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CONTROL ISSUES IN CYBER-PHYSICAL SYSTEMS

cyber system .
physical system

desired behavior actuation A i‘. .
—

sensing

?? supervisory
s & controller

¢ What to embed inside the cyber system to make the physical system behave
autonomously in a robust, safe, and optimal manner?

e How to synthesize a supervisory controller for a CPS?
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CONTENTS OF MY LECTURE

Model predictive control for CPS’s

Embedded quadratic optimization algorithms (inside the CPS)

Hybrid MPC = supervisory control of CPS’s

Data-driven controller synthesis for CPS'’s

cyber system

??

desired behavior actuation output

physical system

sensing

?? supervisory J

« 4 controller
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MODEL PREDICTIVE CONTROL (MPC)

prediction model uplim_ization
: algorithm

model-based optimizer
process
-i‘.’- ,°,

set-points

r(t)

outputs

y(t)

1‘ measurements

Use a dynamical model of the process to predict its future
evolution and choose the “best” control action
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MODEL PREDICTIVE CONTROL (MPC)

e Goal: find the best control sequence over a future horizon of N steps

past | future

N—1
min > [WY (g — r(0))12 + W (ur — ur(t))]2

k=0 ././'/(‘ml

st. wpyr = flar,ur)  prediction model “1 [} — manipulated inputs
ye = g(xk)
Umin < Uk < Umax ~ constraints
Ymin S Yk S Ymax
xo = x(t) state feedback
numerical optimization problem PA— -
e Ateachtimet: /
- get new measurements to update the estimate of the current state z(t)
- solve the optimization problem with respect to {uo, .. ., un—1}

- apply only the first optimal move u(t) = ug, discard the remaining samples
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MPC IN INDUSTRY

e The MPC concept for process control dates back to the 60’s

iscrete Dynamic Optimization
pplied to On-Line Optimal Control

MARSHALL D. RAFAL and WILLAM F. STEVENS

e MPC used in the process industries since the 80’s

Today APC (advanced process control) = MPC
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MPC IN INDUSTRY

e Impact of advanced control technologies in industry

( TABLE 1 A list of the survey results in order of industry impact as perceived by
the committee members.

N v
Rank and Technology High-Impact Ratings Low- or No-Impact Ratings
PID control 100% 0%

[Model predictive control I I 78% | 9%
System identification 61% 9%
Process data analytics 61% 17%
Soft sensing 52% 22%
Fault detection and 50% 18%
identification
Decentralized and/or 48% 30%
coordinated control
Intelligent control 35% 30%
Discrete-event systems 23% 32%
Nonlinear control 22% 35%
Adaptive control 17% 43%
Robust control 13% 43%
Hybrid dynamical systems 13% 43%

A J
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MPC IN INDUSTRY

Current Impact Future Impact
Control Technology % High Low/No High Low/No
PID control 91% 0% 78% 6%
System Identification 65% 5% 2% 5%
Estimation & filtering 64% 11% 63% 3%
62% 1% 2%
Process data analytics 51% 15% 70% 8%
Fault detection & 48% 17% 8% 8%
identification
Decentralized and/or 29% 33% 54% 1%
coordinated control
Robust control 26% 35% 2%  23%
Intelligent control 24% 38% 59% 1%
Nonlinear control 21% 44% 42% 15%
Discrete-event systems  24% 45% 39% 27%
Adaptive control 18% 38% 44% 17%
Repetitive control 12% 74% 17% 51%
Other advanced 1% 64% 25% 39%
control technology
Hybrid dynamical 11% 68% 33% 33%
systems
Game theory 5% 76% 17% 52%

Bemporad - "Mode Control" - oCPS School 8/74




TYPICAL USE OF MPC

static optimizer . )
Steady-state e (economic) set-point
optimization optimization
- I o static I/O model
set-points
d?jhami.c ophimiz.er .
MPC e coordinate multiple inputs
» ! e performance optimization
i * I e constraint handling
measurements | l actuator set-points

requlators

o fast-sampling

m—> —>|:|:|—' low-level controllers
e single-loop
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MPC OF AUTOMOTIVE SYSTEMS

Powertrain Ford Motor Company
engine control, magnetic actuators, robotized gearbox,
power MGT in HEVs, cabin heat control, electrical motors Jaguar
) . DENSO Automotive
Vehicle dynamics FCA
traction control, active steering, semiactive suspensions, G | Mot
autonomous driving enera otors
OoDYS

Road: neighbor-lane free, Mode: OA, k=108, Pi=1

Most automotive OEMs are looking into MPC solutions today
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MPC OF GASOLINE TURBOCHARGED ENGINES

e Control throttle, wastegate, intake & exhaust cams to make engine torque
track set-points, with max efficiency and satisfying constraints

MPC
Desired Actuators Achieved
torque commands
—_—
I Measurements

numerical optimization problem

solved in real-time on ECU . B

B | — v

=YL

engine operating at low pressure (66 kPa)
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SUPERVISORY MPC OF POWERTRAIN WITH CVT

e Coordinate engine torque request and continuously variable transmission
(CVT) ratio to improve fuel economy and drivability

e Real-time MPC is able to take into account coupled dynamics and constraints,
optimizing performance also during transients

Engine
torque
request

Desired

axle torque
D ——

MPC . R M

& S
CvT - US06 Double Hill driving cycle
ratio
request CVT Control

trol" - oCPS School 12/74
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MPC IN AERONAUTIC INDUSTRY

PRESS RELEASE

Pratt & Whitney's F135 Advanced Multi-Variable
Control Team Receives UTC's Prestigious George
Mead Award for Outstanding Engineering
Accomplishment

EAST HARTFORD, CONN., THURSDAY, MAY 27, 2010

Pratt & Whitney engineers Louis Celiberti, Timothy Crowley, James Fuller and Cary Powell
won the George Mead Award — United Technologies Corp.'s highest award for outstanding
engineering achievement — for their pioneering work in developing the world's first advanced
multi-variable control (AMVC) design for the only engine that powers the F-35 Lightning Il
flight test program. Pratt & Whitney is a United Technologies Corp. (NYSE:UTX) company.

The AMVC, which uses a proprietary model predictive control methodolggy, is the most
technically advanced propulsion system control ever produced by the aerospace industry,
demonstrating the highest pilot rating for flight performance and providing independent
control of vertical thrust and pitch from five sources. This innovative and industry-leading
advanced design is protected with five broad patents for Pratt & Whitney and UTC, and is the
new standard for propulsion system control for Pratt & Whitney military and commercial

‘engines. Pratt & Whitney

A United Technologies Company

ly,

http://www.pw.utc.com/Press/Story/20100527-0100/2010
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http://www.pw.utc.com/Press/Story/20100527-0100/2010

OTHER EXAMPLES OF MPC APPLICATIONS

e MPC for smart electricity grids
Example: Dispatch power in smart distribution grids,
trade energy on energy markets

e MPC of drinking water networks
Example: save 5% energy costs in Barcelona's drinking
water network w.r.t. current practice

e MPC for financial engineering
Example: dynamic portfolio optimization for option hedging

All the above applications require stochastic MPC formulations
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MODEL PREDICTIVE CONTROL - THE BASICS



LINEAR MPC

— Az 4B r € R™
e Linear prediction model: { Tt - ka Uk ueR™
yp = Cuy y e R

e Constraints to enforce:

Umin S U(t) S Umax
Ymin S y(t) S Ymax

e Constrained optimal control problem (quadratic performance index):

N-1
min 2y Pzy + E 7}, Qxy + uj Ruy, N
z P R = R0 ul
Q = Qx0 z= :
— ’ *
st Umin < Up < Umax, k=0,...,N—1 | F = Pz=0 UN -1
Ymin < Yk < Ymax, k= 17~~'7N
T— e
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LINEAR MPC

k—1

e Linear prediction model: 2, = A¥zq + Z A'Buj,_1_;
i=0

e Optimization problem (condensed form):

V(zo) = 2a(Yzo+ min 12’Hz+ x(F'z (quadratic objective)
z

st. Gz < W + Sz |(linear constraints)

convex Quadratic Program (QP)

Uuo
U1

* 7 — . € RV™ s the optimization vector

UN -1

e H=H'>0,and H,F,Y,G,W, S depend on weights Q, R, P upper and lower
bounds Uiy, Umax, Ymins Ymax and model matrices A, B, C.
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LINEAR MPC ALGORITHM

@ each sampling step t:

manipulated inputs

|t t+k t+N

y Seedvack
ug 1 /H / F/
u i = x' (t
e Get the solution z* = b | ofthe QP min gzt (£)F"2
“1*\1.—1

st. Gz<W+4S§ z(t)
~~
Seedvack

o Apply only u(t) = u, discarding the remaining optimal inputs uf, ..., u}_,

Model Predictive Control" - oCPS School 17/74




BASIC CONVERGENCE PROPERTIES

e Theorem: Let the MPC law be based on

N-1
V*(x(t)) = min Z 2, Qxy, + uj Ruy,
k=0
s.t. Trp+1 = Axy + Bug

Umin < Uk < Umax
Ymin S C:L'k S Ymax
xy =0 <« “terminal constraint’

q

with R, Q >~ 0, Umin < 0 < Umax, Ymin < 0 < Ymax-
If the optimization problem is feasible at time ¢ = 0 then

lim () =0, lim u(t)=0

t—o0 t—o0

and the constraints are satisfied at all timet > 0,for all R, Q > 0.

o Many more convergence and stability results exist

18/74
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LINEAR MPC - TRACKING

e Optimal control problem (quadratic performance index):

N-1
i wY —r@)|3 + WA Aug|?
min 210 s = rCO)I + W A e
[Aug 2 up, — up_1], u—1 = u(t — 1) Auy ul
z= . orz =
s.t. Umin < Uk < Umax, K =0,...,N =1 :
Ymin < Yk < Ymax, b=1,..., N Aty -1 UN-1

Atpin < Aup < Aumax, k=0,...,N -1

weight W = diagonal matrix (more generally, Cholesky factor of Q = W'W)

min J(z,2(t)) = 52 Hz + [2/(8) v/ (8) u'(t = D]F'2 convex
z(t) Quadratic
st. Gz<W4+S r(t) P
A rogram

I——
e Add the extra penalty | W (ux — uret(t))||3 to track input references

e Constraints may depend on r(t), such as epin < yx — 7(t) < emax
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INTEGRAL ACTION AND A.-FORMULATION

e |n control systems, integral action occurs if the controller has a
transfer-function from the output to the input of the form

__BE)
ut) = v B #0

e One may think that the Au-formulation of MPC provides integral action ...
.. isittrue?

e Example: we want to regulate the output y(t) to zero of the scalar system

z(t+1) = ax(t)+ Bu(t)
y(t) = ()
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INTEGRAL ACTION AND A.-FORMULATION

e Design an unconstrained MPC controller with horizon NV = 1
Au(t) =  argminau, Aud + pyi
st. Aug =ug —u(t —1)
y1 = x1 = ax(t) + B(Aup + u(t — 1))
e By substitution, we get
Au(t) = argmina,, Aud + plax(t) + Bu(t — 1) + BAug)?
= argminp,, (1 + pﬁ2)Au0 + 28p(ax(t) + fu(t — 1))Aug
= —22%a(t) - 2 u(t - 1)
e Since z(t) = y(t) and u(t) = u(t — 1) + Au(t) we get the linear controller
pﬁa2 p
u(t) = 2741 ho pole in z=1

1
2T 1587

e Reason: MPC gives a feedback gain on both z(t) and u(t — 1), not just on z(¢)
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OUTPUT INTEGRATORS AND OFFSET-FREE TRACKING

e Add constant unknown disturbances on measured outputs:

Tpy1 = Az + Buy,
dpy1 = dg
ye = Cxp+dy

Use the extended model to design a state observer (e.g., Kalman filter) that
estimates both the state #(¢) and disturbance d(t) from y (t)

Why we get offset-free tracking in steady-state (intuitively):

- the observer makes C'i(t) + d(t) — y(t) (estimation error)
- the MPC controller makes Cz(t) + d(t) — (t) (predicted tracking error)
- the combination of the two makes y(t) — r(t) (actual tracking error)

In steady state, the term d(t) compensates for model mismatch

See more on survey paper
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ANTICIPATIVE ACTION (A.K.A. "PREVIEW™)

N-1

min 3 I (s = el + IS Buh)

e Reference not known in advance e Future refs (partially) known in
(causal): advance (anticipative action):
re, =r(t),vk=0,...,N—1 re =r(t+k),vk=0,...,N—1
Output/ reference Output / reference

[ use r(t f T use r(t+k)

0.5 0.5
0
0 5 10 15 0 5 10 15

Input Input

2 2
1 -If‘ 1 jr|.|_r(’\7
0
0 5 10 15 0 5 10 15

go todemompcpreview.m (MPC Toolbox)

e Same idea also applies for preview of measured disturbances

23/74
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LTV-MPC

e Linear Time-Varying (LTV) model predictive control

Thy1 = Ak(t)mk+Bk(t)uk
y = Cr(t)zy

e The model can change at each time ¢, even over the prediction horizon k

e Theresulting optimization problem is still a QP
] 1, a(t) 1’ ,
min 5% H(t)z+ | r@®» | F(t)'z

z u(t—1)
xz(t)

s.t. G(t)z <W(t)+ S(t) { r(t) J
u(t—1

e In LTV-MPC the QP matrices must be constructed online
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LINEARIZING A NONLINEAR MODEL

e LTV models can be obtained by linearizing nonlinear models

{ 50— Flelt), uelt), pe(®))
ye(t) = glzc(t), pe(t))
o Attimet, consider nominal trajectories
U = {a.(t),u.(t+Ts),...,0.(t+(N—-1)T5)}
(example: U = shifted previous optimal sequence or input ref. trajectory)
Po= A{pc(t), pe(t + Ts), ..., pe(t + (N = 1)T5)}

(no preview: p.(t + k) = p(t))
o Integrate the model and get nominal state/output trajectories
X = A{z.(t),z(t+Ts),....,T(t+ (N —1)T,)}
Vo= A7) gt + To), .. ge(t + (N = 1)T5)}
e Examples: Z.(t) = current state / equilibrium state / reference state
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LINEARIZATION AND TIME-DISCRETIZATION

o Getting the discrete-time LTV model A (¢), By (t), C(t) requires to linearize
and discretize in time the nonlinear continuous-time dynamical model

dz.(t) o of _ of _
= TeyUcyPe) = Ly Ucy Pe Le—Te Ue — Ue
0 o) = gyt | mas 2| ea
(i:l:c cry¥esrPe cry¥esrPe
dt Tacomian waten A, Tacdiian watriv B

o letx =z, — Tc,u = uc — .. We get the continuous-time linear system

dx
— = A, B
at T+ Beu

e Similarly, from the output equationwe gety = y. — g. =~

Tacdsian wateiy C

e Convert (Ac, B, C) todiscrete-time model (A, B, C') (Euler method, exp. matrix, ...)

e LTV-MPC: @each time ¢ simulate the NL model, get linearized models, build & solve QP
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FROM LTV-MPC T0 NONLINEAR MPC

o NL-MPC: We can solve a sequence of LTV-MPC problems at each time ¢

For h = 0t0 hmax — 1 do:

1. Simulate from z(¢) with inputs Uy, and get state trajectory X,
2. Linearize around (X}, Uy ) and discretize in time

3. Get U;:+1 = QP solution of corresponding LTV-MPC problem
4. Line search: find optimal step size oy, € (0, 1];

5. SetUp41 = (I —ap)Uy + ahU;+1;

Return solution Uy,

e The above method is Sequential Quadratic Programming (SQP) applied to
solve the full nonlinear MPC problem

e Special case: just solve one iteration with o = 1 (a.k.a. Real-Time Iteration)
=LTV-MPC

27/74
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NONLINEAR MPC

e Example

[] Linear MPC

DDDDEI T T+ RTI

<> Fully converged

XOEQQQQQQQQQQ@mmammmmy

ST 4 6 8 10 12 14 16 18 20
4 m : . . i . ‘ ? I;-lrllearMPC
ol m <> Fully converged
R B
of @@m@@@@@@@mmmam§
ol
2 4 10 12 18

0.2H —=—Linear MPC
N il

5 07| <~ Converged
-0.21

-0.4r 7

©2019 A. Bemporad
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PREDICTION MODELS FOR MPC

e Physics-based nonlinear models

e Use black-box system identification
algorithms to fit linear or nonlinear models to data

e Use machine-learning techniques to get nonlinear
models (such neural networks) from data, with Jacobians

e A mix of the above (gray-box models)

o Note: Computation complexity depends on chosen model,
need to trade off descriptiveness vs simplicity of the model

ontrol" - oCPS School

1=k (We t Wegr — kept) + o

T,
P2 = ka(kepy = Wegr — We + W) + T;m
Fe = 1(Pe =i Py)

U P Y.

box
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LEARNING NONLINEAR MODELS FOR MPC

e |dea: use autoencoders and artificial neural networks to learn a nonlinear
state-space model of desired order from input/output data

" Dacodar] O, Ok11

|
0000000 Q000000
d d
\\ ,/ f > //
0000 & 0000
ka — . Thtl —> xl{ﬂ
QOOQ O statemap QOOO
/,’/ e ‘\\ l,’l e \‘\
0000000 0000000
Il.l Uk ITk
ANN with hourglass structure Or = Wk Yheml
i = [k - Yhongt1 Uk .- U;g—nb-s-l],
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LEARNING NONLINEAR MODELS FOR MPC - AN EXAMPLE

e System generating the data = nonlinear 2-tank benchmark

e xl(k + 1) k‘ 1/ .T1 + kz k’) + w(k))
il xz(k+1):x2 (k) +k \/xl ) — kar/z2(k)
] I- y(k) = z2(k) + v(k)

Y1) = xa(t) =

st

Model is totally unknown to learning algorithm

www.mathworks.com
6

e Artificial neural network (ANN): 3 hidden layers :
60 exponential linear unit (ELU) neurons \/VV\/\/
e For given number of model parameters, ’
autoencoder approach is superior to NNARX

50 150 200

e Jacobians directly obtained from ANN structure -
for Kalman filtering & MPC problem construction LTV-MPC results
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EMBEDDED QUADRATIC OPTIMIZATION FOR MPC



EMBEDDED MPC AND QUADRATIC PROGRAMMING

e MPC based on linear models requires solving a Quadratic Program (QP)

1
min §Z/QZ +a'(t)F'z uy

z

s.t. Gz <W + Sz(t)

UN—1

- ;:/Qz + 2(t)'F'z = constant
. . . . .“‘:‘“Z
Arich set of good QP algorithms is available today Pats

e Not all QP algorithms are suitable for industrial embedded control
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MPC IN A PRODUCTION ENVIRONMENT

Key requirements for deploying MPC in production:

1. speed (throughput)

- worst-case execution time less than sampling interval

- alsofast on average (to free the processor to execute other tasks)

2. limited memory and CPU power (e.g., 150 MHz / 50 kB)

-

3. numerical robustness (single precision arithmetic)

n

4. certification of worst-case execution time ”’3
FIED

C‘“”E‘r/
5

. code simple enough to be validated/verified/certified
(library-free C code, easy to check by production engineers)
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EMBEDDED SOLVERS IN INDUSTRIAL PRODUCTION

e Multivariable MPC controller
e Sampling frequency = 40 Hz (= 1 QP solved every 25 ms)
e Vehicle operating =1 hr/day for ~360 days/year on average

e Controller running on 10 million vehicles

~520,000,000,000,000 Q"”/v“

and none of them should fail.

©2019 A. Bemporad - "Model Predictive Control" - oCPS School 34/74



DUAL GRADIENT PROJECTION FOR QP

e Consider the strictly convex QP and its dual

min  32'Qz + 2'F'z min  3y'Hy + (Dz + W)'y
st. Gz < W+ Sz st. y>0

withH =GQ'G',D =5+ GQ 'F.Take L > )\mi(H)

Apply proximal gradient method to dual QP:

Il
o

1
Yyt = max{yk—Z(Hyk+Dx+W), 0} Y0

Primal solution: z¥ = —Q~!(Fx + G'y*)

Also works in fixed-point arithmetic

Convergence is slow: the initial error f(2°) — f(2*) reduces as 1/k
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FAST GRADIENT PROJECTION

e Solve (dual) QP by fast gradient method

. 1 ’ 7 ! hile k<maxit
min —2'Qz+a'F'z k k k k—1 " betasnax((.1)/(k12),0);
: 57 @ wh = yF 4 Byt — ) e
s.t. Gz < W + Sz

z=-(iMG*w+iMc);
s=6L*z-bL;
& = —Kwrk—g

yo=y;
¥ = 1G2F— 1 (W + Sz) AT

gapl=-w'*s;
if gapL<=epsL

Y = max {wk + s%,0} et

end

yawis;
k=k+1;
end

e \erysimple to code

2L
e Convergencerate: f(z*) — f(z*) < m”zo —2*|3

o Tight bounds on maximum number of iterations can be computed
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o Alternating Directions Method of Multipliers for QP

o Q4 pA A (A — ) + o)
skl = min{max{AzFT! + ¥, ¢}, u}
Wbl =k 1 Aghtl gkt

pu = dual vector

e Verysimple to code

e Sensitive to matrix scaling (as gradient projection)

min

NI
N\
Q
N
+
(‘\
I3

while k<maxiter
k=k+1;

221+ (CHA"*(rho* (u-s)));

Az=A*z
s=max(min(Az+u,ub),1b);
u=uthz-s;

end

(7 lines EML code)
(=40 lines of C code)

e Used in many applications (control, signal processing, machine learning)

A. Bemporad - "Model Predictive Control" - oCPS School
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REGULARIZED ADMM FOR QUADRATIC PROGRAMMING

Robust “regularized” ADMM iterations:

= (Q+ pAT A+ el) 7Y — ez + pAT (uF — 2F))
sFHl = min{max{Az*T + ¥ ¢} u}
WEHL = gk Akt gkt

Works for any Q = 0, A, and choice of ¢ > 0

Simple to code, fast, and robust
Q+el A
A 7%1

Implemented in free osQP solver http://osgp.org

(Python interface: ~ 800,000 downloads)

Only needs to factorize once
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CAN WE SOLVE QP'S USING LEAST SQUARES ?

The least squares (LS) problem is probably the ‘ g
most studied problem in numerical linear algebra ;

Adrien-Marie Legendre
(1752-1833)
.

2" = argmin || Az — b||3

INnMATLAB: >> z=A\b (owne character !)

Carl Friedrich Gauss
(1777-1855)

Nonnegative Least Squares (NNLS) Bounded-Variable Least Squares (BVLS)

min, || Az — b||3 min, ||Az — b3
st. 220 st. £<z<u
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SOLVING QP’S VIA NONNEGATIVE LEAST SQUARES

e Complete the squares and transform QP to least distance problem (LDP)

mzin $7'Qz+dz Q=LL rnuin ul)?
st. Gz<yg st. Mu<d
ut Lz+ L Te
Q=Q -0
e An LDP can be solved by the NNLS
2
. 1| M n 0
min -
vl e [T ,
st. y>0
o Ifresidual = 0then QP is infeasible. Otherwise set
1
* L—lM/ * —1
* 1+ dy* y Qe
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ROBUST QP SOLVER BASED ON NNLS

e QP solver based on NNLS is not very robust numerically
e Key idea: Solve a sequence of QP via NNLS within proximal-point iterations

Zhp1 = argmin,  12/Qz 4z 4 §[lz — %3
st. Az <b
Gr=g

o Numerical robustness: ) + €I can be arbitrarily well conditioned !

e Choice of ¢ is not critical

cond(@)=10'
cond(Q)=10°
cond(Q)=10°

total number of active-set iterations
as afunction of e

102+

e Each QP is heavily warm-started and makes very few active-set changes

o Recursive LDLT decompositions/rank-1 updates exploited for max efficiency
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SOLVING QP’S VIA NNLS AND PROXIMAL POINT ITERATIONS

CPU time (ms) (worst-case)

distance ||z — 2*|| from optimizer (worst-case)

‘02 {- | == QPNNLS PROX 1 | | == QPNNLS PROX|
s QPNNLS LDL 1 ol = QPNNLS LDL
GPAD ] 10/ GPAD i
= ADMM (3000) 1 | | === ADMM (3000)
——— ADMM (1000) 1 | | == ADMM (1000)
° /\\//_—\>4
/\_/—\_/\ 10'5
100 1 ’ 2 : 3 ‘4 ‘5 : 6 i 7 8
10’ 102 10° 10* 10° 10° 107 108 10 10 10 10 10 10 10 10
cond(Q)

single precision arithmetic
30 vars, 100 constraints
(Macbook Pro 3 GHz Intel Core i7)
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MPC WITHOUT ON-LINE QP

prediction model

: \ model-based optimizer
N,
N
set-points inputs outputs
(t) u(t) y(t)
'T‘ measurements
A . e Canweimplement constrained linear MPC
: \ A without an on-line QP solver ?
i sm:m j}'j’;w;
YES .
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EXPLICIT MODEL PREDICTIVE CONTROL

e Continuous & piecewise affine solution of strictly convex multiparametric QP

z*(z) = argmin, 12/Qz+ 2'F'z
st. Gz<W+ Sz

e Corollary: linear MPC is continuous & piecewise affine !

uo Fie+g1 if Hix<K;
uy
z" = . ug(x) =
- Fyx+gyu i Hyr < Ky
UN -1

o New mpQP solver based on NNLS available
and included in MPC Toolbox since R2014b

Is explicit MPC better than on-line QP (=implicit MPC) ?
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COMPLEXITY CERTIFICATION FOR ACTIVE-SET QP SOLVERS

e Result: The number of iterations to solve the QP via a dual active-set method is
a piecewise constant function of the parameter x

20

10

We can exactly quantify how
many iterations (flops) the QP
solver takes in the worst-case !

T2

10

20
—20 —10 xl 10 20

e Examples (from MPC Toolbox):

inverted pendulum ~ DCmotor  nonlinear demo  AFTIF16
Explicit MPC
max flops 3382 1689 9184 16434
max memory (kB) 55 30 297 430
Implicit MPC
max flops 3809 2082 7747 7807
sgrt 27 9 37 33
max memory (kB) 15 13 20 16

o QP certification algorithm currently used in industrial production projects
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HYBRID MPC OF CYBER-PHYSICAL SYSTEMS



CONTROL OF CYBER-PHYSICAL SYSTEMS

cyber system

physical system

desired behavior actuation %
—

sensing

?? supervisory
+ + controller

e Canwe use MPC to synthesize a supervisory controller of a CPS?
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HYBRID DYNAMICAL SYSTEMS

u(k contmu.ous
dynamical |7

10 /o\‘ 5 . - system
0 7o) hybrid

. /)1>0 . dynamical |

(1170 system
(k) N
uy(k) 1
e Variables are binary-valued e Variables are real-valued
xp € {0,1}™, up € {0,1}™¢ Te € R, u, € R™Me
e Dynamics = finite state machine ¢ Difference/differential equations
e Logic constraints e Linear inequality constraints
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PIECEWISE AFFINE SYSTEMS

r(k+1) = Ajwa(k) + Bigyu(k) + fir
y(k) Ciyx(k) + Digyu(k) + gir)

e PWA systems can approximate nonlinear dynamics arbitrarily well
(even discontinuous ones)

z(k+1)

<

(k)
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DISCRETE HYBRID AUTOMATON (DHA)

i Event Generator ze(k)
[0e = 1] & [Hze + Kue < W]
de(k) T
Se =1
L= Switched Affine System
— " ue(k) ze(k+1) =
Finite State Machine Agze(k) + Biue(k) + fil —— .
zp(k+1) = discrete = ik) zc(k)
i 1=1
RS ORTORIO) tima

QQOQ) xy(k)

mode | i(k)
Mode Selector .
(k) | =
1)
de(k .
(k) l:fM(weaW#Se) .
continuous

xg € {0,1}™ = binary state T, € R = real-valued state
ug € {0,1}™¢ = binary input U, € R™Me = real-valued input
d. € {0,1}" = eventvariable i€{l,...,s} = currentmode
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TRANSFORMATION OF A DHA INTO LINEAR (INJEQUALITIES

X1V X, =TRUE 51 4+62>1, 51,02 € {0,1}
Any logic statement Z Z

X) =TRUE 1< 5+ (1-9)
US g i€ePy i€Ny
m /i :
/\ (VierXi Vien; ﬁXz') (cNF) 1< S 6+ > a-6)
J=1 i€Pm i€Nm
NJ,PJ C {1 ..... n} / }»

H'wo(k) = W' < M'(1— (k)

_ 7 {
1000 =11 = [H'ae(k) < W) ‘ Hl:cc(k) Wi > mis (k)

Mz)(1—5)+2 < air+biut fr
IF [§=1] THETN/alz+ 1utf1 Z?m (1-6 < —ajz—biu—fi
ELSE z—a2a/+b2u+f2 .\ (mQJ—\M% < apzx+bou+ fo
(mq — M>) < —apz —bou—fo
\ Switched ™~ \
Afflne System >
Finite State Mode Selector Event
Machine . Generator
( JOT\ LA h
O [ s P
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MIXED LOGICAL DYNAMICAL (MLD) SYSTEMS

e By converting logic relations into mixed-integer linear inequalities
a DHA can be rewritten as the Mixed Logical Dynamical (MLD) system

z(k+1) = Axz(k)+ Biu(k) + B2d(k) + Bsz(k) + Bs
y(k) = Cz(k)+ Diu(k) + D26(k) + Dsz(k) + Ds
EQ(S(k‘) + E3Z(k) < E4"L‘(l€) =+ E1u(k) + E5

z € R" x {0,1}", u € R™e x {0,1}™®
y € RPe x {0,1}P, 6 € {0,1}", z e R™

e The translation from DHA to MLD can be automatized, see e.g. the language
HYSDEL (HYbrid Systems DEscription Language)

o MLD models allow solving MPC, verification, state estimation, and fault
detection problems via mixed-integer programming
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HYBRID MPC

e Finite-horizon optimal control problem (regulation)

N—1
min >y, Qi + uj, Rux
k=0
Tpe1 = Awxp+ Brug + Bady + Bz + Bs
ot yr = Cxp+ Diyug + Daby, + D3z + Ds
o Exo, + Eszi < Eaxp + Evug + Es
xo = xz(t)

Q=Q -0,R=R»0
o Treat uyg, dx, 2, as free decision variables, k =0,...,N — 1

e Predictions can be constructed exactly as in the linear case
k—1
xp = APy + ZAj(Bluk—l—j + Ba0k—1-j + B3zx—1-j + Bs)
j=0
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MIQP FORMULATION OF HYBRID MPC

o After substituting =y, y;. we get the Mixed-Integer Quadratic Programming
(MIQP) problem

ming LEHE+ o (H)F'E+ 5o/ ()Y x(t)
st. GE<W + Sz(t)

e The optimization vector £ = [ug, ..., uNn—1,00,---,0N—1,20,---,2N—1] has
mixed real and binary components

e Hybrid modeling and MPC design available in Hybrid Toolbox for MATLAB

http://cse.lab.imtlucca.it/~bemporad/hybrid/toolbox ~28000 downloads

~1.5 downloads/day
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CLOSED-LOOP CONVERGENCE

e Theorem. Let (z,, u,, J,, z,-) be the equilibrium corresponding to r.
Assume z(0) such that the MIQP problem is feasible at time ¢ = 0.
ThenV(@, R = 0,0 > 0the hybrid MPC closed-loop converges asymptotically

tlgrolo yit) = r tlggo z(t) =
| A0 = o
tli>Holo ut) = ur A A =z

and all constraints are fulfilled at each time ¢ > 0.

e The proof easily follows from standard Lyapunov arguments (see next slide)

e Lyapunov asymptotic stability and exponential stability follows if proper
terminal cost and constraints are imposed
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MIXED-INTEGER PROGRAMMING SOLVERS

e Binary constraints make Mixed-Integer Programming (MIP) a hard problem
(NP-complete)

o However, excellent general purpose branch & bound / branch & cut solvers
available for MILP and MIQP (CPLEX, GLPK, Xpress-MP, CBC, Gurobi, ...)

o MIQP approaches tailored to embedded hybrid MPC applications:

B&B + (dual) active set methods for QP

B&B + interior point methods:

B&B + fast gradient projection:
B&B + ADMM:

¢ No need to reach global optimum (see convergence proof)
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BRANCH & BOUND METHOD FOR MIQP

o We want to solve the following MIQP

min  V(z) £ 12/Qz+ 'z z € R"”
st. Az<b Q=Q =0
5 e{0,1),Viel 1C{l,... 0}

e Branch & Bound (B&B) is the simplest (and most popular) approach to solve the
problem to optimality

o Keyidea of B&B:

- eachbinary variable z;, ¢ € I,is either set to 0, or 1, or relaxed in [0, 1]
- solve the corresponding QP relaxation of the MIQP problem

- use QP result to decide the next combination of fixed/relaxed variables, or to
conclude that the optimal solution has been found, or that no solution exist
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SOLVING MIQP VIA NNLS AND PROXIMAL-POINT ITERATIONS

e Robustified approach: use NNLS + proximal-point iterations to solve QP
relaxations

e = argmin, 2Qz 4 2+ 5] - a
st. L<Az<u
Gz=g

e CPU time (ms) on MIQP coming from hybrid MPC (bm99 demo):

For N = 10: N prox-NNLS prox-NNLS* GUROBI CPLEX
30real vars

K avg max avg max avg max avg max
10 binary vars 2 20 26 20 26 16 20 37 6.0
160 inequalities 4 53 8.8 3.1 6.9 3.1 39 8.9 15.7
8 29.7 71.0 8.1 434 72 132 155 80.2
prox-NNLS* = warm 10 76.2 1461 144 1032 111 176 35.1 95.3
start of binary vars 12 1558 4108 269 2634 149 312 617 1037
exploited 15 4842 12423 617 7669 259 109.8 899  181.1

CPU time measured on Intel Core i7-4700MQ CPU 2.40 GHz
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FAST GRADIENT PROJECTION FOR MIQP

e Consider again the MIQP problem with HessianQ = Q' = 0

ko .k k_ k=1
min V(z)é%z/Qz+c'Z Wb =y Byt -y
? k k
= —Kuwt-J
st. £<Az<u z w z
k k
Gr=g s* = 1GZ*— L(W + Sz)
_ _ E+1 k| ok
AiZE{gi,ﬁi},izl,.“,p Y - max{w t+s 70}

e Use B&B and fast gradient projection to solve dual of QP relaxation

constraint is relaxed Aiz <u; — yf+1 = max {yf + sf, 0} (yl > 0)
constraint is fixed Az =1; — yf+1 = yf + sf (yis0)
comstraint is ignored Az = lz — yf“—l =0 (y; =0)
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FAST GRADIENT PROJECTION FOR MIQP

Same dual QP matrices at each node, preconditioning computed only once

Warme-start exploited, dual cost used to stop QP relaxations earlier

Criterion based on Farkas lemma to detect QP infeasibility

Numerical results (time in ms):

n m p g mOpGPAD GUROBI
0 100 2 2 56 6.56
50 25 5 3 3.44 8.74
50 150 10 5 63.22 46.25

100 50 2 5 6.22 26.24
100 200 15 5 164.06 18842
150 100 5 5 31.26 88.13
150 200 20 5 25880  274.06
2000 50 15 6 3508 14438

CPU time measured on Intel Core i7-4700MQ CPU 2.40 GHz
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HEURISTIC ADMM METHOD FOR (SUBOPTIMAL) MIQP

e Consider again MIQP problem
min  $2'Qx +q'w
st. <Az <u
Az € {&-.,ui}, el

¢ ADMM iterations:

quantization step o= QA4 pATA) T AT (Y - )+ )
2T = min{max{Az""" 4+ 4" 0}, u}
I B
‘ wp if 2PN >Gtw e
e

e [terations converge to a (local) solution
e Similar idea also applicable to fast gradient methods
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EXPLICIT HYBRID MPC

e ltis possible to write hybrid MPC laws in explicit form too !

e The explicit MPC law is still piecewise affine on polyhedra

Polyhedal partiion - 12 regions

8 & &5 8 8

Temperature sst point

8o

Temperature T, 2 0

Temperature T,

e The control law may be discontinuous, polyhedra may overlap

e Comparison of quadratic costs can be avoided by lifting the parameter space
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LEARNING PWA MODELS FROM DATA

¢ Problem: Given input/output pairs {z(k),y(k)},k = 1,..., N and number s of
models, learn a piecewise affine (PWA) model y = f(z)

Fll‘—|—gl Ile.ISKl

fl@)=4q:
Fsx+gs ifHsx < K

o Need to learn both the parameters { F;, ¢;} of the affine submodels and the
partition { H;, K;} of the PWA map from data (off-line learning)

y =f(z)

N

e Possibly update model and partition as new data
become available (on-line learning) \

2019 A. Bemporad - "Model Predictive Control" - oCPS School 62/74



APPROACHES T0 PWA SYSTEM IDENTIFICATION

e Mixed-integer linear or quadratic programming
o Partition of infeasible set of inequalities

e K-means clustering in a feature space

e Bayesian approach

e Kernel-based approaches

e Hyperplane clustering in data space

e Recursive multiple least squares & PWL separation
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PWA REGRESSION ALGORITHM

1. Estimate models {F;, g;} recursively. Lete; (k) = y(k) — F;x(k) — g; and only
update model i(k) such that

i(k) «+ arg min,_; ei(k)’Aglei(k) + (z(k) — ci)' R-_l(a:(k) —¢)

K3

wx(’_/s’h’_? ?rcé'\vhow error ?rov.'\w\ﬁ{ Yo cenfrod
of wodel 4 of luster 4

using recursive LS and inverse QR decomposition

This also splits the data points z(k) in clusters C; = {z(k) : i(k) = i}
2. Compute a polyhedral partition { H;, K;} of the

regressor space via multi-category linear separation

¢(x) = max {wjw -}

i=1,...,s
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PWA REGRESSION EXAMPLES

o |dentification of piecewise-affine ARX model
[a6] = [0 %] [t + [ 83 043] [mid]
2] +max { {020 20.98] [
0
0

+ (882029 [0 ] + [8:48], (81} + eoth),

e Quality of fit: best fit rate (BFR) = max {1 - M,O}z =1,2

1yo,:—¥o,ill2
N = 4000[ N = 20000] N = 100000 RLP = Robust linear programming
(Off-line) RLP 96.0 % 96.5 % 99.0 %
Y1 (Ofﬂ?ﬂe) RPSN 96.2 % 96.4 % 98.9 %
(On-line) ASGD|  86.7 % 95.0 % 9.7 % RPSN = Piecewise-smooth Newton method
(Off-line) RLP 96.2 % 96.9 % 99.0 %
ya| (Offine)RPSN| 963 % 96.8 % 99.0 %
(On-line) ASGD|  87.4 % 95.2 % 964 % ASGD = Averaged stochastic gradient descent

e CPU time for computing the partition:

N = 4000] N = 20000] N = 100000
(Off-line) RLP 0.308s 3.227s 112.435s
(Off-line) RPSN 0.016s 0.086 s 0.365s
(On-line) ASGD|  0.013's 0.023 s 0.067 s
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DATA-DRIVEN MPC

optimization
algorithm

process

outputs

y(t)

set-points

r(t)

'T‘ measurements

e Can we design an MPC controller without first identifying a model of the
open-loop process ?
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DATA-DRIVEN DIRECT CONTROLLER SYNTHESIS

____________________________

Collect aset of data {u(t),y(t),p(¢)},t =1,...,N

Specify a desired closed-loop linear model M fromr to y

Compute r,(t) = M#y(t) from pseudo-inverse model M# of M

Identify linear (LPV) model K, frome, = r, — y (virtual tracking error) tou
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DATA-DRIVEN MPC

e Design alinear MPC (reference governor) to generate the reference r

p
11
B — T o191
7l e : ‘
ro ——| MPC K, @ % I—:?
desired EM |
reference i | Linear prediction model
e (totally known !)
P N
-t —
1 1
7! Hﬁ i
T0 MPC 1 M J' i Yy
Ko ——u
| M :

e MPC designed to handle input/output constraints and improve performance
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DATA-DRIVEN MPC - AN EXAMPLE

o Experimental results: MPC handles soft constraints on u, Au and y

(motor equipment by courtesy of TU Delft)

45 S T T
T
with MPC —
o ——— without MPC Zo 1
. 5L . . . I
=35 5 10 15 20 25 30
B
= Au
T osF 05
z n,
Z o
25 : s 1
0.5 - -
2 5 10 15 20 25 30
5 10 15 20 25 30 Time [s]
Time Is] )

desired bracking constrainks on LV\PuE

Per{ormamce achieved tncrements satisfied

No open-loop process model is identified to design the MPC controller!
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OPTIMAL DATA-DRIVEN MPC

Can we choose M from data so that K, is an optimal controller ?

Idea: parameterize desired closed-loop model M (6) and optimize

min J(6) = 3" Wy(r(t) — 1y (0.))° + Wan M(0,6) + Wae(u(t) — us(0.1))
t=0

performance index identification error

Evaluating J () requires synthesizing K, (#) from data and simulating the
nominal model and control law

yp(0,1) = M(O)r(t)  up(6,t) = Kp(0)(r(t) — yp(6,1))
Aup(0,t) = up(0,t) — up(0,t — 1)

Optimal 0 obtained by solving a (non-convex) nonlinear programming problem
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OPTIMAL DATA-DRIVEN MPC

e Results: linear process =
z—0.4 .
G(z) = .

()= 2015 0% J[
The data-driven controller is only 1.3% worse '
than model-based LQR .
e Results: nonlinear (Wiener) process 28
yr(t) = G(2)u(t) K V

y(t) = |yc(t)|arctan(y(t)) 5,
The data-driven controller is 24% better than

LQR based on identified open-loop model !

2
0 02 04 06 08 1 12 14 16 18 2
time 3]
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ONGOING RESEARCH ON LEARNING MPC FROM DATA

e Goal: learn MPC law from data that optimizes a given index

e Q-learning: learn Q-function defining the MPC law from data

e Policy gradient methods: learn optimal policy coefficients directly from data
using stochastic gradient descent

e Global optimization methods: learn MPC parameters (weights, models,
horizon, solver tolerances, ...) by optimizing observed closed-loop performance

o Lessons learned so far: if chosen model/policy structure does not include real
plant/optimal policy
- optimal policy learned from data can be better than model-based optimal policy

- when open-loop model is used as a tuning parameter, learned model can be quite
different from best open-loop model that can be identified from the same data
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CONCLUSIONS

e MPC s a universal control methodology to provide autonomy to many CPS’s:

- different models (linear, nonlinear, hybrid, stochastic, ...)
- optimize closed-loop performance subject to constraints

- widely applicable to many industrial sectors

¢ MPCresearch:

1. Linear, uncertain, explicit, hybrid, nonlinear MPC: mature theory

2. Stochastic MPC, economic MPC: still open issues

3. Embedded optimization methods for MPC: still room for many new ideas
4

. Data-driven MPC: a lot of open issues. There is a lot to “learn” from machine
learning

o MPC technology: is MPC mature for widespread use in industrial applications ?
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MPC IN AUTOMOTIVE PRODUCTION

The MPC developed by General Motors and ODYS for torque tracking in
turbocharged gasoline engines is in high-volume production since 2018

e Multivariable system, 4 inputs, 4 outputs.
QP solved in real time on ECU

e Supervisory MPC for powertrain control
also in production since 2018

First known mass production of MPC in the automotive industry

/
http://www.odys.it/odys-and-gm-bring-online-mpc-to-production O D \

Advanced Controls & Optimization
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