice multiple basic variables influence the limit state, making it difficult and 

most often impossible to evaluate the multidimensional integrals exactly. Therefore, several 

methods are available for reliability analysis (see section 4.5 for an overview). 

 

Different standards mention target values for the failure probability as a function of the reference 

period and the consequences of failure with respect to human lives and economic considerations. 

 

In the following sections, we will first take a look at the resistance and load parameters, R and S. 

Subsequently, a mathematical formulation for the limit state Z will be derived. 

4.2 Resistance of structural elements 

The abbreviation R denotes the resistance of structural elements in a given cross-section of a 

structure, or it can stand generally for some other capacity of the system under consideration (see 

section 4.1). 

 

The reasoning will be illustrated for the structural resistance R. The model for R has, as a rule, the 

following typical form: 

 

 R M F D               (4.5) 

 

In which: 

M  model uncertainty variable 

F  material properties (strength, elastic modulus, …) 

D  dimensions and the derived quantities 

 

Because the resistance appears as a product of variables and because negative resistances are hardly 

possible, R tends to a lognormal distribution (see section 2.6.5). 

 

The following sections will elaborate upon the abovementioned variables. 

4.2.1 Model uncertainties 

Since in developing a resistance model certain influences are either consciously or unconsciously 

neglected, deviations between analysis and tests are to be expected. This fact is considered by 
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introducing a model variable M that may be determined from tests. The test results rExp are 

divided by the corresponding results rMod obtained using the resistance model: 

 
Exp

Mod

r
m

r
             (4.6) 

From a large number of tests, the mean value mM and the standard deviation sM and a histogram for 

M is obtained. These experimental results are then replaced by a suitable distribution. 

 

For good models, 1Mμ   is obtained. Since conservative models are frequently used, it follows that 

often 1Mμ  . The value of σM differs from a few percent for good models up to values in the region 

of 10% to 20% for poor models. 

4.2.2 Material properties 

The values for strengths F and other material properties are obtained mostly from tension and 

compression tests. Usually the results cannot be used directly because of the following problems: 

 Conditions in a laboratory test are often quite different from those in the structure; 

 The scatter in the material properties of the structure is usually greater than the scatter in 

results from laboratory tests; 

 Material properties may vary in time. 

 

Therefore the laboratory result is often multiplied by a so-called transfer variable, that takes into 

account the ratios of the properties of a structural component and the respective quantity 

measured in the test. 

4.2.3 Geometrical properties 

Geometrical properties D may be measured directly. The dimensions may be checked and 

compared with the corresponding tolerances. The mean values are usually close to the nominal 

values, although occasionally systematic influences arise. For example, a formwork may deform 

when concrete is poured into it, such that the actual dimensions exceed the planned dimensions. 

4.3 Load effects in structural elements 

When talking about loads, three terms have to be distinguished, illustrated here for wind load: 

 Influence: windv  [m/s] 

 Load:  w  [kN/m2] 

 Load effect: , ,M V N  … due to wind 

 

By way of example, a number of loads normally taken into account in the design of structures is 

shown in Figure 4.1 plotted as concurrent stochastic processes. Load values are plotted along the 

horizontal axis while the time axis is vertical. 
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Figure 4.1 Various actions on a vertical time scale 

 

The processes illustrated in Figure 4.1 are briefly discussed below: 

 The self-weight may to a good approximation be regarded as constant over time. 

 Each structure supports in addition to the self-weight quasi-permanent live loads. These 

are superimposed by short term live loads. In buildings the latter have a duration in the 

order of hours or days. On a bridge, high values of loading occur at known times (rush 

hours) and reach peak values during traffic jams and accidents. These maximum values 

last from a few minutes to several hours. 

 In lower laying areas of many countries there is snow for only a short period in the winter 

months. Maximum values are recorded over periods of days, average values over periods 

of weeks and months. In mountainous regions the snow may lie on the ground for longer 

periods and, for snow-prone countries, may be considered to exhibit the character of 

permanent influence. In some countries snow may be only exceptional or completely non-

existent. 

 Wind only occurs for short periods, say, several minutes to a few hours. Strong gusts are 

seldom. Maximum gusts last for only a few seconds to minutes. 

 Finally, earthquakes occur very rarely. Their period of strong motion is in the region of 

several seconds. The intensity is highly variable. 

4.3.1 Modelling of loads 

Loads are as a rule stochastic processes in time. In the evaluation of these processes, both the 

extreme values of a certain load and the so-called arbitrary-point-in-time (APT) values are of 

interest. To represent these values, two kinds of variables are defined from the observed data: the 

leading and the accompanying loads. 

 

The leading load is determined essentially by analysing the stochastic process with respect to its 

extreme values e. Usually these exhibit an extreme value distribution Ei(e), which is defined by 

its type (e.g. a Gumbel distribution) together with the respective parameters (see section 2.6.6). 
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Accompanying loads are derived from the APT values of the stochastic process and exhibit a 

more or less symmetrical distribution Ai(x) with respect to the mean and are usually modelled by 

normal or lognormal distributions. 

 

Section 7.7 explains how the different loads on a structure can be combined, using the concept of 

leading and accompanying loads. 

4.3.2 Model uncertainties 

Uncertainties in the modelling of loads can be taken account by introducing a model uncertainty 

variable M, as was done in section 4.2 for the resistance. The model variable takes into account 

the uncertainties introduced by simplifications of e.g. the static system, of the load pattern or 

shape and of the influences of stiffness and cracking of structural parts. 

 

A distinction can be made between a general model variable M for all loads and specific model 

variables MEi and MAi that are used only for the leading and accompanying loads respectively. 

4.4  General formulation for limit state design 

We return to the limit state Z that was defined in equation (4.4). All variables that are used to 

model the resistance and load effects, that together make up the limit state, can be assimilated in 

one structural model: 

  0g X Z             (4.7) 

where the vector X consists of n basic variables such as: 

 material properties 

 actions (loads) 

 geometrical properties 

 model uncertainties.  

 

For all basic variables one has to consider an appropriate probabilistic model. In case a basic 

variable has a negligible variation in time or space, one can consider that variable as 

deterministic. 

 

Also the function g(X) can be considered as a random variable, which we will denote as Z and use 

as condensed notation for the limit state equation. The function g(X) is defined so that g(X) > 0 

(i.e. Z > 0) corresponds to safe conditions, while g(X) < 0 (i.e. Z < 0) corresponds to failure. With 

fX (x) the n-dimensional probability density function of the n basic variables Xi, the failure 

probability Pf becomes 

 
  0

 f X

g X

P f x d x


            (4.8) 

In case of n = 2, the failure probability Pf is the volume under the joint probability density 

function corresponding to the domain where g(X) < 0 (see also  

Figure 4.4). The elaboration or application of (4.8) can be performed using several methods with 

a different level of accuracy and complexity. This is further elaborated in the following sections. 
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Pf is calculated for a certain reference period tref which corresponds most often, but not 

necessarily, to the design working lifetime. Chapter 10 gives some examples of reference periods 

used in structural engineering. 

 

The probability of survival (or the reliability) is defined as: 

1s fP P             (4.9) 

To illustrate the limit state formulation as explained above, consider the simple structural system 

depicted in figure Figure 4.2. This system may fail in multiple ways, for example at the midspan 

due to too large bending moments, or at the supports due to too large shear forces. In this 

example the limit state of bending in the midspan will be considered, which is represented by 

( ) 0R Sg X Z M M                      (4.10) 

where MR is the resisting moment of the cross-section and MS is the bending moment as a result 

of the applied load, both calculated with respect to the midspan.  

 

Figure 4.2 Reinforced concrete beam and three failure possibilities 

In general, resistance effects are represented by R and load effects by S. Considering this 

notation, the limit state equation becomes: 

( ) 0g X Z R S                          (4.11) 

In the (R, S) plane (Figure 4.3) this linear relationship represents the boundary between the “safe 

domain” Ds (Z > 0) and the “unsafe domain” Df (Z < 0). 

 

 

Figure 4.3 Safe and Unsafe Domain in case of a linear limit state equation 
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As R and S are both stochastic variables, their distribution functions are given by: 

 Rf r                         (4.12) 

 Sf s                       (4.13) 

If R and S are independent the joint probability density function fRS (r,s) follows by multiplication: 

     ,  · RS R Sf r s f r f s
                   (4.14) 

This joint probability density function can be drawn using altitude lines in the R, S space. It is 

now easy to see that the probability of failure of the structure is equal to the volume of the joint 

probability density function in the unsafe region; see  

Figure 4.4. 

 

 

Figure 4.4 Probability of Failure 

Mathematically this can be written as: 

   
0

 f R S

Z

P f r f s dr ds


                    (4.15) 

However, as we have seen in sections 4.2 and 4.3, the resistance effect R, here represented by the 

resisting moment MR, and the load effect S, here represented by the bending moment MS, depend 

on a number of quantities. Thus, R and S are functions of variables that can be both stochastic and 

deterministic and can be represented as follows: 

 1 2, ....... mR R X X X                    (4.16) 

 1 2, .......m m nS S X X X                    (4.17) 

The distribution functions of R and S therefore depend on the distribution functions of these 

variables. 

The limit state function is now: 

 1 2, ....... nZ R S Z X X X                     (4.18) 

And the failure probability (R and S being independent) becomes: 
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   1 2 1 2 1 2
0

, ...... , ...... .........f R m S m m n n
Z

P f x x x f x x x dx dx dx 


  
              

(4.19)

 

There are several ways of determining the failure probabilities. They are explained in the next 

section. 

4.5 Reliability Methods 

4.5.1 General 

Generally, methods to calculate the reliability of a structure can be divided into five groups: 

 Level IV methods (risk-based): In these methods the consequences (costs) of failure are 

also taken into account and the risk (consequence multiplied by the probability of failure) 

is used as a measure of the reliability. In this way different designs can be compared on 

an economic basis taking into account uncertainty, costs and benefits. 

 Level III methods (numerical): The uncertain quantities are modelled by their joint 

distribution functions. The probability of failure is calculated exactly, e.g. by numerical 

integration. 

 Level II methods (approximation): The uncertain parameters are modelled by the mean 

values and the standard deviations, and by the correlation coefficients between the 

stochastic variables. The stochastic variables are implicitly assumed to be normally 

distributed. 

 Level I methods (semi-probabilistic design): The uncertain parameters are modelled by 

one characteristic value for load and resistance as for example in codes based on the 

partial coefficients (’s) concept. 

 Level 0 methods: Deterministic calculations. 

 

If the reliability methods are used in design they have to be calibrated so that consistent reliability 

levels are obtained. Level I methods can e.g. be calibrated using level II methods, level II 

methods can be calibrated using level III methods, etc. 

4.5.2 Level III methods 

When a reliability method of level III is applied, the probabilistic formulation for Pf is calculated 

exactly, using analytical formulations, numerical integration or Monte Carlo simulations. Solving 

the problem using analytical expressions is only possible in a limited number of simple cases; 

numerical integration is only practical when the number of basic variables n is small.  

4.5.3 Level II methods 

In case of level II methods only the mean values of the basic variables and the moments of first 

and second order (covariance matrix) are used in most cases. The joint probability density 

function is simplified and the computational effort is reduced by linearization of the limit state 

function, usually with a technique called the First Order Reliability Method. In this method, the 

limit state function is linearized in the so-called design point, i.e. the point on g(X) = 0 with the 

highest probability density, thus the point where failure is most probable.  
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4.5.4 Level I methods 

When applying semi-probabilistic methods of level I, the variables whose probabilistic 

distributions have to be taken into account are represented by a characteristic value that 

corresponds to a low percentile in case of strength distributions or a high percentile in case of 

distributions related to actions. Further, partial factors are introduced with values that are based 

on level II calculations.  

 

The basic verification format mentioned in EN 1990 consists of verifying whether the limit state 

is not exceeded when all basic variables in the limit state equation are replaced by so-called 

design values (designated with subscript "d"). In case of a simple limit state function as given in 

Z=R-S one has to verify whether the design resistance Rd is at least equal to the design value of 

the load effect Sd, i.e.:  

d dS R                        (4.20) 

where 

1 2 1 2 1 2 ,  ,  ,  ,  ,  ), ,  ( ,d d d d d d dS E F F a a θ θ                     (4.21) 

1 2 1 2 1 2 ,  ,  ,  ,  ,  ), ,  ( ,d d d d d d dE X aR X a θ θ                    (4.22) 

with 

 F an action 

 X  a material property 

 a a geometrical property 

  a variable representing the model uncertainty 

4.5.5 Level 0 methods 

These are deterministic methods which use deterministic or nominal values of the basic variables 

and one (empirical) global safety factor. The verification is performed according to an equation 

with the following format:  

nom nomR γ S                     (4.23) 

4.5.6 Closing remark 

The introduction of probability-based calculation methods was among others due to the 

observation that deterministic methods resulted in scattered safety levels and that no coherent 

safety methodology is available in case of a new technology/material. 

 

The following chapters in these lecture notes will further elaborate on the level III, II and I 

probabilistic methods. 
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5 Level III Methods 

5.1 Introduction 

Methods of level III evaluate the following integral explicitly: 

( ) 0

( )f X

g X

P f x d x


             (5.1) 

In the following sections a number of basic cases are explained for which exact calculation is 

possible. 

5.2 General Case with Independent Normally Distributed Variables 

In the case of independent normally distributed random variables and a linear limit state function, 

a level III probabilistic calculation can be easily done by hand. 

As R and S are independent normally distributed random variables, the variable Z = R - S is also 

normally distributed with parameters: 

2 2,Z R S Z R Sµ µ µ σ σ σ             (5.2) 

Hence one obtains: 

 
0

0 Φ Φ( )Z
f

Z

µ
P P Z β

σ

 
     

 
         (5.3) 

The reliability index  gives the distance between µZ (the mean value of Z) and Z = 0 in σZ 

(standard deviation of Z) units as indicated in Figure 5.1. This figure depicts the distribution of: 
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Z
Z

Z

Z μ
u

σ


                      (5.4) 

Such that 0Z Z
uz

Z

μ μ
μ

σ


  . 

 

Figure 5.1  Distribution of Z = R – S and reliability index 

The relation between  and Pf is illustrated in Figure 5.2 and Table 5.1. It is noted that Table 2.2 

gives a more comprehensive overview of the values for the cumulative normal distribution. 

 

Figure 5.2 Probability of failure 𝑃𝑓  against reliability index 𝛽 on 10Log scale 

Table 5.1 Relationship between Pf and β . 

Pf 10-1 10-2 10-3 10-4 10-5 10-6 10-7 

 1.28 2.32 3.09 3.72 4.27 4.75 5.20 

 

As (-) = 1-(), the following holds for the probability of survival according to (5.3): 

1 Φ( )s fP P β             (5.5) 
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Example 5.1 

Consider a system with in which the load S has a normal distribution µ(S)=20kN and (S)=3kN. 

The strength of the system is normally distributed with µ(R)=25kN and (R)=1kN. Loads and 

strength are independent. The probability of failure can be assessed by considering the limit state 

Z = R – S; and P(Z<0).  

It follows that µ(Z)= µ(R) - µ(S)= 25 kN – 20 kN = 5 kN.  

The standard deviation equals:  (Z)= ( (R)2+(S)2 )0.5 = 3.16 kN .  

The probability that the system fails is P(Z<0). It follows from the normal distribution (see 

section 2.6.1) that P(Z<0)=(- µ(Z)/ (Z) ) = 0.057. 

Example 5.2 

A reinforced concrete column with cross-section 500 x 300 mm consists of 14 longitudinal 

reinforcement bars Ø 20 mm. The strength R of the column can be calculated according to the 

following formula: 

    C C S SR A R A R            (5.6) 

with 

- Ac : the cross-sectional concrete area 

- As : the cross-sectional steel area 

- Rc : the concrete compressive strength 

- Rs : the yield strength of the steel 

 

The strength of the materials are considered to be normally distributed according to: 

2 2

2 2

: (35 N/mm ;5 N/mm )

: (450 N/mm ; 30 N/mm )

c

s

R N

R N   

     (5.7) 

The total load S on the column consists of a permanent load G and a variable load Q according to: 

 S G Q           (5.8) 

The distribution of both types of loads is considered to be normal with the following mean and 

standard deviation: 

: (2000 kN ;150 kN)

: (1500 kN ; 500 kN) (distribution annual maxima)

G N

Q N
    (5.9) 

Determine the failure probability Pf of the column. The strength R is normally distributed with 

parameters: 

   2 2 2 2 2

145602 35 4398 450 7075 kN

(150000 4398) 25 4398 900

740 kN

c sR c R s R

R c c s s

R

µ A µ A µ

σ A Var R A Var R

σ

      

      



   (5.10) 

Hence, R : N(7075 kN, 740 kN) and VR = 10.5%. 
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5.3  (Numerical) Integration 

Consider the resistance variable R and the load effect S so that the limit state function can be 

written as g(X) = Z = R - S = 0 and Pf = P[R < S]. Figure 5.3A shows the probability density 

functions of R and S and Figure 5.3B shows the joint probability density function. The domain 𝑋 

is divided up into bins 𝑥𝑖 ∈ 𝑋 with a spacing of d𝑥. When the limit of the spacing 𝑑𝑥 → 0 is 

taken, the joined probability density function can be formulated in two ways, namely as:  

 
0

lim ( ) ( )

( ) ( )

f
dx

x X

R S

P P R x x S x dx

F x f x dx








     






      (5.12) 

As depicted in Figure 5.3C, or alternatively as: 

 

 

0
lim ( ) ( )

( ) 1 ( )

f
dx

x

R S

P P x R x dx S x

f x F x dx







     

 




      (5.13) 

As depicted in Figure 5.3D. The indicated integration boundaries should be considered as formal 

designations. 

 

 

 

 

The total load S is also normally distributed with parameters: 

2 2

2000 1500 3500 kN

150 500 522 kN

  

  

S

S

µ

σ
        (5.11) 

Hence, S : N (3500 kN, 522 kN) and VS = 14.9 %. It follows that µZ= µR- µS= 7075 – 3500 = 3575 

kN and Z = (R
2+S

2)0.5 = (7402+5222)0.5 = 905.6 kN.  

 

This results in: Pf =Φ(-3.9459) = 0.3976 .10-4 = 4 .10-5. 
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A. Probability density functions of load S 

(blue) and resistance R (green). 

           B. Joint probability density function. 

  

C. First integration method: probability density 

function of load S (blue) and cumulative 

distribution function of resistance R (green). 

           D. Second integration method: 1 minus 

the cumulative distribution function of load S 

(blue) and probability density function of 

resistance R (green). 

Figure 5.3 Distribution functions associated with the calculation of Pf 

Writing this in another way we obtain the same result: 

( ) ( )

( ) ( ) ( ) ( )

f R S

r s

R s

R S R S

P f r f s dr ds

f r dr f s ds F s f s ds



  

  



 
  

 



  

     (5.14) 

Or: 

 ( ) ( ) 1 ( ) ( )f S R S R

S r

P f s ds f r dr F r f r dr

  

  

 
   

 
        (5.15) 

This integral is in literature often indicated as the “convolution integral”. 

 

This procedure  is illustrated in  Figure 5.4 for Z=R-S with R normally distributed with mean 60 

kN and standard deviation of 5 kN and S normally distributed with mean 40 kN and standard 
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deviation of 10 kN and R and S being independent. It can be seen that the volume under the joint 

probability density function in the region Z < 0 can be written as: 

( ) ( )f R S

S r

P f r f s ds dr

 

 

 
  

 
         (5.16) 

 

Figure 5.4 Analytical solving of integral 

The above mentioned integrals can also be solved numerically, i.e. by means of numerical 

integration. An example is given below: 

 

Figure 5.5 Numerical integration 

The failure probability is now calculated splitting the volume Z<0 in small volumes  

 , , Δ Δf R S i j

i j

P f r s r s         (5.17) 

For non-linear limit state functions the same procedure can be used. In general R as well as S will 

also be functions of a number of random variables, hence: 
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1 1( ) ( , ..., ) ( , ..., )R i S jg X g R R g S S         (5.18) 

The single integrals can thus become multiple integrals which makes the calculation difficult. 

Standard numerical integration techniques are computationally intensive since the number of 

integration steps increases exponentially with the number of stochastic variables. 

5.4 Monte Carlo Simulations 

5.4.1 General 

As previously mentioned, the calculation of Pf through numerical integration is rather difficult in 

case n > 2. In those cases, the only practical solution in order to calculate Pf is by Monte-Carlo 

simulations, generating random samples. One of the possible ways to generate random samples 

from a certain distribution function is through the cumulative distribution function. 

 

The Monte Carlo method uses the possibility of drawing random numbers from a uniform 

probability density function 𝐹𝑈   between zero and one. Practically all programming languages 

include a standard procedure for this, for example the RAND program in Excel. The idea behind 

the method is to generate a random number x from an arbitrary distribution FX(x) by drawing a 

number 𝑥𝑢 from the uniform distribution between zero and one.  

 

The cumulative probability 𝑃(𝑋 ≤ 𝑥)of a uniform distributed random variable on the interval 

[𝑎, 𝑏] is as given in equation 2.77.  In case of a uniform distribution on [0,1 ] the CDF reads: 

0 0

( ) 0 1

1 1

U

x

F x x x

x




  
 

        (5.19) 

 

Let 𝐹𝑋(𝑥)be an arbitrary cumulative distribution function of a random variable 𝑋of interest, and 

𝐹𝑋
−1(𝑥) its inverse.  Let 𝑥𝑈  denote a random realization of 𝐹𝑈(𝑥) which is then treated as a 

cumulative probability for 𝐹𝑋(𝑥). The realization 𝑥 corresponding to the cumulative probability 

𝑥𝑈 is then 

1( )X ux F x           (5.20) 

See Figure 5.6 for a graphical interpretation of the procedure. 
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Figure 5.6 Generation of random samples 

This way of drawing random numbers is generally applicable. However, for distributions, for 

which the inverse probability distribution function 1( )X uF x is not known analytically, this method 

can lead to a lot of iterative calculations. Hence, other less computationally intensive methods for 

drawing from (for example) a normal distribution exist. 

 

In more or less the same way, base variables of a statistical vector can be drawn from a known 

joint probability distribution function. However, the joint probability distribution function must 

then be formulated as the product of the conditional probability distributions of the base variables 

of the vector. In formula this is: 

1 2 1 1 2 11 | 2 1 | , ,..., 1 2 1( ) (x ) (x | x ) ... (x | x ,x ,...,x )
m mX X X X X X X m mX

F x F F F
     (5.21) 

By taking m realizations of the uniform probability distribution between zero and one, a value can 

be determined for every xi: 

 

 

 

1 1

22 1

1 2 1

1

1

1

2 1

1

1 2 1, , ,
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mm m
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x F x x

x F x x




















 

      (5.22) 

If the base variables are statistically independent, this can be simplified to: 

1(x )
i ii X ux F            (5.23) 

This corresponds to equation (5.20). By inserting the values for the reliability function(s) one can 

check whether the obtained vector (x1, x2, ..., xm) is located in the safe area. 

 

The Monte Carlo procedure now works as follows: For each basic variable Xi (i = 1, …, n) one 

simulates N realizations xi1, xi2, …, xiN.  

 

For each set j (j = 1, …, N) one calculates g(x1j, x2j, …, xnj). In case g(.) < 0 a counter Nf is 

increased by one. After N simulations one calculates: 

01
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ˆ f

f

N
P

N
           (5.24) 

In case N →  one obtains the failure probability Pf. Equation (5.24) can also be rewritten as: 

 
1

1ˆ ( ) 0
N

f

j

P I g x
N 

          (5.25) 

with I[.], the indicator function which is equal to 1 in case the argument of the operator is true and 

otherwise 0 in case the argument is false. An example of the outcomes of a Monte Carlo 

simulation is shown in Figure 5.7. 

  

Figure 5.7 Example of the output of a Monte Carlo simulation with 200 samples. The 

line shows the limit state. 

The number of simulations N is determined in function of the number of significant digits with 

which one wants to calculate Pf or based on the relative accuracy. 

 

Considering that Nf follows a binomial distribution (see Table 2.1), the variance or standard 

deviation of the relative frequency ˆ
fP can be found as follows: 

 [ ] (1 )f f fVar N NP P           (5.26) 

 ˆ f

f

N
P

N
            (5.27) 

 
2

1 1ˆ (1 )
f

f f f f

N
Var P Var Var N P P

N N N

 
          

 
      (5.28) 

 ˆ

(1 )

f

f f

P

P P
σ

N


           (5.29) 

As Pf << 1, the standard deviation can be approximated with: 

 ˆ
f

f

P

P
σ

N
            (5.30) 
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And the following coefficient of variation can be obtained: 

 

ˆ

ˆ 2

1f

f

P f

P

f f f

σ P
V

P NP NP
  

        

(5.31)

 
In case of a target coefficient of variation (relative error) the number of required simulations N 

increases as Pf decreases. For V = 0.01 and 𝑃𝑓 = 1 ⋅ 10−5 one has to execute 109 simulations. As 

for this case on average only one of 105 simulations leads to an increase of Nf, the frequency of 

obtaining a "success" (realization in the unsafe domain Df) is very low. Hence, different "variance 

reducing" techniques have been developed. These techniques allow the simulations to be 

performed in a more effective way. In the following the so-called "importance sampling" 

technique is explained. 

5.4.2 Importance sampling 

The aim of this technique is to obtain more realizations of the random vector X which are located 

in the unsafe domain Df in order to increase the frequency of "success". In order to achieve this, 

an appropriate "sampling function" fS(x) is chosen so that its maximum is located in the domain 

that contributes most to Pf. For example, one can choose the mean value µ of fs(x) so that it 

coincides with the point on g(x) = 0 which has the highest value according to fX(x). Hence, the 

following equations can be obtained.  

 ( ) ( ) 0 ( )

f X

f X X

D D

P f x d x I g x f x d x          (5.32) 

with Df the unsafe domain and DX the entire domain over which X is defined. The evaluation of 

the right-hand side of equation (5.32) is in practice performed according to (5.25) in which x 

follows a distribution according to fX(x). Equation (5.32) can also be rewritten as follows: 

 
( )

( ) 0 ( )
( )

X

X

f S

SD

f x
P I g x f x d x

f x
         (5.33) 

With fS(x) the n-dimensional "importance sampling" PDF, which is also defined over the same 

domain DX. In this case the random numbers x follow a distribution according to fS(x). One can 

show that according to (5.33) the following holds: 

 
1

1
( ) 0

N

f

j

P I g x
N 

          (5.34)  

with x distributed according to fX(x). One can similarly prove that: 

 
1

( )1
( ( ) 0

( )

N
X

f

j S

f x
P I g x

N f x

         (5.35) 

with x distributed according to fS(x). This formulation can be compared to  (5.25) holding for 

crude Monte Carlo simulations. The efficiency of this importance sampling technique is strongly 

dependent on the choice of fS(x). 

 

In case one locates fS(x) at the design point x* (see Chapter 6), i.e. the point on g(x) = 0 with the 

highest probability of occurrence, the “success” rate will approximate 50% in case the limit state 
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function g(x) = 0 is not too strongly curved in the neighbourhood of x*. One can for example 

obtain fS(x) by shifting fX(x) to x* or to the point with coordinates according to the design values 

of a method of level I. 

 

Figure 5.8 gives an example of the importance sampling technique. In this example, the 

distribution functions of R and S are equal to those in Figure 5.4: R is normally distributed with 

µR= 60 kN and σR= 5 kN, whereas S is normally distributed with µS= 40 kN and σS= 10 kN. For 

this problem, the design point is located at S=R=56 kN (see Chapter 6). 

 

Both for R and S, the same sampling distribution is chosen, with the mean located close to the 

design point, at S=R=60 kN, whereas the standard deviation is set at 5 kN. From this distribution 

function, 200 samples are generated that represent values for S, and another 200 samples that 

represent values for R. For each sample pair, Z=R-S is calculated. Because the values for R and S 

are taken from the same distribution function, failure will be observed in about 50% of the cases. 

Subsequently, the generated sample pairs (r,s) are substituted in the joint sampling distribution 

function fS(x), which is in this case described by: 

 

 ( ) ( ) ( )S S Sf x f r f s             (5.36) 

 

And in the real joint probability density function: 
 

 ( ) ( ) ( )x R Sf x f r f s            (5.37) 

 

Taking the ratio ( ) / ( )x Sf x f x for each sample pair, the failure probability can now be calculated 

according to equation (5.35). 
 

 

Figure 5.8 Importance sampling 
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6 Level II Methods 

In level II methods the mean of the base variables and their covariance matrix are taken into 

account to determine the failure probability of the limit-state function. In section 6.1 the notion of 

design point is introduced. In section 6.2.1 a geometric argument is made, identifying the 

reliability index as the shortest distance from the origin to the boundary of the failure space in 

phase space. In section 6.2.2 the reliability index is then connected to the design point. Thereafter, 

two iterative methods are introduced to find the design point and from there the reliability index in 

the case of independent base variables. The first method makes use of transformation to standard 

normal variables (section 6.2.3). It is derived that one can also directly iterate on the original limit 

state function (section 6.2.4). In section 6.3 it is discussed how the design point should be 

interpreted in the case of non-normally distributed variables. At last, in section 6.4 it is explained 

how the design point can be found in the case of dependent base variables, taking the dependence 

between the variables into account through conditional probabilities. 

6.1 General 

If the reliability function is linear, the expected value and the standard deviation of this function 

can be determined with: 
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1 2

1 1 2 2

1 2

  1   1

    ...    

  ...  

    ( , )

n

n n

Z X X n X

n n

i jZ i j

i j

Z a X a X a X b

μ a μ a μ a μ b

σ a a Cov X X
 

    

    

 

      (6.1) 

With 𝜎𝑍 as defined in equation (2.155) if it is recognized that  𝑔𝑖
′ =

𝑑𝑍

𝑑𝑋𝑖
= 𝑎𝑖 and  𝐶𝑜𝑣(𝑋𝑖, 𝑋𝑗) as 

defined in equation (2.116). If the base variables X1, X2, ..., Xn are normally distributed, Z is also 

normally distributed. The probability that Z < 0, can then be determined using the standard 

normal distribution: 

0 - 
 (   0)  Φ   Φ - Φ ( )Z Z

Z Z

μ μ
P Z β

σ σ

   
       

   
     (6.2) 

Hence, for a linear reliability function with normally distributed base variables it is relatively 

simple to calculate the probability of failure. The reliability index β was defined by Cornell (1969) 

as: 

0 1Z Z

Z Z Z

µ μ
β

σ σ V


           (6.3) 

Here VZ is the coefficient of variation of Z. 𝛽 was also already introduced in section 5.3.1 for 

normally distributed variables. As  increases, the failure probability decreases and the reliability 

or safety increases. 

 

In case of a non-linear limit state equation, the limit state equation can be linearized using a 

Taylor expansion around the point X = µ. This is also called the Mean-value approach, as was 

described in section 2.5.8. Hence: 

1

1

( )
( ) ( , ..., ) ( )

n
i

n i i

i i

g µ
g X Z g µ µ X µ

X


   


     (6.4) 

which is again a linear function of the basic variables Xi . Further, one can show that: 

1( , ..., )Z nµ g µ µ         (6.5) 

2

1 1

( ) ( )
,

n n

Z i j

i j i j

g µ g µ
σ Cov X X

X X 

 
    

 
     

(6.6)
 

The reliability index β can be calculated using (6.3). The disadvantage of this calculation method 

(which considers a linearization in the centre of gravity of the probability mass), is the fact that 

the reliability index is not invariant with respect to the formulation of the limit state equation.  

 

It is of course not beneficial that the numerical value of β depends on the way in which the 

problem is mathematically formulated. This problem can be overcome by executing the 

linearization at the so-called design point. 
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An illustration with an example is given below. We consider a ball which is connected to the 

ceiling, see Figure 6.1. The strength of the wire is depending on the ultimate stress f of the 

material and the diameter d of the wire; these are assumed to be independent normally distributed 

variables. The load S is deterministic. 

 

Figure 6.1 Example: ball connected to the ceiling 

We take S=100 kN, f = N(290 N/mm2, 25 N/mm2) and d = N(30 mm, 3 mm). The limit state 

function becomes: 

2

4

πd f
Z S          (6.7) 

In the picture below the joint probability density function of f and d is drawn together with the 

marginal distributions and the limit state function Z. The failure probability is the volume under 

the joint probability density function in the region Z<0. In the left hand picture below the Z-

function is linearized in the mean values of f (written as σ in the figure) and d. In the right hand 

picture the Z-function is linearized in the design point. The exact definition of the design point 

will be given in the next sections, but already here it becomes clear that the linearization of the Z-

function in the design point gives a much better approximation of the failure probability. 
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Figure 6.2 Linearization in mean values and in design point 

6.2 Reliability Index According to Hasofer en Lind 

6.2.1 Basic formulation 

Hasofer and Lind (1974) introduced a generalized reliability index which is invariant with respect 

to the formulation of the limit state equation and which is currently commonly applied in 

structural reliability analysis. 

 

Let us first consider uncorrelated normally distributed variables. First, the basic variables Xi 

have to be normalized according to: 

i i
i

i

X µ
U

σ


          (6.8) 

with µi = E[Xi] and i
2 = Var[Xi]. In case of normalized basic variables Ui it holds that E[Ui] = 0 

and Var[Ui] = 1. The limit state equation becomes g(U) = 0 in the n-dimensional U-space and the 

surface  that is described by this equation divides the U-space in an unsafe domain Df (failure 

region) and a safe domain Ds (safe region). The origin of the U-space, which coincides with the 

maximum of the joint probability density function, is normally located in the domain Ds. The joint 

density function can be written as:  
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 

22 2
1 2

2 2 2
/2

2 2 2

1 2/2

1
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1 1
( ) exp ...
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nuu u

U n

U nn

f u e e e
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f u u u u
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

 
     

 

     (6.9) 

which is rotation symmetrical and hence the contour lines of equal probability are concentric 

circles. 

 

The basic equation g(X) = R - S = 0 can – based on (6.8) – be rewritten in function of the 

normalized basic variables UR and US as: 

( ) ( ) 0R R S S R Sg U σ U σ U µ µ           (6.10) 

In Figure 6.3 the equations g(X) = 0 and g(U) = 0 are drawn for this simple case. Note that in the 

U-coordinate system, the straight line g(U) = 0 no longer passes through the origin. From the 

intersections with the axes, which can be found by substituting UR=0 and US=0 in (6.10), it 

follows that: 

R S

S

R S

R

µ µ
OC

σ

µ µ
OB

σ







        (6.11) 

So, by using Pythagoras, that: 

2 2

1 1
( )R S

R S

BC µ µ
σ σ

  

       

(6.12)

 

From the proportionality OA/OB = OC/BC it follows that: 

2 2

2 2

1
. .

1 1
( )

R S R S R S

S R R S
R S

R S

µ µ µ µ µ µ
OA

σ σ σ σ
µ µ

σ σ

  
 


 

   (6.13) 

and hence OA is equal to the reliability index β.  

 

 

Figure 6.3 Linear limit state equation in the  X- and U-space 
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This property also follows from the following derivation. From analytical geometry it is known 

that when an equation of a linear relationship: 

0 1 1 2 2 0a a X a X           (6.14) 

is rewritten in the shape: 

1 1 2 2 0

2 2

1 2

0
a X a X a

a a

 



       (6.15) 

which is called the Hesse normal form – the factor: 

0

2 2

1 2

a

a a
         (6.16) 

is the distance between the origin and the linear relationship. In case one rewrites (6.10) in the 

shape (6.15), one obtains that (6.13), i.e. , is the distance from the origin to g(U). 

 

Hasofer and Lind generalized this property by postulating: 

The reliability index β is equal to the shortest distance from the origin to the 

surface described by g(U) = 0 in the space of the normalized basic variables. 

This statement is illustrated with Figure 6.4, which shows the concentric circles of the joint 

probability density function, and the reliability index β as the shortest distance from the origin to 

the limit state function g(U) = 0. In this figure it can easily be seen that a larger value of β gives a 

more reliable system: The further the straight line passes from the origin, the greater is β and the 

smaller is the cut-away volume representing Pf. 

 

Figure 6.4 Standardised normal space 
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6.2.2 Non Linear Limit State Functions 

The failure area is indicated in the U1,U2-plane in Figure 6.5. The figure shows that a linearization 

of the Z-function in different points leads to different values for the approximation of the 

reliability index. The formulation of the reliability index according to equation (6.13) may 

therefore not be used indiscriminately. 

 

Figure 6.5 Linearization of the reliability function. 

The definition of the reliability index according to Hasofer and Lind (1974) does not depend on 

whether or not the reliability function is linear. The distance from the edge of the failure area (Z = 

0) to the origin of the transformed coordinate system is: 

 2 2

1 2
0

min
Z

β U U


          (6.17) 

The point A on the edge of the failure area, with the smallest distance to the origin is the design 

point.  

From the geometrical representation it follows that in the general situation of more random 

variables the vector β is perpendicular to the hyperplane which is tangent to the failure surface  

in the point closest to the origin. This point is called the design point u*. The corresponding point 

in the original space of the basic variables is designated as x*. The design point is the point of the 

limit state equation with the highest probability density, hence in literature one often mentions this 

as the "most probable failure point". This property becomes immediately clear when considering 

that the contour lines of equal probability are hyperspheres in the normalized space (circles in 

case n = 2, see Figure 6.4). This follows also analytically from the joint density function: 

 

22 2
1 2

2 2 2
/2

2 2 2

1 2/2

1
( ) . . ...

(2 )

1 1
( ) exp ...

(2 ) 2

nuu u

U n

U nn

f u e e e
π

f u u u u
π

  



 
     

 

     (6.18) 

When g(U) = 0, this expression becomes maximal for the point where Σui
2 becomes minimal.  
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Finding the design point is an iterative process, for which several methods are available. The 

numerical calculation of β can be executed according to a general calculation algorithm for the 

determination of a constraint minimum of a function. 

 

Two methods will be explained here. The core of the methods is actually the same, but the 

formulation of the reliability function differs.  

6.2.3 Method 1: transformation to normal variables 

The first method is based on the standardized reliability function, i.e. all base variables are 

transformed to the standard normally distributed variables.  

 

We apply a first order Taylor expansion (a linearization) of g(U) around the design point u*: 

*

1

( *)
( ) ( *) ( )

n

i i

i i

g u
g U Z g u U u

U


   


      (6.19) 

and as u* lies on g(U) = 0 it follows that g(u*) = 0 so that: 

* *

1 1 1

( *) ( *) ( *)
0 ( )

n n n

i i i i

i i ii i i

g u g u g u
Z U u U u

U U U  

  
    

  
      (6.20) 

Based on equations (6.14), (6.15) if we identify 
( *)

i

i

g u
a

U





 and *

0

1

( *)n

i

i i

g u
a u

U


 


  

we can use  (6.16) to write  as follows: 

* *

1 10

2 2
2

1
1 1

( *) ( *)
. ( )

( *) ( *)

n n

i i i

i ii i

n
n n

i
i

i
i ii i

g u g x
u x µ

a U X
β

g u g xa σ
U X

 


 

 
  

 
  

    
   

    

 

  

   (6.21) 

Considering the notations in equation (6.14), one finds for the 2-dimensional case: 

1 2
1 2

2 2 2 2

1 2 1 2

and
a a

α α
a a a a

 
 

      (6.22) 

These are the direction cosines of the perpendicular or vector β  under consideration. In case of n 

dimensions and application of (6.20) one can expand these equations towards:  

2 2
2

1
1 1

( *) ( *)

( *) ( *)

i

i i i
i

n
n n

j
i

j
i ii i

g u g x
σ

a U X
α

g u g xa σ
U X

 

 

 
  

          
    

  

   (6.23) 

These values are called the weight or sensitivity factors as they are a measure for the relative 

importance of the standard deviation of a basic variable to the reliability index. The i values are 

the components of the unit vector according to OA  (see equation (6.13)) that is: 

OA β α β           (6.24) 
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From (6.21) it follows that  = - i ui
*. This is fulfilled in case: 

*

i iu α β  or *

i i i ix µ α β σ         (6.25) 

as Σαi
2 = 1.  

The equations in (6.25) determine the coordinates 𝑢𝑖
∗  of the design point in case of normally 

distributed variables. One obtains αi > 0 for resistance variables and the coordinate of the design 

point corresponds to a low percentile of the resistance distribution. In case of loads αi < 0 and 

according to (6.25) the corresponding design value is found to be a high value of the load 

distribution.  

 

In order to determine the n+1 unknown parameters, i.e. 1, 2, ..., n and β, one can make use of 

the n equations (6.23) and g(U) = 0 or: 

2

1

( )

( )

i
i

n

i i

g α β

U
α

g α β

U

 




  
 

 


       (6.26) 

1 2( , , ..., ) 0ng α β α β α β          (6.27) 

These equations can be solved iteratively, preferably considering some carefully chosen starting 

solutions. In case one assigns a priori an equal weight to all variables, one can consider: 

1/2

iα n           (6.28) 

In which the + should be applied for resistance variables and the – sign for load variables (see 

application examples). The method’s procedure can best be illustrated with an example. 
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Example 6.1: Method 1, Transformation to normal variables 

Consider the following limit state equation: 

  1 2 3g X Z X X X           (6.29) 

The variables X1, X2 and X3 are independent normally distributed random variables. Also given: 

1 1

2 2

3 3

8,           2

3,          1

4,          2

μ σ

μ σ

μ σ

 

 

 

         (6.30) 

Wanted is the determination of the design point with the corresponding reliability index. First, the 

base variables are transformed to standard normally distributed variables: 

31 2
1 2 3

48 3
, ,

2 1 2

XX X
U U U

 
       (6.31) 

The reliability function of the transformed variables is: 

  1 1 2 2 36 2 8 2 20g U U U U U U              (6.32) 

In the design point the following is valid (see equation (6.25)): 

 1 2 3

2

1 1 2 2 3

, , 0

6 2 8 2 20

g α β α β α β

α β α α β α β α β

   

     
      (6.33) 

From this a formulation for β can be derived:  

1 1 2 2 3

20
             

6 2  8 2
β

βα α α α α




   
     (6.34) 

With equation (6.23)), the formulations for α1, α2 and α3 can be derived as follows: 

             2 1

1 2 3

( ) ( ) ( )
6 2 , 2 8, 2

g U g U g U
U U

U U U

  
     

  
                                       (6.35) 

              

2
1

2 2 2
2 1

1
2

2 2 2
2 1

3
2 2 2

2 1

6 2
  

(6 2 (8 2) ) 2

8 2
     

(6 2 (8 2) ) 2

2
  

(6 2 (8 2) ) 2

βα
α

β βα α

βα
α

β βα α

α
β βα α




   




   




   
                                                 

(6.36)

 
This system of equations formed by (6.34) and (6.36) can be solved by means of successive 

substitution. However, this is complex and therefore an iterative approach is chosen. 

 

In this case, there is the problem of choosing realistic initial values for β, α1, α2 and α3. The initial 

value of β can be determined with a Mean Value approximation:  
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1 2 3

22 2

1 2 31 2 3 1 2 3 1 2 3

1 2 3

2 2 2

 ( , , )
    

 ( , , )    ( , , )    ( , , ) 

8 3 - 4
    1.96

(3 2   (8 1   (1 2) ) )

Z

Z

g μ μ μμ
β

σ g g g
μ μ μ μ μ μ μ μ μσ σ σ

X X X

β

 

      
      

       


 

    

(6.37) 

The chosen initial values of α1, α2 and α3 are equal absolute values, however, with a different sign 

(load parameters with a minus sign and resistance parameters with a plus sign). With the values 

for β, α1, α2 and α3 new values are calculated until these remain stable. Table 6.1 gives the result 

for 6 iterations. 

 

With the values found for β, α1, α2 and α3 the design point and the probability of failure can be 

calculated. The eventual design point is: 

*

1 11 1

*

2 22 2

*

3 33 3

        8 0.20 2.39  2  7.04

        3  0.94  2.39  1  0.75

        4  0.27  2.39  2  5.29

βX μ α σ

βX μ α σ

X βμ α σ

      

      

       

     (6.38) 

And the probability of failure is: 

Φ( ) Φ( 2.39) 0.0084fP β           (6.39) 

Table 6.1 Iterations Example 6.1: Method 1 

  initial 

value 

iteration step number 

 1 2 3 4 5 6 

β 1.96 2.51 2.49 2.42 2.39 2.39 2.39 

α1 0.58 0.52 0.32 0.23 0.21 0.20 0.20 

α2 0.58 0.80 0.89 0.93 0.94 0.94 0.94 

α3 -0.58 -0.28 -0.33 -0.29 -0.27 -0.27 -0.27 
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6.2.4 Method 2: direct iteration based on the limit state function 

The second method is actually derived from the previously discussed method and follows similar 

steps. It does have the advantage that the limit state function does not need to be transformed to a 

function of standard normally distributed variables. In this case, the β-value is calculated with 

equation (6.3) for the reliability function linearized in a chosen point. This β-value is subsequently 

used to determine a new point, in which the reliability function is linearized. Finally we iterate 

towards the design point *
X . In this case, the αi-values are calculated with: 

**

2

*

  1

 ( )   ( ) 

    

   ( ) 

ii

i

XX
ii

i
n Z

X

ii

g Xg X σσ
XX

α
σ

g X σ
X

 
 
  

 

 
 
 



    (6.40) 

The new point, in which β- and αi-values are calculated anew, is determined by: 

*

ii i XX μ α βσ          (6.41) 

The method can best be illustrated by means of an example. 

Example 6.2: Method 2, Direct iteration based on the limit state function 

To illustrate, the same problem as in Example 6.1 is used. Consider the following limit state 

equation: 

  1 2 3g X Z X X X           (6.42) 

The variables X1, X2 and X3 are independent normally distributed random variables. Also given: 

1 1

2 2

3 3

8,           2

3,          1

4,          2

μ σ

μ σ

μ σ

 

 

 

         (6.43) 

Once again the aim is to determine the design point with the corresponding reliability index. The 

partial derivatives in the design points are: 

* * * * * * * * * * *

1 2 3 2 1 2 3 1 1 2 3

1 2 3

 ( , , )  ,  ( , , )  ,  ( , , )  1
g g g

X X X X X X X X X X X
X X X

  
   

  
 (6.44) 

This leads to the calculation of the mean and standard deviation of Z (see equations (2.138) and 

(2.139)) and to the reliability index β and sensitivity factors α following from equation (6.40). 

2 2* * 2
1 2 32 1

* * * * * * * *

1 2 3 2 1 1 2 3

* *
1 2 32 1

2 31

  (   (   ) )

  ( ) (8 ) (3 ) (4 )

1
   ,    ,    ,   

Z

Z

Z

Z Z Z Z

X Xσ σ σ σ

X X X X X X X Xμ

μ X Xσ σ σ
β α α α

σ σ σ σ

  

        

 
   

   (6.45) 

With the preceding formulas a new estimate of the design point can be calculated for a reliability 

function linearized in a point. Table 6.2 displays the results of six iterations.  

As a starting point of the iteration we choose μZ and σZ calculated on the basis of the assumption 
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The procedure above can be operationalized using a systematic approach in a table. 

1. The first step is to choose a first estimate for the design point to linearize the limit state 

function (e.g. the mean values). 

2. Then the following table is made in the case of independent variables: 

Table 6.3 Fill in Table for Level II calculation 

Xi μ σ Xi*  *

i

Z
X

X




  

2

*

iX

i

Z
X σ

X

 
 

 
    * *

iX i

i

Z
X μ X

X


 


 

iα  2

iα  

..         

..         

Σ    1 

 

We then determine the mean value and standard deviation of  Z g X : 

       

       

1

2

1 2 1 1 2

1

2 1 2 1 2

2

, .... , .... ..

.. , .... , ....
n

n X n

X n X n n

n

g
μ Z g X X X μ X X X X

X

g g
μ X X X X μ X X X X

X X

      

       


   



 
   

    

(6.47)

 

that the mean values are the design values. In the following step in which β- and αi-values are 

calculated anew, the design values are: 

*      
ii i Xi

βμ α σX           (6.46) 

A comparison of the results in Table 6.2 and the results in Table 6.1 reveals that both methods 

approximately converge to the design point equally quickly. However, the number of calculations 

per iteration is greater for the second method. On the other hand, it is not necessary to transform 

the reliability function. On grounds of the latter argument, the second method is easier to apply in 

a computer program. 

Table 6.2 Iterations Example 6.2: Method 2 

 
Initial value 

Iteration step number 

 1 2 3 4 5 6 

σz  10.20 6.70 6.46 7.12 7.35 7.43 

μz  20.00 16.45 15.54 17.02 17.56 17.75 

β  1.96 2.45 2.41 2.39 2.39 2.39 

α1  0.59 0.44 0.28 0.23 0.21 0.20 

α2  0.78 0.85 0.91 0.93 0.94 0.94 

α3  -0.20 -0.30 -0.31 -0.28 -0.27 -0.27 

X1
* 8 5.69 5.86 6.63 6.90 7.00 7.03 

X2
* 3 1.46 0.92 0.82 0.77 0.76 0.75 

X3
* 4 4.77 5.46 5.49 5.34 5.30 5.29 
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     

 

1 2

2 2

2 2 2

1 2 1 2

1 2

2

2

1 2

, .... , .... ..

.. , ....
n

n x n x

n x

n

g g
σ Z X X X σ X X X σ

X X

g
X X X σ

X

     

  

    
     

    

 
 

 

  (6.48) 

3. We then calculate    β μ Z σ Z  and the α -values according to equation (6.40). 

4. We determine the new design point according to equation (6.46). 

Steps 2 till 5 are repeated until the values for β , α  and the design point have reached 

convergence. 

 

Example 6.3 gives another example of the first method: transformation to normal variables. 

Example 6.3: Beam in reinforced concrete 

Consider a rectangular bottom reinforced concrete cross-section with characteristics: 

 B (width)                          = 200    [mm] 

 As (rebar area)                          = 800    [mm2] 

 fc (concrete compressive strength)        = 30    [N/mm2] 

 fy (yield stress)                                       = N(420, 40)  [N/mm2] 

 d (effective depth)                          = N(400, 10)  [mm] 

 M (external moment)                          = N(40, 18)   [kNm];  V = 45 % 

 

The first three variables are considered as deterministic variables in this example, the last three as 

random variables. For the modelling of the resisting moment of the rectangular cross-section we 

make use of a simplified calculation method in which a rectangular distribution of the concrete 

compressive stresses is used over a height of h=0.8x. The formula for the resistance (see e.g. 

lecture notes ‘Reinforced Concrete’) is given by equation (6.50). We calculate: 

800 420
0.140

200 400 30

s y

c

A f
ω

Bdf


  

 
  (based on the mean values)   (6.49) 

The resistance of the beam becomes: 

0,4
1 0.917

0.8 . 0.85
s y s yR A f d ω A f d

 
   

       (6.50) 

This gives the following limit state function: 

 3( ) 0.917 800 0.734 10y yg X f d M f d M kNm          (6.51) 

We write g(X) in function of the normalized variables: 

( ) /U X µ σ or X U σ µ          (6.52) 

1 2 3,  ,yX M X f X d           (6.53) 
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6.3 Non Normally Distributed Variables 

If independent non-normally distributed random base variables are involved, it seems plausible 

that the reliability function is not normally distributed either. To be able to apply level II 

approximation methods in these cases, the non-normally distributed base variables have to be 

transformed to normally distributed base variables. 

 

In case the variables are not normally distributed one often determines a design value on the 

basis of the following formula (See also Annex C of EN 1990): 

*( ) Φ( )
iX i iF x α β          (6.60) 

Or: 

3

1 2 3

1 2 3 2 3

( ) 18 40 0.734 10 (40 420) (10 400)

( ) 18 11.74 3.08 0.29 83.31

g U U U U

g U U U U U U

      

        
               (6.54) 

The following set of equations has to be solved iteratively: 

1 2 3 2 3

83.31

18 11.74 3.08 0.29
β

α α α α α β

   

                                           (6.55) 

1

1
18α

k
                             (6.56) 

2 3

1
(11.74 0.29 )α β α

k
                             (6.57) 

3 2

1
(3.08 0.29 )α β α

k
                    (6.58) 

In which k follows from the condition 2 1.iα   Considering the starting values β = 3, 

1 1/ 3,α    
2 3 1/ 3α α   we obtain the following values in the subsequent iteration steps. 

Table 6.4 Iterations Example 6.3 

Step 0 1 2 3 

β 3 4.465 3.853 3.851 

1 -0.577 -0.842 -0.836 -0.835 

2 0.577 0.526 0.538 0.539 

3 0.577 0.120 0.111 0.115 

 

From the found values it follows that: (-β) = 5.88 .10-5. The coordinates of the design point are
*

i i i iX µ β α σ   :  

*

* 2

*

40 3.851 0.835 18 97.88 kNm

420 3.851 0.539 40 337.0 N/mm

400 3.851 0.115 10 395.6 mm

y

M

f

d

    

    

    

     (6.59) 
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 * 1 Φ( )
i

i X ix F α β          (6.61) 

In which it is expressed that *

ix  should correspond with the same percentile in ( )
iXF x  as -iβ in 

(u). We elaborate this further for variables that follow a lognormal or a Gumbel distribution. 

 

a) Lognormal distribution 

It follows that: 

*

ln

ln( / )
i

i

i X

i

X

x µ
α β

σ
          (6.62) 

* 2 2

ln

1
ln ln ln exp ln(1 ) ln(1 )

2i i i i ii X i X X X i Xx µ α β σ µ V α β V
  

        
  

 (6.63) 

* 2

2
exp ( ln(1 ))

1

i

i

i

X

i i X

X

µ
x α β V

V
  


      (6.64) 

In case V < 0.2 the following holds with good approximation: 

* exp ( ) 
i ii X i Xx µ α β V        (6.65) 

b) Gumbel distribution (EXIL) 

It follows that: 

*( )
exp[ ] Φ (- )

 
 iα x u

ie α β        (6.66) 

  *ln lnΦ( ) ( )i iα β α x u           (6.67) 

 * 1
ln lnΦ( )i ix u α β

α
           (6.68) 

In many cases, particularly in case of skewed distributions, the tails of the distribution will be 

considerably different from the normal distribution. When only considering the first and second 

order moments (i.e. the mean and variance), one does not obtain a good approximation of the 

problem. A further refinement of the calculation method can be obtained by applying the Rackwitz-

Fiessler algorithm. 

 

Rackwitz and Fiessler (1977) introduced a transformation, to transform a variable with an 

arbitrary distribution to a normally distributed variable. This transformation assumes that the 

values of the real and the approximated probability density function and probability distribution 

function are equal in the design point. This is shown in Figure 6.6. 
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Figure 6.6 Transformation to normal distribution in the design point 

In Figure 6.7 it is explained what it means that the values of the real and the approximated 

probability density function and probability distribution function are equal in the design point. 

 

Figure 6.7 Transformation to normal distribution in the design point, the same values in 

cdf and pdf 

More specifically, this means that the parameters N

iµ  and N

iσ  (the superscript indicating a Normal 

distribution) can be calculated from the equations: 

*
*( ) Φ

i

N

i i
X i N

i

x µ
F x

σ

 
  

         (6.69) 

*
* 1

( )
i

N

i i
X i N N

i i

x µ
f x φ

σ σ

 
  

         (6.70) 

From equation (6.69) it follows that: 
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*
1 *Φ ( )

i

N

i i
X iN

i

x µ
F x

σ


           (6.71) 

Rewriting this expression and substituting it into equation (6.70) yields: 

* 1 *Φ [ ( )]
i

N N

i i i X iµ x σ F x         (6.72) 

i

i

1 *

X i

*

X

[Φ [F (x )]]

f ( )

N

i

i

φ
σ

x



        (6.73) 

φ() is the standard normal probability density function. When further also considering equation 

(6.60), i.e.: 

 *( ) Φ ( )
iX i iF x α β          (6.74) 

equations (6.72) and (6.73) can be further simplified towards: 

*N N

i i i iµ x α β σ          (6.75) 

*

( )

( )
i

N i
i

X i

φ α β
σ

f x
          (6.76) 

From the equations above it appears that the standard deviation and the average of the 

approximating normal distribution depend on the value of X in the design point. Therefore, in the 

iterative calculation of the design point and of the reliability index, new values for '

xσ  and '

xμ  

must be calculated for every step. This is illustrated in Example 6.4. 

Example 6.4  

Once again the same problem is considered as in Example 6.1. Consider the following limit 

state equation: 

  1 2 3g X Z X X X           (6.77) 

All variables are independent. The variables X1, X2 are normally distributed random variables: 

1 1

2 2

8,           2

3,          1

μ σ

μ σ

 

 
         (6.78) 

However, this time it is assumed that the base variable X3 is uniformly distributed over the 

interval (-20, 28). The mean and the standard deviation of X3 are thus the same as in Example 

6.1, i.e. µ3 = 4 and 3 = 2. The probability density function and the probability distribution of X3 

read: 

3

3

3

3

3
3

1
 ( )    

48

- 20    28

  20
( )  

48

X

X

f x

x

x
F x



 




        (6.79) 

In this case the transformed reliability function is: 
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3 31 1 2 2 36 2 8 24 X XZ U U U U μ σ U                             (6.80) 

Substitution of Ui =- αi β in the design point gives: 

3 3

2

1 1 2 2 36 2 8 24 X XZ α β α α β α β μ σ α β            (6.81) 

Subsequently, the iteration formulas can be drawn up as was done in Example 6.1. The system 

of equations to be solved is now: 

'

3

'

1 1 2 2 3 3

2
1

22 2 '
2 1 3

1
2

22 2 '
2 1 3

'

3
3

22 2 '
2 1 3

* 1

3 3 3 3

'

3

24
           

6 2 8

6 2

(6 2 (8 2) )

8 2
 

(6  2   (8  2   ) )

   
(6 2 (8 2  ) )

(Φ( )) 48 Φ( ) 20  

X

X

X

X

X

X

X

X

μ
β 

α α α β α σ α

α β
α

α β α β σ

α β
α

α β α β σ

σ
α

α β α β σ

X F α β α β

φ
σ



 

   




   




   




    

     

  

 

3
3*

3

' * '

3 3 3 3

( )
48

( )

 

c

X X

α β
φ α β

f X

μ X α β σ


  

 

     (6.82) 

Table 6.5 gives the results of a number of iterations. The calculation shows that the reliability 

index is considerably lower than in Example 6.1.  

 

To illustrate the transformation of the uniform to the normal distribution, the real and the 

approximating probability distribution in the design point X3* are indicated in  

Figure 6.8. 

 

 Initial value iteration step number 

  1 2 3 

β 1.96 1.07 1.03 1.03 

α1 0.58 0.31 0.32 0.31 

α2 0.58 0.47 0.47 0.46 

α3 -0.58 -0.83 -0.82 -0.83 

X3
* 21.87 19.00 18.50 18.60 

σ  10.04 12.92 13.36 13.27 

μ  10.46 7.54 7.16 7.23 

Table 6.5 Iterations Example 6.4 
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Figure 6.8 Approximation of the real probability distribution by a normal distribution. 
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6.4 Dependent random base variables  

(informative, will not be part of the exam) 

The probability density function with multiple base variables was introduced in section 2.9. In 

section 4.2 it was explained how the probability of failure is defined: 

 

( ) 0
( )f X

g X
P f x dx


          (6.83) 

 

In the case of independent base variables, the expression can be simplified to 

 
1 2

1 2
( , , , ) 0

1

( )
i

N

N

f X i N
g X X X

i

P f x dx dx dx
 



       (6.84) 

This allows to approximate for each variable individually the real distribution function by a 

normal distribution in the design point. If the case of dependent base variables, this approximation 

can’t be done independently for each variable. Therefore, a transformation can be performed to a 

new set of variables in which independence is ‘forced’.  In this section, it well be demonstrated 

how continuous dependent variables 𝑋1, 𝑋2, … , 𝑋𝑁 can be transformed to independent normal 

distributed variables, the Rosenblatt transformations, from where the design point with its 

associated failure probability can be computed iteratively. 

 

Recall from section 2.4.1 that the total probability density function can be determined as the 

product of the marginal conditional probability density functions of the respective base variables: 

 

1
1 2 1 2 1 1 1

1

( , , , ) 1 2 1 | 2 1 1|{ }
( , , , ) ( ) ( | ) ( |{ } )N

N N j j

N

X X X n X X X x N j jX X
f x x x f x f x x f x x





       

(6.85) 

 

The marginal probability density function of any group of base variables {𝑋𝑗}
𝑗=1

𝑖
 can be found as: 

1 1 2 1 2( , , , ) ( )
iX X i X i i nf x x x f x dX dX dX

 

 
 

      (6.86) 

 

When the distributions of the individual base variables is known, the conditional cumulative 

probability distributions can be determined as: 

 

 

 
1

1 11( ) ( )
X

X XF x f d 


         (6.87) 

 
2

2 1 21 1| 2 1 , 1

2

1
( | ) ( , )x

X

X X X XF x x f x d
N

 


       (6.88) 

1
1 21

1

1 , , , 1 2 1|{ }

1
( |{ } ) ( , , , )

i

i
ii j j j

X
i

i j j X X X iX X x
i

F x x f x x x d
N

 




  
    (6.89) 

 

In which 𝑁𝑖 is function of {𝑥𝑗}
𝑗=1 

𝑖−1
 which normalizes the distribution function such that  

lim𝑥𝑖→∞ 𝐹𝑖 = 1. 
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From this the conditional probability density function follows: 

1 i 1 1 1 1 1 1

1
( | X ,...,X ) ( | ,..., ) ( ,..., , )i i i i i i i

i i

f X F X X X f X X X
X N

  


 


   (6.90) 

Such that the failure region is defined by: 

 

 1
1 11 2

1

1|{( , ,..., )
1 2}

1
0

( |{ )} ...i
j j jN

N

N

i

i

f i j jX X xg X X X
P f x x dx dxdx








           (6.91) 

 

The Rosenblatt-transformation transforms the variables Xi with the value Xi into standard 

normally distributed variables with value iZ . In the design point, the values of the probability 

distribution of the normally distributed variables are equal to the conditional probability 

distribution of the original variables, the same approximation procedure as explained in Section 

6.3. To that end: 

1

1 1 1

1

2 2 2 1

1

1 n 1

Φ ( (X )))

Φ ( (X | X ))

 

 

 

Φ ( (X | X ,...,X ))n n n

Z F

Z F

Z F





















         (6.92) 

To transform the reliability function the inverse of the preceding transformation is of importance. 

This is given by: 

       

1

1 1 1

1

2 2 2 1

1

1 1

( ( ))

( ( ) | )

 

 

 

( ( ) | ,..., )n n n n

X F Z

X F Z X

X F Z X X









 

 







 

            (6.93) 

 

A comparison of the foregoing transformation with the equations (6.93) shows that the 

Rosenblatt-transformation is a generally applicable transformation for non-normally distributed 

and/or independent random base variables. 

 

The standard deviation and the mean of the approximating normal distribution are, as given in 

(6.75) and (6.76): 

*

*

 ( )
  

 ( )

    

i

i i

i

X

iX

iiX X

φ Z
σ

f x

μ σx Z

 

  

        (6.94) 

The way a Rosenblatt-transformation takes place, can best be illustrated with a calculation 

example.  
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Example 6.5 

Once again the same reliability function of Example 6.1 is considered. The limit state function is 

               1 2 3 1 2 3( , , )g X X X X X X                                                                          (6.95) 

 

The base variables 1X  and 2X  are statistically dependent and their joint probability density 

function is: 

               1 2

1 2 1 2
1 2, 

1

 2
 ( , )       

175 14 5 14 5

with  0    14   and   0    5

X X

x x x x
x xf

x b

 
   

 

   

                                                            (6.96) 

The base variable 3X  is normally distributed with mean 3 4   and 3 2  .  

We search for the probability of failure of (6.95). In short, the steps to be carried out: 

 

a) Because the variables 1X  and 2X  are dependent, we need to find the joint distribution 

functions in the variables 2 1 1|X X x  and 1X , such that the design point can be 

calculated sequentially, see section 6.4.  

b) In the design point, the joint distribution in terms of 1X  and 
*

2 1 1|X X x  is approximated 

by two normal distributions  with parameters 1 1,N N   and 2 2,N N  , see section 6.2.3 .  

c) The design point in standard normal space is given by 
* * *

1 2 3( , , )z z z . The transformation 

function to express this design point in the real variables 
* * *

1 2 3( , , )x x x  has to found. 

d) The system of equations obtained has to be solved, which can be done in an iterative 

manner with starting assumptions for 1 2 3( , , )    and  .  

 

a) 

De distribution function for 1X : 

              
1 1 2

5
1

1 , 1 2 2
0

3 1
( ) ( , )

490 35
X X X

x
f x f x x dx                                                          (6.97) 

The cumulative distribution function transfers variables in physical space 1X  to the probability 

space 1 [01]U  . This is denoted as 1 1:F X U . It can be found from the density function: 

 

               
1

1 1

1
1 1

0
( ) ( ) (3 28)

980

x

X X

x
F x f d x                                                             (6.98)  

With its inverse 
1

1 1:F U X   , that transfers points in probability space 1U  to physical space 

1X : 

                  

               
1

1 1
1

3490 1 14
( )

3 245 1225 3
U

x
F u                                                                      (6.99) 

 

 

The distribution function for 2 1 1|X X x : 
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2

2 1 1 1 2

21 1 2

( | ) 1 2 , 1 2
0

1 1

1 1 1
( , ) ( , ) ( ) )

( ) ( ) 12250 87 5
·

5 122

x

X X x X X

x x x
F x x f x d x

N x N x
 


     

                                                                                                                                         (6.100) 

With 1( )N x  normalizing the distribution function: 

                  

               
1 2

5
1

1 , 1
0

3 1
( ) ( , )

490 35
X X

x
N x f x d                                                                 (6.101) 

2 1 1( | ) 1 2( , )X X xF x x  is a function of one variable 2( )X  and one parameter 
*

1( )x . To find its inverse, 

the parameter 
*

1( )x  should be known, to make sure the inverse is taken over the right domain.  

 

To clarify this requirement, imagine the function 
2y x . The inverse function over the domain 

[010]x  would be given by x y , over the domain [ 10 0]x   would be given by 

x y  , but over the domain [ 5 5]x   there are two possible solutions x  and x , so the 

inverse is not properly defined. 

 

Therefore, the inverse of (6.100) has to be found every time again after updating 
*

1x . We can than 

substitute to reduce the amount of variables: 

                
2

2 1 1 1 2

*

| 2 , 1* 0
1

1
( ) ( , )

( )

x

X X x X XF x f x d
N x

                                                        (6.102) 

 

The inverse function 
2 1

* 1) *

| 1 2 2 1 1: |U XF x U X X x    can then be found as: 

                * *
2 1 1 2 1 1

1 1

2 2| |
( ) ( ( ))

U X x X X x
F u F x 

 
                                                                      (6.103) 

 

 

b) 

We assume a normal approximation in the design point. The mean and standard deviation of the 

approximate normal distributions can be found with equations (6.124) and (6.125): 

                 

1

*

1
1 *

1

( )

( ( )

N

X

z

f x


                                                                                               (6.104) 

                
*

2 1 1

*

1
2 *

2|

( )

( ( )

N

X X x

z

f x






                                                                                        (6.105) 

 

Where we also need the distribution function of 
2 1 1|X X xF  : 

                *
2 1 12 1 1

2 | 2|
2

( ) ( ( ))X X xX X x

d
f x F x

dx


                                                                   (6.106) 

Subsequently the means: 
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* *

1 1 1 1

N Nx z                                                                                              (6.107) 

                 
* *

2 2 2 2

N Nx z                                                                                              (6.108) 

 

c) 

The design point in standard normal variables is given by: 

                

*

1 1

*

2 2

*

3 3

z

z

z

 

 

 

 

 

 

                                                                                                   (6.109) 

 

The transformation of the normal variables to the physical parameters is:       

                

              
1

* 1 *

1 1( ( ))Zx F F z                                                                                               (6.110)  

              *
2 1 1

* 1 *

2 2|
( ( ))

Z X x
x F F z


                                                                                        (6.111) 

              
* *

3 3 3 3x z                                                                                                    (6.112) 

                                                                                    

The transformation for the independent variable 
*

1x  is done with (6.99). For 
*

2x , equation (6.103) 

has to be updated in every iteration step. For 
*

3x  a transformation from standard normal space Z  

to 3X  is necessary, which is simpler and given directly by (6.112). 

 

d) 

This gives all the ingredients to make an update of the i : 

                 
*

1 2 2 2
1

( )·N N N z

X

  


 
                                                                                (6.113) 

                 
*

2 1 1 1
2

( )·N N N z

X

  


 
                                                                                (6.114) 

                 3
3

X


                                                                                                        (6.115) 

With  

               * 2 * 2 2

1 2 2 2 1 2 2 2 3( ( )) ( ( ))N N N N N NX z z                                              (6.116) 

 

The reliability index, as defined in (6.3), can be found from the reliability function expressed in 

the approximate normally distributed variables:                

                 N

N

g

g





                                                                                                        (6.117) 

  

Because the normal variables approximate the variables 2 1 1|X X x  and 1X  which behave 

independently, the expectation of the limit state function Ng  and its variance are given by: 
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1 2 3N

N N

g                                                                                              (6.118) 

               2 2 2 2 2 2 2

1 2 1 2 2 1 3( ) ( ) ( ) ( ) ( ) ( )
N

N N N N N N

g                                        (6.119) 

 

The system of equations is a closed system for 
* * *

1 2 3 1 2 1 2 1 2 3, , , , , , , , ,  and N N N N x x x        . 

To solve the system of equations, we could iterate towards a convergent answer. Starting values 

need to be chosen, for example: starting values 1 2 3(1) 0.6; (1) 0.6; (1) 0.6; (1) 2        . 

 

We can iterate through the system of equations until the solution for β converges to a constant 

value. This is best done with the help of a computer, for example in a while-loop in Matlab, since 

in every iteration step the inverse of *
2 1 1

1

2|
( )

U X x
F u


 and the density function *

2 1 1
2|

( )
X X x

f x


 need to 

be found for the updated 
*

1x . A stopping criterion for the while-loop could for example be 

( ) ( 1) 0.0001i i    , where i  denotes the iteration step. 

 

In short: from starting values i  and  : 

1. Calculate the design point in standard normal variables with (6.109). 

2. Transform these variables to the physical design point with (6.110), (6.111) and (6.112). 

3. Find the parameters of the approximative normal distribution with (6.104), (6.105), 

(6.107) and (6.108) 

4. Update the influence factors and the reliability index with (6.113), (6.114), (6.115) and 

(6.117) 

The iteration steps are summarized in the table below: 

 initial value iteration step number 

  1 2 3 4 5 6 

β 1.5 1.0337 1.0079 1.0058 1.0058 1.0058 1.0059 

α1 0.7181 0.7258 0.7277 0.7286 0.7291 0.7294 0.7295 

α2 0.6743 0.6725 0.6709 0.67 0.6695 0.6692 0.669 

α3 -0.172 -0.144 -0.142 -0.142 -0.142 -0.142 -0.142 

x1
* 4.5283 5.1603 5.2143 5.2124 5.2082 5.2056 5.204 

x2
* 1.7183 1.9935 2.0258 2.0313 2.0332 2.0342 2.0348 

𝑥3
∗ 5.74 4.356 4.2916 4.2864 4.286 4.286 4.286 

μx1’ 5.74 4.356 4.2916 4.2864 4.286 4.286 4.286 

σ x1’ 8.751 8.897 8.906 8.9057 8.905 8.9046 8.9043 

μ x2’ 3.2229 3.2494 3.251 3.2516 3.2519 3.2521 3.2522 

σ x2’ 4.8538 5.034 5.0462 5.0458 5.0449 5.0443 5.0439 

 

Therefore, the failure probability of (6.95) is ( ) 0.157    
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7 Time dependence 

7.1 Probability of failure and life span 

In general, both the loads and the strength are functions of time. It is therefore typically of little 

use to speak of a probability of failure without mentioning the period, to which this refers. In case 

only the load varies in time, it is wise to define the representative value of the load for the 

considered period. If the representative value of the load equals the maximum load during the 

considered period, the probability distribution can be determined by using the theory for extreme 

values. If fatigue problems are concerned, the representative value of the load must be established 

by addition of the loads over the period. The calculation of the probability of failure can be carried 

out with level III or level II methods, after defining the representative value of the load. 

 

If both the resistance strength and the load are time dependent, the characteristic strength and load 

have to be defined carefully. After all, it is possible that the maximum value of the load does not 

coincide with the minimum value of the strength (see Figure 7.1). In such a case the instantaneous 

distributions of the strength and the loads have to be assumed. 
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Figure 7.1 Green: Strength (R) normally distributed with mean decreasing over time. 

Blue: load (S) having an extreme value distribution in blue, plotted along its mean. At 

the point where 𝑍 = 𝑅 − 𝑆 < 0, failure occurs.  

The probability of failure in the time span (0, t) is equal to the complement of the probability that 

no failure occurs in the interval. In the form of a formula this is: 

  ( )  1   (  ( )   ( )) for all   (0, )f t P R τ S τ τ tP    
      (7.1)

 

in which: 

 R(τ)  is the strength at time τ; 

 S(τ)  is the load at time τ. 
 

The strength R(τ) can be a function of the load over the period (0, τ): 

0 ( )   ( ,  ( ) with 0    )R τ R S t t τR          (7.2) 

For example, this is the case with material fatigue. Failure can be seen as the termination of the 

life span of the element under consideration. The life span is a random variable. The probability 

distribution of the life span is: 

( )   (   )   ( )fLF t P L t tP           (7.3) 

The probability density function of the life span is found by differentiating the probability 

distribution: 

  ( )
 ( )  

 

L

L

d tF
tf

d t


         (7.4)
 

The probability that the life span ends between the times t and t + dt, can be written as: 

 (       )   (   ) -  ( )   ( ) L L L
P t L t dt t dt t t dtfF F           (7.5) 
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Implicitly, the ending of the life span (t, t + dt) means that no failure occurred in the interval 

(0, t), so:  

  ( )    (  ( )   ( )) for   ( ,   )  (  ( )   ( )) for   (0, )
L

t dt P R τ S τ τ t t dt R τ S τ τ tf       
  (7.6)

 

The probability density function is also viewed as the probability of failure per unit of time at a 

certain point in time, or as the rate of failure. The literature often refers to this as the 

unconditional rate of failure. Another important concept is the conditional rate of failure r(t), 

also known as the "hazard function". This is defined as: 

  ( )    (  ( )   ( )) for   ( ,   ) | (  ( )   ( )) for   (0, )r t dt P R τ S τ τ t t dt R τ S τ τ t     
  (7.7)

 

According to the calculation rule     ( | ) ( )P A B P A B P B  : 

 ( )    ( )  (1 -  ( ))

 ( )
 ( )  

1 -  ( )

LL

L

L

t dt r t dt tf F

tf
r t

tF




        (7.8) 

For small values of the probability distribution function of the life span, this formulation shows 

that the values of the unconditional rate of failure and those of the conditional rate of failure are 

equal. Substitution of: 

  ( )
 ( )  L

L

d tF
tf

dt


         (7.9)

in equation (7.8) gives the following differential equation: 

  ( )
  (1 - ( ))  ( )L

L

d tF
F t r t

dt


        (7.10)
 

The solution to this differential equation is: 

   
0

1

t

LF t ex p r τ dτ  
        (7.11)

 

The functions FL(t), fL(t) and r(t) are plotted for a number of cases in Figure 7.2. In situation a, 

there is a constant r(t). This means that the fact that the element did not fail during a period (0, t) 

has no influence on the probability of failure in the interval (t, t + dt). This situation arises if the 

knowledge concerning the strength and the load does not vary in the course of time. 
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Figure 7.2 Conditional failure rate, unconditional failure rate and probability distribution 

of the life span. 

In situation b the conditional rate of failure decreases. This can be a correct consideration for 

elements for which the expected value of the strength increases or for which the expected value of 

the load decrease in time. It could also be the case that the standard deviation of the strength 

and/or of the load decreases. Situation c involves an increasing conditional rate of failure. Such is 

the case if deterioration, wear or fatigue is concerned. 

 

In practice, often combinations of the different situations occur. In general this results in a 

function r(t), as plotted in Figure 7.3, which is referred to as the bathtub curve. Three phases can 

be distinguished: 

I. the begin phase, in which failure can occur as a result of structural and design flaws; 

II. the middle phase, in which calamities and extreme circumstances play a part; 

III. the end phase with an increased rate of failure as a result of deterioration or wear. 

 

 

Figure 7.3 Bath tub curve. 

The start phase, during which the probability of failure is often greater than in the middle phase, is 

generally unavoidable. The end phase, with an increased rate of failure as a result of wear and 

deterioration, however, can be prevented or delayed by carrying out maintenance or by 

replacement. The question as to when one should resort to maintenance or replacement is 

discussed further in chapter 11. 
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In engineering, and particularly in process engineering, the rate of failure in the middle phase is 

important. Often a constant rate of failure can be assumed. The probability distribution of the life 

span can then be denoted as: 

-   ( )  1 - λ t
L t eF           (7.12) 

in which λ = r(t) = constant. In this case, the probability density of the life span is: 

-   ( )   λ t

L
t λf e           (7.13) 

The expected value of the life span is known as the Mean Time to Failure and is determined by 

integration: 

-  

   0

1
   ( )        λ t

L
E t t λ dtμ e

λ



  
        (7.14)

 

The Mean Time to Failure plays an important part in the determination of non-availability of 

elements with a constant rate of failure and in planning of maintenance and inspections. If the rate 

of failure is not a constant in time, this simplification is not possible. For these elements, the 

determination of the reliability and of the expected value of the life span is described in the 

following section. 

7.2 Application to Different Cases 

As the first example we take a structure that is subsequently loaded with independent loads 

1 2 3,  ,  ...S S S  . We assume the resistance R is time-independent. The question that is addressed is as 

follows: What is the probability that failure occurs if the construction is loaded n-times (see 

Figure 7.4).  

 

Essential for the failure of the structure is the maximum Ŝ  of the instantaneous loads Si. If R is 

larger than Ŝ  the structure will not fail. If R is smaller than Ŝ  the construction fails. So:  

1
ˆ{failure by ,..., } { }nP S S P R S          (7.15) 

The probability density function of ˆ max{ }iS S follows from:  

ˆ 1 2
ˆ( ) { } {  and  and ... }nS

F s P S s P S s S s S s     
      (7.16) 

Because of the assumed independency: 

ˆ ( ) { } { ( )}  
i

n n

i SS
F s P S s F s

         (7.17) 

The failure probability is given by the convolution integral, see chapter 3: 

1

ˆ1

0

1

0

(failure by .. ) ( ){1 ( )}

(failure by .. ) ( ){1 ( )}

n R S

n

n R S

P S S f r F r dr

P S S f r F r dr





 

 




       (7.18) 
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In the previous equation Si is the instantaneous load: the leading load is ˆ max{ }iS S . Determining 

the distribution of Ŝ is from a numerical point of view not difficult. In the special case that Si is an 

extreme-value distribution for maxima even a analytical solution exists: Ŝ  then also has an 

extreme-value distribution with parameters that can be determined in a simple way.  

The problem in this example has great similarities with a series system characterized by brittle 

failure. It is indeed possible to see a number of sequential loads as a series system in time. We can 

therefore use this in our advantage to use the lower and upper boundaries derived for those 

systems (see chapter 9): 

1max { } {failure by .. } { }i n iP R S P S S P R S          (7.19) 

The probability of failure for the period in time (1..n) is bounded by the maximum instantaneous 

probability of failure and the sum of all the instantaneous probabilities of failure. In Figure 7.4 

this is shown. While refering to chapter 9 the following can be said: 

 

 The upper boundary occurs when the events R<Si are mutually exclusive. Physically 

speaking, this occurs seldom but also in this case it holds that the upper boundary is of 

great importance because it is a very accurate approximation of events that do occur often. 

 

If we take the derivative of the upper boundary to find the probability density function of the 

lifetime, a constant f-function appears (we neglect the fact that the upper boundary is a discrete 

function): the conditional probability of failure r is an ascending function. If FL(t) reaches the 

value 1, the function f  is set back to 0 and r will take the value of ∞.  

 

 If the events R<Si are independent, which is the case when σ(R) << σ(Si) and Si 

independent, for FL(t) an exponential function can be obtained in the same manner as for a 

series system. The lifetime then has an exponential distribution and the unconditional 

failure rate is constant. 

 

 Finally, the lower boundary produces a corrupted density function: It holds that for t -> ∞ 

the lim FL(t) ≠ 1. This case represents the situation when σ(R) >> σ(Si). The survival of 

the first load mainly gives information about the strength of the construction and gives 

some kind of certainty that following loads are also survived.  
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Figure 7.4 Distribution Function, Probability Density Function and the conditional 

failure probability with independent load changes in time and time independent loads. 

7.3 Deterioration processes 

The fact that the failure rate is not constant can be caused by a change of the strength or the load 

in time. The variations of the strength and the loads in time can be referred to as deterioration 

processes.  

 

These deterioration processes may include, for example, metal fatigue, corrosion, wear, chemical 

action et cetera. Such processes can best be described as statistical processes. These processes are 

of great importance for the determination of the reliability of systems and for planning 

maintenance. 

 

The variation processes of the loads are of great importance for the design and modification of 

systems. Consider the relative sea level rise, climatic changes et cetera. The strength of a 

component in a system at a certain time is determined by the deterioration process. In reference to 

the strength, the deterioration process is understood to mean: the variation of the strength in time. 

This change of the strength can be a result of external loads and internal processes. 

 

A striking example of this is the course of the strength of a reinforced concrete element. Directly 

after pouring the concrete the strength of the concrete is virtually none. During the hardening and 

maturation a strength development takes place. Usually concrete reaches its characteristic strength 

after 28 days, after that the strength gradually continues to increase. If the reinforced concrete 
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structure is exposed to mechanical or chemical loads, the strength of the structure can change. As 

a result of penetration of moisture and chemicals into the reinforcement zone, the reinforcement 

can be harmed. The strength of the element then decreases. Processes in the pressure zone can 

also initiate strength reductions of the concrete. 

 

Figure 7.5 shows that the deterioration process of the strength occupies a prominent position in 

the determination of the probability of failure. However, the required knowledge concerning the 

exact deterioration behaviour of a system is seldom if never available. Attempts are often made to 

find a mathematical description of the course of the strength in time, by means of physical 

research and observations of systems. Because the model research and/or observations of systems 

merely cover a limited period of time, curve fitting and extrapolation are used to obtain a 

deterioration model. This generally means the introduction of a model uncertainty. The input 

parameters for the model usually also contain uncertainties. These may originate from soil 

analysis or they may sometimes even be based on experience and intuition. The input parameters 

are thus best described as random variables, each with its own probability density function. 

 

Figure 7.5 Position of the deterioration process in the calculation diagram for the risk 

The deterioration process can therefore best be modelled as a statistical process. The result is that 

a mean value and a variance for the strength of the system are found for each moment in time. The 

variance increases as the uncertainties in the mathematical model and in the input parameters are 

larger (see chapter 11 for more information). 

 

It is possible to model the deterioration process in two essentially different ways. The first method 

uses observations of the strength in time. The change of the strength per unit of time can be 

modelled with a mean and a variance. This model does not include an analysis of the cause of the 

deterioration. Example 7.1 elaborates on this method. 

Example 7.1 

Since 1964 annual registrations have been carried out of the profile of a narrow strip of the Dutch 

coast line. For that purpose a set of over 2500 measurement sections were defined along the entire 

North Sea coast, spaced at 200 to 250 metres. The amount of sand volume in a cross-section 

(m3/m) can be considered a measure for the strength of the section.  

 

The change of the sand volume in a section in a year can be used as a deterioration model.  
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The second method is based on the external or internal loads that cause the deterioration and on 

the resistance of an element counteracting deterioration. In this case, deterioration is defined as a 

function of the load and the resistance. Both this function and the load and resistance parameters 

contain uncertainties. This method can best be illustrated with an example. 

A section in Noord-Holland is used as an example. The measured sand volumes are given in 

Table 7.1. It is assumed that the changes of the sand volumes are independent every year. The 

mean change of the sand volume during a year over the measured period is ΔV  = -47.1 m3/m per 

year and the standard deviation amounts to ΔV = 110 m3/m per year. 

Table 7.1 Yearly measured sand volume in a cross section 

year 
volume 

(m3/m) 
ΔV Year 

volume 

(m3/m) 
ΔV 

1964 8967  1975 8434 -118 

1965 8915 -52 1976 8404 -30 

1966 8750 -165 1977 8287 -117 

1967 8860 110 1978 8209 -78 

1968 8872 12 1979 8211 2 

1969 8655 -217 1980 8395 184 

1970 8746 91 1981 8265 -130 

1971 8807 61 1982 8226 -39 

1972 8705 -102 1983 8018 -208 

1973 8748 43 1984 8050 32 

1974 8552 -196 1985 7977 -73 

Σ(ΔV) = -990 m3/m = -47.1 m3/(m year) 

Σ(ΔV2) = 288428            

VAR = {288428 - 21(-47.1)2}/20 = 12088  sΔV = 110 m3/(m year) 

 

With a lack of more information one assumes that the change of sand volume in one year in the 

section is normally distributed with the parameters μΔV = -47.1 m3/m and σΔV = 110 m3/m. 

The deterioration model is: 

  1

Δ  ( )   ΔΣ
t

i

i

R t V



        (7.20)

 

Example 7.2 

The example considers an apron on a geotextile, behind a weir in a waterway (see Figure 7.6). 

The function of the apron is to ballast the geotextile, which has to prevent the washing out of bed 

material. The mass of the rock fill per m2 apron is defined as strength. 
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Figure 7.6 Cross section of the apron 

Two types of loads are distinguished, namely: 

 extreme pressure under the filter; 

 flow over the filter. 

 

The decrease of the strength (mass per area) is caused by the transport of material in water flow. 

The load in the deterioration model is therefore the current. During 11 months of the year the 

current is negligible and no transport of rock fill takes place. During one month every year a 

larger amount of water is discharged. It is assumed that during this one-month period the flow is 

stationary (the current does not vary in time) and that the flow velocities are independent each 

year. However, the flow velocity is not known in advance and is schematised as a random 

variable. The flow velocity is normally distributed with a mean U = 4 m/s and a standard 

deviation U = 0.5 m/s. The probability density function of the flow velocity is thus: 

  
2

1 1 4
exp

2 0.50.5 2
U

U
f U

π

  
      

       (7.21) 

According to this distribution negative and very large flow velocities are also possible. This is 

incorrect if the flow only takes place in one direction and if the flow velocity is limited. The latter 

is almost always the case. However, the probability of these values is negligibly small for the 

given probability density function.  

 

Amongst other factors, the dimensions (the mass) of the rock fill determine the resistance of the 

structure against transport. Below a certain critical flow velocity no transport of rock fill occurs. 

When the critical flow velocity is exceeded the transport increases with a certain exponent of the 

flow velocity. 
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In this example the relation that indicates the decline in strength for a given load, is assumed as 

follows: 

 
         (  - )

          0

n

kr kr

kr

U  U T A U U

U U T

   

   
 

in which: 

 T is the decline of the strength in a year in kg/m2; 

 A is a constant, which depends on the geometry of the structure and on the resistance  

 of the rock fill against transport, in kg A sn/mn+2 per year; 

 n is a constant, which depends on the geometry of the structure and on the resistance  

 of the rock fill against transport;  

 U is the flow velocity behind the weir in m/s; 

 Ukr is the flow velocity, for which transport starts in m/s. 

 

Usually the values for A, Ukr and n are determined with model research, they are then random 

variables. The relation that describes the transport (= reduction of the strength during a year), can 

therefore better be written as: 

        (  -  )
n

krkrU  U T A U εU           (7.22) 

in which ε is the model uncertainty. 

 

The probability distribution of the transport can be approximated using simulation techniques. 

Figure 7.7 shows the results of 5000 simulations. For these simulations all variables were kept 

normally distributed with the parameters: 

1260,        126

4,             0.5

6,           1.2

2,             0.01

1,              0.02

kr kr

A A

U U

U U

n n

ε ε

μ σ

μ σ

μ σ

μ σ

μ σ

 

 

 

 

 

         (7.23) 

 

Figure 7.7 Probability distribution of the transport in a year 

According to the probability distribution, there is a probability of approximately 95% that no 

transport of material takes place, because in those cases the critical flow velocity is not 
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With the help of the deterioration model ΔR(t) the strength is determined statistically at every 

point in time: 

 ( )   (0)  Δ  ( )R t R R t           (7.25) 

in which: 

 R(0) is the initial strength 

 ΔR(t) is the deterioration after period (0,t) 

 

The rate of failure of the element can be determined with the strength at time t. If maintenance is 

defined as restoring the strength to the initial level, the amount of maintenance required at time t 

is ΔR(t). 

 

For a load that varies in time, the same applies as for the deterioration concerning the strength of a 

system, bearing in mind that the definition of the limit state as regards failure, reads: 

      (0)  Δ  ( )    (0)  Δ  ( )Z R R t S S t            (7.26) 

An example of a deterioration process of the load can be found in a power plant. Suppose that the 

capacity of a plant is schematised as the strength R(0). The capacity is tuned at a peak load at time 

t = 0. This load is based on the number of connections to the plant. Possibly planned expansions 

of residential areas and industrial areas will increase the number of connections. 

By considering the number of new connections as a function of time, the increase of the peak load 

in time  S(t) can be estimated. 

 

The definition of the limit state helps determine the probability of a shortage of capacity during a 

peak load at an arbitrary time t. This way, it can be judged beforehand whether or not 

modification of the power plant is necessary at a given point in time. Other examples of variation 

processes of the loads are: the relative sea level rise, increasing traffic intensity, increasing river 

discharge, increasing environmental loading et cetera. 

7.4 Risk Calculation for Systems with a Variable Rate of Failure  

(not part of the examination) 

exceeded. The expected value of the transport during a year is therefore close to T=0.  

The expected value of the transport during a year is μT = 40 kg/m2 and the standard deviation 

σT = 336 kg/m2. 

 

The deterioration model is: 

  1

Δ  ( )   Σ
t

i

i

R t T



          (7.24)

 

in which Ti is the transport during year i. 
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The previous section discussed the probability of failure of an element as a function of time. The 

relation between the unconditional rate of failure, the probability distribution of the life span and 

the conditional rate of failure is given as (see also section 7.1): 

 ( )
 ( )  

1 -  ( )

L

L

tf
r t

tF


         (7.27)

 

For small values of the probability distribution of the life span the values of r(t) and fL(t) are 

virtually equal and the following approximately is valid: 

   
0

      

t

L t r τ dτF            (7.28) 

Figure 7.8 shows the plot of an example of both:    
0

 and 

t

LF t r τ dτ . 

 

Figure 7.8 Comparison of the exact failure probability with the approximation in 

equation (7.28). 

It seems that the approximation is very good for probabilities of failure smaller than 0.1. If the 

consequence of failure is independent of time, the risk over a period (0,t) can be defined as 

follows : 

Risk   ( )  ( )LF t g x          (7.29) 

in which: 

 x is the consequence; 

 g(x) is the function of the consequence; 

 FL(t) is the probability of failure over the period (0, t). 

 

Often the consequence is also time dependent. Consider matters such as inflation, economic 

growth and developments which cause a change of value. An economic analysis of the risk always 

involves time dependence of the consequence. Usually the consequence is defined as the 

discounted value of the damage. In this case the economic risk can be approximated by: 
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    
0

t

RC g x τ r τ dτ 
        (7.30)

 

in which: 

 CR is a discounted value of the risk; 

 g(x(τ)) is a discounted value of the consequence of failure at time τ; 

 r(τ) is the conditional rate of failure. 

 

The conditional rate of failure depends on the initial strength, the deterioration process and the 

load. For one element the following applies: 

                  0  Δ , ,   0 Δ , 0,r t dt P R R t S τ τ t t dt R R τ S τ τ t       
 (7.31)

 

With the help of level II failure probability calculations this can be approximated, using the 

reliability function: 

     0 ΔZ R R t S t  
        (7.32)

 

This approximation is reasonably accurate if the probability of failure is statistically independent 

during the different time steps. Of course, there is statistical independence which follows from the 

initial strength at t = 0 and the deterioration model. Kuijper (1992) showed that such an estimate 

of the rate of failure is an upper limit approximation. 

 

Using level III simulation techniques and level II transformations the statistical dependence is 

taken into account entirely. Figure 7.9 gives a flowchart for the estimation of the risk over a 

period (0, T) with the help of Monte Carlo simulation. 
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Figure 7.9 Flow chart using the Monte Carlo simulation. 

7.5 Non Availability 

Non-availability refers to the fraction of time that an element cannot fulfil its function. According 

to the reliability theory the non-availability corresponds with the probability that an element 

cannot perform its function satisfactorily at an arbitrary moment in time. In considering non-

availability of an element or a system, in which the element is located, it must be taken into 

account whether or not the failure of the element can be directly observed or perceived. 

 

Generally, if an element can fail without being directly noticed, it is tested periodically to see 

whether or not the function can still be fulfilled. A telephone is a good example of this. If a 
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telephone is broken, the owner of the phone cannot be called. The owner only notices the problem 

when he wants to make a call himself.  

 

The non-availability can be divided into three types according to the cause. Non availability due 

to: 

 Non-noticeable failure. The element does not function between the time of failure and 

testing, this time span is known as the down time. 

 Testing or periodical maintenance. 

 Repair or replacement after noticing the failure (e.g. during testing or periodical 

maintenance). 

The down time is a random variable, for which the probability density function can be derived 

from the probability density function of the life span by means of a simple linear transformation. 

The function reads: 

 ( )   ( )
D D DLT

T T Tf f 
        (7.33)

 

in which: 

 TD is the down time; 

 T is the test interval. 

 

For a constant rate of failure r(t) = λ during period T the following applies: 

-  ( ) ( ) D

D

λ T T

DT
T λef


         (7.34)

 

In this case, the mean down time is defined as: 

    2

0

1 1

2
D

D

T λT
λ T T

D D DT

e
E T λe T dT T λTμ

λ


  

    
     (7.35)

 

The non-availability as a result of non-noticeable failure is then: 

1 1
1

2

D

λT
T

nmf

μ e
U λT

T λT


   

       (7.36)
 

After each test interval there is a period during which the element is unavailable as a result of 

testing. This period is called the test duration τ. The non-availability as a result of testing or 

periodical maintenance is: 

  
  

test

τ
U

T τ


           (7.37) 

If testing highlights the failure of an element, repair or replacement will have to take place. A 

certain amount of time is needed for this, called the repair time θ . The expected non-availability 

caused by the repair of an element with a constant rate of failure equals: 

       
1 /

rep

L

θ θ
λ θU

λμ
  

         (7.38)
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In the case of failures that are directly noticed, the element will generally be repaired or replaced 

directly after failure. The non-availability is then only caused by the duration of the repair. 

7.6 Markov Processes 

not part of the examination 

A statistical process is a process that can be in different states at different points in time, for which 

the course of the state in time is determined by a stochastic process.  

 

An example of this is the description of the state of a binary element. Two states can be 

distinguished for the element: functioning and non-functioning. The probability that an element 

does not function at a certain time is described by the probability distribution of the life span.  

The expected value of the fraction of the time that a repairable element does not function, is the 

non-availability. In the foregoing both the probability distributions of the life span and the non-

availability have been discussed. This section describes a method for determining the non-

availability of elements, for which the state at an arbitrary time is described by a Markov-process.  

 

A statistical process is a Markov-process if the probability distribution of the progress of the 

process from an arbitrary point in time, is determined exclusively by the state at that point in time 

and not by manner in which the state was reached. A Markov-process is therefore a process 

without a memory. In the reliability analysis of a component this means that a repaired component 

is equivalent to a new component. 

 

It is customary to present a Markov-process in a diagram. In the diagram the states in which the 

process can be are indicated with a number.  

 

The transition probabilities between the different states are designated with connection lines. The 

transition speed is shown on these lines. The transition speed is understood to be, for example, the 

rate of failure or the repair speed within a given time interval. Figure 7.10 gives a Markov-

diagram for a binary element, for which the rate of failure and the repair speed are constant and 

for which failure immediately leads to repair. This means that the failure can be directly noticed.  

 

Figure 7.10 Markov diagram for a binary element 

The probability that the state of an element moves from functioning to failure during a time 

interval (t, t + Δt) is: 
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1  2 1 ( , Δ )   ( )  Δt t t λ tP P          (7.39) 

in which: 

 P1(t) is the probability that the element is in state 1 at time t; 

 λ Δt is the probability that the element moves from state 1 to state 2 during the interval  

(t, t + Δt), provided the element is in state 1 at time t. 

 

The change of the probability of state 1 or state 2 during an interval with time span dt is: 

1 21

1 22

1
 ( )     ( )     ( ) 

1
 ( )     ( )     ( )

t λ dt t dt tdP P P
θ

t λ dt t dt tdP P P
θ

  

  
       (7.40) 

Dividing by dt gives two linked first order linear differential equations: 

 
   

 
   

1

1 2

2

1 2

1
 

1
  

dP t
λP t P t

dt θ

dP t
λP t P t

dt θ

  

  
        (7.41)

 

The boundary condition for solving these differential equations is: 

1 2 ( )   ( )  1t tP P           (7.42) 

Substitution of the boundary condition in equation (7.41) gives: 

 
 2

2

1
 

dP t
λ P t λ

dt θ

 
   
          (7.43)

 

Supposing that it is certain that at point in time t = 0 the element is in state 1, the initial condition 

is P2(0) = 0. With this initial condition the solution to the differential equation reads: 

 -(   1/ )

2 ( )   1  
  1/

λ θλ
P t e

λ θ

 
         (7.44)

 

By inserting t =  the so-called stationary state is found. This reads:  

2 ( )     
  1 /

λ
P λ θ

λ θ
  

          (7.45) 

Figure 7.11 gives the course of P2(t) and the stationary situation. 
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Figure 7.11 Course of the probability P2(t) in time. 

For a binary element the stationary situation of a Markov-process, in which perceptible failure 

occurs, is reached after approximately three times the average duration of repair. 

The stationary situation can also be found quickly by assuming the conditions for this situation: 

 

 

1

2

0

0

dP

dt

dP

dt







  
        (7.46)

 

This leads to a simple set of linear equations: 

   

   

1 2
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1
0

1
0

λP P
θ

λP P
θ

    

    
        (7.47)

 

The solution to these equations reads: 

1

2

1/ 1
( )     

  1 /    1

 
( )    

  1 /    1

θ
P

λ θ λ θ

λ λ θ
P

λ θ λ θ

  
 

  
          (7.48)

 

P2() is the probability that the element is in state 2 in the stationary situation. This can also be 

interpreted as the fraction of the time that the element is not available. 

7.7 Combinations of Time Dependent Loads 

In many cases loads are not stochastic variables but stochastic processes, i.e. fluctuations in time 

occur. In Figure 7.12 some typical fluctuations have been drawn. The load effects caused by self-

weight has very few fluctuations in time and can be considered to be constant in time. With 

respect to the variable loads we subdivide the load types as shown in Figure 7.12. Examples are 

respectively floor loads by the inventory, floor loads during receptions and wind loads. In all these 

case it is necessary to make a clear distinction between the ‘instantaneous’ or ‘arbitrary point in 

time (APT)’ distribution and the extreme value distribution. Both have been drawn in Figure 7.12. 
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Figure 7.12 Different loadtypes as a function of the time with their ‘instantaneous’ or 

‘APT’distribution and extreme value distribution of the maxima functions 

In combining loads one has to solve the point that the maxima of the different loads do not have to 

occur simultaneously. For a specific structure, first the loads should be summed up and then the 

maximum total load (effect) can be determined. 

 

A practical solution for the determination of the failure probability of an element, which is subject 

to loads varying differently in time, is given by the Turkstra-rule (Turkstra, 1980) According to 

this rule the extreme value of one of the loads is combined with the instantaneous values of the 

other loads. This way the probability of failure is calculated for every combination and the 

combination with the greatest probability of failure is considered normative.  

This method slightly underestimates the probability of failure.  

 

Ferry Borges and Castanheta’s load model (1972) permits a slightly more balanced handling of 

load combinations. Both models are elaborated below. 

7.7.1 Turkstra’s combination rule 

We will now generalize the representation in Figure 7.12 towards k variable loads X1(t) to Xk(t). 

The maximum load Xmax(tref) over the reference period tref is equal to: 

 max 1 2( ) max ( ) ( ) ... ( )
ref

ref k
t

X t X t X t X t   

      (7.49)

 

Turkstra suggested the following approximation: 
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( ) ( ) ... max ( )1 2
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Y X t X t X tk
t

Y X t X t X tk
t

Y X t X t X tk k
t

   

   

   

      (7.50)

 

For these variables, the maximum of each variable load is combined with the instantaneous (APT) 

value of the other variable loads. Hence, the following holds: 

 max ( ) maxref i
i

X t Y

         (7.51)
 

A more refined approximation is obtained when applying the Borges-Castanheta model for 

variable loads.  

 

Figure 7.13 Turkstra’s combination rule 

7.7.2 Ferry Borges-Castanheta load model (FBC model) 

This load model assumes that every load Si is constant during a certain unit interval τi. During the 

reference period tref, for which the probability of failure is calculated, ni load repetitions occur. 

This number is: 

  
ref

i

i

t
n

τ


          (7.52)
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Further, it is also assumed that the load level in successive intervals is independent and identically 

distributed according to the distribution function ( )
iX if x . For this kind of rectangular pulse process 

one simply obtains: 

max ( ) ( )
i

i

n

i X iF x F x             (7.53)
 

The number of load recurrences is not equal for all loads. The loads are arranged such that 

n1  n2  ...  ni  ...  nm. Moreover ni/ni-1 must be a positive natural number. Figure 7.14 gives an 

example of loads according to this model. 

 

Figure 7.14 Schematisation of load varying in time according to the FBC model. 

The determination of the combinations takes place as follows: 

 

Make all possible combinations of the loads. For m loads m! combinations are possible. For the 

first load in the combination the extreme value of the number of load repetitions during period  tref 

are taken into account. For every subsequent load in the combination the number of possible load 

repetitions in the unit interval of the preceding load has to be ascertained and for that the extreme 

value distribution has to be determined. 
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Example 7.3 

Determine the load combinations of the three loads that vary independently in time, given in 

Figure 7.14. In total 6 combinations are possible: 

 combination 1: S1  S2  S3 

 combination 2: S1  S3  S2 

 combination 3: S2  S1  S3 

 combination 4: S3  S1  S2 

 combination 5: S2  S3  S1 

 combination 6: S3  S2  S1 

 

Because τ1  τ2 the combinations 3 and 5 are equivalent and because τ2  τ3 the combinations 4 

and 5 are also equivalent. Thus four combinations remain. For these combinations the following 

reasoning applies: 

 Combination 1: During the reference period  tref, n1 load repetitions of load S1 are possible. 

During the unit interval τ1 another n2/n1 load repetitions of load S2 can occur. 

Subsequently, it is possible that another n3/n2 load repetitions occur of load S3 during unit 

interval τ2. 

 Combination 2: For this combination n1 load repetitions of load S1 are also possible. 

During the unit interval τ1 another n3/n1 load repetitions can occur of load S3. In τ3 no more 

load repetitions are possible for S2. 

 Combination 3: During the reference period  tref, n2 load repetitions of load S2 are possible. 

During the unit interval τ2 another n3/n2 load repetitions can occur of load S3, but no more 

load repetitions are possible for S1.  

 Combination 4: In this combination n3 load repetitions of load S3 are possible. During the 

unit interval τ3 no load repetitions can occur for loads S1 and S2.  

The load combinations and the number of load repetitions that have to be taken into account are 

given in Table 7.2. 

Table 7.2 Possible Load combinations. 

combination 
number of load repetitions 

S1 S2 S3 

1 

2 

3 

4 

n1 

n1 

1 

1 

n2/n1 

1 

n2 

1 

n3/n2 

n3/n1 

n3/n2 

n3 

 

In chapter 9 an application will be shown for combinations of loads in a Level I probabilistic 

analysis. 
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8 Level I Methods 

8.1 Introduction 

The most common way of creating a design is by means of regulations and guidelines. The 

essence of the standards is that a certain characteristic value of the strength is divided by a factor 

and that the characteristic value of the load is multiplied by a factor, for which the following must 

apply: 

k
S k

R

R
S 

           (8.1) 

The factors γR and γS are known as partial safety factors. The representative values of the strength 

and the load are generally calculated with: 

k R RR

k S SS

R k

S k

 

 



          (8.2) 

In which kR will be negative and kS can be positive or negative depending if the action is 

favourable or non-favourable. For definitions of the characteristic values, see section 10.4. For 

material properties often Rk is defined as that value that has a probability of non-exceedance of 

5%. For loads on structures often the characteristic value is also called the representative value 

Frep. 

 

The procedure above is shown in Figure 8.1. 

 

 

Figure 8.1: Probability density functions showing the variations in load (red, left) and 

resistance (green, right). The design load and resistance are chosen in such a way that a 

structure with a sufficiently low probability of failure can be designed. Codes and 

guidelines provide information on the load and resistance factors (’s) that can be used to 

derive these values 

Safety factors should be applicable is many (different) situations; therefore some standardisation 

is needed.  
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In order to get insight in the influence of variables on the reliability, the values of sensitivity 

factors α should be determined using a probabilistic calculation. The most appropriate method for 

this is the level II method because the α values directly result from the analysis. Using level III 

methods it is also possible to calculate the α-values, but this is less straightforward. 

According to the Eurocode, the core of the level I design method is that the α-values are 

standardized and that they are considered independent of an arbitrary specific case. The 

standardized α-values can be obtained by carrying out failure probability calculations for a 

number of reference cases. Subsequently a weighted average of the calculated α-values can be 

determined, provided that the error in the resulting probabilities of failure is minimized. This leads 

to the α-values in Table 8.1. The derivation is given in the next section. 

Table 8.1 Standardized α values for structures according to the Eurocode 

Variable α 

Dominant strength parameter 

Remaining strength parameter 

Dominant load parameter 

Remaining load parameter 

0.80 

0.32 

-0.70 

-0.28 

 

Usually it is not possible to point to the dominant parameter amongst a number of load parameters 

on beforehand. Therefore, alternately one of the parameters is considered dominant. This results 

in a number of load scenarios, each with another dominant load parameter. The different load 

scenarios are mutually exclusive. The design point follows from the normative load scenario. The 

ratio of 40% (i.e. 0.32/0.8 or 0.28/0.7) between the dominant parameter and the remaining 

parameters is explained in the next section. 

 

In this chapter the symbol E is introduced for the load effect as also done in Eurocode NEN-EN 

1990. The basic limit state equation becomes Z = R - E. For direct loads in general, such as wind 

loads or wave heights, the symbol S is used. In the verification of the structural reliability in most 

of the cases we use resulting load effects such as bending moments in a structure. For the load 

effects in many cases models are used that are functions of the loads. For these models in a 

probabilistic calculation also model uncertainties should be taken into consideration. Therefore a 

different symbol E is used in the case of resulting or derived load effects. 

8.2 Simplified Level II Method 

8.2.1 General Formulation 

As a very common extension of the basic limit state equation 

( ) 0g X R E            (8.3) 

we now consider that R and 𝐸 are themselves very often a function of multiple variables and that 

most often the contribution of the resistance and the load to the limit state function can be 

separated, i.e.: 

1 1( ) ( , ..., , ..., ) ( , ..., , ..., )R i m E j ng X g R R R g E E E       (8.4) 
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Due to dependence on several load factors, the load effect will be denoted by 𝐸 rather than S. 

Hence, the sensitivity factors can in general be calculated as (expression (6.23)): 

*

22
* *

1 1

( )

( ) (e )

i

i

i j

R
R

i
R

m n
R E

R E

i ji j

g r
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σ σ
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




   
          

 

     (8.5) 

In which r* and e* are the design points values.  

 

And similarly in case of 𝛼𝐸𝑗. Designating the summations in the denominator as 𝜎𝑅
∗2 and 𝜎𝐸

∗2  

respectively, leads to: 
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
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         (8.6) 

This expression can be split up as follows: 
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g r
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σσ σ
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
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
      (8.7) 

and similarly 
j jE E Eα α α  . The factor R (resp. E) represents the contribution of the general / 

total resistance (resp. the load) in the total variability at the design point. The factor
iRα (resp. 

)
jEα  represents the contribution of the variable Ri (resp. Ej) in the variability of the resistance 

function (resp. the load function) at the design point. In case one allows a deviation β = ± 0.5 

compared to the values for βtarget that are mentioned in Table 10.6 and in accordance to König and 

Hosser: 

0.15 3.48E

R

σ

σ
           (8.8) 

holds, then the global sensitivity factors can be derived as: 

0.8, 0.7R Eα α           (8.9) 

In Annex C of EN 1990 the application boundaries 0.16 < E/R < 7.6 are mentioned. In case E/R 

falls outside these boundaries, one should consider  =  1 in case of the variable with the largest 

standard deviation and  =  0.4 in case of the variable with the smallest standard deviation. 

 

When Ri and Ej are rearranged according to decreasing i or respectively j values (standard 

deviations), one can derive the following expressions for the partial sensitivity factors: 

1, 1, ...,
iRα i i i m           (8.10)

1, 1, ...,
jEα j j j n           (8.11) 
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so that:  

1 1
1.0R Eα α           (8.12) 

0.4 for and 2 (approximative for , 2)
i jR Eα α i j i j       (8.13) 

Hence, R1 and E1 are the basic variables with the most important influence on gR and gE (largest 

standard deviation). When more than 3 variables occur in gR or gEthe approximative procedure 

leads to a more conservative design and one can reasonably consider i = 0  

for i > 3 in order to avoid exceeding βtarget + 0.5.   

8.2.2 Background of sensitivity factors  

(not part of the examination) 

In order to explain the origin of equation (8.11) we first consider the linear combination: 

1 2E E E            (8.14) 

with E1 : N(µ1, 1) and E2 : N(µ2, 2). In the plane of the normalized variables U1 and U2 the 

expression E1 + E2 = E* can be written as: 

*

1 1 2 2 1 2U σ U σ µ µ E            (8.15) 

The design value E* has to be determined so that there exists a fraction p = (E β) that is larger 

than E*. This means that the straight line (8.15) has to be located at a distance  

|E β| from the origin (Figure 8.2). The slope of the line (8.15) is determined by 1/2. The envelop 

of all straight lines which are located at a distance |E β| from the origin is given by a circle with 

radius |E β|. Hence, the design point with coordinates *

1u  and *

2u  will correspond to the tangent 

point of the line under consideration (i.e. determined by 1/2) to the circle. The line which is 

drawn in Figure 8.2 corresponds to 1/2 = 1. In order to be able to obtain fixed design values, we 

now choose the points A and B on this line corresponding with the following coordinates: 

* *

1 2 1 2

* *

2 1 2 1

( 2 1) in case 

( 2 1) in case 

E E

E E

u α β u α β σ σ

u α β u α β σ σ

     

     
    (8.16) 

in which the second coordinate follows from the simple geometrical considerations illustrated  in 

Figure 8.2. 
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Figure 8.2 Simplified combination of two basic variables E1 and E2 

Lines which are going through the first point, will for all values of the ratio 1/2 be located 

between the illustrated line (1 = 2) and the vertical line through *

1 1 EU u α β    (in case 2 = 0 

or 1/2  ). The lines corresponding to these two limit cases are tangent to the circle. For 

intermediate values of 1/2 the line through A will not be tangent to the circle with radius |E β| 

but will be tangent to a somewhat larger circle. Hence, the probability of exceedance of the 

combination will be smaller than the anticipated value (E β). This larger circle goes through A 

and thus has a radius:  

2 2 2 2
( ) ( 2 1) ( ) 2 1 1.082

2
E E E Eα β α β α β α β        (8.17) 

In case of E = 0.7 the coefficient of β becomes 0.76, which is only a small deviation compared to 

the target value 0.7 β. 

 

In case of a summation of n variables: 

1 ... nE E E            (8.18) 

one can use the following analytical derivation in order to show that the simplified values of 
jEα  

in:  

*

1 1
j j j

n n

E E E E

j j

E µ α β α σ
 

          (8.19) 
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can be calculated according to (8.11). We remind that the indices are designated in such a way that: 

1 2
...

nE E Eσ σ σ            (8.20) 

When considering (8.18), the equivalent expression of (8.6) in case of load variables becomes: 

1

*

* 2 2

( )

...

j

j

j

n

E
E

Ej

E

E E E

g e
σ

σE
α

σ σ σ





 

 
       (8.21) 

Hence, the last summation in (8.19) can be rewritten as: 

1

1

2 2

2 2
1

...

... .

n

j j

n

n
E E

E E

j
E E

σ σ
α σ

σ σ

 
 


         (8.22) 

Or: 

1

2 2

1

...
j j n

n

E E E E

j

α σ σ σ


            (8.23) 

As a safe approximation for the determination of the value 
jEα  for the jth variable load Ej one can 

consider in the previous expression: 

1 2 1
... ... 0

j j nE E E E Eσ σ σ σ σ


            (8.24) 

In case j = 1 one obtains 
jEα  = 1. In case j = 2 the following holds, when considering that 

1Eα  = 1: 

1 1 2 2 2 2 2 2

2 2(1 )E E E E E E E Eα σ α σ σ α σ σ           (8.25) 

Or: 

2
2 1Eα             (8.26) 

In case j = 3 one obtains the following as an approximation for (8.23): 

3 3 3 3 3

2 2 2(1 2 1 )E E E E Eσ α σ σ σ            (8.27) 

3
3 2Eα            (8.28) 

or in general:  

1
jEα j j   .         (8.29) 

8.3 Verification Procedure According to NEN-EN 1990 

In this section the implementation of the Level I calculations in Eurocode NEN-EN 1990 is 

discussed. It is used to derive design values for load actions and resistance. 

8.3.1 Design values of actions 

The design value Fd of an action F is defined in general as: 
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withd f rep rep kF γ F F ψ F          (8.30) 

with f a partial factor that accounts for unfavourable fluctuations of F compared to Frep and  a 

combination factor. The value of  is equal to 1, 0, 1 or 2 (see section 10.5.4) for an 

explanation of ψ-factors). 

8.3.2 Design value of load effects 

In general the design value of the load effect Ed (internal forces, stresses, deformations, 

displacements, etc.) can be written as: 

, ,( , , ) 1d dd Sd f i rep iE γ E γ F X a i        (8.31) 

With:  

 ad the vector with the design values of the geometrical variables; 

 Xd the vector with the design values of the material characteristics (optional); 

 Sd a partial factor that accounts for uncertainties related to: 

o the calculation model for the determination of the load effects, designated as E(...); 

o the probabilistic models for the loads. 

 

Most often (8.31) can be simplified as: 

, ,( , , ) ( 1)d dd F i rep iE E γ F X a i        (8.32) 

With: 

, ,F i f i Sdγ γ γ           (8.33) 

In case of a linear elastic analysis, (8.31) and (8.32) both yield the same result. In case of a 

nonlinear analysis the following simplifications are safe approximations (in case of a single 

dominating variable): 

 

a)  E increases more than proportional to F: 

( , ...)d F repE E γ F           (8.34) 

b) E increases less than proportional to F: 

( , ...)d F repE γ E F          (8.35) 

In both cases one obtains larger (more conservative) values compared to the use of (8.31). 

8.3.3 Design values of material and product properties 

The design value Xd of a material or product characteristic is in general defined as: 

k
d

m

X
X η

γ
           (8.36) 

with: 

  the mean value of a conversion factor considering: 

o volume and scale effects; 

o influences of temperature and humidity; 
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o other relevant parameters; 

 m a partial factor considering: 

o unfavourable fluctuations of X compared to Xk; 

o the stochastic nature of . 

8.3.4 Design values of geometrical characteristics 

a) Most often the design value ad of a geometrical characteristic is considered equal to a nominal 

value or:  

d noma a           (8.37) 

b) In case fluctuations of geometrical characteristics (e.g. the location of loads) significantly 

influence the structural safety, the design value is defined as: 

Δd noma a a           (8.38) 

where a takes into account: 

 unfavourable fluctuations compared to the characteristic or nominal value; 

 the cumulative effect of the fluctuations of different geometrical characteristics. 

 

The influence of other deviations is covered by F and M. 

8.3.5 Design value of resistance effects 

The design value Rd of a resistance effect is in general defined as: 

,

,

,

1 1
( ; ) ; 1

k i

d dd d i i

Rd Rd m i

X
R R X a R η a i

γ γ γ

 
    

 

    (8.39) 

with Rd a partial factor accounting for the uncertainties related to the calculation model R(...) and 

possible fluctuations of geometrical properties not explicitly accounted for through (8.38). 

 

As a simplification of (8.39) one can write: 

,

,

; 1
k i

dd i

M i

X
R R η a i

γ

 
   

 

       (8.40) 

With:  

, ,M i Rd m iγ γ γ           (8.41) 

Alternative to the use of (8.39), one can also determine the design value Rd of a material or 

product resistance by direct assessment of the characteristic value of the strength, without explicit 

determination of the design values of the different basic variables or: 

k
d

M

R
R

γ
           (8.42) 

Equation (8.42) is applicable on elements consisting of one type of material (e.g. a steel profile, 

pile foundations, etc.) and is also used in relation to design assisted by testing. 
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8.4 Derivation of Partial Factors 

8.4.1 General 

The standards offer values of partial safety factors for the most common strength and load 

parameters. The link with the probabilistic level II and III method is found in the definition of the 

design point. The design point is the point in the failure space with the greatest joint probability 

density of the strength and the load. It is therefore plausible that for failure the values of the 

strength and the load are close to the values for the design point. These values are (for normally 

distributed variables): 

*

*

       (1    )

        (1    )

R R R RR R

S S S SS S

r  β βVμ μα σ α

s β βVμ μα σ α

   

   
       (8.43) 

As a design criterion it is safe to abide by: 

 * *r s            (8.44) 

Equaling the equations (8.44) and (8.1) results in a number of equations for the partial safety 

factors: 

*

k
m

R
γ

r
  for resistances         (8.45) 

*

E

k

e
γ

E
  for load effects        (8.46) 

In which Rk and Ek are the characteristic values of resistance and load effects 

 

In case one considers that the design value can be obtained through a Level II method, i.e. xi
* = 

Xd,i, the partial factor i is introduced in order to establish the relationship with Xk,i.  

 

A partial factor is larger if: 

a) the absolute value of the influence coefficient α  is larger; 

b) the target reliability index β is higher; 

c) the coefficient of variation Vi is larger. 
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Example 8.1 

Suppose that both the strength and the load are normally distributed, with: 

S:   10   and    0.5   so    5

:  0.2

S S

R

S μ V σ

R V

  


        (8.47) 

The question is to determine the partial safety factor for the strength with a reliability index 

β = 3.6 and kR = -1.64 (5% non-exceedance) and what mean value of the strength is needed.  

 

The influence coefficients are (using equation (8.6)): 

2 2

0.2 5
           

0.04   25 0.04   25

R
R S

R R

μ
α α

μ μ
   

 
     (8.48) 

Using equation (8.43), The design point is given by: 

2
* *

2 2

0.04 25
-  3.6   and    10   3.6

0.04   25 0.04   25

R
R

R R

μ
r   μ s

μ μ
  

 
    (8.49) 

From r* - s* = 0 follows: 

2
 - 10 ) 3.6 0.04   25  0(

R R
μ μ           (8.50) 

Solving this equation gives: Rμ  = 51. The design point value for the strength is r* = 18.0 and the 

characteristic value is Rk = 34.2. The partial safety factor for the strength therefore is equal to mγ  

= 34.3/18.0 = 1.9. If the spread in the load is greater, the required strength will change. Assume 

Rσ = 2, then the following must apply: 

2
 - 10 - 0.04 -   4  3.6  0        39.0

R R R
μ μ μ           (8.51) 

In this case, the partial safety factor for the strength comes to: 

26.2
    2.2

11.8
m
γ            (8.52) 
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8.4.2 Partial factors for permanent loads 

In this section we derive typical values for the partial factors for permanent loads. 

Consider Gk = µG, E = -0.7 and 
1Eα = 1.0 so that for the unfavourable effect of G: 

* (1 0.7 3.8 )
1 2.66G G

g G

k G

µ Vg
γ V

G µ

  
          (8.53) 

In case the permanent load acts as a favourable effect, it can be considered as a resistance variable 

and hence: 

*

1 0.8 3.8g G

k

g
γ V

G
             (8.54) 

In section 10.4.3 we mention that VG varies between 5% and 10%. These values actually relate to 

load effects (including model uncertainties) rather than on the loads themselves (without model 

uncertainties).  

8.4.3 Partial factors for variable loads 

In this section we derive typical values for the partial factors for Gumbel distributed variable 

loads. 

 

Using (6.68) and  0.7 and 3.8Eα β    yields: 

 * 1 1
ln lnΦ (0.7 3.8) 5.543q u u

α α
             (8.55) 

According to table (2.3) the following relationships for the parameters are obtained: 

1 0.5772

1.282 1.282

Rσ u µ σ
α
           (8.56) 

or hence: 

* 0.5772 5.543
3.873

1.282 1.282
q µ σ σ µ σ           (8.57) 

For the partial factor we obtain: 

* 3.873 1 3.873

0.4584 1 0.4584
q

k

q µ σ V
γ

Q µ σ V

 
  

 
      (8.58) 

In case Vtref = 0.08 for the extreme value distribution of the extremes in tref a value Q = 1.36 is 

obtained. Considering the model uncertainty Sd = 1.1 this leads to: 

1.36 1.1 1.50Qγ             (8.59) 

8.4.4 Partial factors for concrete 

When defining the characteristic strength as the 5-quantile of the strength distribution (as usually 

considered) and considering R = 0.8 it follows from equation (8.45) and (8.46) that in case of a 

normal distribution: 
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*

1 1.645

1 0.8 3.8

k c
c m

c

R V
γ γ

r V


  

  
        (8.60) 

For a lognormal distribution the following holds according to (6.115) in case Vc < 0.2: 

*exp ( 1.645 ) exp ( )k R c R R cR µ V r µ α βV        (8.61) 

so that: 

*
exp ( 1.645 0.8 3.8 ) exp (1.395 )k

c m c c c

R
γ γ V V V

r
            (8.62) 

In Table 8.2 the values for c according to (8.60) and (8.62) are mentioned for different values of 

Vc. 

Table 8.2 Partial factors for Concrete 

Vc 
c (m) 

N LN 

0.05 

0.10 

0.15 

0.20 

1.082 

1.200 

1.385 

1.712 

1.072 

1.150 

1.233 

1.322 

 

Further, we consider that the uncertainties due to the conversion from the conventional concrete 

strength determined using control specimens to the actual concrete strength in the concrete 

structure are included in Vc. Further, a value Rd = 1.1 is considered in order to take into account 

uncertainties in the resistance model and execution errors. Hence, for Vc = 0.15 one obtains: 

1.1 1.385 1.52c Mγ γ     (normal strength distribution)     (8.63) 

1.1 1.233 1.36c Mγ γ     (lognormal strength distribution)    (8.64) 

This corresponds to the basic case c = 1.5. Smaller values of Vc correspond to smaller values of 

c. 

8.4.5 Partial factors for reinforcement and pre-stressing steel 

A similar derivation as the one considered for (8.60) yields: 

1 1.645

1 0.8 3.8

s
s m

s

V
γ γ

V


 

  
        (8.65) 

When applying Vs = 0.05 one obtains s = m = 1.082. When considering further that Rd = 1.1 for 

taking into account execution errors, one obtains s = M = 1.082  1.1 = 1.19. This result can be 

compared to the commonly applied value s = 1.15. 

8.5 Numerical values for the combination coefficient 0 

This chapter will introduce approaches for deriving the factor ψ that is used for a safety 

verification in which several loads are combined.  
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8.5.1 General 

The variation in time of the value of a variable action can in general be modelled by a stochastic 

process (see also Chapter 7). In Figure 8.3 two load processes Q1(t) are Q2(t) illustrated. From this 

figure it becomes clear that: 

1 2 1 2max[ ( ) ( )] max[ ( )] max[ ( )]
ref ref ref

t t t
Q t Q t Q t Q t         (8.66) 

Because of this reason (and considering two independent variable loads), the alternative load 

combination Q1k + 0 Q2k is introduced instead of Q1k + Q2k. 

 

 

Figure 8.3 Two Load Processes showing the points in time at which the maximum 

values of the individual loads (Q1 and Q2) and combined load (Q3) occur. 

8.5.2 Application: normal distributions 

First, we will assume normal distributions for Q1 and Q2. Assume that the characteristic values of 

the two variable loads are defined as the 95-quantiles of a normal distribution. This yields: 

1 1 11.645kQ µ σ           (8.67) 

2 2 21.645kQ µ σ           (8.68) 

For the characteristic value of the sum Q12 = Q1 + Q2 the following holds: 

2 2

12 1 2 1 2( ) 1.645kQ µ µ σ σ           (8.69) 

Transforming (8.69) yields: 
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2 2

12 1 1 2 2 1 2 1 2

2 2

12 1 2 1 2 1 2

( 1.645 ) ( 1.645 ) 1.645 ( )

1.645 ( )

k

k k k

Q µ σ µ σ σ σ σ σ

Q Q Q σ σ σ σ

        
 

      
 

   (8.70) 

The value between square brackets is negative from which follows that Q12k< Q1k + Q2k which is 

consistent with (8.66). 

  

Assume that the subscripts are chosen so that Q1k > Q2k. Hence we can write: 

12 1 0 2 0with 1k k kQ Q ψ Q ψ          (8.71) 

From the previous it follows that: 

2 2

2 1 1 2

0

2 2

2 2 2

1 12 1 12 2

2

1.645 1.645

1.645

1 1.645 1.645

1 1.645

µ σ σ σ
ψ

µ σ

V ξ V ξ V

V

    


 

     


 

      (8.72) 

with ξ12 = µ1/µ2.  

 

We calculate some numerical values for 0 in case V1 = V2 = V, with: 

 V = 0.1 ; 0.3 ; 0.5 ; 0.7 

 ξ 12 = 1 ; 2 

 kq = 0.8416 ; 1.645 ; 2.576 

 

The three values of kq relate to the definition of Qk as the 80, 95 or 99.5-percentile, respectively. 

The resulting 0 values  are summarized in Table 8.3.  

 

 

 

 

 

 

 

Table 8.3 Results Normal Distribution 

V ξ12 = 1 ξ12 = 2 

kq = 0.8416 kq = 1.645 kq = 2.576 kq = 1.645 

0.1 0.955 0.917 0.880 0.892 

0.3 0.882 0.806 0.744 0.748 

0.5 0.827 0.736 0.670 0.655 

0.7 0.783 0.686 0.623 0.591 
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8.5.3 Borges-Castanheta load model (application in EN 1990) 

We here apply the FBC model (see section 7.7.2) for the combination of loads. We discuss the 

case in which the loads are assumed to be Gaussian distributed.  

Two loads, normal distributions 

 

Figure 8.4 Two loads, normal distributions 

We consider a combination of two loads S1 and S2 with extreme value distributions FS1max and 

FS2max. Both loads have the same number of load changes in the reference period tref, so both loads 

have an equal Δt. For the first load in the combination the FBC model leads to the use of the 

extreme value distribution for T, we assume m (=tref / Δt) load changes in tref. For the second load 

because of the equal Δt the APT (arbitrary point in time or instantaneous) distribution should be 

used. As an example we take the loads to be normally distributed with mean value of 10 and 

standard deviation of 2. 

 

The load S has a normal distribution with S = 10 and S = 2. We take αS = -0.7 and  = 4. The 

design value is: 

*  15.2S S SS μ α β σ            (8.73) 

The time independent combination value is: 

0.4  12.2com S S SS μ α β σ         (8.74)             

So for the time independent case we find o = 12.2/15.2 = 0.8. 

 

For the time dependent case with tref = 100yr, t = 1yr (so m = 100), we use the following 

derivation. In the 100 year distribution function the probability that the design value is exceeded 

is: 

 *{   } Φ 0.0026SP S S α ß         (8.75) 

This means for the exceedance probability of the design value in the APT distribution: 

   
1/*

 { }  1 1 Φ 0.000026 Φ 4.05
m

apt SP S S α ß              (8.76) 

The second load in the combination is considered with its APT distribution as mentioned above. 

In the APT distribution we apply the reduced α-factor for the combination value Scom: 

     Φ 0.4 4.05 Φ 1.63 0.05apt comP S S           (8.77) 
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In the extreme value distribution this means: 

       1 1 0.05 0.995 Φ 2.5
m

comSP S             (8.78) 

The combination value becomes:  

– 2.5 8.3com S SS μ σ            (8.79)                        

We find: o = 5 /15.2 =0.3. 

Two Gumbel distributions 

We consider now the case of two Gumbel distributed loads q. We consider the second load and 

determine q* based on the maximum over tref (with n2 repetitions, designated in the following as 

n). The combination value qcom is determined based on n' = n2/n1 repetitions.  

 

Figure 8.5 FBC model with two loads 

From equation (6.117) we obtain the design value: 

 
1

ln lnΦ (0.7 )

6 6
0.5772 ln( lnΦ (0.7 ))

6
1 (0.5772 ln( lnΦ (0.7 )))

ref

ref

ref ref

t

t

t t

q u β
α

µ σ σ β
π π

µ V β
π

   

    

 
    

 

     (8.80) 

with µtref determined for n elementary time intervals. Consequently, the following holds according 

to table (2.3): 

1
ln

ref
t

n
µ µ

α
   

We now consider the maximum over a shorter period that consists only of n' intervals (n' < n) and 

we consider the action as non-dominant multiplying the α-factor with 0.4. The corresponding 

design value qcom then becomes: 

 
1

ln lnΦ (0.28 )com nq u β
α

          (8.81) 

With: 

Δt1 

Δt2 
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1
ln ln ln 1

ln
ref ref

n t t
n n n n

u u u u
α α α α n


   

         
     (8.82) 

so that: 

 

  

1 1
ln ln lnΦ (0.28 )

6
1 0.5772 ln lnΦ 0.28 ln

ref

ref ref

com t

t t

n
q µ β

α n α

n
µ V β

π n

 
     

   
          

   (8.83) 

Consequently, the combination value is obtained as 0 = q0
*/q*. In Table C4 of EN 1990 the 

following equation is mentioned: 

 
 

1

0

1 0.78 0.58 ln( lnΦ (0.28 )) ln

1 0.78 0.58 ln( lnΦ (0.7 ))

V β N
ψ

V β

   


  
     (8.84) 

with N1 = T/T1 (rounded off to integers) in which T is the reference period and T1 is the largest of 

the basic periods of the actions which have to be combined. This corresponds to equation (8.83) 

since: 

2
1

2 1

nn
n

n n n
 


         (8.85)  
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Learning objectives of this chapter: 

 To be able to perform a failure probability calculation for series, parallel and combined 

systems for various situations :(in)dependence and for various correlation values. 

 To be able to create a fault or event tree for a (simplified) engineering system. 
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9 Reliability of systems 

9.1 General introduction 

A structure or system in civil engineering generally consists of a set of elements. Whereas the 

previous chapter has focused on the assessment of the reliability of a single limit state, this 

chapter addresses the reliability analysis for systems that consist of multiple elements.  

The consequences of the failure of an element will depend on the type of system that is 

considered. In some cases, the failure of an element leads to subsequent failure of the whole 

system (progressive collapse). In other cases and system configurations, there could be no failure 

if a single element fails and other elements take over the function of the failed element.  

In reliability analysis two types of basic systems can be distinguished, i.e. the series and the 

parallel (see Figure 9.1). Within a series system, failure of a single element will always lead to the 

failure of the entire system. An example (Figure 9.2- left) would be a bridge (statically 

determinate) for which failure of one the deck or girder elements leads to failure of the bridge. 

Within a parallel system, failure of one element can be compensated by the performance of 

another element. An example could be a pile foundation with many piles. In practice, a complex 

system can generally be represented by means of a combination of parallel and series subsystems.  

The left side of Figure 9.2 shows the representation of the series and parallel system as an input-

output system. This is similar to the possible systems configurations of light bulbs and other 

electronic applications. When one Christmas tree light fails in the series system, the entire system 

ceases to function. If the lights connected are in parallel, the other lights will remain functioning 

when one light fails. 

Type System representation Simple example (structural engineering) 

Series  

 

 

Parallel 

 
 

Figure 9.1: Series and parallel system: schematic representation (left) and example 

(right) (Vrouwenvelder and Vrijling, 1987).  
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Figure 9.2: Examples of a series and parallel system: a bridge (series system; left); and a 

pile foundation (parallel system, right) 

The remainder of this chapter will now focus on the analysis and quantification of reliability for 

series (section 9.2) and parallel systems (section 9.3). Techniques for systems analysis, such fault 

and event trees, will be discussed in chapter 9.4. The relationship between system reliability and 

(system) design considerations is addressed in chapter 9.5.  

9.2 Series systems 

9.2.1 General 

A simple series system with two elements is considered. Element 1 has a strength of iR  and 

element 2 a strength 2R . The load on the system is represented by S . For every element a limit 

state function iZ  can be formulated: 

1 1

2 2

Z R S

Z R S

 

 
           (9.1) 

If the average, standard deviations and distributions of iR and S are known, the reliability indices 

iβ  and corresponding failure probabilities ( )iP F  can be determined.  

 

Figure 9.3: A simple series system. 

The general formulation is as follows: 

1 2 1 2 1 2( ) ( ) ( ) ( ) ( )P F P F F P F P F P F F            (9.2) 

The upper and lower boundaries of the system failure probability ( )P F  can be assessed by taking 

into account the different possible cases of dependence, see Figure 9.4. This gives the lower and 

upper bound for the system failure probability for the system with two elements: 

1 2 1 2( ( ), ( )) ( ) ( ) ( )Max P F P F P F P F P F          (9.3) 

The lower bound is found for a situation with full dependence of both elements. Failure of one 

element, implies failure of the other and the two events in the Venn diagram overlap. The upper 
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bound is found if the failures of the elements are mutually exclusive. If the failures are 

independent   ( 0ρ  ) the following solution is found: 

1 2 1 2( ) ( ) ( ) ( ) ( )P F P F P F P F P F            (9.4) 

Case Mutually exclusive Independent Dependent 

Correlation 

coefficient.
1, 2Z Zρ   

-1 0 1 

Venn diagram 

   

System failure 

probability  P F  1 2( ) ( )P F P F  1 2 1 2(F ) ( ) ( ) P(F )P P F P F  

 
1 2( ( ), (F ))Max P F P  

Figure 9.4 Typical cases and outcomes for three levels of dependence. In sketching the 

Venn diagrams it is assumed that P(F1) = P(F2). 

9.2.2 Systems reliability as a function of the correlation coefficient  

The previous section presented the failure probability for a simple system consisting of two 

elements for cases in which the system failure probability can be determined exactly with 

analytical formulations. This is the case for mutually exclusive, independent and dependent 

failures, i.e. for 0ρ  and 1ρ   . For other cases and values of the correlation coefficient the 

failure probability of the series system, will be between the lower and upper bound, see Figure 

9.5. The relation in this figure is typical for variables whose joint distribution is described by the 

Gaussian copula.  In Appendix 9.2, The failure probability as a function of the correlation 

coefficient in the case of other copulae is displayed. 

 

Figure 9.5: Failure probability of a series system of two identical elements as a function 

of the value of the correlation coefficient  for joint distribution of variables described by 

the Gaussian copula (schematic representation for small failure probabilities). 
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An exact calculation of the failure probability may be challenging. However, for variables joint by 

a Gaussian copula, good approximation methods are available, such as the method of Ditlevsen 

(1977) that is elaborated below. Ditlevsen developed an approximation method which can be used 

to calculate more narrow boundaries for the system failure probability than the upper and lower 

bound. This method assumes a known correlation between the failure modes, expressed by a 

correlation coefficient ρ and normally distributed reliability functions. Ditlevsen deduced that:  

 1 2 1 2 1 2 1 2 1 2Φ( )Φ( *);Φ( *)Φ( ) ( ) Φ( )Φ( *) Φ( *)Φ( )Max β β β β P F F β β β β             

           (9.5) 

in which: 

1

1 1 1 1Φ ( ( )),  so ( ) Φ( )β P F P F β           (9.6) 

 1

2 2Φ ( ( ))β P F            (9.7) 

1 2
1

2
*

1

β ρβ
β

ρ





          (9.8) 

2 1
2

2
*

1

β ρβ
β

ρ





          (9.9) 

ρ is the correlation coefficient between  𝑍1 and 𝑍2, the limit states corresponding to 1 2 and F F .  

 

Thus, for the probability of failure of the series system 1( )P F  with two elements the following 

applies:  

             

            

* *

1 2 1 2 2 1

* *

1 2 1 2 1 2

Φ Φ Φ Φ Φ Φ

Φ Φ Φ Φ ;Φ Φ

β β β β β β P F

β β Max β β β β

          

       
   (9.10) 

For situations with two identical elements 1 2* * *β β β   and this simplifies to: 

           

* *

* *

2Φ( ) 2Φ( )Φ( ) ( ) 2Φ( ) Φ( )Φ( )

2Φ 1 Φ Φ 2 Φ

i i i i i i

i i i i

β β β P F β β β

β β P F β β

         

       
    (9.11) 

Example 9.1: Ditlevsen bounds for a system with two elements 

A given series system consists of two elements with resistances 1R and 2R , and a load S (see 

Figure 9.3). Both resistances are independent, and the load and resistance are also independent. 

For both load and resistance normally distributed variables are assumed with ( )iμ R 10kN and

( )iσ R  1kN, ( )μ S 4kN and ( )σ S   1kN. For both elements the following applies: 

2 2 2 2

( ) ( ) ( ) 6

( ) ( ) ( ) 2

( ) 6
4.29

( ) 1.4

i i

i i

i
i

i

μ Z μ R μ S kN

σ Z σ R σ S kN

μ Z
β

σ Z

  

  

  

       (9.12) 
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It follows that 6( 0) Φ( ) Φ( 4.29) 8.94 10i iP Z β        . 

 

The lower and upper bound for the system can now be determined: 

6 58.94 10 ( ) 1.79 10P F            (9.13) 

To determine the bounds of the system failure probability more accurately the correlation 

coefficient ρ  needs to be determined for the mechanisms 1Z  and 2Z . First, the co-variance is 

determined (see also section 9.2.2): 

1 2 1 2 1 2Cov( , ) Cov( , ) Cov( , ) Cov( , ) Cov( , )Z Z R R R S R S S S       (9.14) 

If load and resistance are independent, it follows that Cov( , ) 0iR S  . It is also assumed that both 

resistance are independent, so 1 2Cov( , ) 0R R  . It follows that: 

2

1 2Cov( , ) ( )Z Z σ S          (9.15) 

Consequently, the correlation coefficient can be determined: 

 
 

   

 

   

2

1 2

1 2 2 2

1 2

Cov , 1
, 0.5

1 1i

Z Z σ S
ρ Z Z

σ Z σ Z σ R σ S
   

 
    (9.16) 

Based on Figure 9.4 it can already be concluded that for this value of the correlation coefficient, 

the upper bound is a good approximation. The upper bound gives an estimate of the system failure 

probability of 5( ) 1.79 10P F   .  

The Ditlevsen bounds are found according to equation (9.11). To use these formulas the following 

need to be calculated first: 

6Φ( ) Φ( 4.29) 8.94 10iβ
            (9.17) 

2 2

4.29 0.5 4.29 2.15
* 2.48

0.751 1 0.5

β ρβ
β

ρ

  
   

 
     (9.18) 

Substitution gives:  

           
           

     

 

6

* *

3 3

5 5

68.94 10

2Φ 1 Φ Φ 2 Φ

2Φ 4.29 1 Φ 2.48 Φ 4.29 2 Φ 2.48

2 1 6. 8.94 157 10 2 6.57 10

1.716 10 1.722 10

0

β β P F β β

P F

P F

P F

  

 

       

       

        

   

 
  (9.19) 

 

 

 

 

Example 9.2 

The same assumptions as in Example 9.1 are used, only the standard deviations of the load and 

resistance are changed into: ( )iσ R  0.45 kN, ( )σ S  1.34 kN. 2 (Z )iσ does not change so the 
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failure probabilities of individual elements do not change. However, the correlation coefficient 

1 2( , )ρ Z Z does change: 

 

   

2

21 2 2

1.8
0

1
) .

1
, 9(

i

σ S

σ R σ
ρ Z Z

S
 

 
       (9.20) 

The approach is applied for the Ditlevsen bounds for a system with two identical elements. It 

yields: 

*

2 2

4.2 0.9·4.2
0.96

1 1 0.9

i i
i

β ρβ
β

ρ

 
  

 
       (9.21) 

The corresponding failure probability equals  Φ * 0.17iβ  . For the system failure probability 

the following is found using equation (9.11): 

             

     

 

* *

5 5

5 5

2Φ 2Φ Φ 2Φ Φ Φ

2.6·10 1 0.17 1.3·10 2 0.17

2.2·10 2.4·10

i i i i i iβ β β P F β β β

P F

P F

 

 

         

   

 

   (9.22) 

Note that the upper bound in the above example is fairly close to fundamental upper bound (
52.6 10 ). Apparently, the correlation values need to be very high to have a significant effect on 

the system failure probability. 

9.2.3 Series system with multiple elements  

In this section we consider the general case of a series system with multiple elements (see Figure 

9.6). For a series system with n elements, the failure space is defined by: 

1 2 3 n1 2 3 n <    <    <   ...    S S S SR R R R           (9.23) 

 

Figure 9.6: Series system with n elements 

Following the principles from section 9.2.1 the fundamental boundaries of the probability of 

failure of the series system with n elements is given by: 

n

i f ii i

i = 1

max (P (  < ))     P (  < )S SR P R         (9.24) 

The lower bound is valid for the fully dependent case and the upper bound for a mutually 

exclusive case. For a series system with n  independent elements the failure probability can be 

determined as follows. The failure probability of an element can be written as  i iP F p . It can 

also be formulated as the complement of the reliability, (i.e. probability of non-failure)

   1i iP F P F  . Consequently, the system failure probability ( )P F for the case of independent 

elements can be determined as follows: 
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         1 2

1

1 . 1 1
n

n i

i

P F P F P F P F p


           (9.25)  

If the failure probabilities of all n  elements are identical ( ip p ) this simplifies to

   1 1
n

P F p   . For small values of the probability p approximations are available. If 1np   

the following approximation is often applied for the series system (this is similar to the upper 

bound formulation):   

 P F np           (9.26)  

If 1p   and 1n   the following approximation can be used. 

    
1

np
P F e


           (9.27)  

The following example shows the differences between the various approaches. 

 

Example 9.3 

A series system with 10n   elements is considered. Two cases are considered. In case 1, a 

relatively large value of the probability of an element is consider, i.e. 0.1p  and in the second 

case a smaller probability, 0.01p  . Table 9.1 below shows the outcomes for the various cases. 

For the small failure probability (the second case) the two approximations are close to the exact 

solution. For the first case with the larger p value there are significant differences.  

Table 9.1: System failure probabilities for a series system with n=10 elements for 

varying values of the element failure probability and various approximations. 

Case p  
Exact solution: 

 1 1
n

p   
Approximation 1: np   

Approximation 2: 

 
1

np
e


  

1 0.1 0.65 1 0.63 

2 0.01 0.0956 0.1 0.0952 

 

Figure 9.7 below summarizes the outcomes and bounds for the system failure probability for the 

various cases. The lower bound is found for the case of full dependence. The upper bound is 

found in case of mutually exclusive failures. The outcomes for the independent case will be close 

to the upper bound in case of small failure probabilities. 
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Figure 9.7: Failure probability of the series system for various cases, lower (green) and 

upper bound (black) and independence (red). 

 

Bounds for a series system with more than two elements 

As can be seen from Figure 9.7, the fundamental upper and lower boundaries are often rather wide 

and provide only information for specific boundary cases (mutually exclusive and dependent). It 

is therefore useful to have the Ditlevsen boundaries. This has been introduced in section 9.2.2 for 

a system with 2n   elements. It is relatively easy to extend this approach to 3 or more elements. 

Figure 9.8 shows a Venn diagram for a system with three elements.  

 

Figure 9.8: Venn diagram for a system with 3 elements 

We know that for a system with two elements, the exact failure probability can be determined as 

follows: 

     1 2 1 2 ) (P F P F P F P F F            (9.28) 

This is used to derive an upper bound for a 3 element system. If a third element is added, the total 

failure probability increases with  3 1 2F F F  . However, to approximate the exact value we 
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have two options. In a lower bound approximation we subtract all the additional “overlapping” 

areas in the Venn diagram, i.e.: 

Lower bound: 

       1 2 1 2 3 1 3 2 3   –   ( )    –  ) ( )–(   P F P F P F P F F P F P F F P F F        (9.28) 

In this case we may subtract a bit too much and underestimate the system failure probability. For 

the upper bound approximation we subtract the largest of the two additional overlapping areas. 

Upper bound: 

       1 2 1 2 3 1 3 2 3   –      –  ( ) { ( ,) ( }  ) P F P F P F P F F P F Max P F F P F F       (9.28) 

Ditlevsen has used this approach to formulate more general bounds for the same problem with n  

elements: 

,

2

,

( ) max

( ) max( ,0)

i ij LOW
j i

i i

i ij UP

i j i

P F P P

P F P P






 

 

 

 
         (9.29) 

In which in accordance to equation (9.5): 

 

 

 

,

,

0 Φ( )

P 0 and 0 Φ( )Φ( *) Φ( *)Φ( )

P 0 and 0 max(Φ( )Φ( *);Φ( *)Φ( ))

i i i

ij i j i j i j ij UP

ij i j i j i j ij LOW

P P Z β

P Z Z β β β β P

P Z Z β β β β P

   

         

        

   (9.30) 

The application of this approach is demonstrated by means of an example: 

 

Example 9.4 

A series system with n  elements is given, according to Figure 9.6. The load on all elements is 

exactly the same and the load is assumed normally distributed. The strength of the elements is 

statistical and normally distributed. The strength of the various elements is assumed to be 

correlated. 

 

An equal correlation between the strength of all elements is assumed with a correlation coefficient

   0.7ρ . The parameters of the distribution of the strength and the load are: 

ii i

ii i

RR R

SS S

 = 280     = 20     = 0.7

 

  = 160      = 20      = 1.0

μ ρσ

μ ρσ

       (9.30) 

One is asked to determine the lower and the upper boundaries according to Ditlevsen as well as 

the elementary lower and upper boundaries for the probability of failure for a system of 2 to 10 

elements. 

 

The failure of a single element follows from: 
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2 2

5

      280 160  120

      28.28

    4.24

  Φ (- )  1.1 10

i i i

i i i

i

i

i

SZ R

SZ R

Z

i

Z

f i

μ μ μ

σ σ σ

μ
β

σ

βP


    

  

 

  

      (9.31) 

The elementary boundaries are 5 51.1 10          1  .1 10fP n       

To calculate the Ditlevsen-boundaries the correlation coefficient between iZ  and jZ  must be 

determined first. The general expression for the covariance is: 

i j i j i ji j i jCov (  ) = Cov (  ) - Cov (  ) - Cov (  ) + Cov (  )S S S SZ Z R R R R   (9.32) 

Because the load and the strength are independent the following now applies: 

2 2

 Cov(  )  Cov(  )  Cov(  )

Cov(  )          

Cov(  )  0.7  20   1.0  20   680

i j i jij ij

i j i j i j

i j S SR R SR

i j

S SZ Z R R

ρ ρσ σ σ σZ Z

Z Z

 

 

    

      (9.33) 

The correlation coefficient Z iZ jρ  then follows from: 

 2

Cov (  ) 680
      0.85

 (28.28)i j

i j

i j

Z Z

Z Z

Z Z
ρ

σ σ
         (9.34) 

As the correlation coefficient is now known the Ditlevsen boundaries can be calculated. 

According to Ditlevsen, if        i jβ β β   then: 

*
  (   0    0)  2 Φ ( ) Φ ( )

ij
i jfP P β βZ Z            (9.35) 

with: 

 

 *

2 2

* *6 6

   4.24 0.85  4.24
      1.21

1 0.851  

1.25 10 Φ ( ) Φ ( )   2 Φ ( ) Φ ( )  2.5 10

i j

i j

Z Z

Z Z

ij

β βρ
β

ρ

β P ββ β
 

  
  



         

   (9.36) 

With these values for 
ijfP the lower and upper boundaries according to Ditlevsen are calculated in 

Table 9.2, using the lower bound 𝑃𝑖𝑗𝐿𝑂𝑊 = 1.25 ⋅ 10−6  from (9.36) for the upper bound of the 

system and the upper bound 𝑃𝑖𝑗𝑈𝑃 = 2.5 ⋅ 10−6  from (9.36) for the calculation of the lower bound 

of the system with equations (9.29). For n=2 the calculation corresponds to the elaboration 

presented earlier in section 9.2.2. For example, for n=3, for the columns A, B and C: 

 𝐴 = 𝑃𝑖 + 𝑃𝑖 + 𝑃𝑖 = 3 ⋅ 1.1 ⋅ 10−5 = 3.3 ⋅ 10−5,  

𝐵 = min⁡(𝑃𝑖𝑗,𝑈𝑃, 𝑃𝑖) + min(2 ⋅ 𝑃𝑖𝑗,𝑈𝑃, 𝑃𝑖) = 2.5 ⋅ 10−6 + 2 ⋅ 2.5 ⋅ 10−6 = 7.5 ⋅ 10−6 ,  

𝐶 = 𝑃𝑖𝑗,𝐿𝑂𝑊 + 𝑃𝑖𝑗,𝐿𝑂𝑊 = 2 ⋅ 1.25 ⋅ 10−5 = 2.5 ⋅ 10−6.  
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Table 9.2: Lower and upper boundaries of the probability of failure according to Ditlevsen. 

 

N 
1

n

i

i

A P


  

1

,

2 1

min( , )
n i

ij UP i

i j

B P P


 

   
,

2

n

ij LOW
j i

i

C max P




  

 

lower 

limit 

    =A-B 

 

upper 

limit 

=A-C 

1 1.1·10-5 0 0 1.1·10-5 1.1·10-5 

2 2.2·10-5 2.5·10-6 1.3 ·10-6 2.0·10-5 2.1·10-5 

3 3.3·10-5 7.5·10-6 2.5·10-6 2.6·10-5 3.0·10-5 

4 4.4·10-5 1.5·10-5 3.8·10-6 2.9·10-5 4.0·10-5 

5 5.5·10-5 2.5·10-5 5.0·10-6 3.0·10-5 5.0·10-5 

6 6.6·10-5 3.6·10-5 6.3·10-6 3.0·10-5 6.0·10-5 

7 7.7·10-5 4.7·10-5 7.5·10-6 3.0·10-5 6.9·10-5 

8 8.8·10-5 5.8·10-5 8.8·10-6 3.0·10-5 7.9·10-5 

9 9.9·10-5 6.9·10-5 1.0·10-5 3.0·10-5 8.9·10-5 

10 1.1·10-4 8.0·10-5 1.3·10-5 3.0·10-5 1.0·10-4 

 

Figure 9.9 shows the exact probability of failure, the elementary lower and upper boundaries and 

the narrower boundaries according to Ditlevsen.  

 

Figure 9.9: Probability of failure of the series system of Example 9.4. 

An even better estimate of the probability of failure is attained with the upper and lower 

boundaries approximation according to Hohenbichler and Rackwitz (1983). This approximation 

uses a transformation of non-normally distributed statistically dependent basic variables to 

standard normally distributed independent basic variables. This method is less simple and requires 

a greater calculation capacity than the Ditlevsen method. Finally, of course also numerical 

integration and Monte Carlo analysis may be used, but that is generally even  more time 
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consuming. 

9.2.4 Continuous series systems (not part of the examination) 

Besides the discrete series systems with n elements, continuous systems also exist, e.g. a dike 

body or a concrete bar. In every point, the strength of the continuous series system can be 

described as a random variable with an expected value and a standard deviation.  

The strength in two different points will usually be correlated. The degree of correlation depends, 

amongst other factors, on the distance Δx between the two points considered. The relation 

between the correlation and the distance is described with the so-called correlation function. A 

commonly used expression for the correlation function is: 

2

  Δ

Δ
 ( , )  exp x x x

x
ρ R R

d


  
      

        (9.37) 

in which: 

 ρ(Rx, Rx + Δx) is the correlation between the strengths at locations x and x + Δx; 

 d is the so-called correlation distance, which depends on the problem. 

 

The figure below shows the observed values of some parameter (e.g. cone resistance in a CPT) 

over a distance x. In case A the correlation distance is larger than for situations B. This means that 

in situation A there will be a larger correlation between two observations at two sites than for 

situation B. The more variation there is in the observations over the distance, the smaller the 

predictive value of an observation for another location. 

 

Figure 9.10: Two observation signals over distance x 

If every location has the same reliability index β, (and assuming that the spatial correlation of the 

load is very high) the probability of failure of the system can be approximated by: 

 
  Φ ( ) 1   

 
f R

β L
β αP

π d

 
   

 
        (9.38) 

in which: 

 
2 2  

R

R

R S

σ
α

σ σ



(follows from the level II calculation); 

 L is the length of the system. 
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This formulation provides a simple way to determine length effects. An example of an application 

concerns the fluctuation of soil properties for dikes. Large fluctuations may lead to a larger 

probability of weak soil layers and a higher probability of failure due to geotechnical mechanisms. 

9.3 Parallel systems 

In general, a parallel system is characterized by the fact that elements can compensate for each 

other: failure of one element does not automatically lead to failure of the entire system.  

Thereby, the parallel system is the opposite of the series system. A series system fails if one of the 

elements fails. The pure parallel system functions if one of the elements functions. In more 

popular terms it is often said that the strength of a series system is determined by its weakest link, 

while a parallel system is as strong as its strongest link.   

The pure parallel system fails if all elements of the system fail. The failure space is defined by: 

1 2 ... nF F F            (9.39) 

in which iF  is the failure of element     1  , 2,  ..., i i n . The probability of failure of the system is: 

1 2 1 3 1 2 1 1   ( )  (  | )  (  | , ) ...  (  |  ... )f n nP F P F F P F F F P F F FP       (9.40) 

If the events iF  are statistically independent: 

1 2  ( )  ( ) ...  ( )f nP P F P F P F         (9.41) 

The bounds for a system with multiple identical elements with each failure probability iP  are as 

follows:  

 0    f iP Min P           (9.42)  

The lower bound is found for a situation in which failures are mutually exclusive. The upper 

bound is valid for a case in which the failure are fully dependent. These characteristic situations 

can also be recognized in the Venn diagrams introduced in Figure 9.4. Failure of the parallel 

system occurs in the surface where the two events overlap. 

 

Two examples of parallel systems are given in Figure 9.11 and Figure 9.12. Another example (not 

shown) of a system that could function as a parallel system is a foundation with many piles that 

jointly support a foundation plate.   

The first example (Figure 9.11) concerns a city protected by two dikes. If the first dike fails, no 

immediate flooding of the city occurs as it is still protected by the second dike. The strength of the 

system is determined by the strongest of the two dikes.  

The failures are dependent when both dikes have the same design and elevation and the load on 

the second line of defence would be the same as on the first line after failure. In that case the 

upper bound from equation (9.30) can be applied. In case of dependence of elements, the parallel 

configuration does not lead to an increase of reliability. 
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Figure 9.11: Example of a parallel system 

 

Figure 9.12: Portal structure. 

The other case shows a different behaviour. Figure 9.12 shows a portal structure that consists of 

two columns with a beam on top. The beam is loaded by a horizontal load S. The resistance 

against collapse of the portal structure is made up of the combined strength of the columns. 

 

The strength of the system against the horizontal force is determined by the sum of the strength of 

the two columns (note that the system strength is larger than for the previous case with the dikes, 

since both columns add to the strength): 

1 2R R R            (9.43) 

in which: 

 1 2,  R R is the maximum reaction force, which can be exerted by columns 1 and column 2, 

respectively; 

 R  is the strength of the system. 

 

However, the validity of this formulation of the strength greatly depends on the behaviour of the 

elements after reaching the maximum reaction force. The resistances of the elements can indeed 

be added if the columns show ductile behaviour. However, if columns show brittle behaviour the 

total strength will be smaller than the sum of the resistances of the two columns. Figure 9.13 

shows the difference between ductile and brittle material behaviour. The ductile material can 

sustain significant plastic deformation before failure, but this is not the case for the brittle 

material.  
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Figure 9.13: Stress-strain diagrams for ductile and brittle material behaviour. 

We continue the case assuming ductile behaviour, so that the resistances can be added. It follows 

that: 

     

         
1 2

2 2 2

1 2 1 1

  2

2

μ R μ R μ R μ

σ R σ R σ R ρσ R σ R

  

  
       (9.44) 

The general expression for the variation coefficient for two elements becomes: 

( ) 2 2( ) 1( ) ( ) (1 )
2( ) 2 ( )

i

i

i

σ R ρσ R
V R V R ρ

μ R μ R


         (9.45)  

If the two elements are independent ( 0ρ  ) and when both standard deviations are equal to σ  it 

follows that: 

     2 2 2 2

1 2 2σ R σ R σ R σ          (9.46)  

The variation coefficient can be expressed as follows:  

   
 

2
2 2

σ R σ VV R
μμ R

          (9.47)  

If the two elements are dependent ( 1ρ  ) it follows that: 

         

   
 

2 2 2 2

1 2 1 12 4

2
2

σ R σ R σ R ρσ R σ R σ

σ R σV R V
μμ R

   

  
     (9.48)  

For the more general case of the parallel system, it can be shown that: 

    2 2

1 1 1 1

 and ( ) ) ) ( )
n n n n

ij i j i ij

i j i j

i σ R ρ σ R σ R σ R ρμ R nμ R
   

        (9.49)  
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With f an equation which differs with dependency. For cases with multiple elements, this is 

summarized in the table below: 

 

Figure 9.14: Parallel system with multiple elements. 

Table 9.3: Outcomes for the parallel system with n elements for different levels of 

dependence. 

 

 

Finally, as an illustration, some numerical results are shown to highlight the effect of correlation 

values and the number of elements in the parallel system - see Figure 9.15. This shows that the 

system failure probability rapidly decreases with the number of elements, but fades out for 3 to 4 

elements. Also the value of the correlation coefficient has an important influence. The lowest 

system failure probability is found for cases with a low value of the correlation coefficient ρ .  

 

Figure 9.15: Failure probability for a parallel system with n elements with identical 

correlations with μ(R)= 2μ(S) and V(Ri)=0.1, V(S)=0.2. 
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9.4 Approaches  to analyse systems using logic trees 

This section describes logic tree techniques to analyse the undesired events that can lead to system 

failure, and the corresponding failure probabilities. The following sections summarize a number 

of these techniques. After the system definition (9.4.1), undesired events are identified (section 

9.4.2). Consequently, the corresponding failure probabilities can be determined using techniques 

such as event trees and failure trees (9.4.3 – 9.4.5) and appendix 9.1. Eventually, this information 

can be used to quantify and evaluate the risk – see section 3 for more information.  

The presented techniques aim to provide insight in mechanisms of system failure and the 

associated failure probabilities. Techniques such as fault tree and event trees allow the 

combination of technical failures and human and organization failures in one approach. Insights of 

the risk analysis can be used to optimize system design and management, as insight is provided in 

the most important mechanisms and so-called “weak links”. The outcomes of the process can thus 

serve as a tool for communication and management.  

9.4.1 Systems analysis 

The analysis of a system starts with a description of the functions of the system and the 

components of the system. 

The process or system under consideration can usually be described as a so-called input-output 

element (see Figure 9.16). Here the system is assumed to be failing if no output takes place. 

Usually a system is divided into elements and subsystems, which can all be schematised as an 

input-output elements. By means of the internal relations the components and subsystems together 

form a configuration that is representative of the total system. The subdivision in components and 

subsystems goes up to a level where the probabilities of failure can be determined.  

 

Figure 9.16: input-output system, components and subsystems. 

In order to analyse systems failure, not only physical components, but also organizations and 

operators and users need to be considered (see e.g. Bea, 1998). This means that the reliability 

analysis can include failures of engineering elements (e.g. gates of a storm surge barrier that fail 
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due to overloading) and human and organizational elements (e.g. failure of closure of the barrier 

due to failure of the closure operation by the operators). 

A system can have one or multiple functions, see a simplified example below for a lock complex 

(Figure 9.17). Different physical subsystems can be necessary for various functions. By drawing a 

matrix, in which these relationships are indicated, the functional requirements for subsystems can 

be determined. 

 

Figure 9.17: Relationships between functional and physical subsystems of a lock 

complex. 

As part of the risk analysis, undesired events are identified that lead to failure of (one of the 

functions of) the system. Different subsystems can have a common basic event that leads to 

failure. In such a case common cause failure is involved. An example of this is an earthquake, 

which can lead to the collapse of various subsystems – see also section 9.5.  

9.4.2 Failure modes and effects analysis (FMEA) 

Several qualitative techniques are available to analyse which undesired events can lead to system 

failure. The Failure modes and effects analysis (FMEA) is a qualitative approach which aims to 

systematically identify the failure modes of the components and subsystems, and the associated 

consequences. The FMEA is usually carried out in the design phase of a system or process, with 

the objective of identifying the components and subsystems that require improvements to achieve 

a sufficiently reliable system. The general goal of the FMEA is to offer an overview that is as 

complete as possible of all the foreseeable unwanted events and consequences in a system or 

process, so that decisions concerning whether or not to undertake certain actions can be well-

founded. Figure 9.18 gives a general flowchart for the FMEA. 
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Figure 9.18: Flowchart for the FMEA 

The FMEA can be executed bottom-up by starting at the level of the components and subsystems 

and by subsequently expanding the analysis to system level. The scale of the analysis greatly 

depends on the lowest level (component or subsystem). To reduce the often enormous scale, the 

availability of data concerning failure of components and subsystems can determine the lowest 

level, for which it is reasonable to start the analysis. The disadvantage of the bottom-up approach 

is that components and subsystems are analysed that may be of lesser importance for the 

functioning of the total system or process .  

Another way to carry out the FMEA is the so-called top-down approach. This entails carrying out 

the analysis in two or more phases. The first phase is dividing the system into function blocks. A 

function block is a set of components or subsystems which together have one function. For every 

function block an inventory can be made of the possible undesired events and the resulting 

consequences, e.g. based on experiences with similar subsystems. Per function block the 

importance for the functioning of the total system can be identified. Depending on this, the 

decision is made whether or not to further analyse a function block in a following phase. With the 

top-down method a lot of time and effort can be saved, but failure modes can be overlooked.  

Recording the results of an FMEA can be done in a structured way by means of a table. An 

example of an FMEA table for a system that supplies water to a production facility is shown in 

Table 9.4. 

Table 9.4: Example of a simplified FMEA table for a water supply for a production 

facility.  

Element: Water pipe 

Function: Supply of water 

Defect Possible cause Consequence Action 

No 

water 

 

 

 Pump does not work 

 Pipe is broken 

 Valve does not work 

 Stagnation of 

the production 

process 

 Installing a second 

pump 

 Constructing a 

backup pipe 

Too 

much 

water 

 Pump doesn't turn off 

 Valve does not work 

 Water 

problems  

 Waste of 

water 

 Safety system for 

pump operation  

 Constructing a 

double valve 

 

Component or 

subsystem

Defects or 

undesired events

Analysis of the 

causes

Probability or 

frequency

Consequences

Action?
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FMECA: Failure modes, effects and criticality analysis 

An FMEA becomes an FMECA by adding a so-called criticality matrix. In this matrix the 

different failure modes and consequences are related to each other and the consequences are 

classified according to their severity. Furthermore, the frequencies of the different failure modes 

are estimated. This way a ranking is determined, which highlights the most frequent failure modes 

and the gravest consequences.  

The data included in a criticality matrix differ per system. Possible factors are: 

  iλ   is the frequency of failure mode I when in operation; 

  it   is the time span during which the system or subsystem is operational; 

  siP   is the conditional likelihood with which the failure mode leads to the final effect; 

  iS   is the damage factor, which expresses the gravity of the consequence. 

 

With the help of these data the so-called criticality factor can be determined, (neglecting starting 

problems): 

     sii i i iC λ t SP           (9.50) 

The magnitude of iC determines the order of the failure modes. This order is subsequently 

decisive in the choice of the actions to be undertaken. The costs of an action to reduce the 

frequency of a failure mode or to limit the consequence can also constitute a part of the criticality 

matrix. 

9.4.3 Event tree 

The event tree is an aid in the analysis of the response of a system to one event. In a logical 

manner, the event tree relates this one "initial event" to all possible consequences, by making an 

inventory and an analysis of all the possible events that can follow the initial event. Figure 9.19 

presents examples of the event trees for a series and a parallel system with three light bulbs.   

For event trees it is common to indicate “failure” in the bottom branch and “functioning” in the 

top branch after a node. In the event trees below the pure series and parallel systems can be 

recognised instantly. The series system fails if one of the components fails (see section 9.2), the 

parallel system fails if all three elements fail (see section 9.3). Many systems are less simple, 

because they consist of combinations of series and parallel subsystems. An example of an event 

tree for a combination of such systems is given in Figure 9.30. With the help of the event tree a set 

of events can be defined that leads to failure or functioning. In Figure 9.20 the probabilities of 

"light" and "no light" are determined for the series system and the parallel system of Figure 9.19. 

The different combinations of events can also be recognized in the corresponding Venn diagram 

of Figure 9.8. The resulting probabilities of failure for the series and parallel system can be 

determined with the bounds derived. 
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Figure 9.19: Event trees for a series system and a parallel system. 

 

Figure 9.20: Probabilities of 'light' and 'no light' for a series system and a parallel system. 

Note that P(Ei) denotes the probability of failure of element i, whereas P(�̅�𝑖) denotes the 

probability of non-failure (i.e. survival) of element 1. 

As a simple example from civil engineering, one can consider a dike with a revetment which is 

subject to wave attack during a storm. Failure, i.e. a complete breach in the dike, will occur if the 

revetment fails and if the wave attack lasts sufficiently long to lead to erosion of the earthen dike 

structure. Figure 9.21 below shows the simple fault tree only taking the failure mechanism of 

revetment failure into account. Note that there will be some correlation between both events as 

both are affected by the same phenomenon (i.e. wave attack). 

1

1 2 3

2 3

Ē2

Ē2

Ē3

Ē3

Ē2

Ē1

E1

E2

E3

E1

E2

E3

P(Ē1∩Ē2∩Ē3)

P(Ē1∩Ē2∩E3)

P(Ē1∩E2)

P(E1)

P(E1∩E2∩E3)

P(E1∩E2∩Ē3)

P(E1∩Ē2)

P(Ē1)

}

}

Light

P(Ē1∩Ē2∩Ē3)

No Light

P(E1∩E2∩E3)

No Light

P(E1∪(E1∩E2)∪(Ē1∩Ē2∩E3))

Light

P(Ē1∪(E1∩Ē2)∪(E1∩E2∩Ē3))

a. Serial system

b. Parallel system
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Figure 9.21: Simple event tree for a revetment  

In making an event tree it is important not to include too many details to avoid a very large tree. 

The subsystems can best be analysed separately to prevent cluttering the event tree.  

Since the branches of an event tree shows different types of combinations of failure events (and 

thus different scenarios) for which the consequences can be different, it can also be used to show 

the outcomes on the right side. Figure 9.22 shows a very simplified example for a flood prone 

area with a dike system for flood protection and a rescue operations system to prevent fatalities in 

case of flooding. The dike system protects the economic assets, whereas fatalities can be averted 

due to rescue operations. For more complex systems, different levels of economic damages and 

other outcomes can occur for different combinations.  In that case the event tree can be used to 

create the probability mass (or density) function of consequences, as it shows the different 

scenarios with their probabilities and consequences. 

 

Figure 9.22: Event tree with consequences of failures, for a combined dike – rescue 

operations system. 

9.4.4 Fault tree 

The fault tree gives a logical succession of all events that lead to one undesired "top event" at the 

top of the tree. Fault trees were developed in the 1960’s for applications to defence and aviation. 
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In the 1970’s fault trees were implemented and further developed in the nuclear industry. After 

that, other fields, such as the chemical industry and civil engineering (e.g. for the design of the 

Eastern Scheldt barrier) started to use fault trees. Nowadays, techniques such as fault trees and 

event trees are used in all engineering fields. 

Figure 9.23 gives the fault trees for the series and parallel system introduced in Figure 9.19. The 

events E1, E2 and E3 are base events. E1 is the event: “light bulb 1 fails”. The node above the base 

events shows the condition that has to be met for the overall top-event located to occur. This 

condition is called a gate. Figure 9.23 gives two of these conditions: the "and-gate" – used for 

parallel systems - and the "or-gate" – for series systems. For the and-gate all underlying events 

have to take place for the top event to occur. For the or-gate at least one of the underlying events 

has to take place to pass the gate in the fault tree. 

 

Figure 9.23: Fault trees for a series system and a parallel system both consisting of three elements. 

The failure probabilities of both systems can be determined with the bounds determined for the 

series and parallel system in earlier sections of this chapter. As a recap, the main bounds are 

summarized in Figure 9.24. 

 

For the series system of n elements the total failure probability is found as follows  

  1 2 3  ( ). nP F P E E E E            (9.51)  

For the parallel system the following is found: 

  1 2 3  ( ). nP F P E E E E            (9.52)  

 

Figure 9.24: Summary of values for the system failure probability for various cases 

(lecture by T. Schweckendiek). 
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Other types of gates 

Beside the "or”-gate and the "and"-gate there are other variants of these gates: 

 the "voting gate"; 

 the "inhibit gate"; 

 the "priority and gate"; 

 the "exclusive or gate". 

 

The “voting gate” requires a minimum number of underlying events to occur to pass the gate in 

the fault tree. An example of this is a power plant with a system of three generators, of which at 

least two must function to be able to supply enough power. When two generators fail, the entire 

system fails. The fault tree for this example is shown in Figure 9.25. 

 

Figure 9.25: Fault tree with voting gate. In this case failure occurs if at least two 

elements fail. 

If the failure of the elements is statistically independent and the probability of failure of an 

element is equal for all elements, the Binomial distribution can be used. The following is valid: 

e e

n
k n - k

f f f

k = m

n!
( ) =    (1 - )PP P

k! (n - k)!
        (9.53) 

in which: 

 f eP is the probability of failure of an element; 

 n  is the total number of elements; 

 m is the number of elements that have to fail to let the system fail. 

 

If the failure probabilities of the elements are not equal, the failure probability has to be calculated 

for every combination that leads to failure. The probability of failure is then the sum of the 

probabilities of the combinations. In the case of the voting gate in Figure 9.25 at least two 

elements need to fail. The combinations 1 2 3 1 2 3 1 2 3( ) ( , (, )  )E E Ē E Ē E Ē E E       and 

1 2 3( )E E E   lead to system failure. If the events are independent, the probability of failure is: 

1 2 3 1 3 2

2 3 1 1 2 3

   ( )  ( ) (1 -  ( ))   ( )  ( ) (1 -  ( ))

   ( )  ( ) (1 -  ( ))   ( )  ( )  ( )

f P P P P P PP E E E E E E

P P P P P PE E E E E E

 

 
    (9.54) 

The “inhibit gate” is a replacement of the and-gate for cases where one of the underlying events 

is a conditional event. Figure 9.26 shows an example of this. The event next to the “inhibit gate” 

is a conditional event, which can only occur if the initial event has taken place. 
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Figure 9.26: Fault tree with an “inhibit gate”. 

The “priority and gate” is an enhancement of the normal “and”-gate. For this gate all underlying 

events must take place in a given order, from left to right, to lead to the top event.  An example is 

given in Figure 9.27. In this case consequent failure of the guardian, sleeper and dreamer will lead 

to flooding of the village. 

 

Figure 9.27: Fault tree of a sea defence system. 

The probability of failure of the system is: 

1 2 1 3 1 2   ( )  (  | )  (  |   )f P P PP E E E E E E         (9.55) 

in which: 

 1E  is the guardian fails; 

 2E  is the sleeper fails; 

 3E  is the dreamer fails. 

 

Finally, there is the “exclusive or gate” as an enhancement of the “or”- gate. In the case of an 

“exclusive or gate” the top event (only) takes place if exactly one of the underlying events occurs. 
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Consider a packing system as an example of such a system. A packing system can be split into a 

system that supplies the product to be packed, a system that supplies the packing material.  

Suppose that failure of the system is defined as: “The system delivers unpacked goods or empty 

packing material”. In that case not delivering a product is not considered the top event, because no 

direct consequential damage occurs. The failure space of the system is determined by: 

1 2 1 2(   )  (   )E E E E            (9.56) 

in which: 

 1E  is no supply of the product; 

 2E  is no supply of the packing material. 

The probability at failure can be determined simply with level III methods. These methods can 

simply include the statistical dependence of the events E1 and E2 in the simulation or integration 

procedures.  

Table 9.5 gives a short overview of the different gates and the way they are drawn in a fault tree. 

Table 9.5: Symbols for the various gates in a fault tree. 

 

Beside the different gates, a lot of different events also appear in the fault tree. Table 9.6 gives 

seven symbols that indicate the different events. 
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Table 9.6: Events used in a fault tree. 

The base event is an initial event, which is situated at the base of the fault tree. Such an event 

usually concerns the failure of a system component. 

For the event that is not developed further, no thorough analysis of the underlying base events has 

been carried out. When quantifying the probability of failure of the total system, the probability of 

the event that is not developed further is sometimes neglected. 

The compound event I is a consequential event that occurs if the condition defined in the underlying 

gate is met. The compound event II is a variant of the base event, for which the event occurs if the 

numerical condition shown in the box is met. This gate is useful for defining the failure space. 

Figure 9.28 gives an example. Theoretically, the compound event is a combination of a gate and an 

event. 

Figure 9.28: Compound event II. 

The conditional event only occurs in combination with the “inhibit gate” and can only occur if the 

initial event under the gate has taken place. The house event is an event, which always takes place. 

Even if a fault tree is drawn up under the supposition that a certain, non-house, event has taken 

place, this event is often indicated with the symbol for a house event. The reference symbol is used 

in large fault trees to split the tree into sections and to refer to sections presented elsewhere. With 

the given formulae for the various gates the probabilities of the compound events can be 

calculated and combined to find the probability of the final top event. 
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Closing remark 

Fault trees are very useful for an efficient analysis of the reliability of a system. This is also 

demonstrated by their wide application in many fields. The fault tree provides insight in the 

contribution of various failure modes and mechanisms to system failure probability. For complex 

systems, fault trees can grow to very large sizes. A disadvantage of a fault tree is that the analysis 

focuses on a single “top event” and only on the failure probability. When multiple failure 

scenarios with different consequences can occur, the analyst has to make multiple fault trees, or 

define the top event in terms of range of consequences. The event tree provide some more 

opportunities to quantify different scenarios with varying consequences in one analysis. Also, a 

cause consequence chart can be used to incorporate different undesired events with varying 

consequences. Since this technique is less widely used in civil engineering, it is treated in 

appendix 9.1. 

Example for a combined system  

The previous sections have shown how event and fault trees can be composed for pure series and 

parallel systems. However, in practice, a system will consist of different components and 

subsystems with both parallel and series configurations. As an example Figure 9.29 shows a 

system that consists of five elements. A number of combined events (I…IV) has been identified 

for the analysis. For this system both an event tree (Figure 9.30) and a fault tree (Figure 9.31) 

have been made. This shows that both the event and fault tree can be used to represent system 

failure. 

 

Figure 9.29: Example of a combined system consisting of series and parallel subsystems 
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Figure 9.30: Event tree for the example of the combined system. 

 

Figure 9.31: Fault tree for the example of the combined system. 
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The probability of system failure can be formulated. In this case, it is most convenient to use the 

fault tree and to start at the top. The combined events (I…IV) are used to assess the probability of 

system failure  P F . 

   

    
    

     

      

1

1 2

1 2

1 2 3

1 2 3 4 5

   or 

     or  and 

     or  and 

     or  and  or 

     or  and  or  and 

II

III

III

IV

P F P B S

P F P B B S

P F P B B S

P F P B B B S

P F P B B B B B











      (9.57) 

Consequently, the system failure probability can be determined – assuming independence of the 

events. This is done in a bottom up approach. 

     

       
     

       
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1– 1– · 1–

IV

III IV

II III

II

P S P B P B

P S P B P S

P S P B P S

P F P B P S









       (9.58)  

The example is also used to introduce the concept of minimal cut sets. These are the unique 

combinations of component failures that can cause system failure0F

1 . Within the example, the 

following cut sets can be observed (see also Figure 9.32):      1 2 3 2 4 5; , ; , ,B B B B B B . Any 

combination of these failures will result in system failure. 

 

Figure 9.32: Example with various cut sets  

9.4.5 Bayesian networks 

Will be added in a next version of the lecture notes 

9.5 System design considerations 

The optimal system design and configuration will be case specific. Based on the previous sections 

a number of general considerations for system design can be given. 

                                                   
1

 http://reliawiki.org/index.php/Fault_Tree_Diagrams_and_System_Analysis#Minimal_Cut_Sets, accessed 

August 6, 2015 

B1

B3

B4

B5

B2

Cut set 1 Cut set 2 Cut set 3

Input Output



Lecture Notes CIE4130   Chapter: Reliability of Systems 

 

226 4𝑡ℎ Version 

 

Firstly, it is important that a high-reliability system has sufficient redundancy. A system is 

redundant, if critical elements are duplicated with the intention of increasing reliability of the 

system (source: Wikipedia). Redundancy can be achieved by implementing elements and 

subsystems in a parallel configuration. It is then very important that these failures of these parallel 

elements are independent or mutually exclusive. In the case of full dependence the system failure 

probability reduces to that of the strongest component, i.e.    min iP F P .  

In designing a parallel system, it is important that it shows ductile (and not brittle) failure 

behaviour. If multiple elements (e.g. columns in a building) show brittle behaviour, the total 

strength will be smaller than the sum of the resistances of all the elements. 

It is also important to take into account the occurrence of common cause failures. These occur 

when multiple elements fail due to the same (shared) cause. One example, could be the inclusion 

of an unsound part in two subsystems. Another way a common cause failure could occur, is the 

occurrence of joint events, such as an earthquake or the loss of power, which will lead to failures 

of multiple elements. Such common cause failure could greatly increase the failure probability of 

the parallel system. For example, consider a system consisting of two elements with a failure 

probability of 1 2 0.1P P  . In the case of independence the system failure probability equals

  0.01P F  ; When there would be common cause failure and both failures are dependent, the 

system failure probability would become    1 2min , 0.1P F P P  . 

Adding elements and failure mechanisms in a series configuration will lead to an increase of the 

failure probability, unless the elements are fully dependent. It is therefore better to prevent a 

system design with multiple mechanisms or elements with a similar failure probability, as these 

probabilities will start to add up. In several cases, a series configuration can hardly be avoided at 

reasonable cost. Consider for example a dike ring system with multiple elements and failure 

mechanisms. Then, the question becomes how the acceptable failure probability can be distributed 

over the different failure mechanisms. Once the failure probability that is assigned to an element 

and mechanism is known, the required “strength” of the elements can be determined. Figure 9.33 

gives an example of a possible assignment of a probability of failure for a series system with three 

independent elements.  

 

Figure 9.33: Possible distributions of the probability of failure for a series system with 

three independent elements.  
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This example shows that in theory a large number of distributions of the probability of failure 

over the various elements is possible. In practice, the distribution over failure mechanisms and 

elements will be determined by various aspects such as: 

 Costs of reducing the failure probability for a given failure mechanism 

 Feasibility of the interventions 

 Societal preferences, in some cases it is desired to have low failure probabilities for 

specific mechanisms, because the consequences are more severe than for other 

mechanisms. In such cases, it could be argued whether all the mechanisms should be 

associated with the same top event in the fault tree. 

 

These type of problems can also be subject to optimization. In such an optimization, it can be 

investigated which distribution over mechanisms leads to the cheapest structure for the given 

failure probability level. For example, a dike designer can allow more failure probability for 

overflow (leading to a higher dike) or allow a larger failure probability for geotechnical 

mechanisms (leading to a wider, but slightly lower dike). 

In addition to the distribution over known mechanisms, it is good practice to assign a reserve of 

20% for yet unidentified failure modes and other setbacks. As the design and insight progresses, 

the failure probability analyses become more detailed. In such phases of a project, a redistribution of 

the assigned probabilities of failure is possible and often appropriate.  
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Appendix 9.1 Cause consequence chart 

One characteristic of the fault tree is that only the probability of failure (or non-failure) of the 

entire system is addressed. The consequences of different combinations or scenarios of events 

cannot be represented in the fault tree. Therefore the cause consequence chart has been developed, 

which combines some characteristics of the fault tree and the event tree. It enables the analyst to 

show multiple sets of consequences (similar to the event tree). Figure 9.34 gives an example of a 

cause consequence chart for a sea barrier system, consisting of the guardian, the sleeper and the 

dreamer. The consequences of failure of different lines of defence will differ. For example only 

agricultural losses in case of failure of the first two defences, but larger economic losses of all 

three defences fail and the village gets flooded. By combining the probabilities and consequences 

of the events, the probability density function (or distribution) of consequences can be compiled 

and the risk can be determined (see also chapter 3 for further background). Although the cause 

consequence chart is already an improvement relative to the mentioned trees, it still doesn't offer 

the possibility of considering the consequence of a random variable. 

  

Within the cause consequence chart, failure can also be assessed as a function of a number of 

continuous random variables representing the load and strength (see Figure 9.35). For example, 

the hydraulic loads S due to surge on the dike can be described by means of statistical distribution. 

Also, (model) uncertainty in the overtopping resistance R  can be taken into account. Level II and 

III calculation methods can be used to determine the probability of failure. 
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Figure 9.34: Event tree, fault tree and a cause consequence chart for a sea defence 

system consisting of multiple lines of defence. 



Lecture Notes CIE4130   Chapter: Reliability of Systems 

 

231 4𝑡ℎ Version 

 

 

Figure 9.35: A simple cause consequence chart for a limit state.  
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Appendix 9.2 Systems reliability for variables described by various copulae 

In section 9.2.2, the failure probability of a series system of two identical elements as a function 

of the value of the correlation coefficient was discussed, under the assumption that the joint 

distribution function is described by the Gaussian copula. This does not always have to be the 

case. In fact, when the joint distribution is described by another copula, for example the t-copula 

or the Clayton copula, the failure probability as a function of the correlation coefficient can show 

very different behaviour, see Figure 9.36. 

 

Figure 9.36 Failure probability of a series system of two identical elements as a function 

of the value of the correlation coefficient according to different copulas (schematic 

representation for small failure probabilities). 
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10 Applications and design codes in civil / structural engineering 

This section focuses on reliability concepts and applications concepts used in civil and especially 

structural engineering. First, some general background in the structural safety is given (section 

10.1). Consequently, design concepts and codes are introduced (10.2) and target values for 

reliability in civil engineering (10.3). Subsequently, some general approaches for modelling the 

load and strength are presented (10.4). The final section deals with variable loads and actions on 

structures (10.5). 

10.1 Background 

A difficult question that a designer sometimes has to answer can be “Is this construction now 

really safe?”. This question cannot simply be answered by “yes” or “no”. First of all, safety is a 

relative concept that always has to be evaluated in the context of a certain reference framework 

for risk evaluation (see chapter 3). Secondly, such a question relates in general to the global 

structure or system, but problems that are considered often only concern a limited number of 

elements or stages of the construction process.. Human and organizational errors are crucial in 

(preventing) failures and in risk management. Therefore, it should be emphasized that integral 

quality management and the continuous education (at all levels) is an absolute necessity. Control 

procedures will inevitably stay an important aspect in the construction process, but also self-

discipline (for example by a good education) can be very effective in this regard. Especially the 

lack of reliable communication is one of the major causes of structural accidents in the 

construction industry. It appears that the failure and collapse of structures is strongly influenced 

by human mistakes, errors and shortcomings, in the design phase, the construction phase and 

during the service period. This problem is illustrated in the following by discussing a number of 

important and remarkable structural accidents and collapses that are summarized in Appendix 

10.1. 

 

The failure and collapse of structures can be summarized with the term ‘structural accidents’. 

The probability of dying due to the consequences of structural accidents is in the order of 

magnitude of 10-7 per year (CIRIA, 1977) and thereby rather small compared to other risks (e.g. 

10-4 per year for traffic accidents and 10-2 per year for mountaineering – see chapter 3). 

Considering that the time which is spent inside or on structures or infrastructures is quite large, 

the corresponding risk is rather small, which proves that structures are in general designed in a 

safe way.  

 

Table 10.1 gives an overview of structural accidents (not necessarily lethal) according to the type 

of structure. This overview is obtained from a study performed by Matousek which is summarized 

in (Hauser, 1979) and relates to more than 800 structural accidents in Europe. The establishment 

of such statistical information is rather difficult because not all cases are reported and information 

about it is in general not clearly and uniformly reported. 
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Table 10.1 Relative occurrence of structural accidents with respect to the type of 

structure (Hauser, 1979) 

Residential and office buildings 52 % 

Industrial buildings 22 % 

Road constructions (bridges, tunnels, 

etc.) 

11 % 

Coastal engineering and hydraulics 7 % 

Air-raid shelters 2 % 

Other types 6 % 

 

The construction phase during which an error occurred or during which a certain aspect was 

neglected, is indicated in Table 10.2. Design errors can be mainly allocated to a wrong notion 

about the behaviour of certain components, wrong dimensions and/or not recognizing certain risk 

causes. 

Table 10.2 Construction phase during which an error occurred (Hauser, 1979) 

Design 37 % 

Constructon 35 % 

Design and construction 18 % 

Use 5 % 

Other 5 % 

 

From this research, it was observed that the most efficient way to increasing structural safety or 

attaining a predefined safety level is preventing large errors. Apparently, the current structural 

prescriptions and models are in general sufficiently safe and accurate. Furthermore, the quality of 

the applied materials is most often sufficiently high. However, a crucial point is to execute an 

efficient quality control on the different activities that take place in the construction process. 

 

Possible negative consequences of structural accidents are most often allocated to both the 

designer and the constructor. Very often a joint liability is pronounced, because the contribution 

of both parties to the construction process are closely correlated and sometimes difficult to 

distinguish. Luckily, the consequences of this liability are less draconic nowadays compared to 

the time of Hammurabi, king of Babylon from 1728 to 1686 BC. The so-called Code of 

Hammurabi, engraved in a diorite stele which is currently on display in The Louvre, is considered 

to be the oldest known building law (Meyer, 1986). The Code contains among others the 

following extract Figure 10.1: 

 

“If a builder builds a house for someone, and does not construct it properly, and the house which 

he built collapses and kills its owner, then that builder shall be put to death.”  
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Figure 10.1 Extract of the Code of Hammurabi with respect to the liability of the master 

builder 

Not only the dramatic aspect of this law is striking, but also the fact that the legislators of that 

time attributed the failure of structures completely to the shortcomings of the master builder. 

Hence, they completely neglected the existence of natural causes. 

 

Because only a very limited number of structures fail, one can have the impression that most 

structures are absolutely safe. However, absolute safety is not realizable and it is moreover not 

desirable to aim for such absolute safety as this would lead to a probably unaffordable and large 

investment. After all, increasing safety has always some economic consequences. However, this 

does not mean that there is always exists a conflict between both aspects. One has to aim at 

‘fitness for purpose’ and accept some calculated risks. Hence, the main objective of the design is 

to make sure that there is a low probability that the structure would be unfit for its intended 

purpose during its lifetime.  

 

Most structures have to fulfil several performance criteria, most often expressed as limit states. 

Most often these limit states interact and the problem is more complex than specifying a single 

probability. As such, the concept of safety is currently considered in a broader context than was 

previously the case. A risk analysis not only consists of the calculation of a failure probability or 
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the application of appropriate partial factors, but one also has to consider optimization of the 

design with respect to the specified performance criteria, application of decision theories, 

modelling of accidental actions, quality control, human errors and the associated problems. This 

broader context requires the incorporation of a whole new set of concepts. However, often it is not 

easy to adjust the existing calculation models – of which the deterministic formulation is already 

rather sophisticated – towards an equivalent formulation in a probabilistic framework. 

 

The design of more complex structures requires the verification of several characteristic design 

situations. The number of such design situations that have to be verified can increase quickly and 

make it very difficult to have a clear overview of the general behaviour, which can sometimes not 

be grasped by one person. As an example, the cryogen storage tanks of the Fife Ethylene Project 

in the neighbourhood of Edinburgh are mentioned, where in total twelve different load 

combinations were considered accounting for the different situations that can occur during the 

lifetime of the structure (construction phase, water test, cool down period, use, maintenance, 

accidental actions) (Wendrich, 1983). The structural aspects of the storage tanks is of course only 

one part of the project, that included also supply, gasification and distribution installations. Hence, 

with respect to safety considerations of the entire project, it was deemed necessary to incorporate 

a number of justified simplifications and to consider that some events take place independently.  

 

The same complexity also occurs in nuclear power plants, offshore structures, high-rise buildings, 

flood defence systems etc. For all these cases, the information with respect to the different basic 

variables is sometimes rather limited, especially in case new materials are applied. Moreover, the 

knowledge with respect to the structural behaviour under complex load combinations is 

sometimes limited, i.e. the degree of uncertainty with respect to fundamental aspects is higher 

than usual and only a probabilistic approach can lead to a sound result. 

10.2  Design concepts and codes 

In this section some general concepts are introduced that are used in civil and structural 

engineering. Most concepts which are mentioned in this chapter are based on the European 

Standard EN 1990 entitled “Basis of structural design”. 

10.2.1 Normative Reference Framework 

The European Standard EN 1990 (Eurocode 0) "Basis of structural design” contains 

 the principles and requirements with respect to safety, use and durability of civil structures  

 the basis for the design and control of buildings and civil engineering structures 

 guidelines for structural safety aspects. 

 

The idea is that this EN 1990 is used together with EN 1991 to 1999 in order to design buildings 

and civil engineering structures, including geotechnical aspects, fire design, seismic design and 

design of temporary structures. The entire set of Eurocodes is conceived as follows: 

 EN 1990: Basis of structural design; 

 EN 1991: Actions on structures; 

 EN 1992: Design of concrete structures; 



 

238 4𝑡ℎ Version 

 

Lecture Notes CIE4130   Chapter: Applications and Design Codes 

 EN 1993: Design of steel structures; 

 EN 1994: Design of composite steel and concrete structures; 

 EN 1995: Design of timber structures; 

 EN 1996: Design of masonry structures; 

 EN 1997: Geotechnical design; 

 EN 1998: Design of structures for earthquake resistance; 

 EN 1999: Design of aluminium structures. 

 

EN 1991 is subdivided in : 

 part 1-1: Densities, self-weight and imposed loads for buildings; 

 part 1-2: Actions on structures exposed to fire; 

 part 1-3: Snow loads; 

 part 1-4: Wind actions; 

 part 1-5: Thermal actions; 

 part 1-6: Actions during execution; 

 part 1-7: Accidental actions due to impact and explosions; 

 part 2: Traffic loads on bridges; 

 part 3: Actions induced by cranes and machinery; 

 part 4: Actions on silos and tanks. 

10.2.2 Basic Assumptions 

The following basic assumptions are applicable: 

 supporting systems are designed by people with proper education and training; 

 the execution is realized by people with proper skills and experience; 

 in factories and at the construction site adequate quality control is applied; 

 the construction materials and products are used as prescribed in EN 1990 till 1999 or in 

the concerning material or product specifications; 

 the structure will be suitably maintained; 

 the structure will be used for the purpose it was intended for. 

10.2.3 Fundamental Requirements 

A structure must be designed and executed so that, during the anticipated lifetime: 

 it withstands all actions and influences that can occur during construction and use; 

 it remains suitable for the use it was intended for and this in a reliable and economical 

way. 

 

The previous fundamental requirement basically means that the structure should be designed so 

that it has sufficient strength, serviceability and durability. 

 

Furthermore, a structure also has to be designed and executed in such a way that it does not  

suffer disproportionate damage due to fire, explosion, impact or due to the consequences of 

human errors. 
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One can limit or avoid possible damage by considering the following measures in favour of 

robustness: 

 prevent or limit potential hazards to which the structure is exposed; 

 choose a construction type with low vulnerability with respect to the potential hazards 

under consideration; 

 avoid as much as possible supporting systems that can fail without notification provide 

connectivity between different elements; 

 choose a construction type that can withstand accidental failure of an element or a limited 

part of the construction, or that can withstand local damage of acceptable size. 

 

The fundamental requirements are satisfied by: 

 appropriate choice of materials; 

 professional design and detailing prescription of control procedures for the design, 

production, execution and use of the structure. 

10.2.4 Design Lifetime of the Structure 

The design lifetime is the anticipated life expectancy of a structure. During the design lifetime one 

assumes that the structure can function for its intended use, considering reasonable maintenance 

and without large repair. Required values for the design working life are summarized in Table 

10.3. 

Table 10.3 Required values for the design working life (according to Dutch National 

Annex to EN 1990) 

Class 
Required 

lifetime (years) 
Examples 

1 2 to 10 Temporary structures 

2 15  Agricultural and equivalent structures 

3 50 Buildings: houses, community buildings, offices 

4 100 Monumental buildings, bridges and civil engineering construction works 

 

10.2.5 Design Situations 

A design situation considers the variation in actions, environmental influences and structural 

properties which will occur during the design working life of a structure. Different design 

situations are distinguished, each representing a certain time interval with associated hazards or 

conditions: 

 persistent design situations: these refer to the conditions of normal use and are generally 

related to the design working life of the structure; 

 transient design situations: these refer to temporary conditions of the structure and refer 

to a time period much shorter than the design working life, e.g. during construction or 

repair; 

 accidental design situations: these refer to exceptional conditions of the structure or of its 

exposure, e.g. due to fire, explosion, impact or local failure; 
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 seismic design situations: these refer to exceptional conditions applicable to the structure 

when subjected to seismic events. 

10.2.6 Limit States 

Definition 

In order to verify the fundamental requirements for the design situation under consideration, one 

defines so-called limit states (already briefly introduced in chapter 3.2.3). A limit state is a 

condition beyond which the structure or part of the structure does no longer fulfil one of its 

performance requirements. Thus, for each of these performance requirements one or more limit 

states can be formulated. 

 

The Ultimate limit states (ULS) refer to the safety of persons and/or the structural safety or the 

protection of the content of a structure. 

 

In the ultimate limit state the ultimate bearing capacity of the structure is defined. Beyond this 

limit state the entire structure or part of it fails. The following ultimate limit states can be 

considered:  

 loss of static equilibrium of the structural system or one of its components, considered as 

rigid body (turn over, sliding, push up, etc.); 

 fracture or excessive deformation in critical sections of the structural system or its 

connections; 

 fatigue or other time-dependent phenomena; 

 formation of a mechanism of a structural system or a part of it (collapse) ; 

 instability, divergence of equilibrium of the system or its components (buckling, lateral 

buckling, aero-elastic instability, …). 

 

Serviceability limit states (SLS) refer to: 

 the performance of the structure and its components during normal use; 

 the comfort of the users; 

 visual aspects. 

 

When crossing a serviceability limit state, one or more of the requirements with respect to the 

functionality is not anymore fulfilled. The verification of serviceability limit states is related to: 

 deformations that can have an influence on visual aspects, comfort of users and the 

functionality of the structure, including installations (e.g. equipment) or damage caused to 

finishing or non-bearing elements; 

 vibrations that can result in discomfort of users or influence the functionality of the 

structure; 

 damages that can have a negative effect on visual aspects, the durability and the use. 

 

One can distinguish between two types of SLS (Figure 10.2) : 
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 irreversible SLS where the critical value stays permanently crossed after removal of the 

load that caused the first passage (e.g. permanent local damage, permanent deflection); 

 reversible SLS where the critical value is no longer crossed after removal of the load that 

caused the first passage (e.g. cracks in prestressed concrete elements, temporary 

deflections, excessive vibrations). 

 

In case of irreversible SLS, the design criteria are similar to those for ULS. The time until the first 

passage is determinant. In case of reversible SLS, the first passage not necessarily results in the 

failure or unfitness for use. Alternative serviceability requirements can be formulated depending 

on the acceptability of crossing a limiting value, their frequency and duration. These aspects can 

be associated to different load combinations (see further).  

 

Figure 10.2 Different types of SLS: irreversible (top figure) and reversible (lower 

figure).  

10.3 Target Values for the Reliability Index in Civil Engineering 

10.3.1 General 

In order to determine how safe a structure or system should be, an acceptable level of risk needs 

to be defined. A previous chapter (3) of these lecture notes has described how risk assessments 

can be used to derive an acceptable failure probability for a system. For standard applications and 

systems that are frequently constructed, codes are available that define acceptable safety levels. 
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The Eurocode EN 1990 (Annex C) defines target values for the reliability index. In Table 10.4  

target values for  are mentioned for reference periods of 1 and 50 years, designated 1 and 50 

respectively. These values correspond to a reliability class RC2 (see below). 

Table 10.4 Target values for  (from Annex C of EN 1990). 

Limit state tref = 1 year tref = 50 years 

Ultimate limit state 4.7 3.8 

Serviceability limit state 2.9 1.5 

 

For most verifications that have been proposed in the framework of EN 1990 to EN 1999 the 

following assumption for the distribution type have been considered: 

 lognormal or Weibull distributions for material properties, strength and model 

uncertainties 

 normal distributions for self-weight 

 extreme value distributions for variable actions (sometimes normal distributions as a 

simplification). 

 

When the main source of uncertainty can be related to actions of which the yearly maxima are 

independent, the following relationship can be used to convert  values in relation to different 

reference periods: 

 1Φ( ) Φ( ) n

nβ β          (10.1) 

with n the reliability index for tref = n years and 1 the reliability index for tref = 1 year. 

Considering equation (10.1) can be rewritten as: 

, ,1

n

s n sP P           (10.2) 

based on: 

 

     

 

survival in n years

survival in year 1 . survival in year 2 ... survival in year 

survival in a period of 1 year n

P

P P P n

P





   (10.3) 

Alternatively, the probability of failure over the lifetime (Pf,n) can be derived: 

  , , ,1 ,1 1 –   1 –   1 –  1 –  
n

n

f n s n s fP P P P         (10.4) 

For example, for a system with a yearly failure probability of Pf,1=0.01 and a lifetime of 10 years, 

the failure probability of the lifetime becomes Pf,10 = 1 – (1-0.01)10 = 0.095 

10.3.2 Reliability differentiation 

Considering the importance of the failure consequences, Annex B of EN 1990 provides the 

Consequence Classes as mentioned in Table 10.5. 
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Table 10.5 Definition of Consequence Classes 

CC Description 

Examples 
Consequences with 

respect to loss of 

human lives  

Economic, social and 

environmental 

consequences  

CC3 High  Very large  Tribunes, public buildings with high consequences of 

failure (concert hall, …)  

CC2 Moderate  Considerable  Home and office buildings,  public buildings with 

moderate consequences of failure (offices, …)  

CC1 Low  Small or negligible  Agricultural building where people do not normally 

enter (depositories, greenhouses, …)  

 

The three consequence classes CC1, CC2 and CC3 correspond to three reliability classes RC1, 

RC2 and RC3, respectively. In Table 10.6 the recommended minimum values for  are given with 

respect to ultimate limit states. 

Table 10.6 Recommended minimum values for  (ULS) (Eurocode EN 1990) 

Reliability class tref = 1 year tref = 50 years 

RC3 5.2 4.3 

RC2 4.7 3.8 

RC1 4.2 3.3 

 

The values mentioned in Table 10.4 correspond to RC2. Also, the Eurocode distinguishes 

different levels of design supervision and inspection level, see Appendix 10.2. 

10.4 Characterising the strength, and loads and actions (-effects) on structures 

10.4.1 Material and geometrical properties 

 

Material and product properties are represented by characteristic values, denoted with Xk or Rk. 

These correspond to a prescribed non-exceedance probability in the theoretical distribution of an 

in principle infinite sample size. Unless specified otherwise, characteristic values are defined in 

EN 1992 to EN 1999 as the 5-quantile in case of strength parameters and mean values in case of 

stiffness characteristics. For certain situations, one can define low as well as high characteristic 

values which then correspond respectively to the 5- and 95-quantile of the distribution under 

consideration. 

 

Material properties are determined by standard tests which are executed under specified 

circumstances. Conversion factors are used to transform the results into in-situ material strength 

of the structure or the soil. 

 

Geometrical properties are represented by a characteristic value in case the distribution function 

is known, or by a design value otherwise.  
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10.4.2 Classification of loads, actions and environmental influences 

A distinction is made between the external loads (e.g. wind and waves) and the actions that they 

cause within a structure. An action is: 

- a group of forces acting on a structure (direct action) 

- a group of imposed deformations or accelerations e.g. caused by variation in 

temperature or humidity, differential settlements or earthquakes (indirect action)  

 

Based on their variation in time, actions can be classified as follows: 

1) permanent actions G: actions that are present during the entire duration of the reference 

period. Their change in function of time is negligible with respect to their mean value or the 

change is constant until a limiting value is reached (e.g. the water level at a spillway). 

Examples are self-weight, permanent equipment, floor or road finishing, shrinkage, 

differential settlements, … 

 

2) variable actions Q: actions that are not present during the entire duration of the reference 

period. Their change in function of time is not negligible with respect to their mean value. 

Examples are live loads, traffic loads, snow load, wind load, …. 

 

3) accidental actions A: actions that have a low probability of occurrence during the reference 

period, but can have an important influence on structural calculations due to their magnitude 

(e.g. impact, explosion, fire, earthquake, …). 

 

Actions that act together and reach their maximum at the same time are most often considered as 

one action in practical calculations. Actions that are only weakly correlated can be considered to 

act independently and occur separately in the calculations. 

 

Actions can also be classified with respect to the structural response: 

1) Static loads: these do not produce significant accelerations in the structural system or its 

components; 

2) Dynamic loads: these can produce significant accelerations in the structural system or its 

components. 

 

The effect of dynamic loads is often be calculated by multiplying the static response by a dynamic 

factor. In case this is not possible, a specialized calculation has to be performed in order to 

determine the dynamic response of the structural system. For example, in the field of earthquake 

engineering the most simple analysis concerns a pseudo-static method. Within this approach a 

static force equivalent to the seismic loading is inserted in the force balance calculation of the 

structure. A more detailed dynamic analysis of the structure can be made using finite element 

models that allow dynamic calculations.  

 

Finally, one can also differentiate between fixed loads and free (or mobile) loads. 
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In this framework loads are considered as random variables with a certain distribution type. 

However, modelling of variable and accidental actions as a stochastic process is sometimes more 

appropriate. 

10.4.3 Characteristic values of permanent actions 

In case the variation of permanent action G during the design working life is negligible 

(coefficient of variation VG = 5 % to 10 % depending on the type of structure) the characteristic 

value Gk corresponds to the mean value. The self-weight is calculated taking into account the 

nominal dimensions and the mean values of the densities (EN 1991-1-1). 

 

In case the variation of G is not negligible, 2 characteristic values can be determined. This is also 

the case when the integrity of the structure is very sensitive to variations of G even when G is 

small. Considering a normal distribution, the 5- and 95-quantiles can be obtained as follows:  

,inf

,sup

1.645

1.645

k G G

k G G

G µ σ

G µ σ

 

 
         (10.5) 

10.4.4 Statistical and model uncertainties 

One should differentiate between 3 major types of uncertainty, namely physical, statistical and 

model uncertainties. In the sections above we discussed the physical or intrinsic uncertainties 

which are related to the random nature of the variable under consideration. They are accounted for 

through a density function or a stochastic process. 

 

Statistical uncertainties are due to the fact that the parameters of distribution functions cannot be 

estimated exactly based on a sample of limited size. In case one has obtained a sample set of n 

observations and an additional sample set is taken, a new set of values will be obtained as well as 

new sample characteristics. Each time a different estimate of the distribution parameters is 

calculated. Hence, the estimations should also be considered as random variables of which the 

variation can be described by a distribution function. In this case the predictive distribution (i.e. 

global distribution, incorporating parameter uncertainties) of the basic variable X with parameter 

vector θ is given by: 

       X X θf x f x θ f θ dθ          (10.6)
 

Model uncertainties are related to the choice of the applied models. This can be related to the 

probabilistic model (wrong distribution function, neglecting correlation,...) or the deterministic 

mechanical model that describes the limit state under consideration. Frequently simplifications are 

made which result in more or less large deviations between the calculated response and the real 

response of a structure (e.g. when applying a linear elastic analysis in case of an intrinsically non-

linear behaviour). Limit states with important model uncertainties are for example related to 

shear, deformations, crack widths, etc. The model uncertainty of a model can be expressed by a 

distribution function of an additional random variable Xm defined as: 

real response

predicted response based on a model
mX        (10.7) 
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This variable can be incorporated in an additive or multiplicative way, considering most often a 

normal or lognormal distribution. In case the average response of the model is well-predicted, µXm 

= 1. In case of a conservative strength model µXm > 1 and in case of an "unsafe" strength model 

µXm < 1. 

10.5 Variable loads 

10.5.1 Return period 

In a time-dependent problem one is most often interested in the number of time intervals until the 

first occurrence of a certain event. In case the event can only occur once in an elementary time 

interval ΔT and in case subsequent intervals are stochastically independent (cf. experiments), the 

time between two subsequent random occurrences of an event is equal to the time until the first 

occurrence. In case one assumes that the occurrence in an elementary time interval can be 

represented as a Bernoulli experiment (with probability of occurrence p), the time T between the 

subsequent occurrences of an event follows a geometric distribution. The mean value of this time 

is called the return period Tr. Considering the properties of a geometric distribution it holds that 

Tr = 1/p. 

 

When designing structures for exposure to extreme events such as high waves or storm winds, one 

has to assess the probability that a critical value xcrit of the variable under consideration (wave 

height, wind speed) will be exceeded. Therefore, the distribution of the annual maxima is 

considered. Considering p = P[X > xcrit], the average time between years in which xcrit is exceeded 

is equal to the return period Tr = 1/p. The value xcrit is called the Tr value of the variable, for 

example, the 100 year wave height equals Hs=4m. Hence, this value corresponds to the (1-1/Tr) 

quantile or in other words the value of the annual maximum with an exceedance probability of 

1/Tr. As an example, coastal engineering and offshore structures are often designed based on the 

100 years wave (Tr = 100 years) corresponding to p = 0.01 in 1 year. 

 

The probability that an event with probability p occurs (at least once) in a timeframe T is equal to: 

   occurrence in 1 1
T

P T p          (10.8) 

A specific case is considered when one assesses the probability that the return period event (with 

p=1/Tr) occurs within that period T=Tr. For example, a client can ask a question what the 

probability is that the 10 year wave height occurs within a period of 10 years. In case Tr = 10 (p = 

0.10) a probability of 0.651 is obtained, which is quite large. Using the binomial law, the 

complementary probability can be calculated as: 

2 3( 1) ( 1) ( 2)
(1 ) 1 ...

2! 3!
rT r r r r r

r

T T T T T
p T p p p

  
          (10.9) 

In case of large values for Tr (and hence small values for p) the right side of the equation 

becomes: 

368.01  
ee

pTr         (10.10) 

Hence: 
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 occurrence in 1 1/ 0.632 ...rP T e        (10.11) 

In case of rare events (Tr large) the probability of occurrence within the return period Tr can be 

approximated as 0.632. In case of Tr = 10 the approximation achieves a deviation of only 3 % 

compared to the exact result. 

10.5.2 Characteristic value Qk 

In case of variable actions the characteristic value (Qk) corresponds to: 

 a high or low quantile value that corresponds to a specified low resp. high maximum 

probability of exceedance;  

 a nominal value when insufficient statistical information is available. 

 

In EN 1990 the characteristic value Qk of a variable action is in general determined as the value 

that corresponds to an exceedance probability of 2% during a reference period of 1 year. Hence, 

the return period is 50 years.  

 

In general the probability of not exceeding Qk in a certain reference period tref can be calculated as 

follows in case of tref > 1 year (e.g. the design working live): 

1
1 1

reft

k ref

r

P Q Q t t p
T

 
        

 
     (10.12) 

where p is the exceedance probability within the design working life. In Figure 10.3, equation 

(10.12) is illustrated as: 

1/

1 1
1 1 or

1 (1 )

ref

ref

t

r t

r

p T
T p

 
    

  
     (10.13) 

For example for an event with a return period of Tr = 100 years and a working life of tref = 5 years, 

it is found that p=0.049. So there is approximately a 5% probability of exceeding the 100 year 

event within the working life. The upper limit of 63.2 % was already calculated in section 10.5.1. 

In case of tref = 10 years the exceedance probability of Qk is equal to 18.3 %. 
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Figure 10.3 Exceedance probability p of a maximum value corresponding to a return 

period Tr during a reference period tref 

10.5.3 Extreme distribution for the maxima (Gumbel distribution) 

General 

Extreme value distributions have been introduced in section 2.6.6.. These types of distributions 

are generally used to model the distributions of extreme loads, such as wind loads. This section 

focuses on the application of these type of distributions. 

The random nature of the variable load X is modelled according to an extreme value distribution 

of type I for the maxima, i.e. the Gumbel distribution. The CDF and PDF are respectively: 

( )( ) exp forα x u

YF y e x             (10.14) 

( )( ) exp ( ) α x u

Yf y α α x u e             (10.15) 

The relationship between the parameters u (mode),  and (µY,Y) is as according to table (2.3): 

/ 0.5772 /xµ u γ α u α           (10.16) 

1.282

6
x

π
σ

αα
          (10.17) 

Considering the normalized variable: 

( )W X u α          (10.18) 

the CDF becomes: 

( ) exp( )w

WF w e          (10.19) 

 

Tr 
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Application of extreme value distributions 

Extreme value distributions are often used to determine the distributions for the yearly maxima 

and for the maxima during the reference period (e.g. 10, 50 or 100 years). This is elaborated 

below.  

 

Firstly, according to the definition given in section 10.5.2 of this chapter, the characteristic value 

corresponds to an exceedance probability of 2% during a reference period of 1 year.  

( ) exp( ) 0.98w

WF w e          (10.20) 

Qk can be formulated as a function of µ1 and 1 (the subscript designates the basic reference 

period t1 which is often equal to 1 year): 

ln( ln(0.98)) 3.902 ( )kw Q u α           (10.21) 

Or: 

1 1

1

0.5772 1.282
3.902

1.282
kQ µ σ

σ

 
   
 

      (10.22) 

from which: 

1 12.593kQ µ σ          (10.23) 

Consequently, the distribution of the maxima for a return period tref = n . t1 can be determined. 

Assuming that the annual maxima occur independently, the following holds:  

 1( ) ( ) n

rF x F x         (10.24) 

with F1(x) the CDF of the annual maxima. Elaboration yields: 

( )( ) exp α x u

rF x n e            (10.25) 

This distribution is again of the type I for the maxima (i.e. Gumbel). Equation (10.25) can be 

rewritten as: 

ln

( ) exp

n
α x u

α

rF x e

 
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 
 

  
  

       (10.26) 

which yields the u, µ, and  values for a reference period of n: 
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 

 
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        (10.27) 

Hence, the standard deviation remains unchanged but the mode and the mean value shift to higher 

values (Figure 10.4), this is called the so-called “Gumbel shift”. In case one draws F1(x) and Fr(x) 
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on appropriate probability paper, two parallel lines are obtained with (horizontal) distance ln(n) / 

from each other. Based on the aforementioned calculations equation (10.23) can be rewritten as: 

ln( )
2,593

1,282
k n n n

n
Q µ σ σ          (10.28) 

and for  n = 50 (t1 = 1 year ; tref = 50 years) one obtains: 

0,4585k n nQ µ σ          (10.29) 

 

 

Figure 10.4 Distribution of the maximum over a time period t1 and tref = n . t1 

Example 10.1 

The distribution of the yearly maxima of the wind pressure can be described with a Gumbel 

distribution: 

     wind,1 1 1p x exp exp α x u          (10.30)  

For this example, we assume u1 = 20 kN/m2 and =0.53m2/kN 

 

The distribution of the 50 year maxima of the wind pressure can now be determined as follows: 

     wind,50 50 50p x exp exp α x u          (10.31) 

2
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u u kN m

 

  
      (10.32) 

10.5.4 Other representative values (not part of the examination materials) 

In Figure 10.5 a schematic representation of the time-dependent behaviour of a variable action Q 

is illustrated during the reference period. The distribution FQ(q) is related to the point-in-time 

value. Further, also the distribution of the annual maxima FQmax(q) is shown. 
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a) The combination value 0 Qk is used for load combinations in order to account for the 

simultaneous occurrence of extreme values of different independent variable actions. As a 

first approximation once can consider the following: 

     1 2 1 0 2 1 1 2 2Ψk k k kP Q Q Q Q P Q Q P Q Q          (10.33) 

The rare load combination (see further) is used in case of ULS or irreversible SLS when no 

exceedance of a limiting value is allowed. 

b) The frequent value 1 Qk has a limited exceedance probability during the reference period. In 

case of buildings this probability is commonly chosen 1 %. The frequent value is used for the 

verification of ULS in which accidental actions occur and in case of  reversible SLS for which 

exceedance of a limiting value is acceptable during a certain time span or with a certain 

frequency. 

c) The quasi-permanent value 2 Qk is chosen so that it is exceeded during a significant time of 

the reference period. Commonly this fraction is taken as 50% of the reference period (cf. 

median). One can also consider the mean value as the quasi-permanent value. The quasi-

permanent value is used for the verification of ULS where also accidental actions can occur 

and in case of reversible SLS when the exceedance of a limiting value during longer time 

periods is accepted. 

 

 

Figure 10.5 Representative values of variable actions 
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Appendix 10.1: Structural accidents and collapses 

The bridge of Pulle 

On November 12, 1966, a bridge of the highway ‘Boudewijn’ (E313) suddenly collapsed around 

midnight. The bridge was located in Pulle (Belgium) and crossed the canal Nete (Figure 10.6). 

The bridge was built in 1958 and was one of Belgians typical prestressed bridges with 3 spans and 

varying height. The abutments as well as both pillars were built on pile foundations. It is 

remarkable that the piles beneath the pillars were only 2,5 m long and hence were located 3 m 

above the lowest level on the canal cross-sectional profile (Figure 10.7). Further, apparently no 

bank revetment was placed. 

 

The cause of the collapse was erosion of the east bank in the vicinity of the pile foundation. This 

caused a lateral movement of the feet of the east pillar which ultimately was swept away, resulting 

in the collapse of the bridge. The following lessons were drawn from this accident (Vandepitte, 

1983): 

a) When the responsibility with respect to the construction work lies in the hands of several 

parties, the potential risk exists that not all available information is exchanged. 

b) The necessity to dispose of a clear plan that indicates the situation as-built. In case of the 

bridge of Pulle only original design plans were available, where the pile foundations were 

indicated to start much deeper. 

c) The necessity of regular inspection and maintenance. 

 

Figure 10.6 This bridge over the highway ‘Boudewijn’ in Pulle collapsed (1966) due to 

erosion of the east bank in the vicinity of the pile foundation at the side of the canal Nete 
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Figure 10.7 The east pillar of the bridge in Pulle that was swept away due to the erosion 

of the east bank in the vicinity of the pile foundation, resulting in the collapse of the 

bridge (Vandepitte, 1983). 

 

The Congress Hall of Berlin 

The combination of negligence during the design and errors during the construction of specific 

structural details can have disastrous consequences, as can for example be seen from the 

spectacular collapse of the Congress Hall of Berlin in 1980, 23 years after being constructed 

(Hundt, 1983). 

 

The architectural shape of the building was quite original for that time, applying a hypar shell 

which connected 2 cantilever edge beams in the shape of arches which were clamped in two joint 

abutments (Figure 10.8). This elegant, but structural daring shape was only capable of 

withstanding symmetrical loading conditions and is not appropriate to withstand asymmetrical 

wind or snow loads. Additional supports or heavier abutments were not desired from an 

architectural point of view and as such a ring beam was constructed in the plane of the roof which 

was supported by concrete walls and columns that were integrated in the walls of the auditorium 

(Figure 10.9). From the outside, these very important structural elements were almost not visible. 

Hence, the roof had the shape of a shell, but did not at all work like one. 

 

Figure 10.8 Side view of the Congress Hall in Berlin that collapsed in 1980,  



 

255 4𝑡ℎ Version 

 

Lecture Notes CIE4130   Chapter: Applications and Design Codes 

 

Figure 10.9 Constructive elements of the Congress Hall in Berlin (Hundt, 1983)  

The part of the roof between the edge arches and the ring beam consisted of pre-stressed plates 

with a thickness of only 7 cm. These pre-stressed plates were anchored at one side in the arches 

and at the other side in the ring beam. 

 

Due to corrosion, the tendons failed in the neighborhood of the joints at the edge arches and the 

ring beam and resulted in the collapse of the southern edge arch and the adjacent part of the roof. 

After investigation, it was found that the corrosion was due to an insufficient protection of the 

tendons (with concrete cover and injection mortar), cracks in the roofing and a excessive bending 

of the tendons due to all kinds of side effects which were not accounted for in the design. 

 

After investigation with respect to the cause of the accident, the following problems were 

indicated: 

 Insufficient collaboration between architects and engineers, because several structural 

tricks had to be performed in order to avoid deviation from the original architectural 

design; 

 Time pressure during the design as well as during the construction phases, which 

interfered with a thorough study of the details and prevented thorough quality inspection 

at the construction site; 

 The lack of regular inspection during the service period (visual inspection, non-destructive 

testing…) in order to detect certain deficiencies in time and to prevent failure of 

components. 

 

With respect to the latter item, it should be emphasized that in Belgium the Ministry of Public 

Transport performs regular inspections of all infrastructures. 

Tubular bridges 

Between November 1969 and November 1971 a series of structural accidents have occurred 

during the construction of four large tubular bridges with orthotropic bridge decks. In total about 

50 people lost their lives (Maquoi, 1971). It concerns the bridge over the Donau in Vienna, the 

bridge in Milford Haven (Great Britain), the West Gate Bridge in Melbourne and the bridge over 
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the Rhine in Koblenz. These four bridges all had multiple spans of which the largest span with a 

length that varied from 210 m (Vienna) to 336 m (cable-stayed bridge in Melbourne). Most often 

these bridges were erected using the cantilever construction method (sometimes with additional 

temporary pillars). The accidents occurred when the central span (or half of it) was almost 

finished. Local instability occurred, more specifically buckling of the steel tube at the location of 

the connection of adjacent parts (Figure 10.10). As a result, a large part of the bridge collapsed or 

was subjected to large deformations, except for the first case were two hinges were established. 

 

The following possible causes were indicated (Maquoi, 1971): 

 errors or oblivion in the study of the load cases (different construction phases, temperature 

effects,…) ; 

 errors with respect to the structural concept (type and connection of the stiffeners, 

transversal joints in the steel plates,…) ; 

 lacunae with respect to the calculations (initial deformations, random eccentricities, 

residual stresses, shear lag,…). 

 

This series of accidents illustrates that when constructing more innovative structures, sometimes 

the boundaries of the current design principles are reached. The simple application of existing 

design guidelines without considering the inherent constraints can lead to structural accidents, 

although the designer originally felt comfortable (Pidgeon, 1986). 

 

Figure 10.10 The steel bridge over the Donau in Vienna with a length of 210 m, 

experiencing buckling problems during the coupling of two adjacent parts (Maquoi, 

1971) 

Temporary structures 

An important number of accidents is related to the failure of temporary structures such as supports 

of formworks etc. Most often, larger risks are accepted when designing such structures and 

consequently reduced partial factors are applied. Temporary structures are frequently composed of 

reusable components that can particularly be subject to wear due to transportation, assembly, 

loading, disassembling, storage, etc. On smaller construction sites one moreover frequently 
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improvises with all useful material that can be found on site in order to build temporary supports 

and struts. 

 

The collapse of a temporary structure can cause the death on numerous people. In 1982, for 

example, 12 workers lost their lives and 15 got injured during the collapse of the support of a 

viaduct in East Chicago (prestressed concrete) (Ratay, 1987). The cause was the failure of a 

concrete support, although days before the collapse cracks appeared and were reported. This 

warning was however not taken into account by the authorised inspectors. Especially during 

economic difficult times some people prefer not to create unnecessary problems. Most of the 

workers that lost their lives had moreover no experience on construction sites of this nature. 

Failure of dams (Proske, 2004) 

On August 7, 1975, the Banqiao and Shimantan dams collapsed in the province Henan in Central 

China after more than 26 hours of heavy rainfall due to an unusual strong typhoon. A tsunami of 6 

m height subsequently travelled with a speed of around 50 km/h towards the lower valleys and 

destroyed once more 61 dams and numerous dikes. In total 600 million m³ of water was released. 

Within 24h after the dam failure 85 000 people lost their lives. Due to starvation and diseases, the 

following period 145 000 additional people lost their lives. This dam failure is known as the 

largest technical catastrophe of all times.  

 

Figure 10.11 The Banqiao dam after failure due to heavy rain (Sharpe, 1998) 

A more recent example of a dam failure is the collapse of the Zeyzoun dam in North-Syria on 

June 4, 2002, during which 71 million m³ of water was released. This disaster caused the death of 

22 people and made more than 3800 people homeless. 

Katowice International Fair 

On January 28, 2006, the roof of one of the exhibition halls of the ‘Katowice International Fair’ in 

Katowice (Poland) collapsed due to the snow load on the roof. 65 people lost their lives, more 

than 170 people were injured (Wikipedia). The investigations with respect to the cause of the 

collapse pointed out that both the managers and the architects were responsible for the accident. 

On the one side the managers did not make sure that snow and ice was regularly removed from 

the roof (although there was a budget reserved for this), which resulted in an overload of more 

than 100% on the roof. On the other side, also design and construction errors which can be 
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attributed to the architects contributed also to the cause of the collapse. Moreover, in 2000 already 

part of the roof collapsed due to snow load, after which the roof was repaired without any quality 

inspection and without any additional test or calculation with respect to the structural bearing 

capacity (Wikipedia). 

 

Figure 10.12 Collapse of the roof of the Katowice International Fair due to snow load 

(Wikipedia) 

On January 2 of the same year also the roof of the indoor ice skating rink in Bad Reichenhall 

(Germany) collapsed during a heavy snow shower. The accident caused the death of 15 people, 32 

people were injured.  

The I-35W bridge over the Mississippi (Wikipedia) 

On August 1, 2007, the I-35W Mississippi River Bridge in Minneapolis (USA) collapsed during 

the evening rush hour. Due to the collapse 13 people died and more than 100 people were injured. 

The 8 lanes wide bridge carried daily 140 000 vehicles of the highway I-35W across the 

Mississippi river. In total the bridge was 580 m long, consisting of 14 spans of which 5 for the 

southern approach, 6 for the northern approach and 3 for the central span. The central span of the 

bridge consisted of a 140 m long steel truss arch. The other 2 adjacent spans consisted of the same 

type of truss with a span of 81 m each.  

 

On January 15, 2008, the National Transportation Safety Board explained that the cause of the 

collapse was due to a design error. The gusset plates that realized the connection in the nodes of 

the truss were under-sized with respect to the load conditions of the bridge. 
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Figure 10.13 Collapse of the steel truss arch bridge I-35W over the Mississippi 

(Wikipedia) 

 

Figure 10.14 Under-sized gusset plate of I-35W over the Mississippi (Wikipedia) 

Leaning Tower of Pisa 

The failure of a structure does not necessarily mean that the entire structure or part of it will 

collapse. In general it is related to the observation that the structure cannot fulfil one or more of its 

intended functions. Hence, failure can also be related to phenomena such as excessive 

deformations, local damages or uncomfortable vibrations. 

 

A remarkable example is the leaning Tower of Lisa of which construction started in 1173 (Figure 

10.15). Apparently, the failure probability is currently much larger than what is found acceptable 

in any standard. However, the tower can still fulfil its intended function as ‘campanile’. Because it 

has become a major tourist attraction due to the local weakness in the soil conditions, the use of 

the tower is many times larger than what the medieval builders had ever dreamt of. This 

exceptional case illustrates the relativity of safety and serviceability and shows how our value 

judgment can sometimes change in an unexpected way. 
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Figure 10.15 The relativity of safety ! (Taerwe, 1987) 

Appendix 10.2: Classes for design supervision and inspection 

In addition to a differentiation based on consequence class, one can also introduce a 

differentiation with respect to the design supervision (quality control). In EN 1990 (Annex B), 

one considers three design supervision levels (DSL) as indicated in Table 10.7. 

Table 10.7 Design supervision levels (DSL) 

DSL Description 
Minimum recommended requirements for checking of 

calculations, drawings and specifications 

DSL3 Extended 

Supervision  

Third-party checking: checking performed  by an organisation 

different from that which has prepared the design  

DSL2 Normal 

supervision  

Checking performed by different persons than those originally 

responsible and in accordance with the procedure of the organisation  

DSL1 Normal 

supervision  

Self-checking: checking performed by the person who has prepared 

the design  

 

In principle, DSL1, DSL2 and DSL3 correspond to RC1, RC2 and RC3 respectively. One can also 

obtain a classification of designers and supervisors based on their competence and expertise. 

 

With respect to execution also different inspection levels (IL) can be introduced as indicated in 

Table 10.8. 

Table 10.8 Inspection levels 

IL Description  Requirements  

IL3 Extended inspection  Third-party inspection  

IL2 Normal inspection  Inspection according to the procedures of the own organization  

IL1 Normal inspection  Self-inspection  

 

In principle IL1, IL2 and IL3 correspond to RC1, RC2 and RC3 respectively. 
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11 Planning and Maintenance 

11.1 Introduction 

This chapter concerns the application of some of the theory introduced in previous chapters. First 

it will be demonstrated how estimates of uncertainties in project costs and durations can be made 

(section 11.2). Consequently, the effects of maintenance and inspection on system reliability will 

be treated in section 11.3. In these cases it is possible to change or correct the loads or strength of 

a system during the lifetime and such systems are referred to as “correctable”. Examples of 

correctable systems include the management and realisation of projects and the execution of 

maintenance in an arbitrary system to limit the risks. 

11.2 Probabilistic budgeting and Time planning 

For further background information on this topic, see the paper by Vrijling and van Gelder on 

this topic that will be included as additional reading materials on blackboard.  

11.2.1 Introduction  

For virtually all realisation processes the required time span cannot be determined exactly 

beforehand. The amount of time required is the result of a statistical process that is determined by 

different uncertainties. In a statistical schedule the available or desired duration of the project is 

considered as the strength and the duration of the activities is considered the load. 
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The probability distribution and the accompanying parameters of the duration of an activity can, for 

example, be determined from historical data or by making estimates based on experience. The 

probability distribution that describes the time span is bounded on the left side, because there is 

always a minimum realisation time. In practice, the probability that an activity takes longer than 

planned seems to be greater than the probability that the activity takes less time, as many 

infrastructure projects are characterized by cost and budget exceedances (Flyvbjerg, 2003). The 

probability density function of the required time span is therefore often skewed to the right. 

 

If the probability distribution of the duration of an activity cannot be determined from statistical 

material, the triangular distribution is often used to describe the duration of an activity (see section 

2). The three parameters of the distribution can be determined by an optimistic, a pessimistic and a 

most realistic estimate of the duration of an activity (see Figure 11.1). 

 

Figure 11.1 Triangular distribution for the description of the activity duration. 

The probability density function of an activity is not always continuous. For example, if a special 

undesired event occurs, an extra effort and thus extra time may be necessary. The occurrence of the 

special event and the resulting extra effort are usually random variables. An example of an activity 

with a discontinuous probability density function is a process that is inspected after completion. If 

the activity is approved, the process is completed. If the activity is disapproved (special event), 

extra time must be spent. An example of such a probability density function is sketched in Figure 

11.2, in which P is the probability that the product is rejected. 

 

Figure 11.2 Discontinuous probability density function for the time span. 
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Because uncertainties in the execution period of realisation processes almost always have an effect 

on the costs, the approaches to assess uncertainties in project schedules and costs are similar. 

 

The uncertainty in time can be assessed using a probabilistic schedule. Before the start of the 

project, the scheduling offers an insight into the probability distribution of the total duration of 

the project. During the project the scheduling can be used to test the progress and to undertake 

timely corrective measures.  

 

To draw up a schedule, a project is divided into partial activities. The level on which the project 

is elaborated into partial activities, depends on the project phase. As the project progresses, a 

revision of the schedule can be made. If the schedule is developed in greater detail, the 

uncertainties concerning the total project duration decrease. However, a spread (or variation) 

remains around the estimated total duration of the project. 

 

In a deterministic schedule the total duration of a project is determined by the sum of the 

execution periods of all activities on the critical path. An activity is on the critical path if a change 

of the execution period of this activity has a direct effect on the total duration of the project. 

 

In its most simple form, a schedule consists of a succession of a number of realisation processes. 

Figure 11.3 shows four activities that have to be executed consecutively to complete the total 

project.  

 

Figure 11.3 Schedule with four series activities. 

The calculation rules for a serial system lead to the total duration of the project, which equals: 

1 2 3 4project act act act actT = T +T +T T        (11.1) 

Calculating the total duration of the project becomes less simple if certain activities are 

undertaken simultaneously. According to the schedule sketched in Figure 11.4, activities 2 and 3 

start simultaneously, after activity 1 has been completed. 
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Figure 11.4 Schedule with serial and parallel activities. 

Unlike in a deterministic schedule, the critical path in a probabilistic schedule cannot be 

designated beforehand, due to the spread of the duration of the activities. Each path can be the 

critical path with a certain probability.  

 

The total duration of the project follows from a combination of the calculation rules for serial 

systems and for parallel systems, in this case: 

1 2 4

1 3 4

act act act

project

act act act

T + T  + T
T = max

T + T + T

 
 
 
 

       (11.2) 

The total project is completed before a certain time (Tdesired) if all possible paths are completed 

before this point in time. The probability of exceedance of a certain duration can be calculated for 

every path. The probability that a project is completed within a certain time span, determined 

beforehand, is the probability that all paths are completed prior to that particular final date: 

1 2( ) ( ... )project desired desired desired n desiredP T T P path T path T path T         (11.3) 

When there is dependence of the various paths, the Monte Carlo simulation is most suitable for 

the calculation of this probability (see chapter 5 on level III methods such as Monte Carlo 

simulation). 

 

Figure 11.5 below gives an example of the outcomes of a probabilistic cost estimate. It shows the 

cumulative distribution function of the estimated costs for a given project. In general, the 70p  

value is used for budgeting purposes. It is estimated that in 70% of the cases, the project costs 

will be below the 70p  value. The probability of exceedance of the associated project costs is 0.3. 
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Figure 11.5 Example of a probabilistic cost estimate of a project. 

11.2.2 Influence of corrective measures on duration and costs 

If the available time for a certain activity is greatly exceeded, corrective measures will have to be 

taken to prevent exceeding of the total available time. The faster realisation of the subsequent 

activities, for instance by assigning a double shift or extra equipment can offer a solution. To 

include corrective measures in the schedule the “corrective” measures have to be included beside 

the “normal” activities. For the calculation of the probability distribution of the total duration of a 

project, that includes corrective measures, one can also use the Monte Carlo method. 

 

Example 11.1 

One wants to determine the probability distributions of the duration and of the costs of a project. 

The project consists of three partial activities. Depending on the execution period of activity 1, 

two scenarios are possible for activity 2. If activity 1 does not exceed a boundary value 

established beforehand, a normal execution time is kept for activity 2. If the boundary value is 

exceeded, activity 2 is undertaken more quickly.  

 

The required period of time per activity is modelled using three estimates, an optimistic, a 

pessimistic and a most realistic estimate. It is assumed that the probability density for the 

activities has a triangular distribution.  

 

If activity 1 is completed in less than 6 days, the normal execution period is applied for activity 2. 

If activity 1 takes longer, activity 2 is executed faster. The project schedule is shown in Figure 

11.6.  

 

Furthermore, the costs per activity are determined according to: 

vari i iact fixed iK K K T          (11.4) 

in which: 
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 act iK   are the costs of activity i ; 

 fixed iK   are the fixed costs of activity i ; 

 variK   are the variable costs of activity i ; 

 iT   is the duration of activity i . 

 

 

 

 

 

 

Table 11.1 gives an overview of the fixed costs and the variable costs. The project is to be 

realised within a maximum duration of 14 days and a maximum cost price of EUR 300. The 

effect of a faster execution of activity 2 is to be investigated. The probability distributions of both 

the time span and the costs are estimated by simulation of random variables (see Figure 11.7) for 

the cases with and without faster realisation of activity 2. 

This figure shows that the probability of time exceedance decreases, but that the probability of 

exceeding the costs increases if activity 2 is executed more quickly and when activity 1 takes 

longer than six days. 

 

Figure 11.6 Project schedule with corrective measures. 

 

Figure 11.7 Probability distribution function of time span and costs. 
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Table 11.1 Fixed and variable costs per activity. 

Activity Kfixed (EUR) Kvar (EUR) 

activity 1 40.- 10.- 

activity 2 

normal execution period 

30.- 10.- 

activity 2 

accelerated execution period 

30.- 25.- 

activity 3 80.- 10.- 

 

The occurrence of calamities during the realisation of a project usually has a great effect on the 

project costs and the duration of the project. Because calamities have a small probability of 

occurrence, they are absent in the “normal” schedule. The probability distribution calculated on 

grounds of this schedule is therefore a conditional probability distribution; it gives the probabilities 

of non-exceedance of the duration of the project if no calamities occur. The occurrence of 

calamities and the possible consequences for time and costs have to be considered separately, for 

example in an event tree, in which separate schedules are associated with the different events. 

11.3 Maintenance 

11.3.1 Introduction to maintenance strategies 

Maintenance includes all activities aimed at maintaining of or returning to the technical state 

which is considered necessary for the system to fulfil its function. To minimise the maintenance 

costs, the optimal maintenance strategy is sought. The following classification of strategies is 

taken from mechanical engineering maintenance theory: 

 

1. Curative maintenance:  - failure-dependent maintenance. 

2. Preventive maintenance:  - work-dependent maintenance; 

- state-dependent maintenance. 

 

According to failure-dependent maintenance an object is not replaced or repaired until it can no 

longer fulfil its function (see Figure 11.8). Thus, repair takes place after failure. The life span of 

the object is completely utilised. It is accepted that the object fails and may not be available 

during repair. Often this form of maintenance is not acceptable, for example because the 

consequences of failure are great. However, this type of maintenance can be applied for non-

integrating parts (parts that do not contribute to the probability of failure of the system as a 

whole). The consequences of failure are then minor (provided repairs or replacement are not 

delayed too long). 
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According to work-dependent maintenance, maintenance is carried out after a period with a 

certain number of work units, established beforehand. The costs of maintenance and the risk 

generally determine the length of this period. The life span of the object is not fully utilised. 

 

Figure 11.8 Possible course of the strength for failure dependent maintenance. 

In mechanical engineering this type of maintenance is applied if the work units can be registered 

easily, for example with a mileage meter, product counter et cetera.  

 

In general it is not possible to register all loads for a system. In this case the loads over a period 

are considered random variables. Subsequently, an estimate is made of the life span and a time 

for repairs is determined, which corresponds with a sufficiently low probability of failure and 

with minimal costs. It is therefore better to speak of time dependent maintenance (see Figure 

11.9). This then involves a given time interval for maintenance activities, e.g. every week, month 

or year. 

 

Figure 11.9 Possible course of the strength for time dependent maintenance. 

If the loads which cause deterioration are registered, one can decide to carry out maintenance 

after an extreme load or after a certain amount of load (cumulative load). This involves load 

dependent maintenance and a threshold or standard for critical loads.  

For a case where cumulative loads play a part (fatigue) a possible course of the strength and load 

is shown in Figure 11.10. 
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Figure 11.10 Possible course of the strength for load dependent maintenance. 

For state-dependent maintenance the condition of the object is determined by regular 

inspections. Based on the observations repairs are decided necessary or not. The inspection 

intervals can be constant or dependent on the condition of the object. There must be condition 

parameters that can be observed and reflect the condition of the system. 

 

The probability of failure during the period between inspections must be sufficiently small. 

Generally, the life span can be better utilised than in a work-dependent maintenance strategy, but 

the costs of the inspections have to be taken into account.  

This form of maintenance yet again requires setting thresholds. These thresholds relate to (see 

Figure 11.11): 

 a limit state that leads to the decision to increase the inspection frequency (warning limit); 

 a limit state that leads to the decision to carry out repairs (action limit). 

 

Figure 11.11 Possible course of the strength for state dependent maintenance.  

This limit in fact concerns standards for the strength. These are the result of an optimisation of 

the maintenance or they are associated with a socially accepted probability of failure in a year.  

 

The choice of which maintenance strategy to use depends on factors such as: 

 predictability of the life span of the object; 
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 consequence of the failure of the object; 

 costs of replacement or repairs; 

 costs of inspection; 

 Whether condition of the structure can be observed (damage or deterioration). 

 

A first comparison of the different strategies concerning the applicability can be made with the 

help of Figure 11.12. 

 

Figure 11.12 Rough choice of the maintenance strategy. 

Often a combination of two or more strategies offers a better result than simply applying a 

strategy selected according to Figure 11.12.  For instance, a schedule can be made according to 

time dependent maintenance strategy. It can be adjusted on the basis of the observed loads, while 

the decision to carry out maintenance depends on the inspected strength. Based on this it can be 

said that the boundaries of the application areas of the different strategies are not strict. 

Choosing between time dependent and state dependent maintenance is less simple. Completely 

time dependent maintenance will be applied if inspection is not possible or if inspection is 

expensive relative to repairs. Completely state dependent maintenance will be used if absolutely 

no prognosis can be made for the course of the strength in time or if inspection is very simple and 

thus cheap. 

 

An important aspect of state dependent maintenance is the collection of data concerning the 

course of the strength in time. This allows increasingly better planning of maintenance or 

inspections. 

11.3.2 Effects of maintenance on the risk 

The influence of the maintenance on the course of the strength in time is simple if maintenance 

restores the strength to its initial level. Figure 11.8 to Figure 11.11 give the effect of a number of 
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maintenance strategies maintenance on the strength. Figure 11.9 shows a constant maintenance 

interval, which means that the time interval between the maintenance periods is constant. The 

deterioration process is probably the same in every interval and thus there is no reason to vary the 

duration of the maintenance interval. 

 

It can be the case that the deterioration process is not equal in the different intervals, for example 

because the degree of deterioration depends on the maintenance that is carried out. A good 

example of this is the maintenance of a dike.  

 

Raising a dike body results in settlements. The settlements depend on the extent to which the dike 

has been raised and on the stresses in the subsoil. The stresses depend on previous maintenance. 

Figure 11.13 schematically presents the course of the settlements after carrying out maintenance. 

 

The line drawn in Figure 11.13 shows the course of the expected value of the crest height of the 

dike. The dotted lines show the spread around the average crest position. This spread is a result of 

the uncertainties in the soil parameters and uncertainties in the method used to calculate the 

settlements. The figure shows that the spread also depends on the maintenance. This originates in 

the fact that calculations can be calibrated to the observations by adjusting the deterioration 

model. The way in which the deterioration model can be adjusted is described in the following 

section. 

 

Figure 11.13 Strength reduction as a result of settlements. 

Clearly, decreasing the maintenance interval reduces the risk but increases the maintenance costs. 

Usually an optimum is sought, for which the sum of the discounted value of the maintenance 

costs and the risk is lowest. 

11.3.3 Effect of inspections 

The quantitative part of this section will not be part of the examination. 

Inspections can help determine the strength of a system at a given point in time. For this reason 

condition parameters are defined. Essentially, the condition parameters are no different from 

resistance parameters, as defined for the deterioration model. However, the condition parameters 

must be measurable with a reasonable accuracy. The strength, which is derived from the 
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condition parameters, may not contain an inaccuracy that is too great either. If the required 

accuracy cannot be achieved, inspection does not provide a better insight into the condition of the 

system. In that case better measurement methods or different condition parameters must be 

sought. Figure 11.14 illustrates this by means of two inspection methods (A and B) which can be 

used to update the original (or a priori) estimate of the strength according to an ageing model. 

The probability density of the strength reveals that method B hardly yields improvement of the 

knowledge concerning the strength, as the standard deviation is still large. Method A does offer a 

better insight into the strength of the system. 

 

Figure 11.14 Probability density of the strength according to the deterioration model and 

two different inspection methods. 

Clearly, inspection has no influence on the deterioration process, but is does influence the 

available knowledge regarding the modelling of the process. On these grounds one can decide to 

adjust the estimate of the condition and the deterioration model. If adjusting the deterioration 

model should is really the right decision, strongly depends on the type of deterioration process. 

 

In the previously mentioned settlement process of a dike body, the placement and reading of a 

settlement measuring device can provide the necessary information to calibrate the parameters in 

the settlement formulae. The observation does not only provide information on the the strength of 

the dike (at the time of reading the device), but it can improve the deterioration model as well. 

This leads to smaller uncertainties in the model, which have to manifest themselves in a smaller 

variance of the strength of the model. 

 

If the deterioration model is based on statistical data, a special updating technique can be used to 

adjust the model. Suppose that at a certain time it is decided to carry out an inspection. The 

probability density of the strength at that moment is still merely determined by the deterioration 

model. This probability density is called the “a priori” probability density of R(t). After 

inspection it is possible to create a better description of the strength by using the inspection 

results. The method according to which this is done is known as the “posteriori analysis”. The 

probability density function of the strength that is adjusted to the inspection results is known as 

the a posteriori probability density.  
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The a posteriori probability density is determined with: 

( ) ( | ) ( )II I

R Rf R N L X R f R          (11.5) 

in which: 

   II

Rf R is the a posteriori probability density; 

   f R is the a priori probability density; 

 |( )L X R is the likelihood function; 

 X is the vector with the inspection values; 

 N is the standardisation constant
1

( | ) ( )I

RL X R f R dR









 

The likelihood function gives the probability density function of the vector X for a given value of

R . In formula this is: 

1 2( | ) ( | ) ( | )... ( | )I I I nL X R f X R f X R f X R       (11.6) 

in which: 

 |( )I if X R is the probability density function of observation iX for a given strength R ; 

 iX is the observation of the strength. 

 

After determining the a posteriori probability density, the strength at the moment of inspection 

can be estimated better. Sometimes it is then possible to adjust the deterioration model, as is 

demonstrated in Figure 11.15. This can best be clarified with an example. 

 

Figure 11.15 Adjustment of a deterioration model. 
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Example 11.2 

Suppose that the strength of a steel element in a structure is more or less known at time t = 0. On 

average this is 130kN with a standard deviation of 1 kN.  

 

As a result of corrosion the strength decreases with an average rate of 10 kN/year. The standard 

deviation of the reduction of the strength is 5 / 3 kN/year. It is assumed that the corrosion is 

independent of the time and the earlier corrosion. The parameters which are of importance for the 

description of the corrosion are assumed to be constant, which means that the corrosion rate is 

also constant.  

After three years the expected value of the strength is:  3   1  30 3 10 100kNRμ     . The standard 

deviation of the strength is: 

 
2

R (3) = 1+ 3 5/ 3 = 4 kN        (11.7) 

It is assumed that both the initial strength and the rate of reduction of the strength are normally 

distributed. This implies that the strength at time t is also normally distributed. The a priori 

probability density of the strength after 3 years is: 

2
1 100

2 41
( ) e

4 2

R

I

Rf R
π

 
  

         (11.8) 

After three years the strength of the system is inspected using an unspecified method. The method 

does not entirely exclude measurement errors. Thus, the strength cannot be determined exactly. 

For a given strength, the inspection method can be used to find values that are normally 

distributed around the actual strength. For this it is assumed that the values are obtained from 

independent measurements. The standard deviation of the distribution is 2kN. The strength is 

measured five times. The measurements are respectively 103, 102, 105, 104 and 103 kN. The a 

posteriori probability density is: 

2 2 2 2 2
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   (11.9) 

This is a normal probability density function with: 

RR
(4) =103.24 kN  and  (4) = 0.87287 kN      (11.10) 

The variance of the a posteriori probability distribution is therefore significantly lower than the 

variance of the a priori probability distribution. 

 

This example assumed that the inspection observations were independent. This is not always the 

case. In such cases more inspections do not yield a proportional improvement of the knowledge 

of strength. 
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