Post-doc challenge

Maris Ozols
QuSoft and University of Amsterdam

Challenge 1 (Strange unitary).

1. Find a 7×7 integer matrix M such that the matrix U with entries

$$U_{xy} = \frac{1}{\sqrt{7}} \exp \left(\frac{2\pi i}{6} M_{xy} \right)$$

is unitary. Yes, U is a 7×7 unitary whose entries are 6th roots of unity!

2. For an unknown value of $x \in \{1, \ldots, 7\}$, let O_x be a quantum oracle that provides access to the row x of M: for any entry $y \in \{1, \ldots, 7\}$ and an arbitrary $a \in \{0, \ldots, 5\}$,

$$O_x |y\rangle |a\rangle = |y\rangle |(a + M_{xy}) \mod 6\rangle.$$

How many queries to O_x are needed to determine which row x it hides?

Challenge 2 (Broken Bernstein–Vazirani). Let $n \geq 3$ and $s \in \{0, 1\}^n$ be an unknown string. The standard phase oracle for the Bernstein–Vazirani problem is

$$O_s = \sum_{x \in \{0,1\}^n} (-1)^{x \cdot s} |x\rangle \langle x|.$$

Consider a broken oracle $O_s(\phi) = E_s(\phi)O_s$ where $\phi \in [0,2\pi)$ is some angle and $E_s(\phi)$ is an s-dependent diagonal error unitary that, for any $x \in \{0,1\}^n$, acts as

$$E_s(\phi)|x\rangle = \begin{cases} e^{i\phi} |x\rangle & \text{if } (x \neq s) \Leftrightarrow (x \cdot s = 0), \\ |x\rangle & \text{otherwise}, \end{cases}$$

where “\Leftrightarrow” denotes the logical XOR. Find an angle $\phi(n) \neq 0$ such that one query to the broken oracle $O_s(\phi(n))$ still lets you determine the string s with certainty, promised that $s \neq 0$.
Challenge 3 (Quantum averaging). Let \(\rho(\vec{r}) = \frac{1}{2}(I + xX + yY + zZ) \) where \(\vec{r} = (x, y, z) \in \mathbb{R}^3 \) and

\[
I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}
\]

are the Pauli matrices. Given \(\vec{r}_1, \ldots, \vec{r}_n \in \mathbb{R}^3 \) with norm at most one, the state

\[
\frac{1}{n} \sum_{i=1}^{n} \rho(\vec{r}_i)
\]

is called the naive average of states \(\rho(\vec{r}_i) \).

1. Show that, for two states, no quantum algorithm can beat the naive average. Namely, given unknown input states \(\rho(\vec{r}_1) \) and \(\rho(\vec{r}_2) \), no quantum algorithm can produce the state \(\rho(c \vec{r}_1 + \vec{r}_2) \) with \(c > 1 \). Curiously, one can actually achieve \(c < 0 \). What is the smallest \(c < 0 \) that you can achieve?

2. Show that, for three states, one can do better than the naive average. More specifically, let \(U \in U(2) \) be an unknown unitary and consider the states

\[
\rho_k(\theta) = U \rho(\theta, \frac{2\pi}{3}) U^\dagger, \quad k \in \{1, 2, 3\},
\]

where \(\rho(\theta, \varphi) = \rho(\sin \theta \cos \varphi, \sin \theta \sin \varphi, \cos \theta) \). Their naive average is

\[
\frac{1}{3} \sum_{k=1}^{3} \rho_k(\theta) = U \rho(0, 0, \cos \theta) U^\dagger.
\]

Find a quantum algorithm that (without knowing \(U \)) can implement the transformation

\[
\otimes_{k=1}^{3} \rho_k(\theta) \mapsto U \rho(0, 0, f(\theta)) U^\dagger,
\]

for some \(f(\theta) > \cos \theta \) for all \(\theta \in (0, \pi/2) \). What is the optimal \(f(\theta) \)?

3. More generally, let \(U \in U(2) \) again be unknown and let

\[
\rho_k = U \rho(\theta_k, \varphi_k) U^\dagger, \quad k \in \{1, 2, 3\},
\]

where the angles \(\theta_k \in \mathbb{R} \) are chosen independently from the normal distribution of mean 0 and variance \(\sigma^2 \) while \(\varphi_k \in [0, 2\pi) \) are chosen uniformly at random. When averaged over the choice of these angles, the naive average of these three states is \(U \rho(\vec{r}) U^\dagger \) where \(\vec{r} = (0, 0, e^{-\sigma^2/2}) \). What is the \(\vec{r} \) of their optimal quantum average?

Send your solutions to marozols@gmail.com with subject “Challenge”.