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Assignment 1

Introduction

Exercise 1

The Gell-Mann/Okubo formula 2(mN + mΞ ) = 3mΛ + mΣ relates the masses of the baryon octet ignoring the small
differences between e.g. p− n, Σ 0 − Σ±, Ξ 0 − Ξ−. Using the known masses from the particle data group (PDG -
(http://pdg.lbl.gov/)), estimate the mass of Λ and figure out how much off from the real value you are.

Exercise 2

1. How many different mesons can you make out of 1, 2, 3, 4, 5, and 6 different quark flavours and what is the general
formula? (Do not consider anti-particles)

2. Using the first four lightest quark flavours i.e. u,d,s,c, write down all the different mesons, ordered by charm content
and associate them to a known particle.

Exercise 3

Which of the two decays is most likely to happen: Ξ−→Λ +π− or Ξ−→ n+π−? Please explain why and confirm it by
looking at the particle data group page (http://pdg.lbl.gov/).

Exercise 4

Which reactions are possible and which are not, and why?

1. p+ p̄→ π++π0

2. η → γ + γ

3. Σ 0→Λ +π0

4. Σ−→ n+π−

5. e++ e−→ µ+µ−

1.1 Homework

Exercise 1[25]

The Gell-Mann/Okubo formula for the decouple is m∆ −mΣ∗ = mΣ∗ −mΞ∗ = mΞ∗ −mΩ− . Use this formula to estimate
the mass of the Ω baryon and figure out how much off from the real value you are. X∗ states represent the average mass
of the corresponding baryons.
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2 1 Introduction

Exercise 2[25]

1. How many different baryons can you make out of 1, 2, 3, 4, 5, and 6 different quark flavours and what is the general
formula? (Do not consider anti-particles)

2. Using the first four lightest quark flavours i.e. u,d,s,c, write down all the different baryons, ordered by charm content.

Exercise 3[25]

Which of the following decays is most likely to happen: D0 → K−+ π+, D0 → K+ + π− or D0 → π−+ π+? Please
explain why and confirm it by looking at the particle data group page (http://pdg.lbl.gov/).

Exercise 4[25]

Which reactions are possible and which are not, and why?

1. µ−→ e−+νe

2. ∆+→ p+π0

3. νe + p→ n+ e+

4. p→ e++ γ

5. Ξ−→Λ +π−



Assignment 2

Symmetries and elements of group theory

Exercise 1

Show that invariance for translations in space leads to the conservation of momentum.

Exercise 2

Show that

{1, i,−1,−i} ∼=
{(

1 0
0 1

)
,

(
0 1
−1 0

)
,

(
−1 0

0 −1

)
,

(
0 −1
1 0

)}

Exercise 3

1. Show that Tr(AB) = Tr(BA).

2. Show that a matrix transform preserves the algebra of a Lie group. Representations that are related by similarity
transformations are therefore called equivalent.

3. Show that a matrix transform preserves the product, determinant and trace, that is,

(AB)′ = A′B′, det(A′) = det(A) and Tr(A′) = Tr(A).

Exercise 4

1. Instead of |p〉 and |n〉 we will write |u〉 and |d〉 to reflect isospin symmetry on the quark level. Verify that

I3 |u〉= 1
2 |u〉, I3 |d〉=− 1

2 |d〉

and that the Casimir operator I2 = I2
1 + I2

2 + I2
3 is a multiple of the unit operator, with

I2 |u〉= 3
4 |u〉, I2 |d〉= 3

4 |d〉

2. Define the step operators I± = I1± i I2 and verify that

I+|u〉= 0, I+|d〉= |u〉, I−|u〉= |d〉, I−|d〉= 0

Exercise 5

Two particles, each of spin 2 and third component 0, form a composite system whose orbital angular momentum is 0.

1. What is the probability for each of the states of the composite system?

2. Which state is the most probable?

3. Show that the probabilities add up to unity.

3



4 2 Symmetries and elements of group theory

2.1 Homework

Exercise 1[20]

1. Show that invariance for translations in time leads to the conservation of energy.

2. Show that rotational invariance leads to the conservation of angular momentum.

Exercise 2[30]

1. Show that
det[exp(A)] = exp[Tr(A)]

for all matrices A that can be brought into diagonal form.

2. Show that τiτ j = δi j + iεi jkτk. Together with the fact that the τ are Hermitian, we thus have τ
†
i = τi = τ

−1
i .

3. Show that (a · τ)(b · τ) = a ·b+ iτ · (a×b) and, from this, that (θ · τ)2 = |θ |2.

4. Use the above, and the Taylor expansions of exp(), sin() and cos(), to show that exp(iθ · τ) = cos |θ |+ i(θ̂ · τ)sin |θ |.
Here θ̂ is the unit vector along θ .

Exercise 3[20]

1. Show that the commutation relations of the set {I±, I3} are

[I3, I+] = I+ [I3, I−] =−I− [I+, I−] = 2I3

2. Show that Iu = I+I− and Id = I−I+ are counting operators in the sense that

Iu|u〉= |u〉 Iu|d〉= 0 Id |u〉= 0 Id |d〉= |d〉

Exercise 4[30]

Consider a particle of spin 3/2 and another one of spin 2 that form a system whose orbital angular momentum is 0 and
total spin is 5/2. If the z-component of the composite system is -1/2, what values would we get for the measurement of Sz
and what is the probability for each? Show that they add up to unity?



Assignment 3

QCD Lagrangian

Exercise 1

The transformation property of A we find from the requirement D′µU =UDµ :

(∂µ + igwτ ·A′µ)Uψ =
Iwant

U(∂µ + igwτ ·Aµ)ψ

Show that this gives the transformation rule:

τ ·A′µ =U(τ ·Aµ)U−1 +
i

gw
(∂µU)U−1

3.1 Homework

Exercise 1[40]

The transformation rule for the gauge fields is

τ ·A′µ =U(τ ·Aµ)U−1 +
i

gw
(∂µU)U−1.

Expand to first order U ≈ 1− igw τ ·α and show that the transformation rule can be approximated by

τ ·A′µ ≈ τ ·Aµ + igw [τ ·Aµ ,τ ·α]+ τ ·∂µ α

Exercise 2[60]

1. Use the expression for (a · τ)(b · τ) on page 4 to evaluate the commutator

[τ ·Aµ ,τ ·α] =−2iτ (α×Aµ)

2. Now substitute the commutator and multiply with τ−1 to get

A′µ ≈ Aµ +∂µ α +2gw (α×Aµ)
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Assignment 4

Colour factors

Exercise 1

Calculate the colour factors for the octet qq configuration:

1. BG

2. (RR−BB)/
√

2

4.1 Homework

Exercise 1[40]

1. The λ matrices are normalised such that Tr(λaλb) = 2δab. Check this for 4 matrices λa and λb.

2. Show that Tr(λc[λa,λb]) = 4i f c
ab. By changing the order of the λ , and using Tr(AB) = Tr(BA), show that the structure

constants f c
ab are antisymmetric in the exchange of two indices.

Exercise 2[30]

Calculate the colour factors for the octet qq configuration (RR+BB−2GG)/
√

6

Exercise 3[30]

Calculate the colour factors for the sextet qq configuration (RB+BR)/
√

2.
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Assignment 5

Form factors

Exercise 1

For the elastic e− p scattering in the lab frame (i.e. stationary proton) show that:

〈|Mi f |2〉=
g4

e

4EE ′ sin4(θ/2)

(
2K1 sin2(θ/2)+K2 cos2(θ/2)

)
where θ is the electron scattering angle, and E and E

′
are the incoming and outgoing energies of the electron.

Exercise 2

For the same process of exercise 1 (i.e. not the first homework exercise) show that:

E
′
=

ME

M+E
(

1− cos(θ)
) ⇔ E

′
=

E
1+ 2E

M sin2(θ/2)

5.1 Homework

Exercise 1[50]

Explain why R is defined as the ratio between σ(e−+ e+→ hadrons) and σ(e−+ e+→ µ−+µ+) and not with respect
to σ(e−+ e+→ e−+ e+) (write down all diagrams, if need be).

Exercise 2[50]

Starting from 〈|Mi f |2〉= g4
e

4EE ′ sin4(θ/2)

(
2K1 sin2(θ/2)+K2 cos2(θ/2)

)
, show that

dσ

dΩ
=
[

α

4ME sin2(θ/2)

]2 E
′

E

(
2K1 sin2(θ/2)+K2 cos2(θ/2)

)
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Assignment 6

Deep inelastic scattering

Exercise 1

Calculate the centre-of-mass energies at SLAC (20 GeV electrons on stationary protons) and at HERA (27 GeV electrons
on 800 GeV protons). You can neglect the electron mass and, at HERA, also the proton mass.

Exercise 2

All DIS kinematic variables can be determined from a measurement of the scattered electron energy E ′ and angle θ with
respect to the incident beam. In particular, show that for fixed-target experiments (proton at rest and the electron coming
in from the z direction) we have the relations

Q2 = 4EE ′ sin2(θ/2)

ν = E−E ′

x = Q2/(2Mν)

y = ν/E

W 2 = M2−Q2 +2Mν

s = M(M+2E)≈ 2ME

6.1 Homework

Exercise 1[50]

Show that Q2 ≈ xys for large s�M2 (so that we can neglect the proton mass). What is, in this approximation, the largest
Q2 that can be reached at the SLAC experiments (

√
s = 6.4 GeV) and at HERA (

√
s = 294 GeV).

Exercise 2[50]

Show that:

1. s+ t +u = m2
1 +m2

2 +m2
3 +m2

4

2. if we neglect the electron and proton mass,
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12 6 Deep inelastic scattering

Q2 = −t

x = −t/(s+u)

y = (s+u)/s

W 2 = s+ t +u



Assignment 7

Asymptotic freedom

Exercise 1

Show that the term qµ qν J(q2) does not contribute to the matrix element Mi f , using the Dirac equations (/p−m)u = 0,
ū(/p−m) = 0, (/p+m)v = 0 and v̄(/p+m) = 0.

7.1 Homework

Exercise 1[70]

Show that

1. q2 = (p1− p3)
2 = (p4− p2)

2 < 0,

2. for small and large Q2

f
(

Q2

m2
e

)
=


1
5

Q2

m2
e

for Q2� m2
e

ln
(

Q2

m2
e

)
for Q2� m2

e

For this, you might need the integrals
∫ 1

0 dz z(1− z) = 1
6 and

∫ 1
0 dz z2(1− z)2 = 1

30 .

Exercise 2[30]

Calculate α(Q2) for Q2 = 1000 GeV2.
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