Post-doc challenge

Maris Ozols
QuSoft and University of Amsterdam

Challenge 1 (Strange unitary).

1. Find a 7×7 integer matrix M such that the matrix U with entries

$$
U_{x y}=\frac{1}{\sqrt{7}} \exp \left(\frac{2 \pi i}{6} M_{x y}\right)
$$

is unitary. Yes, U is a 7×7 unitary whose entries are 6 th roots of unity!
2. For an unknown value of $x \in\{1, \ldots, 7\}$, let O_{x} be a quantum oracle that provides access to the row x of M : for any entry $y \in\{1, \ldots, 7\}$ and an arbitrary $a \in\{0, \ldots, 5\}$,

$$
O_{x}|y\rangle|a\rangle=|y\rangle\left|\left(a+M_{x y}\right) \bmod 6\right\rangle .
$$

How many queries to O_{x} are needed to determine which row x it hides?

Challenge 2 (Broken Bernstein-Vazirani). Let $n \geq 3$ and $s \in\{0,1\}^{n}$ be an unknown string. The standard phase oracle for the Bernstein-Vazirani problem is

$$
O_{s}=\sum_{x \in\{0,1\}^{n}}(-1)^{x \cdot s}|x\rangle\langle x| .
$$

Consider a broken oracle $O_{s}(\varphi)=E_{s}(\varphi) O_{s}$ where $\varphi \in[0,2 \pi)$ is some angle and $E_{s}(\varphi)$ is an s-dependent diagonal error unitary that, for any $x \in\{0,1\}^{n}$, acts as

$$
E_{s}(\varphi)|x\rangle= \begin{cases}e^{i \varphi}|x\rangle & \text { if }(x \neq s) \underline{\vee}(x \cdot s=0), \\ |x\rangle & \text { otherwise }\end{cases}
$$

where " V " denotes the logical XOR. Find an angle $\varphi(n) \neq 0$ such that one query to the broken oracle $O_{s}(\varphi(n))$ still lets you determine the string s with certainty, promised that $s \neq 0$.

Challenge 3 (Quantum averaging). Let $\rho(\vec{r})=\frac{1}{2}(I+x X+y Y+z Z)$ where $\vec{r}=(x, y, z) \in \mathbb{R}^{3}$ and

$$
I=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad X=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad Y=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad Z=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

are the Pauli matrices. Given $\vec{r}_{1}, \ldots, \vec{r}_{n} \in \mathbb{R}^{3}$ with norm at most one, the state

$$
\frac{1}{n} \sum_{i=1}^{n} \rho\left(\vec{r}_{i}\right)=\rho\left(\frac{1}{n} \sum_{i=1}^{n} \vec{r}_{i}\right)
$$

is called the naive average of states $\rho\left(\vec{r}_{i}\right)$.

1. Show that, for two states, no quantum algorithm can beat the naive average. Namely, given unknown input states $\rho\left(\vec{r}_{1}\right)$ and $\rho\left(\vec{r}_{2}\right)$, no quantum algorithm can produce the state $\rho\left(c \frac{\vec{r}_{1}+\vec{r}_{2}}{2}\right)$ with $c>1$. Curiously, one can actually achieve $c<0$. What is the smallest $c<0$ that you can achieve?
2. Show that, for three states, one can do better than the naive average. More specifically, let $U \in \mathrm{U}(2)$ be an unknown unitary an consider the states

$$
\rho_{k}(\theta)=U \rho\left(\theta, \frac{2 \pi k}{3}\right) U^{\dagger}, \quad k \in\{1,2,3\},
$$

where $\rho(\theta, \varphi)=\rho(\sin \theta \cos \varphi, \sin \theta \sin \varphi, \cos \theta)$. Their naive average is

$$
\frac{1}{3} \sum_{k=1}^{3} \rho_{k}(\theta)=U \rho(0,0, \cos \theta) U^{\dagger} .
$$

Find a quantum algorithm that (without knowing U) can implement the transformation

$$
\bigotimes_{k=1}^{3} \rho_{k}(\theta) \mapsto U \rho(0,0, f(\theta)) U^{\dagger},
$$

for some $f(\theta)>\cos \theta$ for all $\theta \in(0, \pi / 2)$. What is the optimal $f(\theta)$?
3. More generally, let $U \in U(2)$ again be unknown and let

$$
\rho_{k}=U \rho\left(\theta_{k}, \varphi_{k}\right) U^{\dagger}, \quad k \in\{1,2,3\},
$$

where the angles $\theta_{k} \in \mathbb{R}$ are chosen independently from the normal distribution of mean 0 and variance σ^{2} while $\varphi_{k} \in[0,2 \pi)$ are chosen uniformly at random. When averaged over the choice of these angles, the naive average of these three states is $U \rho(\vec{r}) U^{+}$where $\vec{r}=\left(0,0, e^{-\sigma^{2} / 2}\right)$. What is the \vec{r} of their optimal quantum average?

Send your solutions to marozols@gmail.com with subject "Challenge".

