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Abstract

The goal of this thesis is to study the homotopy theory of algebras over operads in global unstable
homotopy theory, the homotopy theory of spaces which have simultaneous compatible actions
of all compact Lie groups. We first study orthogonal spaces which have an additional action by
a fixed group G. We define two classes of morphisms, the G-global equivalences and the G-flat
cofibrations, and prove some properties about them. The main result gives a model structure
on the category of algebras over any operad in orthogonal spaces, without the usual cofibrancy
condition. We also give a simple characterization of when a map of operads induces a Quillen
equivalence between those model structures, and a relevant example.
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Introduction

The goal of this thesis is to study the homotopy theory of algebras over operads in unstable
global homotopy theory. Equivariant homotopy theory is the study of spaces with G-actions for
a group G, and G-equivariant continuous maps between them. Interest in it has recently seen
an increase due to its connections to other areas of mathematics.

Global homotopy theory is the homotopy theory of spaces which have simultaneous compatible
actions by all compact lie groups. As a model for unstable global homotopy theory we use
the category of orthogonal spaces, which are continuous functors from the category of linear
isometries to Top, with the positive global model structure of [Sch18]. Each orthogonal space
has an underlying G-space for each compact lie group G, and a morphism of orthogonal spaces
induces a G-equivariant map between their underlying G-spaces. A global equivalence is a
morphism which induces G-weak homotopy equivalences between the underlying G-spaces.

An operad is a tool used to describe algebraic structures in various contexts. We can define
operads in any symmetric monoidal category. An operad O consists of a series of objects On
which each represents a collection of of n-ary operations, and a composition law. An algebra
over a given operad is an object together with an interpretation of the operad as operations on
the object.

If C is a symmetric monoidal cofibrantly generated model category, and given an operad O in C ,
one is often interested in lifting the model structure of C to a model structure on the algebras
over O. In full generality this is possible if the operad is cofibrant and C satisfies the monoid
axiom (see [Spi01]). The first main theorem of this thesis states that the situation is much
simpler in the case of orthogonal spaces.

Theorem I. Let O be any operad in Spc the category of orthogonal spaces, with the positive
global model structure. Then there is a cofibrantly generated model category structure on Alg(O)
the category of algebras over O, where the forgetful functor UAlg(O) creates the weak equivalences
and fibrations, and sends cofibrations in Alg(O) to h-cofibrations in Spc.

An operad is composed of objects On with an action by the symmetric group Σn. Therefore to
prove the results of this thesis we need to study the homotopy theory of orthogonal spaces which
have an additional action by a fixed compact Lie group G, or G-orthogonal spaces. To this end
we will define two classes of morphisms between G-orthogonal spaces, the G-global equivalences
and the G-flat cofibrations.

We will not check that the G-global equivalences and the G-flat cofibrations are part of a model
structure on the category of G-orthogonal spaces, because we will not need such a model struc-
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ture. However the results that we prove are enough to obtain the structure of a cofibration
category, or category of cofibrant objects, on the category of G-orthogonal spaces.

The category of orthogonal spaces has a symmetric monoidal product, the box product, and this
box product is fully homotopical, that is the box product of two global equivalences is a global
equivalence. The box product of G-orthogonal spaces is similarly well behaved, since the box
product of a G-global equivalence and a K-global equivalence is a (G ×K)-global equivalence.
This is the main result that allows us to omit the cofibrancy assumption from Theorem I. Another
fact that makes Theorem I possible is that n-fold box products of generating orthogonal spaces
are Σn-free.

We also study morphisms of operads, and the functors they induce between the categories of
algebras. Any morphism of operads induces a Quillen adjunction, and in the second main
theorem of this thesis we give a simple necessary and sufficient condition for this adjunction to
be a Quillen equivalence.

Theorem II. Let g : O → P be a morphism of operads in Spc. Then we have that the pair
(g!, g

∗) is a Quillen equivalence between their respective categories of algebras if and only if for
each n ≥ 0 the morphism gn : On → Pn is a Σn-global equivalence.

This is related to the work of Blumberg and Hill in [BH15] on operads in G-spaces. The preferred
notion of weak equivalence between operads in G-spaces is that of a graph equivalence, where for
each continuous homomorphism φ : G→ Σn, the map gn induces a weak homotopy equivalence on
points fixed by φ. A Σn-global equivalence is roughly a morphism that induces graph equivalences
between the underlying G × Σn-spaces for each G. If we abstractly think of an operad in
orthogonal spaces as a collection of G-operads for each G, then a morphism of operads that
satisfies the conditions of Theorem II would give graph equivalences between these G-operads.

Theorem II also shows that the naive notion of what the analog of an E∞-operad in orthogonal
spaces is (that each On is globally contractible) is not the correct one. Instead we need to ask
that each On is Σn-globally contractible, and we call such operads global E∞-operads.

By Theorem II the category of algebras over a global E∞-operad O is Quillen equivalent to the
category of strictly associative and strictly commutative monoids in orthogonal spaces. This also
implies that any algebra X over O is connected to a strictly associative and strictly commutative
monoid via a zigzag of global equivalences of O-algebras, which implies certain things about the
homotopy of X, like the existance of transfers on homotopy sets.

Overview

The first chapter of this thesis deals with some preliminary theory required for the rest of the
document. We first develop the theory of operads and their algebras in a general symmetric
monoidal category, following [Fre09]. We then state a result on lifting a model structure to the
category of algebras over a monad. After that we prove a refinement, Theorem 1.2.2, for the case
where the monad comes from an operad, and we have a bigger class of cofibrations to work with.
We will later use this refinement to prove Theorem I, using the h-cofibrations, or morphisms
with the homotopy extension property.

The main condition of Theorem 1.2.2 asks that cobase changes, in the category of algebras over
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the operad, of generating cofibrations are h-cofibrations, and that cobase changes of generating
acyclic cofibrations are global equivalences. Pushouts in the category of algebras over an op-
erad are not at all straightforward (the forgetful functor preserves filtered colimits and reflexive
coequalizers, but not all colimits) and this is what causes most of the work needed to apply
Theorem 1.2.2.

After this we expose the basics of the theory of orthogonal spaces. The specific structure of the
generating (acyclic) cofibrations of the positive global model structure is important to prove the
results that we need, so we make it explicit.

The second chapter is devoted to G-orthogonal spaces, G-flat cofibrations, and G-global equiva-
lences. We define them and prove the results that we will need later. One of the things that we
need to do, is to determine some conditions under which taking Σn-orbits of a Σn-global equiv-
alence yields a global equivalence. In [GG16] morphisms which yield weak equivalences when
taking Σn-orbits are considered in a general setting, but we have to construct the Σn-global
equivalences to use that the box product is fully homotopical.

We denote by G-h-cofibrations the morphisms with the homotopy extension property in the cat-
egory of G-orthogonal spaces. We check that the relevant properties of preservation of G-global
equivalences along G-flat cofibrations also hold for G-h-cofibrations. This is helpful because we
can then work just with G-h-cofibrations, and the box product with any G-orthogonal space
preserves G-h-cofibrations.

The third chapter deals first with checking that the main condition of Theorem 1.2.2 holds for any
operad in orthogonal spaces. This then gives the proof of Theorem I. We then study morphisms
of operads of orthogonal spaces and prove Theorem II. We also define global E∞-operads and
prove some facts about them.

In the last chapter we talk about an example of an operad O on orthogonal spaces derived from
the little-disks operad. We conjecture that this operad is a global E∞-operad, that is, that the
category of algebras over this operad is Quillen equivalent to the category of strictly associative
and strictly commutative monoids in orthogonal spaces.

Notation and conventions

Throughout this document, whenever we talk about a space we will be referring to a compactly
generated weak Hausdorff topological space. We use Top to refer to the category of such spaces.
In the rare cases where we refer to a general topological space, we do so explicitly.

Let G be a topological group. A G-space is a space X with an associative and unital continuous
action G × X → X. We denote the category of G-spaces by GTop. For any set F of closed
subgroups of G, we say that a morphism f : X → Y of G-spaces is an F -equivalence (F -fibration)
if for any H ∈ F the restriction of f to the H-fixed points fH : XH → Y H is a weak homotopy
equivalence (respectively a Serre fibration).

For each F set of subgroups of G there is a cofibrantly generated model structure on GTop
with the F -equivalences as weak equivalences and the F -fibrations as fibrations (see [Sch18,
Proposition B.7]). We refer to the cofibrations of this model structure as F -cofibrations. If the
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set F is the set of all closed subgroups of G we instead use G-weak homotopy equivalences,
G-fibrations and G-cofibrations to refer to these classes of morphisms.

By default, an inner product space refers to a real inner product space, and for a compact Lie
group G, when we mention a G-representation we always refer to an orthogonal G-representation
in an inner product space, finite dimensional unless stated otherwise. We write Σn for the
symmetric group on n elements.

To talk about small objects in a category, we will follow the convention of [Hov07, Section 2.1.1],
which is not universal. For an ordinal λ, a λ-sequence in a cocomplete category C is a colimit
preserving functor Y : λ → C . We call the morphism Y (0) → colimβ∈λ Y (β) the transfinite
composition of Y . We say that a subcategory D ⊂ C is closed under transfinite composition if,
for every λ-sequence Y such that for each β ∈ λ the morphism Y (β) → Y (β + 1) is in D , the
transfinite composition of Y is in D .

For any cardinal κ, we say that an ordinal λ is κ-filtered if its cofinality is strictly bigger than κ.

Given a cardinal κ (and a subcategory D ⊂ C closed under transfinite composition), we say
that an object X ∈ C is κ-small (relative to D) if C (X,−) preserves all colimits of λ-sequences
(with image in D), with λ a κ-filtered ordinal. We say that X is small (relative to D) if it is
κ-small (relative to D) for some cardinal κ. We say that X is finite (relative to D) if it is κ-small
(relative to D) for some finite cardinal κ.

By default, when we say that an object has an action by a group G, we mean a left G-action.
The main exception is for operads and symmetric objects, where each On has a right Σn-action
by convention. We will often turn left actions into right actions and vice versa by precomposing
with the antihomomorphism (−)−1.

We will often use il to refer to the boundary map ∂Dl → Dl in Top, for each l ≥ 0. Similarly
we will use jl for the inclusion [0, 1]l → [0, 1]l × [0, 1] for l ≥ 0.
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Chapter 1

Preliminaries

1.1 Basics of operads

We now develop the theory of symmetric objects, operads and their algebras in a general setting,
following [Fre09].

Let C denote a cocomplete symmetric monoidal category, where the tensor product preserves all
colimits in both variables.

Definition 1.1.1 (Symmetric objects). The category of symmetric objects in C , denoted by
Σ∗-C , has as objects sequences in C {M(n)}n∈N where each M(n) has a right Σn-action. Mor-
phisms in this category are sequences of morphisms in C that commute with the Σn-actions.
Equivalently, Σ∗-C is also the functor category Fun(

∐
n∈N Σn,C ), where Σn is the groupoid

associated to Σn.

We can define two different monoidal structures on Σ∗-C , the first is the tensor product of
symmetric objects, which gives a symmetric monoidal structure. On level n it is

(M ⊗N)(n) =
∐

p+q=n

Σn ⊗Σp×Σq (M(p)⊗N(q))

where the tensoring of C over Set is given by S ⊗ C = C⊗|S|, and we quotient by the diagonal
(Σp×Σq)-action which is the inverse of the one on M(p)⊗N(q) obtained from being symmetric
objects, and the one on Σn obtained from the canonical embedding Σp × Σq → Σn where a
permutation from Σp acts on the first p elements and one from Σq on the last q. On morphisms
it is also defined through this formula.

Proposition 1.1.2 (Tensor product symmetric monoidal structure on Σ∗-C ). The category of
symmetric objects Σ∗-C is equipped with the structure of a symmetric monoidal category tensored
over C . The bifunctor is the tensor product previously defined, and the unit is 1Σ∗-C = 1, where
1(0) is 1C and 1(n) is the initial object ∅ for each n ≥ 1.

The details can be found in [Fre09, 2.1.5 and 2.1.7].

We also have generating symmetric objects Fn for each n ∈ N. Fn(n) is Σn⊗1C , and Fn is ∅ on
all other levels. For these generating symmetric objects, we have that M(n) ∼= HomΣ∗-C (Fn,M)
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1.1. BASICS OF OPERADS

[Fre09, Proposition 2.1.13]. We also denote F1 by I, and we have that Fn = I⊗n.

The second monoidal structure on Σ∗-C is the composition product, which is not symmetric. Its
unit is I. It is defined from the tensor product in Σ∗-C as

M ◦N =
∐
n∈N

M(n)⊗Σn N
⊗n

where the tensoring of Σ∗-C over C is just the tensor product on each level, and the Σn-action
is the given one on M(n) and permuting the terms on N⊗n.

Proposition 1.1.3 (Composition monoidal structure on Σ∗-C ). The category of symmetric
objects Σ∗-C is equipped with the structure of a monoidal category, where the bifunctor is the
composition product previously defined, and the unit is I.

The details can be found in [Fre09, 2.2.1 and 2.2.2].

Let D be a symmetric monoidal category tensored over C , where the tensor product over C
preserves all colimits in C In our case D will usually be C itself. Then we can assign to each
symmetric object M on C a functor F(M) : D → D , by:

F(M)(X) =
∐
n∈N

M(n)⊗Σn X
⊗n (1)

Proposition 1.1.4. The previous construction yields a functor F : Σ∗-C → Fun(D ,D). Fur-
thermore, F(I) = IdD and F(M ◦N) = F(M) ◦F(N). This means that F is a strong monoidal
functor into Fun(D ,D) with the monoidal structure given by composition of functors. Addition-
ally F preserves all colimits.

Proof. Functoriality comes from the functoriality of the tensor product and of colimits. For
F(M ◦N) = F(M)◦F(N) see [Fre09, Proposition 2.2.1]. Colimits in both Σ∗-C and Fun(D ,D)
are computed in C and D respectively. Then commutativity of colimits and the fact that the
tensor product preserves all colimits in C imply that F preserves colimits.

Note that when D = Σ∗-C , F(M)(N) = M ◦N . We can consider the full subcategory (Σ∗-C )0 ⊂
Σ∗-C of objects M ∈ Σ∗-C with M(n) = ∅ for n > 0. This is canonically isomorphic to C by
sending and object X ∈ C to the symmetric object ι(X) which is X on level 0 and ∅ otherwise.
Then ι(F(M)(X)) = M ◦ ι(X) = F(M)(ι(X)) (note that here the first F refers to the functor
associated to M on C and the second on Σ∗-C ).

Proposition 1.1.5. For each M ∈ Σ∗-C the functor F(M) : D → D preserves filtered colimits
and reflexive coequalizers.

Proof. [Fre09, Proposition 2.4.1].

That is, if we take F as a bifunctor Σ∗-C ×D → D , it preserves all colimits on the first variable,
but only filtered colimits and reflexive coequalizers on the second.
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1.2. MODEL CATEGORIES IN CATEGORIES OF ALGEBRAS

Definition 1.1.6 (Operad). An operad on C is a monoid object in the monoidal category
(Σ∗-C , ◦, I). That is, a symmetric object in C O ∈ Σ∗-C together with morphisms of symmetric
objects µ : O ◦ O → O multiplication and η : I → O unit such that the following associativity
and unit diagrams commute:

I ◦ O O ◦ O O ◦ I

O
Id

η◦Id

µ
Id

Id◦η O ◦ O ◦ O O ◦ O

O ◦ O O

Id◦µ

µ◦Id

µ

µ

Unraveling this definition to the level of C , we obtain that the multiplication morphism consists
of suitably equivariant maps:

(O ◦ O)(n) =
∐

k∈N,n1+···+nk=n

O(k)⊗O(n1)⊗ · · · ⊗ O(nk)→ O(n)

The unit is an element 1C → O(1), and these maps have to make the equivalent associativity
and unit diagrams commute.

Given a category C , a monad is a monoid object in Fun(D ,D). Explicitly this is a functor
F : C → C , and two natural transformations η : Id ⇒ F and µ : F ◦ F ⇒ F , such that the
associativity and unit diagrams similar to those for an operad commute.

Since F is strong monoidal, we have that if O is an operad in C , then F(O) : D → D is a monad
in D .

Definition 1.1.7 (Left modules, right modules and algebras over an operad). We define left and
right modules on Σ∗-C over an operad, using that an operad is a monoid object on (Σ∗-C , ◦, I).
An algebra on D over the operad O is an algebra over the monad F(O). Explicitly this is an
object A ∈ D and a morphism ζA : F(O)(A)→ A in D compatible with the multiplication and
unit of the operad, in the sense that ζA ◦ F(η)(A) = IdA and ζA ◦ F(O, ζA) = ζA ◦ F(µ,A).

If D = C , then we can alternatively define an algebra as an object X ∈ C together with a left
module structure on ι(X) over the operad O. These two definitions are equivalent since a map
M ◦ ι(X) = ι(F(M)(X)) → ι(X) is the same as a map F(M)(X) → X, and the associativity
and unit diagrams required to commute are similarly equivalent.

We denote the category of algebras on C over an operad O by Alg(O), and the categories of left
and right modules by Lmod (O) and Rmod (O) respectively.

There are forgetful functors for each of these categories, respectively UAlg(O) : Alg(O) → C ,
ULmod (O) : Lmod (O) → Σ∗-C and URmod (O) : Rmod (O) → Σ∗-C , and there are free functors left
adjoint to these FAlg(O) : C → Alg(O), FLmod (O) : Σ∗-C → Lmod (O) and FRmod (O) : Σ∗-C →
Rmod (O). FAlg(O) is obtained from the functor associated to O, F(O), by FAlg(O)(X) = F(O)(X).
This is the same as the free algebra over the monad F(O).

1.2 Model categories in categories of algebras

From now on, let C be a cofibrantly generated model category which is also a symmetric monoidal
category, and such that the monoidal product preserves all colimits in each variable.
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1.2. MODEL CATEGORIES IN CATEGORIES OF ALGEBRAS

We now deal with the conditions needed to lift the model structure on C through the forgetful
functor UAlg(O) : Alg(O) → C to the category of algebras over a given operad. For categories of
algebras over monads on C we have the following result from [SS00, Lemma 2.3]:

Theorem 1.2.1. Let C be a cofibrantly generated model category with I and J sets of generating
cofibrations and acyclic cofibrations respectively, and T : C → C a monad in C . If T preserves
filtered colimits, then Alg(T ) has all colimits. Then let FAlg(T ) denote the free T -algebra functor
and let IT = FAlg(T )(I), JT = FAlg(T )(J). Let IT -reg and JT -reg denote the regular IT and JT
cofibrations in Alg(T ) respectively. Those are the transfinite compositions of cobase changes in
Alg(T ) of morphisms in IT and JT respectively.

Then if the domains of morphisms in IT and JT are small with respect to IT -reg and JT -reg
respectively, and every morphism in JT -reg is a weak equivalence in C , we obtain that Alg(T ) is
a cofibrantly generated model category where UAlg(T ) creates the weak equivalences and fibrations
and IT and JT are generating sets of cofibrations and trivial cofibrations.

Note that limits in Alg(T ) are computed in C since UAlg(T ) is a right adjoint. For colimits,
by [Bor94, Proposition 4.3.6] it is enough for T to commute with filtered colimits to have all
colimits in Alg(T ), and since filtered colimits are preserved by T , they are also preserved by
UAlg(T ) by [Bor94, Proposition 4.3.2]. This is the reason why the previous theorem requires that
T preserves filtered colimits. In the case where T is obtained from an operad on C we have that
by Proposition 1.1.5 T commutes with filtered colimits.

For O an operad, we will shorten the associated monad F(O) to also O when referring to things
like IF(O) and so on. The idea of the previous theorem is to define weak equivalences (fibrations)
in Alg(O) to be those morphisms f such that UAlg(O)(f) is a weak equivalence (respectively
fibration) in C , and then define cofibrations to be the morphisms with the left lifting property
with respect to trivial fibrations. On the other hand we could also define the (trivial) cofibrations
in Alg(O) to be the morphisms generated by IT (respectively JT ). The last condition ensures
that the classes of weak equivalences, fibrations, and cofibrations defined by these two different
methods are actually the same, and then the proof of the theorem uses one of these two approaches
to check each of the model category axioms.

Note that usually, in a category with a model structure and a monoidal structure, two com-
patibility conditions between these two structures are required. These are the pushout product
axiom, and that the unit is cofibrant, and if they are satisfied we call the category a (symmetric)
monoidal (cofibrantly generated) model category. We don’t ask that they hold for C , in fact
in the positive global model structure on orthogonal spaces on which we focus the unit is not
cofibrant.

We have the following refinement of the previous theorem, which applies to operads in C if the
domains of the generating (acyclic) cofibrations I and J are small with respect to not just the
morphisms in IO -reg and JO -reg respectively, but also with respect to a more general class of
cofibrations, Hcof , which when we apply the result will be defined by having the homotopy
extension property. This refinement is inspired by and similar to [Fre09, Proposition 11.1.14].

Theorem 1.2.2. Let C be a symmetric monoidal category which is also a cofibrantly generated
model category with sets of generating cofibrations and acyclic cofibrations I and J , and such
that the monoidal product preserves all colimits in each variable. Also let Hcof be a class of
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1.2. MODEL CATEGORIES IN CATEGORIES OF ALGEBRAS

morphisms in C which satisfies the following:

1. Hcof is closed under retracts and transfinite compositions.

2. The domains of the generating (acyclic) cofibrations I (J) of C are small with respect to
Hcof

3. Transfinite compositions of morphisms that are both in Hcof and weak equivalences are
weak equivalences

Then fix any operad O in C . Assume that for each pushout in Alg(O) of the form

FAlg(O)(X) FAlg(O)(Y )

A B

FAlg(O)(i)

f p

(2)

the following holds:

• If i ∈ I then UAlg(O)(f) is in Hcof .

• If i ∈ J then UAlg(O)(f) is a weak equivalence.

Then the conditions of Theorem 1.2.1 are satisfied, so that Alg(O) is a cofibrantly generated model
category where UAlg(T ) creates the weak equivalences and fibrations and IO and JO are generating
sets of cofibrations and trivial cofibrations. Furthermore UAlg(O) sends cofibrations to morphisms
in Hcof .

Proof. The monad associated to an operad preserves filtered colimits, so we have left to check
that the domains of morphisms in IO and JO are small with respect to IO -reg and JO -reg
respectively, and every morphisms in JO -reg is a weak equivalence in C .

Let X be the domain of a morphisms in I or J , λ an ordinal, and V : λ→ Alg(O) a λ-sequence
which lands in IO -reg or JO -reg respectively. Remember that UAlg(O) preserves filtered colimits.
Then we have that

colim
λ

HomAlg(O)(FAlg(O)(X), V ) ∼= colim
λ

HomC (X,UAlg(O) ◦ V )→

HomC (X, colim
λ

UAlg(O) ◦ V ) ∼= HomC (X,UAlg(O)(colim
λ

V )) ∼= HomAlg(O)(FAlg(O)(X), colim
λ

V )

assuming that UAlg(O) sends morphisms in IO -reg and JO -reg to Hcof . So we will now prove
this.

Morphisms in IO -reg are transfinite compositions of cobase changes of morphisms with the form
FAlg(O)(i) like in Diagram (2). UAlg(O) preserves transfinite compositions, so for g a morphisms
in IO -reg, UAlg(O)(g) is a transfinite composition of morphisms that by our assumptions are in
Hcof , and so their transfinite composition is also in Hcof .

Cofibrations in Alg(O) are defined as those morphisms with the left lifting property with respect
to morphisms which in C are both weak equivalences and fibrations. By adjointness, the mor-
phisms which in C are both weak equivalences and fibrations are precisely those that have the
right lifting property with respect to IO, since I are the generating cofibrations of C .
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Since UAlg(O) sends morphisms in IO -reg to Hcof , the domains of IO are small with respect to
IO -reg, so we can apply the small object argument to them. Let f be a cofibration in Alg(O).
The small object argument gives a factorization g ◦ h such that h ∈ IO -reg and g has the right
lifting property against IO. That means that f has the left lifting property against g, which
gives that f is a retract of h. Since Hcof is closed under retracts and UAlg(O)(h) ∈ Hcof ,
UAlg(O)(f) ∈ Hcof .

So UAlg(O) sends cofibrations in Alg(O) to Hcof . JO are cofibrations in Alg(O) by adjointness
again, and since the class of cofibrations is saturated, JO -reg are also cofibrations, and they are
sent to Hcof by UAlg(O).

Lastly, every morphism in JO -reg is a transfinite composition of cobase changes of morphisms
with the form FAlg(O)(j) like in Diagram (2) where j ∈ J is a generating acyclic cofibration.
These cobase changes are by our hypothesis weak equivalences, and by the previous discussion
FAlg(O)(j) are cofibrations in Alg(O), therefore also f , and UAlg(O)(f) are in Hcof . So since
UAlg(O)(f) preserves transfinite compositions, UAlg(O)(f)(JO -reg) are transfinite compositions of
morphisms that are both in Hcof and weak equivalences, and so they are weak equivalences.

Note that indeed we didn’t require the pushout product axiom for the proof of this theorem.
However, the pushout product axiom or something similar will in general be required in order to
actually check the conditions of this theorem.

Remark 1.2.3. In [Spi01, Theorem 4] it is proven that in a general symmetric monoidal cofibrantly
generated model category which satisfies the monoid axiom, and for any cofibrant operadO, there
is a cofibrantly generated model structure on Alg(O) where the forgetful functor creates weak
equivalences and fibrations.

In contrast, we will use Theorem 1.2.2 to obtain a model structure on Alg(O) for an operad on
orthogonal spaces, and due to the properties of orthogonal spaces as a model for unstable global
homotopy theory, we will obtain this model structure for any operad.

1.3 Unstable global homotopy theory

We now turn to the main goal of this thesis, which is to study the homotopy theory of the
algebras over any operad in unstable global homotopy theory. We will give a model structure
for the category of algebras over any such operad.

By unstable global homotopy theory we mean the homotopy theory of spaces which have simul-
taneous and compatible actions of all compact Lie groups. A model for this is the category of
orthogonal spaces. These are Top-enriched functors L→ Top, where L denotes the Top-enriched
category where the objects are inner product spaces, and the morphisms are the linear isometric
embeddings. We use Spc to denote the Top-enriched category of orthogonal spaces (See [Sch18,
Definition 1.1.1]). Note the similarity of this definition to the definition of orthogonal spectra as
enriched functors.

For an inner product space V , evaluating an orthogonal space X on V yields an O(V )-space
X(V ) with the action of ψ ∈ O(V ) given by X(ψ). So if we have a compact Lie group G, and
V is a G-representation, then X(V ) similarly has a G-action. In this sense, orthogonal spaces
have actions by all compact Lie groups.
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For a compact Lie group G, let UG be a complete G-universe (a countably infinite dimensional
orthogonal representation with non-zero fixed points, and such that for each finite dimensional
G-representation V , a countably infinite direct sum of copies of V embeds G-equivariantly into
UG). Let s(UG) denote the poset of finite dimensional subrepresentations of UG. Then we define
the underlying G-space of X as X(UG) = colimV ∈s(UG)X(V ). Therefore fixing a complete G-
universe yields a functor Spc → GTop.

A global equivalence of orthogonal spaces is roughly a morphism which induces G-weak homotopy
equivalences, on the homotopy colimits over all G-representations, for each compact Lie group
G. If the orthogonal spaces are closed, this is equivalent to asking that the induced map on the
underlying G-spaces is a G-weak homotopy equivalence, see [Sch18, Definition 1.1.16] and [Sch18,
Proposition 1.1.17], or Lemma 2.2.3 for the analogous result for G-global equivalences.

There is however a more explicit definition of global equivalence, which we proceed to moti-
vate. Given a map of spaces f : X → Y , [May99, 9.6 Lemma] says that f is a weak homotopy
equivalence if and only if for each l ≥ 0 and pair of maps α : ∂Dl → X,β : Dl → Y such that
β ◦ il = f ◦ α, there is a map λ : Dl → X such that λ ◦ il = α and such that f ◦ λ is homotopic
relative ∂Dl to β.

In general for a similar setup of maps α, β, we will refer to the following commutative diagram
as a lifting problem

∂Dl X

Dl Y

α

il f

β

and we will say that any map λ : Dl → X such that λ ◦ il = α and such that f ◦ λ is homotopic
to β relative ∂Dl solves the lifting problem, and if there exists any such λ we will say that the
lifting problem has a solution.

The more explicit definition of global equivalence given in [Sch18, Definition 1.1.2] is the following:

Definition 1.3.1 (Global equivalence of orthogonal spaces). A morphism f of Spc is a global
equivalence if for eachK compact lie group and everyK-representation V and l ≥ 0, the following
holds: For any lifting problem

∂Dl X(V )K

Dl Y (V )K

α

f(V )K

β

there is a K-equivariant linear isometric embedding ψ : V →W into W a K-representation such
that there is a morphism λ : Dl → X(W )K which solves the lifting problem (X(ψ)K ◦α, Y (ψ)K ◦
β). This explicitly means that in the diagram

∂Dl X(V )K X(W )K

Dl Y (V )K Y (W )K

α X(ψ)K

f(W )Kλ

β

Y (ψ)K

7
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the upper left triangle commutes, and the lower right triangle commutes up to homotopy relative
to ∂Dl.

On Spc there are two similar cofibrantly generated model structures whose weak equivalences
are precisely the global equivalences, the global model structure [Sch18, Theorem 1.2.21] and
the positive global model structure [Sch18, Theorem 1.2.23]. We would like to lift these model
structures to Alg(O) using Theorem 1.2.2. It will turn out that the positive global model structure
is the better choice.

Later on we will need to prove some things about the generating cofibrations and acyclic cofi-
brations of the positive global model structure on Spc, so we write them out explicitly now and
fix some notation.

Remark 1.3.2 (Semifree orthogonal spaces). For a compact Lie group G and a G-representation
V , the evaluation functor Spc → GTop has a left adjoint LG,V which for a G-space A when
evaluated at W is L(V,W )×G A. We denote the orthogonal space LG,V ∗ by LG,V .

Remark 1.3.3 (Generating (acyclic) cofibrations). The set of generating cofibrations of the posi-
tive global model structure I is a set of representatives of the isomorphism classes of morphisms
LG,V × il for G a compact Lie group, V 6= 0 a faithful G-representation, and l ≥ 0, where the
map il is ∂Dl → Dl.

The set of generating acyclic cofibrations of the positive global model structure is J ∪K, where
J is a set of representatives of the isomorphism classes of morphisms LG,V × jl for G a compact
Lie group, V 6= 0 a faithful G-representation, and l ≥ 0, where the map jl is [0, 1]l → [0, 1]l+1.

To describe the set K, we consider a compact Lie group G, and G-representations V and W ,
then we have the morphism of representable orthogonal spaces ρV,W : L(V ⊕W,−) → L(V,−)
given by restricting the embeddings to V . Denote the morphism

ρV,W /G : L(V ⊕W,−)/G = LG,V⊕W → L(V,−)/G = LG,V

by ρG,V,W , and by ιρG,V,W : LG,V⊕W →MρG,V,W the inclusion into the mapping cylinder.

Let κ be a set of representatives of isomorphism classes of triples (G,V,W ) consisting of a
compact Lie group G, a faithful G-representation V 6= 0, and a G-representation W . Then the
set K is

K =
⋃

(G,V,W )∈κ

{ ιρG,V,W�il : l ≥ 0 }

where ιρG,V,W�il denotes the pushout-product of the map of orthogonal spaces ιρG,V,W and the
map of spaces il.

The notation I, J and K for the sets of generating (acyclic) cofibrations of the positive global
model structure on Spc will be used throughout this document.

If we remove everywhere in the last remark the requirement that V 6= 0 we obtain the generating
(acyclic) cofibrations for the global model structure.

We will later need to know that the sources of all generating (acyclic) cofibrations of the (positive)
global model structure are finite with respect to a class of maps bigger than the cofibrations.

The h-cofibrations of Spc are the maps that have the homotopy extension property.

8



1.3. UNSTABLE GLOBAL HOMOTOPY THEORY

Lemma 1.3.4 (Small sources). In the positive global model structure on orthogonal spaces the
sources of all generating (acyclic) cofibrations are finite with respect to the class of maps that are
levelwise closed embeddings, and since h-cofibrations are levelwise closed embeddings, also with
respect to the class of h-cofibrations.

Proof. We first check that for any G compact Lie group, V a faithful G-representation and A
a compact space, the orthogonal space LG,V × A is finite with respect to morphisms which are
levelwise closed embeddings.

Colimits with the shape of a filtered poset and built out of closed embeddings of compactly gener-
ated weak Hausdorff spaces can be computed in the category of all topological spaces (see [Sch18,
Proposition A.14 (ii)]). Weak Hausdorff spaces are T1, so by [Hov07, Proposition 2.4.2] we have
that maps from compact spaces into the colimit of a λ-sequence of closed embeddings (for λ
a limit ordinal) factor through some stage β ∈ λ. Therefore compact spaces are finite in Top
relative closed embeddings.

Taking G-fixed points commutes with filtered colimits along G-equivariant maps which are closed
embeddings (see [Sch18, Proposition B.1 ii)]). Therefore by the semifreeness property of LG,V ×A,
and since colimits in Spc are computed levelwise, we know that for each limit ordinal λ and each
λ-sequence {Xβ}β∈λ of levelwise closed embeddings, we have that

Spc(LG,V ×A, colim
β∈λ

Xβ) ∼= Top(A, (colim
β∈λ

Xβ)(V )G) ∼= Top(A, colim
β∈λ

(Xβ(V )G)) ∼=

colim
β∈λ

Top(A, (Xβ(V )G)) ∼= colim
β∈λ

Spc(LG,V ×A,Xβ)

So for a generating cofibration i ∈ I, its source is of the form LG,V × ∂Dl, so it is finite relative
levelwise closed embeddings. Similarly the source of a generating acyclic cofibration j ∈ J is
LG,V × [0, 1]l, so it is also finite relative levelwise closed embeddings.

For a generating acyclic cofibration k ∈ K, fix a homeomorphism ε : Dl ∼= (∂Dl× [0, 1])∪∂Dl×{1}
(Dl × {1}). Then we have the following isomorphisms of orthogonal spaces, where the first one
is the source of k:

LG,V⊕W ×Dl ∪LG,V⊕W×∂Dl MρG,V,W × ∂D
l ∼= (3)

LG,V⊕W × ((∂Dl × [0, 1]) ∪∂Dl×{1} (Dl × {1})) ∪LG,V⊕W×∂Dl×{0} LG,V × ∂D
l ∼= (4)

LG,V⊕W ×Dl ∪LG,V⊕W×∂Dl LG,V × ∂D
l (5)

We first use the homeomorphism ε, and then distribute the leftmost LG,V⊕W into the left pushout
and commute the two pushouts.

The orthogonal space (5) is a finite colimit of objects that are finite relative the levelwise closed
embeddings. Therefore, using that in Set finite limits commute with limit-ordinal shaped colim-
its, we can see that the source of k is also finite.

h-cofibrations of orthogonal spaces are levelwise h-cofibrations of spaces, which are closed embed-
dings on the category of compactly generated weak Hausdorff spaces. Therefore h-cofibrations
are levelwise closed embeddings.
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Chapter 2

G-orthogonal spaces

To study the homotopy theory of operads in Spc we have to consider objects On in Spc which
have a right action by the symmetric group Σn. Throughout the rest of this thesis let G be a
compact Lie group, and let G-Spc denote the category of Top-enriched G-objects in Spc, which
we call G-orthogonal spaces.

To check that the conditions of Theorem 1.2.2 hold on Spc for any operad, we will need to
construct three classes of morphisms in G-Spc, which we will refer to by G-global equivalences,
G-flat cofibrations, and G-h-cofibrations. We will need some facts about these classes, although
note that we will not prove that these form the cofibrations and weak equivalences of any model
structure.

2.1 G-flat cofibrations

Let G be a compact Lie group. Consider the isomorphism of Top-enriched categories:

Fun(L×G,Top) ∼= Fun(G,Fun(L,Top)) = G-Spc

We will construct a level model structure on this Top-enriched functor category using the results
of the appendix C of [Sch18]. In this section we will first give the mentioned model structure,
and then state the properties of G-flat cofibrations that will be relevant later, and prove them if
necessary.

We have that D = L × G is a skeletally small symmetric monoidal Top-enriched category. On
D we have a dimension function |−| on the objects given by the dimension of the inner product
space of L. This function satisfies that if |V | < |W | then D(V,W ) = ∅ and if |V | = |W | then
V and W are isomorphic on D . We fix an object of each dimension, Rm for each m ≥ 0. Then
by [Sch18, Construction C.13] we obtain a skeleton filtration for each object of Fun(L×G,Top),
similar to the one for Spc.

Let D≤m ⊂ D be the full subcategory of inner product spaces of dimension less than or
equal to m. Let lm denote the left adjoint to the restriction functor for Spc. Similarly let
lDm : Fun(D≤m,Top) → Fun(D ,Top) denote the left adjoint to the restriction in the case of
G-orthogonal spaces.
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Lemma 2.1.1. For each Z : D≤m → Top, lDm(Z) is naturally isomorphic as a G-orthogonal space
to lm(Z) with the inherited G-action.

Proof. Colimits in Fun(D ,Top) can be computed in Top. For a functor Z : D≤m → Top and an
inner product space V , the G-orthogonal space lDm(Z)(V ) is given by the coequalizer∐

0≤j≤k≤m
L(Rk, V )×G× L(Rj ,Rk)×G× Z(Rj)⇒

∐
0≤i≤m

L(Ri, V )×G× Z(Ri)

where the first arrow is given by (φ, g, ψ, g′, z) 7→ (φ ◦ ψ, gg′, z) and the second one is given by
(φ, g, ψ, g′, z) 7→ (φ, g, Z(ψ, g′)(z)).

We have the following diagram, where each row and column is a coequalizer diagram. The
vertical columns are just the split coequalizer diagrams for X ×G G ∼= X for X a G-space. The
bottom row is precisely the coequalizer diagram that describes lm(Z)(V ).

∐
0≤j≤k≤m

L(Rk, V )× L(Rj ,Rk)×G×G× Z(Rj)
∐

0≤i≤m
L(Ri, V )×G×G× Z(Ri) lm(Z)(V )×G×G

∐
0≤j≤k≤m

L(Rk, V )× L(Rj ,Rk)×G× Z(Rj)
∐

0≤i≤m
L(Ri, V )×G× Z(Ri) lm(Z)(V )×G

∐
0≤j≤k≤m

L(Rk, V )× L(Rj ,Rk)× Z(Rj)
∐

0≤i≤m
L(Ri, V )× Z(Ri) lm(Z)(V )

∂L0

∂L1

∂G0∂G1

∂0

∂1

∂G0∂G1

b

∂G0∂G1
e ∂L0

∂L1

a

b

a a

∂L0

∂L1

b

The ∂L0 arrows are composition in L, the ∂G0 arrows are multiplication in G, and the ∂L1 and
∂G1 arrows are the action of either L or G respectively. The diagram commutes in the sense that
if we remove all the arrows labeled with ∂1 it commutes, the same holds for ∂0. The arrow e
inserts the unit of G in the second copy of G, so that ∂G0 ◦ e = id and ∂G1 ◦ e = id.

We are interested in checking that the diagonal diagram is also a coequalizer diagram. Given a
map

f :
∐

0≤i≤m
L(Ri, V )×G× Z(Ri)→ X

such that f ◦ ∂0 = f ◦ ∂1, we have that

f ◦ ∂L0 = f ◦ ∂L0 ◦ ∂G0 ◦ e = f ◦ ∂L1 ◦ ∂G1 ◦ e = f ◦ ∂L1

Thus
f ◦ ∂G0 ◦ ∂L0 = f ◦ ∂G1 ◦ ∂L1 = f ◦ ∂L1 ◦ ∂G1 = f ◦ ∂L0 ◦ ∂G1 = f ◦ ∂G1 ◦ ∂L0

and since ∂L0 is surjective, there is an unique f ′ :
∐

0≤i≤m
L(Ri, V )×Z(Ri)→ X such that f ′◦a = f .

Then
f ′ ◦ ∂L0 ◦ a = f ′ ◦ a ◦ ∂L0 = f ′ ◦ a ◦ ∂L1 = f ′ ◦ ∂L1 ◦ a

so f ′ ◦ ∂L0 = f ′ ◦ ∂L1 and there is an unique f ′′ : lm(Z)(V )→ X such that f ′′ ◦ b = f ′. Therefore
the diagonal diagram is also a coequalizer diagram.
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The m-skeleton of X a G-orthogonal space is then skmD X = lDm(X≤m). The mth latching object
of X is LD

m(X) = skD
m−1X(Rm). By the previous result, these are exactly the skeletons and

latching objects of X as a plain orthogonal space, with the induced G-action.

Definition 2.1.2 (G-flat cofibrations). A morphism f : X → Y of G-Spc is a G-flat cofibration
if the latching morphisms νmf : X(Rm)∪Lm(X) Lm(Y )→ Y (Rm) are (O(m)×G)-cofibrations for
each m ≥ 0.

We say that X ∈ G-Spc is G-flat if ∗ → X is a G-flat cofibration.

Next, as input to obtain the G-level model structure we fix the usual model structures for each
m ≥ 0 on the categories of spaces with an action by D(Rm,Rm) = O(m) × G. We need
to check the consistency condition of [Sch18, Definition C.22]. Let m,n ≥ 0 and let i be an
O(m) × G-acyclic cofibration. Then we need to check that (L(Rm,Rm+n) × G) ×O(m)×G i is a
weak equivalence in the model structure of (O(m+ n)×G)-spaces.

Lemma 2.1.3 (Consistency condition). For each m,n ≥ 0 and each acyclic cofibration i in
(O(m)×G)Top, the morphism (L(Rm,Rm+n)×G)×O(m)×G i is an O(m+ n)×G-acyclic cofi-
bration.

Proof. The functor (L(Rm,Rm+n) × G) ×O(m)×G − is a left adjoint to the functor given by
Map(L(Rm,Rm+n) ×G,−)O(m+n)×G. Therefore we only need to check that it sends the gener-
ating acyclic cofibrations to acyclic cofibrations.

The generating acyclic cofibrations of (O(m)×G)Top are of the form ((O(m)×G)/H)× jl, for
a closed subgroup H ≤ O(m) × G and l ≥ 0. Then the functor takes this generating acyclic
cofibration to ((L(Rm,Rm+n)×G)/H)× jl.

Then we consider L(Rm,Rm+n)×G as an (O(m+n)×G×O(m)×G)-space, where the component
O(m+n)×G acts on the left, and O(m)×G originally acts on the right so we precompose with
(−)−1 to obtain a left action. L(Rm,Rm+n)×G is homeomorphic to a Stiefel manifold, and the
action is smooth. Illman’s theorem [Ill83, p. 7.2] provides a (O(m + n) ×G × O(m) ×G)-CW-
structure, so L(Rm,Rm+n)×G is cofibrant.

Then by [Sch18, B.14 (i)] and [Sch18, B.14 (iii)], (L(Rm,Rm+n) × G)/H is (O(m + n) × G)-
cofibrant, and so ((L(Rm,Rm+n)×G)/H)× jl is an acyclic (O(m+ n)×G)-cofibration.

Since the consistency condition is satisfied, we obtain a level model structure on G-Spc.

Theorem 2.1.4 (G-level model structure). There is a topological cofibrantly generated model
structure on the category G-Spc of orthogonal spaces with an action by the compact Lie group
G, which we call the G-level model structure. The cofibrations are the G-flat cofibrations. The
weak equivalences (respectively the fibrations) are those morphisms f such that for each m ≥ 0
and each closed subgroup H ≤ O(m) × G, the map f(Rm)H is a weak homotopy equivalence
(respectively a Serre fibration).

Proof. Such a model structure with theG-flat cofibrations as cofibrations exists by [Sch18, Propo-
sition C.23 (i)]. It is cofibrantly generated by [Sch18, Proposition C.23 (iii)] because each of the
model structures on (O(m)×G)Top is cofibrantly generated.
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The functor G-Spc → (O(m)×G)Top given by evaluation at Rm has a left adjoint, which we
denote by Fm, and it is given by A 7→ (L(Rm,−)×G)×O(m)×G A. The generating cofibrations
obtained from [Sch18, Proposition C.23 (iii)] are those of the form Fm(i) where i is a generating
cofibration of (O(m)×G)Top, which are of the form ((O(m)×G)/H)× il for a closed subgroup
H ≤ O(m)×G and l ≥ 0.

Therefore these generating cofibrations have the form ((L(Rm,−) × G)/H) × il for a closed
subgroupH ≤ O(m)×G and l ≥ 0. We denote by IG this set of generating cofibrations. Similarly
the set of generating acyclic cofibrations of the G-level model structure is { ((L(Rm,−)×G)/H)×
jl : m, l ≥ 0, H ≤ O(m)×G }.

Each G-orthogonal space of the form (L(Rm,−)×G)/H is G-flat because Fm(((O(m)×G)/H)×
i0) is a generating cofibration. Then by [Sch18, Proposition B.5] with G = { (L(Rm,−)×G)/H :
m ≥ 0, H ≤ O(m)×G } and Z = ∅ we have that this model structure is topological.

Corollary 2.1.4.1. The class of G-flat cofibrations is closed under coproducts, transfinite com-
position, cobase change and retracts.

Remark 2.1.5. In Spc the box product is constructed as a Day convolution product on Fun(L,Top).
On L×G however there is no clear analogous monoidal structure, so we cannot construct a Day
convolution product on Fun(L×G,Top). However the symmetric monoidal structure on Spc gives
a pointwise symmetric monoidal structure on Fun(G,Fun(L,Top)), the pointwise box product.
This symmetric monoidal structure is additionally closed because the box product on orthogonal
spaces is closed.

In this way we can also define the box product of a G-orthogonal space and a K-orthogonal
space as the (G×K)-orthogonal space given by the pointwise box product.

Lemma 2.1.6. For a continuous homomorphism between compact Lie groups α : K → G and a
G-flat cofibration f : X → Y , then α∗(f) the restriction along α of f is a K-flat cofibration

Proof. By Lemma 2.1.1 α∗(skm(X)) and skm(α∗(X)) are naturally isomorphic as K-orthogonal
spaces. Therefore for the latching morphism νm(f) we have that νm(α∗(f)) = α∗(νm(f)), and
by [Sch18, Proposition B.14 (i)] νm(α∗(f)) is an (O(m)×K)-cofibration.

Remark 2.1.7. The G-orthogonal spaces D(V,−)/H = (L(V,−) × G)/H, which we will denote
LH,V ;G, for an inner product space V and a closed subgroup H ≤ O(V )×G, are special. They
have a certain "freeness" condition, namely they are the representing objects for the functors
(−)(V )H given by evaluating at V and then taking H-fixed points of the (O(V ) × G)-action.
We will sometimes refer to them as the semifree G-orthogonal spaces, since they have the same
property as the semifree orthogonal spaces LH,V .

Explicitly the natural isomorphism of the functors G-Spc(LH,V ;G,−), (−)(V )H : G-Spc → Top is
given by, in one direction f 7→ f(V )([idV , e]). For the other direction, given a point y0 ∈ Y (V )H ,
there is a morphism of G-orthogonal spaces f given by:

(L(V,W )×G)/H →Y (W )

[ψ, g] 7→Y (ψ)(gy0)
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Analogously to the case of the semifree orthogonal spaces, the box product of a semifree G-
orthogonal space and a semifreeK-orthogonal space has a nice structure, as a (G×K)-orthogonal
space it is isomorphic to a semifree (G×K)-orthogonal space. Note however that the box product
of two G-orthogonal spaces with the G-action given by restriction along the diagonal will not be
a semifree G-orthogonal space in general.

Proposition 2.1.8. For compact Lie groups G and K, inner product spaces V, V ′ and closed
subgroups H ≤ O(V )×G and H ′ ≤ O(V ′)×K we have that LH,V ;G�LH′,V ′;K is isomorphic as
a (G×K)-orthogonal space to LH×H′,V⊕V ′;G×K .

Proof. We will define inverse (G ×K)-equivariant morphisms using on one hand the universal
property of the box product, and on the other hand the freeness of LH×H′,V⊕V ′;G×K , just like
the case for G, K trivial of [Sch18, Example 1.3.3].

The universal bimorphism evaluated at V, V ′ iV,V ′ : (L(V, V ) × G)/H × (L(V ′, V ′) ×K)/H ′ →
(LH,V ;G � LH′,V ′;K)(V ⊕ V ′) is (O(V )×G×O(V ′)×K)-equivariant when considering the left
action. It is (O(V ) × O(V ′))-equivariant because i is a bimorphism of orthogonal spaces, and
(G × K)-equivariant because we set the box product of G-orthogonal spaces as the pointwise
box product. Then since the point [idV , eG] × [idV ′ , eK ] is fixed by H ×H ′ it gives a point on
(LH,V ;G�LH′,V ′;K)(V ⊕V ′)H×H′ , and by freeness we obtain a morphism α : LH×H′,V⊕V ′;G×K →
LH,V ;G � LH′,V ′;K .

The inverse is obtained from the bimorphism given by, for each W,W ′ inner product spaces:

(L(V,W )×G)/H × (L(V ′,W ′)×K)/H ′ →(L(V ⊕ V ′,W ⊕W ′)×G×K)/(H ×H ′)
[ψ, g]× [ψ′, k] 7→[ψ ⊕ ψ′, g, k]

These (O(W ) × G × O(W ′) ×K)-equivariant maps induce a morphism of (G ×K)-orthogonal
spaces β : LH,V ;G � LH′,V ′;K → LH×H′,V⊕V ′;G×K .

For each W and W ′, if we precompose α ◦ β(W ⊕ W ′) with iW,W ′ , we obtain a map that
sends [ψ, g]× [ψ′, k] to (LH,V ;G � LH′,V ′;K)(ψ ⊕ ψ′)((g, k)iW,W ′([idV , eG]× [idV ′ , eK ])), which is
just iW,W ′([ψ, g] × [ψ′, k]) since iW,W ′ is (G ×K)-equivariant and i is a bimorphism. Therefore
α ◦ β(W ⊕W ′) ◦ iW,W ′ = iW,W ′ and so α ◦ β is the identity.

β ◦ α is a morphism out of a semifree (G × K)-orthogonal space, associated to the point β ◦
α(V ⊕ V ′)([idV⊕V ′ , eG×K ]) in LH×H′,V⊕V ′;G×K(V ⊕ V ′)H×H′ . Then we have:

β ◦ α(V ⊕ V ′)([idV⊕V ′ , eG×K ]) =

β(V ⊕ V ′)((LH,V ;G � LH′,V ′;K)(idV⊕V ′)(eG×KiV,V ′([idV , eG]× [idV ′ , eK ]))) =

β(V ⊕ V ′)(iV,V ′([idV , eG]× [idV ′ , eK ])) = [idV ⊕ idV ′ , eG × eK ] = [idV⊕V ′ , eG×K ]

The penultimate equality is due to β ◦ iV,V ′ being precisely the bimorphism used to construct β.
Then β ◦ α(W ) sends [ψ, (g, k)] ∈ (L(V ⊕ V ′,W )×G×K)/(H ×H ′) to
LH×H′,V⊕V ′;G×G(ψ)((g, k)[idV⊕V ′ , eG×K ]) = [ψ, (g, k)] and therefore β ◦ α is the identity.

Proposition 2.1.9. The pushout product of a G-flat cofibration and a K-flat cofibration is a
(G×K)-flat cofibration.
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Proof. Given a generating G-flat cofibration f = LH,Rm;G×il and a generating K-flat cofibration
g = LH′,Rn;K × ik, then their pushout product is by Proposition 2.1.8 (G × K)-isomorphic
to LH×H′,Rm+n;G×K × (il�ik). Additionally il�ik is homeomorphic to il+k, and so f�g is a
generating (G×K)-flat cofibration.

Therefore since the box product of orthogonal spaces is closed, [Hov07, Lemma 4.2.4] implies that
the pushout product of aG-flat cofibration and aK-flat cofibration is aG×K-flat cofibration.

Corollary 2.1.9.1. The pushout product of two G-flat cofibrations is a G-flat cofibration.

Proof. By the previous proposition, it is a (G×G)-flat cofibration, and by Lemma 2.1.6 it is a
G-flat cofibration.

Corollary 2.1.9.2. The pushout product with respect to × of a G-flat cofibration and a G-
cofibration of G-spaces is a G-flat cofibration.

Proof. Let f = G/H × il′ be a generating G-cofibration, then as a morphism of constant or-
thogonal spaces it is a generating G-flat cofibration with V = 0. Therefore a G-cofibration of
G-spaces is a G-flat cofibration, and by the previous corollary we have this corollary.

Since the category G-Spc is tensored with Top, we can define a homotopy of morphisms of G-
orthogonal spaces f and g to be a morphism H : X × [0, 1]→ Y in G-Spc such that H(−, 0) = f
and H(−, 1) = g. Thus we can also define what a G-homotopy equivalence of orthogonal spaces
is.

We can also consider the class of h-cofibrations, the morphisms which have the homotopy exten-
sion property. The map f : X → Y has the homotopy extension property if and only if there is a
retraction in G-Spc for the induced morphism X × [0, 1] ∪X Y → Y × [0, 1]. In G-Spc all objects
are fibrant so by [Sch18, Corollary A.30 (iii)] each G-flat cofibration is an h-cofibration of G-Spc.
We will refer to the h-cofibrations in G-Spc as G-h-cofibrations.

Remark 2.1.10. On G-Spc the G-h-cofibrations can be equivalently defined as those morphisms
that have the left lifting property with respect to ev0 : X [0,1] → X for all X ∈ G-Spc. This
implies that the class of G-h-cofibrations is closed under coproducts, transfinite composition,
cobase change and retracts.

Lemma 2.1.11. Let G be a compact Lie group and H ≤ G a closed normal subgroup. For
a G-flat cofibration (respectively a G-h-cofibration) of orthogonal spaces f : X → Y , the mor-
phism f/H : X/H → Y/H is a (G/H)-flat cofibration (respectively a (G/H)-h-cofibration) of
orthogonal spaces.

Proof. skm(X) is a left Kan extension along L≤m ⊂ L of X≤n, so it preserves colimits and since
X≤m/H = (X/H)≤m, we have that skmX/H ∼= skm(X/H) are naturally and G/H-equivariantly
isomorphic.

Then under this isomorphism the latching map of f/H corresponds to taking H orbits of the
latching map of f , and since the latter is an (O(m) × G)-cofibration, the latching map of f/H
is an (O(m) ×G/H)-cofibration by [Sch18, Proposition B.14 (iii)], and so f/H is a (G/H)-flat
cofibration.
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Suppose that we have a retraction in G-Spc r : Y × [0, 1] → X × [0, 1] ∪X Y . Then r/H is a
retraction Y/H × [0, 1]→ X/H × [0, 1] ∪X/H Y/H, and so f/H is an G/H-h-cofibration.

2.2 G-global equivalences

Given two compact Lie groups G and K, a space X with a (K × G)-action, a closed subgroup
L ≤ K, and a continuous homomorphism φ : L→ G, we denote by Xφ the space of points of X
fixed by the graph subgroup φ = { (k, φ(k)) : k ∈ L } ≤ K×G. We will also refer to the L action
on X obtained by restricting the (K ×G)-action through (L ≤ K,φ) as the twisted L-action.

We denote the set of graph subgroups of K × G, for continuous homomorphisms φ : L → G
with L ≤ K a closed subgroup, by F (K,G). These graph subgroups are precisely the closed
subgroups Γ ≤ K ×G such that Γ ∩ {eK} ×G = {eK×G}.

Definition 2.2.1 (G-global equivalence). For a compact Lie group G, a morphism f of G-Spc is
a G-global equivalence if for each compact lie groupK, continuous homomorphism φ : K → G,
orthogonal K-representation V and l ≥ 0, the following holds: For any lifting problem

∂Dl X(V )φ

Dl Y (V )φ

α

f(V )φ

β

there is a K-equivariant linear isometric embedding ψ : V →W into a K-representation W such
that there is a morphism λ : Dl → X(W )φ which solves the lifting problem (X(ψ)φ◦α, Y (ψ)φ◦β).
This explicitly means that in the diagram

∂Dl X(V )φ X(W )φ

Dl Y (V )φ Y (W )φ

α X(ψ)φ

f(W )φλ

β

Y (ψ)φ

the upper left triangle commutes, and the lower right triangle commutes up to homotopy relative
to ∂Dl.

The previous definition is the most concrete one (Note the similarity to the definition of global
equivalence Definition 1.3.1). However, morally the definition of a G-global equivalence, just
as in the case of global equivalences, is meant to capture that for each compact lie group K,
the map induced between the homotopy colimits over all K-representations is an F (K,G)-weak
homotopy equivalence. The following lemma analogous to [Sch18, Proposition 1.1.7] makes this
explicit.

For a compact Lie group K, we say that a nested sequence of K-representations

V0 ⊂ V1 ⊂ · · · ⊂ Vn ⊂ . . .

is exhaustive if each K-representation isometrically embeds into some Vn.
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2.2. G-GLOBAL EQUIVALENCES

Lemma 2.2.2. A morphism f : X → Y in G-Spc is a G-global equivalence if and only if for
each compact Lie group K and each exhaustive sequence of K-representations {Vi}i∈N, the map
induced on the mapping telescopes of the sequences of (K ×G)-spaces and (K ×G)-equivariant
maps X(Vi) and Y (Vi)

teli f(Vi) : teliX(Vi)→ teli Y (Vi)

is an F (K,G)-weak homotopy equivalence of K ×G-spaces.

Proof. First we assume that for each compact Lie group K and each exhaustive sequence of
orthogonal K-representations, the map induced on the mapping telescopes is an F (K,G)-weak
homotopy equivalence of (K×G)-spaces. Any compact Lie group K has an exhaustive sequence
of representations {Vi}i∈N, so for any K-representation V , continuous homomorphism φ : K → G
and lifting problem (α, β), since {Vi}i∈N is exhaustive, we can embed V into some Vn, and so we
assume that V = Vn.

Denote by cX,n the (K×G)-equivariant canonical mapX(Vn)→ teliX(Vi). Also let tel[0,n]X(Vi)
denote the truncated mapping telescope, πX,n the (K × G)-equivariant canonical projection
tel[0,n]X(Vi)→ X(Vn), and by abuse of notation let cX,n also denote the canonical mapX(Vn)→
tel[0,n]X(Vi). For n ≤ m, let cX,n,m denote the inclusion of truncated mapping telescopes
tel[0,n]X(Vi)→ tel[0,m]X(Vi), and cX,n,∞ the inclusion tel[0,n]X(Vi)→ teliX(Vi).

Taking fixed points commutes with the construction of the mapping telescopes, so (teliX(Vi))
φ ∼=

teliX(Vi)
φ. Since teli f(Vi)

φ is a weak homotopy equivalence, by [May99, 9.6 Lemma] there is a
solution λ to the lifting problem (cφX,n ◦ α, c

φ
Y,n ◦ β).

∂Dl X(Vn)φ teliX(Vi)
φ

Dl Y (Vn)φ teli Y (Vi)
φ

α

il

cφX,n

teli f(Vi)
φ

β

λ

cφY,n

Both λ and the relative homotopy H that witnesses that cφY,n ◦ β and teli f(Vi)
φ ◦ λ are ho-

motopic have compact domains, and since the mapping telescopes are colimits along the closed
inclusions cφX,n,m, both λ and H factor through some stage m ≥ n with ψ : Vn → Vm, λ′ : Dl →
tel[0,m]X(Vi)

φ and H ′ : Dl× [0, 1]→ tel[0,m] Y (Vi)
φ. Then πφX,m ◦λ′ and π

φ
X,m ◦H ′ give a solution

to the lifting problem (X(ψ)φ ◦ α,X(ψ)φ ◦ β), so that f is a G-global equivalence.

Now assume that f is a G-global equivalence. Fix a compact Lie group K, a closed subgroup
L ≤ K, a continuous homomorphism φ : L→ G, and a exhaustive sequence of K-representations
{Vi}i∈N. We have to check that teli f(Vi)

φ is a weak homotopy equivalence.

For a lifting problem (α, β) for teli f(Vi)
φ, since ∂Dl and Dl are compact, α and β factor through

some stage n, as α′ : ∂Dl → tel[0,n]X(Vi)
φ and β′ : Dl → tel[0,n] Y (Vi)

φ.

For each n, there is a homotopy from the identity on tel[0,n]X(Vi) to cX,n◦πX,n, which is (K×G)-
equivariant and natural on X. By [Sch18, Lemma 1.1.5] this means that there is a solution of the
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lifting problem (α′, β′) if there is a solution to the lifting problem (cφX,n ◦π
φ
X,n ◦α′, c

φ
Y,n ◦π

φ
Y,n ◦β′).

∂Dl tel[0,n]X(Vi)
φ X(Vn)φ tel[0,n]X(Vi)

φ

Dl tel[0,n] Y (Vi)
φ Y (Vn)φ tel[0,n] Y (Vi)

φ

α′

il tel[0,n] f(Vi)
φ

πφX,n cφX,m

f(Vm)φ tel[0,n] f(Vi)
φ

β′ πφY,n cφY,m

This lifting problem, after evaluating at some larger m ≥ n with embedding ψ : Vn → Vm, has as
solution cφX,n ◦λ, where λ is a solution to the lifting problem (X(ψ)φ ◦πφX,n ◦α′, Y (ψ)φ ◦πφY,n ◦β′).
This λ exists because f is aG-global equivalence and the sequence of underlying L-representations
{Vi}i∈N is an exhaustive sequence of L-representations by [BD85, III Theorem 4.5].

Explicitly, cφX,n◦λ is a solution of the lifting problem (cφX,n◦X(ψ)φ◦πφX,n◦α′, c
φ
Y,n◦Y (ψ)φ◦πφY,n◦β′),

and since πφX,m ◦ c
φ
X,n,m = X(ψ)φ ◦ πφX,n, it is also a solution of (cφX,n ◦ π

φ
X,m ◦ c

φ
X,n,m ◦ α′, c

φ
Y,n ◦

πφY,m ◦ c
φ
Y,n,m ◦ β′), and so by the previously mentioned homotopy, (cφX,n,m ◦ α′, c

φ
Y,n,m ◦ β′) has a

solution λ′.

Note that we didn’t obtain a solution to (α′, β′), but since cφX,m,∞ ◦ c
φ
X,n,m = cφX,n,∞, the map

cφX,m,∞ ◦ λ′ is a solution of the original lifting problem (α, β) = (cφX,m,∞ ◦ c
φ
X,n,m ◦ α′, c

φ
Y,m,∞ ◦

cφY,n,m ◦ β′).

An orthogonal space X is said to be closed if for each linear isometric embedding ψ we have that
X(ψ) is a closed embedding. For closed orthogonal spaces, there is a simpler characterization
of G-global equivalences. For each compact Lie group K we fix a complete K universe UK , and
denote by s(UK) the poset of finite dimensional subrepresentations of UK .

For each G-orthogonal space X we can consider the (K×G)-space X(UK) = colimV ∈s(UK)X(V ).
We will usually refer to this as the underlying (K×G)-space of the G-orthogonal space X. Then
we have the analogue of [Sch18, Proposition 1.1.17] for G-orthogonal spaces:

Lemma 2.2.3. A morphism f : X → Y in G-Spc between closed orthogonal spaces is a G-global
equivalence if and only if for each K compact Lie group the map induced on underlying (K×G)-
spaces

f(UK) : X(UK)→ Y (UK)

is an F (K,G)-weak homotopy equivalence of (K ×G)-spaces.

Proof. The colimit colimV ∈s(UK)X(V ) can be written as a sequential colimit colimi∈NX(Vi) for
a nested sequence of finite dimensional subrepresentations {Vi}i∈N of UK which cover all of UK .
This is a colimit of (K ×G)-spaces along closed embeddings because X and Y are closed.

Then for each φ ∈ F (K,G) taking φ-fixed points commutes with this colimit along closed
embeddings.

Since additionally ∂Dl and Dl are compact, a lifting problem for (colimi∈N f(Vi))
φ factors

through some stage n of the sequential colimit. Then it can be seen that if f is a G-global
equivalence the map (colimi∈N f(Vi))

φ is a weak homotopy equivalence. We are using that if
L ≤ K is a closed subgroup, the underlying L-representation of UK is a complete L-universe.
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If f(UK)φ is a weak homotopy equivalence for each such K and φ, then any K representation
V embeds into some Vi by ψ : V → Vi and therefore for any lifting problem for f(Vi)

φ there is
some j ≥ i and a solution for the associated lifting problem on f(Vj)

φ, and so f is a G-global
equivalence.

Now we proceed with a technical lemma which we will use to prove two propositions that deal
with what happens to G-global equivalences when taking orbits or inducing from a subgroup.
The nice thing is that for finite groups no cofibrancy is required anywhere, although freeness of
the G-action on both source and target is required in the orbits case.

Lemma 2.2.4. Let H be a finite group and K and G compact Lie groups. Assume that we have
equivariant maps of (K × G × H)-spaces f : X → Y and g : Y → Z such that Z is Hausdorff
and H-free. Then we have that f/H : X/H → Y/H is an F (K,G)-weak homotopy equivalence
if and only if f is an F (K,G×H)-weak homotopy equivalence.

Proof. First note that since Z is H-free, so are X and Y . For any closed subgroup L ≤ K and
continuous homomorphism φ : L→ G, [Sch18, Proposition B.17] gives a natural homeomorphism
for X, Y and Z: ∐

[ψ]

Xψ/C(ψ)→ (X/H)φ

The disjoint union on the left is indexed by the conjugacy classes of continuous homomorphisms
ψ : Γ(φ)→ H. C(ψ) denotes the centralizer of the image of ψ on H. Here we write Γ(φ) for the
graph subgroup of φ for clarity.

Fix an homomorphism φ : L→ G. An homomorphism ψ : Γ(φ)→ H, as a subgroup ofK×G×H,
has elements (k, φ(k), ψ(k, φ(k)) for k ∈ L, so ψ ∈ F (K,G × H). In the other direction, for
a ψ ∈ F (K,G × H), let φ be the homomorphism πG ◦ ψ : L → G where πG : G × H → G
is the projection. Then Γ(ψ) is a graph subgroup of Γ(φ) × H, so that ψ can be seen as a
homomorphism Γ(φ)→ H.

We know that a disjoint union of maps is a weak homotopy equivalence if and only each of
the maps is a weak homotopy equivalence. Therefore we have that f/H is an F (K,G)-weak
homotopy equivalence if and only if for each ψ ∈ F (K,G × H) the map fψ/C(ψ) is a weak
homotopy equivalence.

For each ψ ∈ F (K,G × H), the centralizer of the image of ψ, C(ψ) ≤ H, is finite and Zψ is
C(ψ)-free and a closed subspace of Z so Hausdorff. Therefore the C(ψ)-action on Zψ is properly
discontinuous, and since fψ and gψ are C(ψ)-equivariant, the C(ψ)-actions on Xψ and Y ψ are
also properly discontinuous.

This means that Xψ → Xψ/C(ψ) and Y ψ → Y ψ/C(ψ) are covering maps, and since fψ is C(ψ)-
equivariant, it induces a map of coverings. Then we consider the long exact sequence of homotopy
groups for these covering maps. We have that fψ/C(ψ) is a weak homotopy equivalence if and
only if fψ is a weak homotopy equivalence, which can be seen by using the five lemma and
checking explicitly on π0 and π1.

Thus we finally obtain that f/H is an F (K,G)-weak homotopy equivalence if and only if f is
an F (K,G×H)-weak homotopy equivalence.
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This next proposition is similar to [SS12, Lemma 8.1].

Proposition 2.2.5. Let H be a finite group and G a compact Lie group. Consider two (G×H)-
equivariant morphisms of orthogonal spaces f : X → Y and g : Y → Z, where for Z we know that
for each inner product space V the space Z(V ) is Hausdorff and H-free. Then f/H : X/H →
Y/H is a G-global equivalence if and only if f is a (G×H)-global equivalence.

Proof. By Lemma 2.2.2 f/H : X/H → Y/H is a G-global equivalence if and only if for each
compact Lie group K and exhaustive sequence of K-representations {Vi}i∈N the map

teli f/H(Vi) : teliX/H(Vi)→ teli Y/H(Vi)

is an F (K,G)-weak homotopy equivalence.

Taking H-orbits commutes with colimits and − × [0, 1], so it commutes with taking mapping
telescopes, therefore teli f/H(Vi) ∼= teli f(Vi)/H. Now f and g induce (K ×G×H)-equivariant
maps on mapping telescopes:

teliX(Vi) teli Y (Vi) teli Z(Vi)
teli f(Vi) teli g(Vi)

Since each Z(V ) is Hausdorff and H-free, so is teli Z(Vi). Additionally by Lemma 2.2.2 f is a
(G×H)-global equivalence if and only if teli f(Vi) is an F (K,G×H)-weak homotopy equivalence
for eachK and {Vi}i∈N. By Lemma 2.2.4 teli f(Vi)/H is an F (K,G)-weak homotopy equivalence
if and only if teli f(Vi) is an F (K,G×H)-weak homotopy equivalence, which yields the result.

Proposition 2.2.6. Given a compact Lie group G, a finite subgroup H ≤ G, and an H-global
equivalence f : X → Y , we have that the morphism G×H f is a G-global equivalence.

Proof. We first need to check that G × f is a (G ×H)-global equivalence, for the action where
G acts on the left on the G factor, and H acts both on the right on the G factor and on the left
on the f factor.

Consider a compact Lie group K and a exhaustive sequence of K-representations {Vi}i∈N. G×−
commutes with colimits and −× [0, 1], so it commutes with taking mapping telescopes, therefore
it suffices to check that G× teli f(Vi) is an F (K,G×H)-weak homotopy equivalence.

For any continuous homomorphism φ : K → G×H, the image of the graph subgroup under the
projection πK×H : K ×G×H → K ×H is the graph subgroup of πH ◦ φ, for πH the projection
G × H → H. Therefore (teli f(Vi))

φ = (teli f(Vi))
πH◦φ, and the latter is a weak homotopy

equivalence since teli f(Vi) is an F (K,H)-weak homotopy equivalence. Then (G× teli f(Vi))
φ =

Gφ × teli f(Vi)
φ is also a weak homotopy equivalence.

Lastly, the projection G×Y → G is a (G×H)-equivariant map, where again G acts on G on the
left and H acts on the right. With this action G is H-free and Hausdorff, so by Proposition 2.2.5,
G×H f is a G-global equivalence.

We now check some general properties about G-global equivalences.

Lemma 2.2.7. For compact Lie groups G, H, and a continuous homomorphism ψ : H → G, we
have the following properties:
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i) (2-out-of-6) For three composable morphisms of G-orthogonal spaces f : X → Y , g : Y → Z
and h : Z → W , such that g ◦ f and h ◦ g are G-global equivalences, we have that f, g, h
and h ◦ g ◦ f are G-global equivalences.

ii) If f : X → Y is a G-global equivalence and g is homotopic to f through G-equivariant
morphisms of orthogonal spaces, then g is a G-global equivalence.

iii) For a G-orthogonal space X, and an H-global equivalence f : Y → Z, the morphism X × f
is a (G×H)-global equivalence.

iv) For a G-global equivalence f : X → Y and an H-global equivalence f ′ : X ′ → Y ′, the
morphism f × f ′ is a (G×K)-global equivalence.

v) For a G-global equivalence f : X → Y the restriction ψ∗f is a K-global equivalence.

Proof. i) For each compact Lie groupK and exhaustive sequence ofK-representations {Vi}i∈N
we have that by Lemma 2.2.2 teli(g ◦ f)(Vi) = teli g(Vi) ◦ teli f(Vi) and teli(h ◦ g)(Vi) =
teli h(Vi) ◦ teli g(Vi) are F (K,G)-weak homotopy equivalences, and since the class of
F (K,G)-weak homotopy equivalences satisfies the 2-out-of-6 property, teli f(Vi), teli g(Vi),
teli h(Vi) and teli(h ◦ g ◦ f)(Vi) are also F (K,G)-weak homotopy equivalences and so by
Lemma 2.2.2 again f, g, h and h ◦ g ◦ f are G-global equivalences.

ii) If H : X × [0, 1] → Y is a homotopy through G-equivariant morphisms of orthogonal
spaces it induces a homotopy through (K × G)-equivariant maps on mapping telescopes
for each compact Lie group K and each exhaustive sequence of representations. Then
by Lemma 2.2.2 and because a map (K × G)-homotopic to an F (K,G)-weak homotopy
equivalence is an F (K,G)-weak homotopy equivalence, we see that g is also a G-global
equivalence.

iii) Consider any compact Lie group K and continuous homomorphism φ : K → G × H, an
orthogonal K-representation V , and a lifting problem α : ∂Dl → ((X × Y )(V ))φ and
β : Dl → ((X ×Z)(V ))φ. Since (X × Y )(V ) = X(V )× Y (V ), if we consider the trivial H-
action on X(V ) and the trivial G-action on Y (V ) and Z(V ), we have that (X ×Y )(V )φ =
X(V )φ × Y (V )φ, and similarly (X × Z)(V )φ = X(V )φ × Z(V )φ.

We have that α = (α1, α2) and β = (β1, β2), and since f is an H-global equivalence there
is a K-equivariant linear isometric embedding η : V → W and λ a solution to the lifting
problem α2, β2. That is Y (η)φ ◦ α2 = λ ◦ il and f(W )φ ◦ λ is homotopic relative ∂Dl to
Z(W )φ ◦ β2. Then on the original lifting problem, after postcomposing by η, we have a
solution (X(η)φ ◦ β1, λ), and so X × f is a (G×H)-global equivalence.

iv) f × f ′ = (Y × f ′) ◦ (f × X ′) and each of these is a (G × H)-global equivalence by the
previous point.

v) Given any compact Lie group K and continuous homomorphism φ : K → H, an orthogonal
K-representation V , and a lifting problem α : ∂Dl → (ψ∗X(V ))φ and β : Dl → (ψ∗Y (V ))φ,
we have that (ψ∗X(V ))φ = X(V )ψ◦φ, and the same thing is true for Y . Then since f is
a G-global equivalence the lifting problem has a solution after possibly embedding V in
some bigger K-representation W .
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We now turn to the box product of orthogonal spaces, to check that it works well with G-global
equivalences. Specifically that it is fully homotopical with no cofibrancy assumptions required,
just like with respect to the global equivalences.

Lemma 2.2.8. Given F : L→ L a continuous endofunctor, a natural transformation η : Id⇒ F ,
and a G-orthogonal space X, then the morphism X ◦ η : X → X ◦ F is a G-global equivalence.

Proof. We will use the fact that for each compact Lie group K and each K-representation V
the two embeddings F (ηV ), ηF (V ) : F (V ) → F (F (V )) are homotopic relative to ηV : V → F (V )
through K-equivariant linear isometric embeddings. This is proven in the proof of the equivalent
result where X is just an orthogonal space on [Sch18, Theorem 1.1.10].

Then given a compact Lie groupK, anK-representation V , a continuous homomorphism φ : K →
G and a lifting problem (α, β) like in the following diagram, we can see that the linear isometric
embedding ηv and the map β provide a solution, since first the upper left triangle commutes by
construction.

∂Dl X(V )K X(F (V ))K

Dl X(F (V ))K X(F (F (V )))K

α

il X(ηV )K

X(ηV )K

X(ηF (V ))
K

β

X(F (ηV ))K

For the lower right triangle, F (ηV ) and ηF (V ) are homotopic through K-equivariant linear iso-
metric embeddings, therefore X(F (ηV )) and X(ηF (V )) are homotopic through K-equivariant
maps when considered with the twisted K-action, and X(F (ηV ))K and X(ηF (V ))

K are homo-
topic. Since the original homotopy was relative to ηV , and β ◦ il = X(ηV )K ◦ α, the obtained
homotopy between X(F (ηV ))K ◦ β and X(ηF (V ))

K ◦ β is relative il. Thus X(η) is a G-global
equivalence.

Given a G-orthogonal space X and a K-orthogonal space Y , we can construct a bimorphism
(X,Y )→ X × Y via:

X(V )× Y (W ) X(V ⊕W )× Y (V ⊕W ) = (X × Y )(V ⊕W )
X(ι1)×Y (ι2)

This bimorphism yields a morphism of orthogonal spaces:

ρX,Y : X � Y → X × Y

[Sch18, Theorem 1.3.2 (i)] states that this is a global equivalence of underlying orthogonal spaces.
We will now rewrite that proof to check that it is additionally a (G×K)-global equivalence.

Proposition 2.2.9. Given a G-orthogonal space X and a K-orthogonal space Y , the morphism
of orthogonal spaces ρX,Y is a (G×K)-global equivalence.

Proof. Consider the endofunctor sh: L → L that sends V to V ⊕ V . We have two natural
transformations ι1, ι2 : Id⇒ sh given by the embeddings into the first and second factor respec-
tively. We also denote by sh the functor of orthogonal spaces given by precomposing with sh,
sh(X) = X ◦ sh.
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The universal bimorphism i that exhibits X�Y as the box product of X and Y gives a morphism
of orthogonal spaces λ : X×Y → sh(X�Y ) through the maps iV,V : X(V )×Y (V )→ (X�Y )(V ⊕
V ) = (sh(X �Y ))(V ). In the following diagram we will check that λ ◦ ρX,Y and sh(ρX,Y ) ◦λ are
(G×K)-global equivalences and then use the 2-out-of-6 property 2.2.7 i) to obtain that ρX,Y is
a (G×K)-global equivalence.

X � Y X × Y sh(X � Y ) sh(X × Y )
ρX,Y λ sh(ρX,Y )

We have that sh(ρX,Y ) ◦ λ evaluated at V is the same as the bimorphism associated to ρX,Y
on level V, V , by the constructions of λ and ρX,Y . That is X(ι1)(V ) × Y (ι2)(V ), where each is
respectively a G-global equivalence or a K-global equivalence by Lemma 2.2.8, and then their
product is a (G×K)-global equivalence by Lemma 2.2.7 iv).

Next we use that λ ◦ ρX,Y is homotopic through (G×K)-equivariant morphisms to (X �Y )(ι1).
The homotopy given in the proof of [Sch18, Theorem 1.3.2 (i)] is through (G ×K)-equivariant
morphisms, and (X�Y )(ι1) is a (G×K)-global equivalence by Lemma 2.2.8, so by Lemma 2.2.7
ii) λ ◦ ρX,Y is a (G×K)-global equivalence.

Corollary 2.2.9.1. For a G-global equivalence f : X → Y and a K-global equivalence f ′ : X ′ →
Y ′, the morphism f � f ′ is a (G × K)-global equivalence. If K = G then f � f ′ is a G-global
equivalence. Therefore for any X ∈ G-Spc, the functor X �− preserves G-global equivalences.

Proof. ρY,Y ′ ◦ (f � f ′) = (f × f ′) ◦ ρX,X′ , and ρY,Y ′ and ρX,X′ are (G×K)-global equivalences
by Proposition 2.2.9, and f × f ′ is one by Lemma 2.2.7 iv).

IfK = G by restricting along the diagonal homomorphism ∆: G→ G×G and using Lemma 2.2.7
v) we have that f � f ′ is a G-global equivalence and X �− preserves G-global equivalences.

2.3 Interplay of G-global equivalences with G-h-cofibrations

We will refer to the following result as the gluing lemma for G-global equivalences.

Lemma 2.3.1 (Gluing lemma). For a compact Lie group G, and a commutative diagram of
G-orthogonal spaces

Y X Z

Y ′ X ′ Z ′

β

f g

α γ

f ′ g′

where α, β, γ are G-global equivalences, and f and f ′ are G-h-cofibrations, then the morphism
induced on the pushouts Y ∪X Z → Y ′ ∪X′ Z ′ is a G-global equivalence.

Proof. Consider a compact Lie groupK and an exhaustive sequence ofK-representations {Vi}i∈N.
We have the following diagram of equivariant morphisms of K ×G-spaces:

teli Y (Vi) teliX(Vi) teli Z(Vi)

teli Y
′(Vi) teliX

′(Vi) teli Z
′(Vi)

teli β(Vi)

teli f(Vi) teli g(Vi)

teli α(Vi) teli γ(Vi)

teli f
′(Vi) teli g

′(Vi)

24



2.3. INTERPLAY OF G-GLOBAL EQUIVALENCES WITH G-H-COFIBRATIONS

Here by Lemma 2.2.2 teli α(Vi), teli β(Vi) and teli γ(Vi) are F (K,G)-weak homotopy equiva-
lences, and the formation of mapping telescopes commutes with pushouts, retracts and −× [0, 1],
so teli f(Vi) and teli f

′(Vi) are h-cofibrations of (K×G)-spaces. Therefore by the Gluing lemma
for F (K,G)-weak homotopy equivalences (see for example [Sch18, Proposition B.6]) the in-
duced map on the pushouts of the mapping telescopes is also an F (K,G)-weak homotopy
equivalence. Since again taking mapping telescopes commutes with pushouts, this means that
Y ∪X Z → Y ′ ∪X′ Z ′ is a G-global equivalence.

Corollary 2.3.1.1. For a compact Lie group G, and a pushout diagram of G-orthogonal spaces

X Y

X ′ Y ′

f

g

f ′ p

where f is a G-global equivalence and either f or g is a G-h-cofibration, then f ′ is a G-global
equivalence.

Proof. Apply the previous proposition to the diagram:

X X X ′

Y X X ′

f

g

f g

With this last corollary we can check that with the G-h-cofibrations and the G-global equiva-
lences, G-Spc forms a cofibration category.

Proposition 2.3.2. G-Spc, together with the G-h-cofibrations and the G-global equivalences,
forms a cofibration category, also called a category of cofibrant objects.

Proof. We check the axioms as listed on [Sch13]. By the characterization of G-h-cofibrations of
Remark 2.1.10, they include the isomorphisms, are closed under composition and cobase change,
and any morphism from the initial object is one. Then the rest of (C1) is straightforward. For
(C2), we checked that G-global equivalences satisfy the 2-out-of-3 property on Lemma 2.2.7 i).
For (C3), G-Spc is cocomplete and we just checked on Corollary 2.3.1.1 that G-global equivalences
are preserved by cobase changes of G-h-cofibrations.

Lastly, we can use the G-level model structure on G-Spc of Theorem 2.1.4 to factor any morphism
into a G-flat cofibration (which is therefore a G-h-cofibration) and a morphism f such that
for each m ≥ 0 and closed subgroup H ≤ O(m) × G the map f(Rm)H is a weak homotopy
equivalence.

For any compact Lie groupK and anyK-representation V there is a linear isometry ψ : V → Rm.
Then for any graph subgroup φ ≤ K×G, conjugation by ψ induces a continuous homomorphism
α : K → O(m), and we also have an induced natural (on the orthogonal space) homeomorphism
X(V )φ ∼= X(Rm)(α×G)(φ). Then we obtain that any lifting problem for f has a solution after
applying φ, and so f is a G-global equivalence.
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Note that the G-flat cofibrations and the G-global equivalences do not make G-Spc a cofibration
category, since not every G-orthogonal space is G-flat. If we restrict to the full subcategory of
G-flat orthogonal spaces however we do obtain a cofibration category by the same argument as
before.

Corollary 2.3.2.1. For morphisms of G-orthogonal spaces f : X1 → Y1 and g : X2 → Y2 such
that f is a G-global equivalence and a G-h-cofibration, their pushout product f�g is a G-global
equivalence.

Similarly, if f : X1 → Y1 is a morphism of G-orthogonal spaces and g : X2 → Y2 is a map of G-
spaces, and either f is a G-global equivalence and a G-h-cofibration, or g is a G-weak homotopy
equivalence and a G-h-cofibration, their pushout product f�g is a G-global equivalence.

Proof. By Lemma 2.2.7 iii) we have that f�X2 and f�Y2 are G-global equivalences. Since f�X2

is also a G-h-cofibration, by Corollary 2.3.1.1 the morphism α is also a G-global equivalence, so
by the 2-out-of-3 property so is f�g.

X1 �X2 X1 � Y2

Y1 �X2 P

Y1 � Y2

f�X2

X1�g

f�Y2
α

Y1�g

f�g

p

The same is true if g is a map of G-spaces, since the product of an orthogonal space with a
space is the same as the box product with the associated constant orthogonal space, and a G-
weak homotopy equivalence between constant orthogonal spaces is a G-global equivalence, and
similarly a G-h-cofibration of spaces is a G-h-cofibration between constant orthogonal spaces.

Proposition 2.3.3. For a compact Lie group G, and λ a limit ordinal, consider two λ-sequences
in G-Spc, which are colimit preserving functors X : λ→ G-Spc and Y : λ→ G-Spc, and a natural
transformation f between them. Then if for each β ∈ λ the morphisms gβ : Xβ → Xβ+1 and
hβ : Yβ → Yβ+1 are G-h-cofibrations and the morphism fβ : Xβ → Yβ is a G-global equivalence,
the morphism induced on the colimits colimβ∈λ fβ : colimβ∈λXβ → colimβ∈λ Yβ is a G-global
equivalence.

Proof. By Lemma 2.2.2 it is enough to check that for each compact Lie group K and exhaustive
sequence of K-representations {Vi}i∈I the map teli(colimβ∈λ fβ)(Vi) is an F (K,G)-weak homo-
topy equivalence. The construction of the mapping telescopes commutes with taking colimits,
so this map is isomorphic to colimβ∈λ(teli fβ(Vi)).

For each β ∈ λ the map teli fβ(Vi) is an F (K,G)-weak equivalence, and the maps teli gβ(Vi) and
teli hβ(Vi) are h-cofibrations of K × G-spaces, and so in particular h-cofibrations of underlying
compactly generated weak Hausdorff spaces, and therefore closed embeddings.

For each φ ∈ F (K,G) taking φ-fixed points commutes with filtered colimits along closed em-
beddings. Colimits with the shape of a filtered poset and built out of closed embeddings of
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compactly generated weak Hausdorff spaces can be computed in the category of all topological
spaces (see [Sch18, Proposition A.14 (ii)]). Weak Hausdorff spaces are T1, so by [Hov07, Propo-
sition 2.4.2] we have that maps from compact spaces (∂Dl and Dl in this case) into the colimit
of a λ-sequence of closed embeddings (for λ a limit ordinal) factor through some stage β ∈ λ.
Therefore compact spaces are finite in Top relative closed embeddings.

This implies that, for the λ-sequences given by (teli gβ(Vi))
φ and (teli hβ(Vi))

φ, which consist of
closed embeddings, and the natural transformation between them given by the maps (teli fβ(Vi))

φ

which are weak homotopy equivalences, the map induced on the colimits colimβ∈λ(teli fβ(Vi))
φ ∼=

(colimβ∈λ(teli fβ(Vi)))
φ is a weak homotopy equivalence. Therefore teli(colimβ∈λ fβ)(Vi) is an

F (K,G)-weak homotopy equivalence.

Corollary 2.3.3.1. A transfinite composition of morphisms in G-Spc that are G-h-cofibrations
and G-global equivalences is a G-global equivalence.

Proof. We check this via transfinite induction on the ordinal λ. Let Y : λ → G-Spc be a λ-
sequence such that for each β ∈ λ the morphism hβ : Yβ → Yβ+1 is a G-h-cofibration and a
G-global equivalence. The base case and the case where λ is a successor ordinal hold because
composition of two G-global equivalences is a G-global equivalence.

If λ is a limit ordinal, set X : λ→ G-Spc as the constant functor Xβ = Y0. Define a natural trans-
formation f : X ⇒ Y by letting fβ be the morphism Y0 → Yβ . This is the transfinite composition
of Y restricted to β + 1. Then by the induction hypothesis fβ is a G-global equivalence for each
β ∈ λ. Then we use Proposition 2.3.3 to obtain that colimβ∈λ fβ is a G-global equivalence, but
this morphism is precisely the transfinite composition of Y .
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Chapter 3

Homotopy of algebras over a global
operad

3.1 Model structure on the category of algebras

Our goal now is to finally check the conditions of Theorem 1.2.2 on cobase changes in Alg(O) of
what will be the generating (acyclic) cofibrations of Alg(O), for operads in Spc. We focus now
first on the generating cofibrations. Throughout this section let O denote an operad on Spc, with
no further conditions assumed.

We first check an auxiliary lemma.

Lemma 3.1.1. For i : X → Y a cofibration (injective morphism) of simplicial sets, and a finite
group G such that X and Y are equipped with a G-action and the morphism i is G-equivariant,
the map |i| : |X| → |Y | is a G-cofibration between G-cofibrant objects.

Proof. |X| and |Y | are CW complexes with the typical CW structure associated to the geometric
realization functor for simplicial sets, and |i| is a relative CW complex. To check that each |X|
and |Y | are G-CW complexes and |i| is a relative G-CW complex, we need to check that for each
g ∈ G and open cell γ of |Y |, either gγ ∩ γ = ∅, or the g action restricted to γ is the identity.

Cells in |Y | come from non-degenerate simplices of Y . If g ∈ G sends a non-degenerate y ∈ Yk to
a different simplex, which also has to be non-degenerate because the G action commutes with the
degeneracy maps, then the two associated cells of the same dimension are different. If gy = y, the
G action on Yk,ndg ×∆k is the identity when restricted to {y}×∆k, so the action of g restricted
to the cell associated to y is the identity.

Corollary 3.1.1.1. For i : X → Y a cofibration (injective morphism) of simplicial sets, the
n-fold product |i|×n and the n-fold pushout product |i|�n of |i| are Σn-cofibrations between Σn-
cofibrant spaces.

Proof. The geometric realization functor preserves products and pushouts, and the Σn action on
|Y |×n is the same as the one obtained from the Σn-action on Y ×n by applying the geometric
realization functor. Therefore |i|×n = |i×n| and |i|�n = |i�n| are geometric realizations of Σn
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equivariant cofibrations of simplicial sets, and by Lemma 3.1.1 they are Σn-cofibrations between
Σn-cofibrant spaces.

Then we check the condition of Theorem 1.2.2 for the generating (acyclic) cofibrations in I and
J .

Proposition 3.1.2. Given a generating cofibration of the positive global model structure of the
form i ∈ I, and a pushout in Alg(O) of the form

FAlg(O)(X) FAlg(O)(Y )

A B

FAlg(O)(i)

f p

the morphism UAlg(O)(f) is an h-cofibration of orthogonal spaces.

Proof. Consider the filtration of [SS12, Proposition A.16] with k = 0, where UO0 = UAlg(O).
i = LG,V × il, so for each j ≥ 1, we have the following pushout in Spc:

UOj (A)�Σj Q
j
j−1(i) UOj (A)�Σj (LG,V ×Dl)�j

Pj−1U
O
0 (B) PjU

O
0 (B)

UOj (A)�Σj
i�j

fj p

We have that i�j = L�jG,V ×i
�j
l . The map i�jl is a Σj-cofibration of spaces by Corollary 3.1.1.1 (so

it is also a Σj-h-cofibration). Thus the same is true for UOj (A)�L�iG,V ×i
�j
l , and so UOj (A)�Σj i

�j

is an h-cofibration of orthogonal spaces by Lemma 2.1.11. Then so is fj , and then UAlg(O)(f) is
an infinite composition of h-cofibrations, and therefore an h-cofibration.

Proposition 3.1.3. Given a generating acyclic cofibration of the positive global model structure
of the form j ∈ J , and a pushout in Alg(O) of the form

FAlg(O)(X) FAlg(O)(Y )

A B

FAlg(O)(j)

f p

the morphism UAlg(O)(f) is a global equivalence.

Proof. Consider again the filtration of [SS12, Proposition A.16] with k = 0, where UO0 = UAlg(O).
j = LG,V × jl, so for each i ≥ 1, we have the following pushout in Spc:

UOi (A)�Σi Q
i
i−1(j) UOi (A)�Σi (LG,V × [0, 1]l+1)�i

Pi−1U
O
0 (B) PiU

O
0 (B)

UOi (A)�Σi
j�i

fi p
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We have that j�i = L�iG,V × j�il . The map j�il is a Σi-cofibration of spaces by Corollary 3.1.1.1
(so it is also a Σi-h-cofibration) and a Σi-homotopy equivalence. Thus the same is true for
UOi (A) � L�iG,V × j�il , and so UOi (A) �Σi j

�i is an h-cofibration and homotopy equivalence of
orthogonal spaces by Lemma 2.1.11, and therefore also a global equivalence. Then so is fi,
and then UAlg(O)(f) is an infinite composition of morphisms which are h-cofibrations and global
equivalences, so it is a global equivalence.

We now consider the generating acyclic cofibrations in K. First we have a result that, for
a morphism f , reduces the task of checking that f�n is a Σn-global equivalence for all n to
checking that f�n is one for all n, assuming that the morphisms f�n are Σn-h-cofibrations.

Proposition 3.1.4. Let f : X → Y be a morphism of orthogonal spaces such that for each n ≥ 1
the morphism f�n is a Σn-global equivalence, and such that for each n ≥ 1 the morphism f�n is
a Σn-h-cofibration. Then for each n ≥ 1 the morphism f�n is a Σn-global equivalence.

Proof. We will proceed by strong induction. For the base case, f�1 = f�1 = f which is a
Σ1-global equivalence, that is, a global equivalence.

Assuming the result holds for all i < n, we decompose f�n using the filtration of [SS12, Lemma
A.8] with X0 = X2 = X and X1 = Y .

X�n = Qn0 (f) Qn1 (f) . . . Qnn−1(f) Qnn(f) = Y �n
f�n

The last step of the filtration is precisely f�n.

For each step 1 ≤ i < n there is a Σn-equivariant pushout diagram of orthogonal spaces:

Σn ×Σn−i×Σi X
�n−i �Qii−1(f) Σn ×Σn−i×Σi X

�n−i � Y �i

Qni−1(f) Qni (f)

Σn×Σn−i×Σi
X�n−i�f�i

p

By Corollary 2.2.9.1 and the induction hypothesis we have that X�n−i � f�i is a (Σn−i ×
Σi)-global equivalence. Then by Proposition 2.2.6 Σn ×Σn−i×Σi X

�n−i � f�i is a Σn-global
equivalence. Additionally the functor Σn ×Σn−i×Σi X

�n−i �− preserves colimits and −× [0, 1],
so applying it to the Σi-equivariant retraction that witnesses that f�i is a Σi-h-cofibration yields
that Σn ×Σn−i×Σi X

�n−i � f�i is a Σn-h-cofibration.

By Corollary 2.3.1.1 this means that Qni−1(f) → Qni (f) is a Σn-global equivalence for each
1 ≤ i < n. Since so is f�n, by the 2-out-of-6 property for Σn-global equivalences f�n is a
Σn-global equivalence.

Proposition 3.1.5. For each compact Lie group G, faithful G-representation V 6= 0, each G-
representation W , and each n ≥ 1 let ιρG,V,W be the morphism given in Remark 1.3.3. Then we
have that ι�nρG,V,W is a Σn-flat cofibration.
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Proof. We use Lemma A.1 to decompose ι�nρG,V,W into

Qnn−1(ιρG,V,W ) = Kn,−1(ρG,V,W )→ Kn,0(ρG,V,W )→ · · · → Kn,n(ρG,V,W ) = (MρG,V,W )�n

Then we have that for each 0 ≤ j ≤ n the morphism Kn,j−1(ρG,V,W ) → Kn,j(ρG,V,W ) is a Σn-
equivariant cobase change of Σn×Σn−j×Σj (L

�n−j
G,V �(LG,V⊕W×i1)�j , where we use the convention

that (LG,V⊕W × i1)�0 is the unique morphism ∅ → ∗ from the initial object to the monoidal
unit.

For each 0 ≤ j ≤ n, (LG,V⊕W × i1)�j = LGj ,V j⊕W j × ij , where LGj ,V j⊕W j is Σj-flat because it
is isomorphic to (L(V j ⊕W j ,−)× Σj)/H, where H ≤ O(V j ⊕W j)× Σj given by

H = { (((g1, . . . , gj) ◦ σ)⊕ ((g1, . . . , gj) ◦ σ), σ−1) : (g1, . . . , gj) ∈ Gj , σ ∈ Σj }

and since ij is a Σj-cofibration of spaces, by Corollary 2.1.9.2 (LG,V⊕W × i1)�j is a Σj-flat
cofibration.

Similarly, L�n−jG,V
∼= LGn−j ,V n−j is also Σn−j-flat, so that L

�n−j
G,V �(LG,V⊕W×i1)�j is a (Σn−j×Σj)-

flat cofibration. By Lemma 2.1.11, the morphism Σn×Σn−j×Σj (L�n−jG,V �(LG,V⊕W ×i1)�j is a Σn-
flat cofibration, and therefore for each 0 ≤ j ≤ n the morphism Kn,j−1(ρG,V,W )→ Kn,j(ρG,V,W )
is also a Σn-flat cofibration.

Then we have that ι�nρG,V,W is a Σn-flat cofibration.

Lemma 3.1.6. For f : X → Y a homotopy equivalence between orthogonal spaces and n ≥ 1,
f�n is a Σn-homotopy equivalence of orthogonal spaces, and therefore a Σn-global equivalence.

Proof. Let g : Y → X be an homotopy inverse to f , H an homotopy between f◦g and IdX andH ′

an homotopy between g◦f and IdY . Then for each n ≥ 1, H�n : X�n×[0, 1]n ∼= (X×[0, 1])�n →
Y �n is a Σn equivariant map of orthogonal spaces, and soH�n◦(X�n×∆): X�n×[0, 1]→ Y �n is
a Σn equivariant homotopy between (f ◦g)�n and Id�nX , where ∆: [0, 1]→ [0, 1]n is the diagonal.
Same thing applies to H ′.

Proposition 3.1.7. For a compact Lie group G, a faithful G-representation V 6= 0, a G-
representation W , and for each n > 0, the Σn-equivariant morphism ρ�nG,V,W : L�nG,V⊕W → L�nG,V
is a Σn-global equivalence.

Proof. By [Sch18, Example 1.3.3] the orthogonal space L�nG,V⊕W is closed and isomorphic to
LGn,(V⊕W )n and similarly L�nG,V is isomorphic to LGn,V n .

V n is a faithful (Σn o G)-representation, so for each compact Lie group K by [Sch18, Proposi-
tion 1.1.26 (ii)] the restriction map

ρV n,Wn(UK) : L((V ⊕W )n,UK)→ L(V n,UK)

is a (K × (Σn o G))-homotopy equivalence. Using that L(V n,UK) ∼= colimV ′∈s(UK) L(V n, V ′)

and since −/Gn preserves colimits we have that ρ�nG,V,W (UK) ∼= ρV n,Wn(UK)/Gn is a (K × Σn)-
homotopy equivalence, therefore an F (K,Σn)-weak homotopy equivalence, and so ρ�nG,V,W is a
Σn-global equivalence.
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Proposition 3.1.8. For each compact Lie group G, faithful G-representation V 6= 0, each G-
representation W , and each n ≥ 1, the morphism ι�nρG,V,W is a Σn-global equivalence.

Proof. If we let πρG,V,W : McρG,V,W → LG,V denote the projection of the mapping cylinder onto
the target, then πρG,V,W ◦ ιρG,V,W = ρG,V,W . The morphism πρG,V,W is an homotopy equivalence,
so by Lemma 3.1.6 the morphism π�nρG,V,W is a Σn-global equivalence. By Proposition 3.1.7 so is
ρ�nG,V,W , so that by the 2-out-of-3 property ι�nρG,V,W is a Σn-global equivalence.

Then by Proposition 3.1.5 we can use Proposition 3.1.4 to obtain that for each n ≥ 1 the
morphism ι�nρG,V,W is a Σn-global equivalence.

We can now put together all the previous results to check that:

Proposition 3.1.9. Given a generating acyclic cofibration of type k ∈ K, and a pushout in
Alg(O) of the form

FAlg(O)(X) FAlg(O)(Y )

A B

FAlg(O)(k)

f p

the morphism UAlg(O)(f) is a global equivalence.

Proof. The generating acyclic cofibration k ∈ K is of the form ιρG,V,W�il for a compact lie
group G, a faithful G-representation V 6= 0, a G-representation W , and l ≥ 0. We also use
X = (LG,V⊕W ×Dl) ∪LG,V⊕W×∂Dl (MρG,V,W × ∂Dl) and Y = MρG,V,W ×Dl for the source and
target of k.

Consider again the filtration of [SS12, Proposition A.16], where UO0 = UAlg(O). For each i ≥ 1,
we have the following pushout in Spc:

UOi (A)�Σi Q
i
i−1(k) UOi (A)�Σi (Y )�i

Pi−1U
O
0 (B) PiU

O
0 (B)

UOi (A)�Σi
k�i

fi p

For each i ≥ 1, by Proposition 3.1.8 the morphism ι�iρG,V,W is a Σi-global equivalence, and by
Proposition 3.1.5 it is a Σi-flat cofibration. Then k�i = ι�iρG,V,W�i

�i
l is a Σi-flat cofibration by

Corollary 2.1.9.1 and Corollary 3.1.1.1. It is also a Σi-global equivalence by Corollary 2.3.2.1

Then UOi (A)� k�i is a Σi-h-cofibration and so UOi (A)�Σi k
�i is an h-cofibration of orthogonal

spaces by Lemma 2.1.11.

Since k�i is a Σi-global equivalence by Corollary 2.2.9.1 the morphism UOi (A) � k�i is also a
Σi-global equivalence. Consider the Σi-orthogonal space L�iG,V ∼= LGi,V i . For each inner product
space U the group Gi acts freely (since V is faithful), smoothly and properly (since Gi is compact)
on L(V i, U), as long as |U | ≥ |V |i. Therefore LGi,V i(U) = L(V i, U)/Gi is Hausdorff, and since
V i is a faithful Σi-representation, LGi,V i(U) is also Σi-free.

If |W | < |V |i, L(V i,W ) is empty, so in particular LGi,V i(W ) is still Hausdorff and Σi-free.
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Now we denote by π the projection of the mapping cylinder MρG,V,W → LG,V , then ∗ � π�i ×
∗ : UOi (A)� (MρG,V,W )�i× (Dl)×i → ∗�L�iG,V ×∗ = LGi,V i is a Σi-equivariant map of orthogonal
spaces, and so by Proposition 2.2.5 we have that UOi (A)�Σi k

�i is a global equivalence.

Therefore each fi is also an h-cofibration and a global equivalence, and then UAlg(O)(f) is an
infinite composition of morphisms which are h-cofibrations and global equivalences, so it is a
global equivalence.

All the previous results come together to give a model structure on Alg(O).

Theorem 3.1.10 (Theorem I). If O is any operad in Spc the category of orthogonal spaces, with
the positive global model structure, then there is a cofibrantly generated model structure on Alg(O)
the category of algebras over O, where the forgetful functor UAlg(O) creates the weak equivalences
and fibrations, and sends cofibrations in Alg(O) to h-cofibrations in Spc.

Proof. We want to apply Theorem 1.2.2. Let Hcof be the class of h-cofibrations of orthogonal
spaces. Then by Remark 2.1.10 with G = e the classHcof is closed under retracts and transfinite
compositions, by Lemma 1.3.4 condition 2. is satisfied, and by Corollary 2.3.3.1 with G = e
condition 3. is satisfied.

Then consider a pushout in Alg(O) of the form:

FAlg(O)(X) FAlg(O)(Y )

A B

FAlg(O)(i)

f p

If i ∈ I is a generating cofibration of the positive global model structure we checked on Propo-
sition 3.1.2 that UAlg(O)(f) is in Hcof . If i ∈ J is a generating acyclic cofibration, then on
Proposition 3.1.3 we checked that UAlg(O)(f) is a global equivalence, and lastly if i ∈ K is a gen-
erating acyclic cofibration then on Proposition 3.1.9 we checked that also UAlg(O)(f) is a global
equivalence.

Thus all the conditions of Theorem 1.2.2 are satisfied, which means that then the conditions
of Theorem 1.2.1 are satisfied. Then Alg(O) is a cofibrantly generated model category, where
UAlg(O) creates the weak equivalences and fibrations, the generating cofibrations are the maps
FAlg(O)(i) for i ∈ I, the generating acyclic cofibrations are FAlg(O)(j) where j ∈ J ∪K, and by
Theorem 1.2.2 the forgetful functor UAlg(O) sends cofibrations to h-cofibrations.

Remark 3.1.11. Let OP-C denote the category of operads on C . Then there is an adjunction be-
tween symmetric objects and operads (Fop, Uop), where Fop : Σ∗-C → OP-C and Uop : OP-C →
Σ∗-C . The operad Fop(M) is called the free operad associated with M .

A semi model structure (or J-semi model structue) is a slightly weaker notion than that of a
model structure, see the definition in [Spi01, Definition 1]. Then for any symmetric monoidal
cofibrantly generated model category C , in [Spi01, Theorem 3] it is checked that OP-C has
the structure of a cofibrantly generated semi model structure. The fibrations and the weak
equivalences are the morphisms of operads g : O → P such that for each n ≥ 0 the morphism
gn : On → Pn is a fibration or a weak equivalence respectively.
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In [Spi01, Theorem 4] it is proven that in a symmetric monoidal cofibrantly generated model
category which satisfies the monoid axiom (in orthogonal spaces it is satisfied, see [Sch18, Propo-
sition 1.4.13]), and for any cofibrant operad O, there is a cofibrantly generated model structure
on Alg(O) where the forgetful functor creates weak equivalences and fibrations.

In contrast, the previous theorem proves that in the case of orthogonal spaces no such cofibrancy
condition is required.

Cofibrant operads in OP-C are generally built out of cells of the form Fop(Σn ⊗ i), for i a
generating cofibration of C . This implies additionally that a cofibrant operad O in Spc would be
such that each On is Σn-free. That O is cofibrant is quite restrictive, in fact in other contexts,
usually if one wants to study most examples of operads and the homotopy of its algebras, one
has to first take a cofibrant replacement in OP-C .

A morphism of cofibrant operads g which is a weak equivalence on OP-C will induce a Quillen
equivalence between their categories of algebras (see for example [Fre09, Theorem 12.5.A]). We
will see in the following section that for arbitrary operads in orthogonal spaces there is a necessary
and sufficient condition for g to induce a Quillen equivalence. This will also show why it is not
enough to simply take a cofibrant replacement of an operad in orthogonal spaces O to obtain
the correct homotopy theory of Alg(O).

3.2 Morphisms of operads which induce Quillen equivalences

We return now temporarily to the general setting of a symmetric monoidal category (C ,⊗, ∗),
where the tensor product preserves all colimits on both variables. We want to consider a map of
operads g : O → P, that is a morphism of monoids on (Σ∗-C , ◦, I), or equivalently a morphisms
of symmetric objects in C which respects the multiplication and unit.

Such a morphism of operads induces an adjoint pair of functors between their respective categories
of algebras. The restriction functor g∗ : Alg(P)→ Alg(O) is the right adjoint, and the extension
functor g! : Alg(O)→ Alg(P) its left adjoint. See [Fre09, Section 3.3.5] for the details.

We are interested in determining, for operads in orthogonal spaces, under which conditions on
g this adjoint pair is a Quillen equivalence between the model structures on the categories of
algebras constructed on Theorem 3.1.10.

The restriction functor is very straightforward. For an algebra X over P, then X is an algebra
over the monad F(P) with structure map ζX : F(P)(X) → X. The morphism of operads g
induces a natural transformation θ : F(O) ⇒ F(P), and then X is a P-algebra with structure
map ζX ◦ θ(X). The explicit structure of the extension functor will not be relevant, only that it
is left adjoint to the restriction functor.

In this section, we will need to consider in more detail the functors UOk from [SS12, Proposi-
tion 10.1], for k ≥ 0, where UO0 = UAlg(O). The functor UOk goes from Alg(O) to Σk-Spc.

Remark 3.2.1. Let O,P be two operads, and let g be a morphism of operads g : O → P. For
a general O-algebra X, a P-algebra Y , and a map of O-algebras γ : X → g∗(Y ), we would like
to construct a map gk,γ : UOk (X) → UPk (Y ) in Σk-Spc, in a way that is natural on γ, and in a
way that preserves filtered colimits. It is important to note that the morphism gk,γ will not in
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general be UOk (γ). In fact UOk ◦ g∗ is generally not the same as UPk , so they won’t have the same
target. Only for k = 0 will g0,γ and UO0 (γ) be actually equal.

Consider the construction of the functors O(−, k) : Spc → Σk-Spc in [SS12, Section A.9], for an
operad O and k ≥ 0:

O(X, k) =
∐
n∈N
O(n+ k)�Σn X

⊗n

Note that O(−, 0) = F(O). The morphism of operads g induces natural transformations
θk : O(−, k)⇒ P(−, k), with θ0 = θ.

That γ : X → g∗(Y ) is a map ofO-algebras precisely means that the following diagram commutes:

O(X, 0) X

O(Y, 0) P(Y, 0) Y

ζX

O(γ,0)
γ

θ(Y ) ζY

(6)

Then also consider the construction of the functors UOk in [SS12, Definition A.10], as the following
coequalizer:

O(O(X, 0), k) O(X, k) UOk (X)
∂0

∂1

γ induces Σk-equivariant maps between the coequalizer diagrams that define UOk (X) and UPk (Y ),
these are P(γ, k) ◦ θk(X) = θk(Y ) ◦ O(γ, k) : O(X, k) → P(Y, k), and the similar one from
O(O(X, 0), k) to P(P(Y, 0), k). Then they commute with the morphism ∂1 of the coequalizer,
which is induced by the structure map ζ, because of the commutativity of Diagram (6) and the
naturality of θk. They commute with ∂0 because ∂0 is natural and because g is a map of operads,
so it preserves their multiplication and unit, which are used to construct ∂0. Then the induced
map on the coequalizers is gk,γ .

This construction preserves filtered colimits because the functors of type O(−, k) preserve them,
which is the case because tensor powers preserve filtered colimits.

We now go back to the case of Spc, the category of orthogonal spaces with the positive global
model structure.

Lemma 3.2.2. For any morphism g : O → P of operads in Spc, and considering the model
structures on Alg(O) and Alg(P) obtained on Theorem 3.1.10, the restriction functor g∗ preserves
and reflects fibrations and weak equivalences. Thus the pair (g!, g

∗) is a Quillen adjunction.

Proof. The restriction functor is the identity on the underlying objects of the algebras, that is
UAlg(O) ◦ g∗ = UAlg(P). Since on Alg(O) the fibrations and the weak equivalences are precisely
those morphisms f such that UAlg(O)(f) is a fibration (respectively a weak equivalence), we have
that g∗ preserves and reflects fibrations, acyclic fibrations and weak equivalences.

That the right adjoint g∗ preserves fibrations and acyclic fibrations is one of the possible char-
acterizations of Quillen adjunctions.
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Lemma 3.2.3. Let F : C −⇀↽− D :G be a Quillen adjunction, such that the right adjoint G pre-
serves and creates weak equivalences. Then the pair (F,G) is a Quillen equivalence if and only if
for each for each cofibrant A ∈ C the adjunction unit ηA is a weak equivalence.

Proof. The pair (F,G) is a Quillen equivalence if and only if for each cofibrant A ∈ C and
fibrant B ∈ D , a morphism of C of the form γ : A → G(B) is a weak equivalence if and only if
its adjoint morphism F (A) → B is one. We can decompose γ as A → G(F (A)) → G(B). G
preserves and reflects weak equivalences, so if ηA is a weak equivalence then by the 2-out-of-3
property γ : A → G(B) is a weak equivalence if and only if its adjoint morphism F (A) → B is
one.

In the other direction, Let A ∈ C be cofibrant, and let B be a fibrant replacement of F (A) in
D , given by δ : F (A) → B. We have that δ is a weak equivalence, so if the pair (F,G) is a
Quillen equivalence then A→ G(B) the adjoint morphism of δ is also a weak equivalence. Since
G preserves weak equivalences, the unit ηA : A→ G(F (A)) is a weak equivalence.

Note that since the composition of left adjoints is again a left adjoint, and as we saw in the proof
of Lemma 3.2.2, UAlg(O) ◦g∗ = UAlg(P), we have that g! ◦FAlg(O) is naturally isomorphic to FAlg(P).

Now we give the characterization of when a morphism of operads in Spc gives a Quillen equivalence
between their respective categories of algebras.

Theorem 3.2.4 (Theorem II). Let g : O → P be a morphism of operads in Spc. Then we
have that the pair (g!, g

∗) is a Quillen equivalence between their respective categories of algebras
if and only if for each n ≥ 0 the morphism gn : On → Pn is a Σn-global equivalence.

Proof. We first check that if the condition is satisfied then for each cofibrant A ∈ Alg(O) the unit
ηA : A → g∗(g!(A)) is a weak equivalence in Alg(O), that is, a global equivalence of underlying
orthogonal spaces.

First assume that A is the colimit of a λ-sequence of morphisms {fβ}β∈λ, where each fβ is a
cobase change of a morphism of the form FAlg(O)(iβ) for iβ ∈ I, iβ : Xβ → Yβ a generating flat
cofibration of orthogonal spaces. We want to check that UAlg(O)(ηA) is a global equivalence.

If we evaluate the unit of the adjunction η on the λ-sequence that gives rise to A we obtain the
following diagram:

A0 = O0 A1 . . . Aβ . . .

g∗(g!(A0)) g∗(g!(A1)) . . . g∗(g!(Aβ)) . . .

f0

ηA0

f1

ηA1

fβ

ηAβ

g∗(g!(f0)) g∗(g!(f1))) g∗(g!(fβ))

We apply UAlg(O) to the whole diagram. By Proposition 3.1.2 for each β ∈ λ, the mor-
phism UAlg(O)(fβ) is an h-cofibration. g! preserves pushouts, so g!(fβ) is a cobase change of
g!(FAlg(O)(iβ)) which is isomorphic to FAlg(P)(iβ). Since UAlg(O) ◦ g∗ = UAlg(P), we know that
UAlg(O)(g

∗(g!(fβ))) is an h-cofibration by applying Proposition 3.1.2 now in Alg(P).

If each of the UAlg(O)(ηAβ ) is a global equivalence, since UAlg(O) preserves filtered colimits, we have
that UAlg(O)(ηA) is colimβ∈λ UAlg(O)(ηAβ ), then by Proposition 2.3.3 with G = e the morphism
UAlg(O)(ηA) is a global equivalence, and we are done.
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To check that each UAlg(O)(ηAβ )is a global equivalence we follow the proof of the similar state-
ment [SS12, Lemma 9.13]. We will check this by induction, but we in fact need to work
with a stronger property. For each β and each k ≥ 0, let gk,β be the morphism gk,ηAβ con-
structed on Remark 3.2.1. We will check by induction on β that for each k ≥ 0 the morphism
gk,β : UOk (Aβ) → UPk (g!(Aβ)) is a Σk-global equivalence. For k = 0 this reduces to our desired
result.

For the base case, remember that the initial object of Alg(O) is O0, since it is FAlg(O)(∅). Take
A0 = O0 = FAlg(O)(∅). Then by [SS12, Lemma A.13] the Σk-orthogonal space UOk (FAlg(O)(∅)) is
isomorphic to O(∅, k), and O(∅, k) equals Ok. Similarly g!(FAlg(O)(∅) is isomorphic to FAlg(P)(∅),
and then UPk (FAlg(P)(∅)) ∼= P(∅, k) = Pk, and under these identifications, the morphism gk,0
corresponds to gk, which is a Σk-global equivalence.

Remarkably, no conditions on the morphism of operads g are required anywhere else on the proof.

Then we check the induction step, for a successor ordinal β+1. For this we will use the filtration
of [SS12, Proposition A.16], in the same way that it is used in the proof of [SS12, Lemma 9.13].
Assume that for each k ≥ 0 the morphism gk,β is a Σk-global equivalence.

UOk (Aβ) = F0U
O
k (Aβ+1) F1U

O
k (Aβ+1) . . . colim

j∈N
FjU

O
k (Aβ+1) = UOk (Aβ+1)

UPk (g!(Aβ)) = F0U
P
k (g!(Aβ+1)) F1U

P
k (g!(Aβ+1)) . . . colim

j∈N
FjU

P
k (g!(Aβ+1)) = UPk (g!(Aβ+1))

gk,β gk,β+1

(7)
Each horizontal map is a cobase change of UOj+k(Aβ) �Σj i

�j
β or UPj+k(g!(Aβ)) �Σj i

�j
β , since

fβ : Aβ → Aβ+1 is a cobase change of FAlg(O)(iβ). Therefore each horizontal map is then a Σk-
h-cofibration since the j-fold pushout product of iβ is a Σk-h-cofibration, and these are closed
under cobase changes.

Each vertical map is obtained from the previous by the following morphism of pushout diagrams:

Fj−1U
O
k (Aβ+1) UOj+k(Aβ)�Σj

Qjj−1(iβ) UOj+k(Aβ)�Σj
(Yβ)�j

Fj−1U
P
k (g!(Aβ+1)) UPj+k(g!(Aβ))�Σj

Qjj−1(iβ) UPj+k(g!(Aβ))�Σj
(Yβ)�j

The right horizontal maps are Σk-h-cofibrations. By the induction hypothesis gj+k,β : UOj+k(Aβ)→
UPj+k(g!(Aβ)) is a Σj+k-global equivalence. By Proposition 2.2.5 and Corollary 2.2.9.1, and us-
ing the same arguments as in the proof of Proposition 3.1.9, we can then check that the two
rightmost vertical maps are Σk-global equivalences.

Then we can use induction on j and the Gluing Lemma 2.3.1 to check that each vertical map of (7)
is also a Σk-global equivalence. Since each horizontal map of Diagram (7) is a Σk-h-cofibration,
by Proposition 2.3.3 we have that gk,β+1 is a Σk-global equivalence.

If β is a limit ordinal, we just need to use Proposition 2.3.3, and that gk,β is the map induced
on the colimits colimα∈β gk,α since its construction preserves filtered colimits.
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Then we have proven that gk,β is a Σk-global equivalence for each k and β. Setting k = 0 we
have our original intended result, and therefore UAlg(O)(ηA) is a global equivalence.

If A ∈ Alg(O) is cofibrant, then it is a retract of an algebra A′ of the kind we were considering
before, and the unit ηA is a retract of ηA′ . Since retracts preserve weak equivalences, ηA is a
weak equivalence in Alg(O).

We now prove that if (g!, g
∗) is a Quillen equivalence then for each n ≥ 0 the morphism gn

is a Σn-global equivalence. Consider the free orthogonal space L(R,−), which is positively
flat. Then FAlg(O)(L(R,−)) is cofibrant in Alg(O). Since (g!, g

∗) is a Quillen equivalence the
unit ηFAlg(O)(L(R,−)) : FAlg(O)(L(R,−)) → g∗(g!(FAlg(O)(L(R,−)))) is a weak equivalence, so its
underlying morphism of orthogonal spaces is a global equivalence.

The P-algebra g!(FAlg(O)(L(R,−))) is naturally isomorphic to FAlg(P)(L(R,−)). After composing
with g∗ of this isomorphism, the unit is FAlg(O)(L(R,−))→ g∗(FAlg(P)(L(R,−))), and its underly-
ing morphism of orthogonal spaces is precisely θ(L(R,−)) : FAlg(O)(L(R,−))→ FAlg(P)(L(R,−)).

So we know that
∐
n∈N gn�ΣnL(R,−)�n is a global equivalence. Therefore each gn�ΣnL(R,−)�n

is a global equivalence. If n = 0 we obtain that g0 is a global equivalence. For each n ≥ 1,
L(R,−)�n ∼= L(Rn,−), and the orthogonal space L(Rn,−) is Σn-free and Hausdorff on each
inner product space V . Thus by Proposition 2.2.5 the morphism gn � L(Rn,−) is a Σn-global
equivalence for each n ≥ 1.

The morphisms ρOn,L(Rn,−) and ρPn,L(Rn,−) are Σn-global equivalences by Proposition 2.2.9 and
Lemma 2.2.7 v). By the 2-out-of-3 property of Σn-global equivalences we obtain that gn ×
L(Rn,−) is a Σn-global equivalence.

On � L(Rn,−) Pn � L(Rn,−)

On × L(Rn,−) Pn × L(Rn,−)

ρOn,L(Rn,−)

gn�L(Rn,−)

ρPn,L(Rn,−)

gn×L(Rn,−)

We want to check that gn is a Σn-global equivalence. Consider a compact Lie group K, a K-
representation V , and a continuous homomorphism φ : K → Σn. Let (α : ∂Dl → On(V )φ, β : Dl →
Pn(V )φ) be a lifting problem.

Rn is an orthogonal Σn-representation, where σ ∈ Σn acts by permuting the canonical basis. The
action of σ ∈ Σn that permutes the factors on L(R,−)�n ∼= L(Rn,−) is precisely precomposition
with σ−1. We pull back the Σn-action on Rn through φ to turn Rn into a K-representation, and
let ψV be the K-equivariant summand embedding V → V ⊕ Rn.

Then we have that L(Rn, V ⊕Rn)φ is non-empty, since the summand embedding ψn : Rn → V ⊕Rn
is fixed by φ. Thus the map ψn : ∗ → L(Rn, V ⊕ Rn)φ gives the following lifting problem:

∂Dl On(V )φ On(V ⊕ Rn)φ On(V ⊕ Rn)φ × L(Rn, V ⊕ Rn)φ

Dl Pn(V )φ Pn(V ⊕ Rn)φ Pn(V ⊕ Rn)φ × L(Rn, V ⊕ Rn)φ

il

α

gn(V )φ

On(ψV )φ

gn(ψV )φ

On(V⊕Rn)φ×ψn

gn(ψV )φ×L(Rn,V⊕Rn)φ

β Pn(ψV )φ Pn(V⊕Rn)φ×ψn

Since gn � L(Rn,−) is a Σn-global equivalence, after embedding V ⊕ Rn into some bigger K-
representationW , this lifting problem has a solution λ : Dl → On(W )φ×L(Rn,W )φ. This means
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that postcomposing λ with the projection On(W )φ × L(Rn,W )φ → On(W )φ gives a solution of
the lifting problem. Therefore gn is a Σn-global equivalence.

Remark 3.2.5. This previous theorem generalizes, in the setting of orthogonal spaces, the general
result that between cofibrant operads, a morphism of operads g induces a Quillen equivalence if
the underlying morphism of each gn is a weak equivalence (see [Fre09, 12.5.A]). For orthogonal
spaces, and a morphism g between operads which are not necessarily cofibrant, we require the
stronger condition that each gn is not just a global equivalence, but also a Σn-global equivalence.

Given an operad in orthogonal spaces O, we could take a cofibrant replacement of it in the
semi model category OP-Spc. This would be a cofibrant operad O′ and a morphism of operads
g : O′ → O such that each gn is a global equivalence. But as we just saw, this g will not induce a
Quillen equivalence between the categories of algebras of O and O′, unless each gn is additionally
a Σn-global equivalence. This means that simply taking a cofibrant replacementO′ in OP-Spc
of an operad O and considering the model structure given on Alg(O′) by general results doesn’t
give the correct homotopy theory of the algebras over O.

Additionally, we can see that we cannot have a better cofibrant replacement functor F c : OP-Spc →
OP-Spc, with a natural transformation η : F c ⇒ IdOP-Spc such that each η(O)n is a Σn-global
equivalence. Assume that this were the case, then consider a morphism of operads g : O → O′
which satisfies that each gn is a global equivalence, but doesn’t satisfy that each gn is a Σn-
global equivalence. We have that each F c(g)n is a global equivalence by the 2-out-of-3 property,
so F c(g) induces a Quillen equivalence between Alg(F c(O)) and Alg(F c(O′)) because F c(O)
and F c(O′) are cofibrant operads. The morphisms of operads η(O) and η(O′) would also induce
Quillen equivalences by Theorem 3.2.4, But this would imply that g induces a Quillen equivalence
between the categories of algebras, which contradicts the only if part of Theorem 3.2.4.

This means that in order to study the genuine homotopy theory of global operads, we cannot
restrict ourselves to looking only at cofibrant operads.

3.3 Global E∞-operads

Let ∗ be the terminal symmetric object on Spc. Explicitly each ∗n is ∗ the constant one point
orthogonal space. ∗ is also an operad in a trivial way, and it is in fact the terminal operad.
Algebras over ∗ are precisely the commutative monoids on Spc with respect to the box product,
which are called commutative orthogonal monoid spaces or ultracommutative monoids on [Sch18,
Definition 1.4.14]. Note that if you expand the unit and multiplication maps, you obtain that a
commutative monoid on Spc is precisely a lax symmetric monoidal functor (L,⊕)→ (Top,×).

Definition 3.3.1. A global E∞-operad is an operad O on Spc such that each On is Σn-globally
equivalent to ∗ with the trivial Σn-action.

By Theorem 3.2.4 of the previous section, if O is a global E∞-operad and g is the morphism of
operads O → ∗, then the induced Quillen adjunction (g!, g

∗) is a Quillen equivalence between
Alg(O) and Alg(∗), the category of ultracommutative monoids.

Lemma 3.3.2. If O is a global E∞-operad and A is an algebra over O, then there is a zigzag
natural in A of morphisms of O-algebras from A to an ultracommutative monoid B, such that
the underlying morphisms of orthogonal spaces are global equivalences.
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Proof. Let g : O → ∗, and let α : A′ → A be a cofibrant replacement of A on Alg(O). Then
UAlg(O)(α) is a global equivalence, and the adjunction unit for A′, ηA′ : A′ → g∗(g!(A

′)), is a
global equivalence on Spc by the proof of Theorem 3.2.4.

This is natural because factorizations in Alg(O) are functorial since they are obtained from the
small object argument.

This lemma lets us say some things about algebras over global E∞-operads. For each orthogonal
space X, one can define the G-equivariant homotopy set πG0 (X) for each compact Lie group G
(see [Sch18, Definition 1.5.5]). These equivariant homotopy sets are contravariantly functorial
on G, each continuous homomorphism α : K → G induces a restriction map α∗ : πG0 → πK0 .

We also have that the equivariant homotopy sets of an ultracommutative monoid R have certain
additional operations, namely for each G a commutative binary operation πG0 (R) × πG0 (R) →
πG0 (R) induced by the multiplication map, which turns πG0 (R) into a commutative monoid, and
such that the restriction maps are monoid homomorphisms.

Additionally we also have power operations [m] : πG0 (R) → πΣmoG
0 (R) (see [Sch18, Construction

2.2.3]) which turn π(−)
0 (R) into a global power monoid ([Sch18, Definition 2.2.8]). These power

operations then induce ([Sch18, Construction 2.2.29]) transfer maps trGH : πH0 (R) → πG0 (R) for
each finite index closed subgroup H ≤ G.

A global equivalence induces natural bijections on the equivariant homotopy sets. Thus by
Lemma 3.3.2 we have the following proposition:

Proposition 3.3.3. If O is a global E∞-operad and A is an algebra over O, then for each
compact Lie group G, the homotopy set πG0 (A) is a commutative monoid. Additionally for each
G and each m ≥ 1 there are power operations [m] : πG0 (A)→ πΣmoG

0 (A) that turn π(−)
0 (A) into a

global power monoid, and which induce transfer maps trGH : πH0 (A)→ πG0 (A) for each finite index
closed subgroup H ≤ G.
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Chapter 4

An example

4.1 A global operad

We now give an example of an operad O in Spc, derived from the little disks operad. The
little k-disks operad is the operad of rectilinear embeddings of k-dimensional disks into another
k-dimensional disk. The limit of these operads is an E∞-operad in spaces.

Construction 4.1.1. For the operad O, each On is on an inner product space V the space of
rectilinear embeddings of n copies of the open unit disk D(V ) into the unit disk itself. This is
given by n points on D(V ) and n positive radiuses less than or equal to 1, that is, On(V ) is the
following, with the subspace topology:

On(V ) = { (v1, . . . , vn, r1, . . . , rn) ∈ D(V )n × (0, 1]n :
the map x ∈ D(V )i 7→ vi + rix is an embedding

∐n
i=1D(V )i → D(V ) }

We have the following equivalent condition for the points and radiuses (v1, . . . , vn, r1, . . . , rn) to
give an embedding:

∀v, v′ ∈ D(V ), 1 ≤ i 6= j ≤ n, it holds that vi + riv 6= vj + rjv
′ and |vi|+ ri ≤ 1 (8)

Or also equivalently:

∀ 1 ≤ i 6= j ≤ n, it holds that |vi − vj | ≥ ri + rj and |vi|+ ri ≤ 1 (9)

The structure map for ψ : V →W a linear isometric embedding is given by

(v1, . . . , vn, r1, . . . , rn) 7→ (ψ(v1), . . . , ψ(vn), r1, . . . , rn)

which is a map On(V )→ On(W ), because ψ is a linear isometric embedding and because of the
third condition (9). Functoriality is straightforward, so On is an orthogonal space. Furthermore,
it is closed because each On(ψ) : On(V ) → On(W ) is the restriction of a closed embedding. O0

is just ∗, the constant one point orthogonal space. Given an element σ ∈ Σn, the σ-action
is given by the map On(V ) → On(V ) that permutes both the centers and the radiuses by σ,
sending a tuple (v1, . . . , vn, r1, . . . , rn) to (vσ(1), . . . , vσ(n), rσ(1), . . . , rσ(n)). This is the same as
precomposing by σ if we understand points in On(V ) as maps {1, . . . , n} → D(V ) × (0, 1].
Therefore we have a right Σn-action on each On, so O is a symmetric object in Spc.
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Now we construct the operadic structure. The unit is an element of O1 and it is given by a map
from the monoidal unit η : ∗ → O1, which on level V is given by ∗ 7→ (0, 1) ∈ D(V ) × (0, 1],
representing the identity idD(V ).

For each k ≥ 0 and n1, . . . , nk ≥ 0, let m = n1 + · · · + nk. Composition is given by maps
◦ : Ok �On1 � · · ·�Onk → Om, obtained from multimorphisms given on levels V0, . . . , Vk by:

Ok(V0)×On1(V1)× · · · × Onk(Vk)→Om(V0 ⊕ · · · ⊕ Vk)
((v0,1, . . . , v0,k, r0,1, . . . , r0,k), . . . , (vk,1, . . . , vk,nk , rk,1, . . . , rk,nk)) 7→(v0, . . . , vm, r0, . . . , rm)

where for each i = nj−1 + p we set vi ∈ V0 ⊕ · · · ⊕ Vk as vi = (v0,j , 0, . . . , 0, r0,jvj,p, 0, . . . , 0) and
let ri = r0,jrj,p.

This is indeed an element of On1+···+nk(V0 ⊕ · · · ⊕ Vk), which can be checked using the second
condition (8).

This is a multimorphism of orthogonal spaces since the actions of embeddings ψj : Vj → V ′j are
on both sides given by applying each embedding to the respective vj,p.

In fact, note that we have a little disks operad for each V inner product space, whose spaces are
precisely theOn(V ), with composition ◦V , and these are natural on V . To obtain the composition
maps ◦ of O we are simply first applying the maps given by Ok(V0 → V0 ⊕ · · · ⊕ Vk) and
Onj (Vj → V0 ⊕ · · · ⊕ Vk), and then and then applying the composition ◦V0⊕···⊕Vk .

More geometrically, we are considering the k disks in V0⊕· · ·⊕Vk given by the centers(v0,1, . . . , v0,k)
in V0, with radiuses (r0,1, . . . , r0,k), and then inside the jth disk, we are taking the subdisks like
in the usual V0⊕· · ·⊕Vk-disks operad given by (vj,1, . . . , vj,nj , rj,1, . . . , rj,nj ), along the direction
of Vj .

Therefore associativity follows from the naturality of ◦V on V , and the associativity of each
composition ◦V .

The obtained map is Σk-equivariant since on the left hand side Σk acts on the v0,1, . . . , v0,k,
r0,1, . . . , r0,k, and permutes the blocks (vj,1, . . . , vj,nj , rj,1, . . . , rj,nj ) by acting on j, which on the
right hand side vi, ri gives exactly the action of the shuffle of the k blocks in Σn1+···+nk . Similarly
it is Σn1 × · · · × Σnk -equivariant because on both sides it acts as if permuting now the index p
in the assignments vi = (v0,j , 0, . . . , vj,p, . . . , 0), and ri = r0,jrj,p.

For the unit axiom, the composite ∗ � On → O1 � On → On, given by η � Id and then ◦, is
on levels V0, V1 exactly On(V1 7→ V0 ⊗ V1) : ∗ ×On(V1) 7→ On(V0 ⊗ V1), which is the canonical
isomorphism ∗�On → On, and the same holds for On � ∗�n → On �O�n1 → On.

The little disks operad is an E∞-operad in spaces. With a similar reasoning we can prove that
for the operad O that we just constructed, each On is globally contractible.

Proposition 4.1.2. Each On is globally contractible.

Proof. To check that On → ∗ is a global equivalence, we need to for each compact lie group G,
orthogonal G-representation V and l ≥ 0, find a solution for each lifting problem:
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∂Dl On(V )G

Dl ∗

α

Set ψ as the embedding V → V ⊕Rl+2, with trivial G-action on Rl+2. Since V G is a subspace of
V , we have that On(V )G ∼= On(V G) because the fixed tuples (v1, . . . , vn, r1, . . . , rn) are precisely
those where every vi lies on V G, and similarly On(V ⊕Rl+2)G ∼= On(V G ⊕Rl+2). Furthermore,
after fixing an isomorphism V G ⊕ Rl+2 ∼= R|V G|+l+2, On(V G ⊕ Rl+2) is weakly homotopically
equivalent to the ordered configuration space Confn(D(R|V G|+l+2)) by the following Lemma 4.1.3.
Confn(D(R|V G|+l+2)) is (|V G| + l + 2 − 2)-connected by [FN62], so we have a solution to the
lifting problem:

∂Dl On(V G) On(V G ⊕ Rl+2) Confn(D(R|V G|+l+2))

Dl ∗

α On(φG) '

Therefore each On is globally equivalent to ∗.

Lemma 4.1.3. For each n,m ≥ 1, the map π : On(Rm) → Confn(D(Rm)) obtained from re-
stricting the projection p : D(Rm)n × (0, 1]n → D(Rm)n to On(Rm) is a Serre fibration and a
weak homotopy equivalence.

Proof. First construct a map c : Confn(D(Rm))→ (0, 2]n
2 by (vj) 7→ (tj,j′) with tj,j′ = |vj − vj′ |

if j 6= j′ and tj,j = 2 − 2|vj |. We denote the projection of On(Rm) → (0, 1]n onto the radiuses
by r, and by X the subset:

X = { (tj,j′ , rj) ∈ (0, 2]n
2 × (0, 1]n : ∀1 ≤ j, j′ ≤ n rj + rj′ ≤ tj,j′ }

π1 : X ⊂ (0, 2]n
2 × (0, 1]n → (0, 2]n

2 is the projection onto the first factor.

π2 : X ⊂ (0, 2]n
2 × (0, 1]n → (0, 1]n is the projection onto the second factor.

Then since π1 ◦ ((c ◦ p)× r) = c ◦ p, the following diagram commutes.

On(Rm) X

Confn(D(Rm)) (0, 2]n
2

(c◦p)×r

p π1

c

It is also a pullback, which can be seen on the point set level. We want to check that π1 here
is a Serre fibration and has contractible fibers. For the second part, we see that the fiber at
(tj,j′) is a convex subset of (0, 1]n. The map s : (0, 2]n

2 → X given by (tj,j′) 7→ (tj,j′ , sj) where
sj = min1≤j′≤n{

tj,j′
2 } is a section of π1, so each fibre is contractible.
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To check that π1 is a Serre fibration, consider the following lifting diagram:

{0} × [0, 1]l X

[0, 1]× [0, 1]l (0, 2]n
2

f

π1

g

λ

Let π2 ◦ f = m, and set µ : [0, 1]× [0, 1]l → Rn to be

µj(t, x) = min{mj(0, x), min
1≤j′≤n

{mj(0, x)− 1/2|g(0, x)j,j′ − g(t, x)j,j′ |}}

Then for each 1 ≤ j, j′ ≤ n, (t, x) ∈ [0, 1]× [0, 1]l, we have that

µj(t, x) + µj′(t, x) ≤ mj(0, x) +mj′(0, x)− |g(0, x)j,j′ − g(t, x)j,j′ | ≤

g(0, x)j,j′ − |g(0, x)j,j′ − g(t, x)j,j′ | ≤ g(t, x)j,j′

so µ satisfies the bounds, and µ(0, x) = m(0, x).

The problem is that µj can be negative. But since [0, 1]l is compact we can find an ε > 0 such
that π2(µ([0, ε] × [0, 1]l)) ⊂ (R>0)n, and then if we call δ : [0, 1] → [0, 1] the function given by
δ(t) = t/ε on [0, ε] and 1 on [ε, 1], then λ(t, x) = (1 − δ(t))[g(t, x) × µ(t, x)] + δ(t)s(g(t, x)) is a
lift of the diagram.

4.2 A candidate for a global E∞-operad.

We conjecture that the operad that we constructed in the previous section is actually a global
E∞-operad. To check this we would need to prove that for each n the morphism On → ∗ is a
Σn-global equivalence, not just a global equivalence like we already proved. O has some useful
properties, like how each On is Σn-free, and this result would let us rectify algebras over O,
which might be a more general class, into ultracommutative monoids in Spc.

Given K a compact Lie group, V a K-representation, and φ : K → Σn we want to consider
On(V )φ, and check that any map ∂Dl → On(V )φ is nullhomotopic possibly after embedding V
into some bigger representation V → W . Tuples in On(V )φ have to consist of points in V kerφ,
and the K-action on V restricts to a K-action on V kerφ which factors through Imφ ≤ Σn.

Then we have On(V )φ = On(V kerφ)Imφ, where Imφ acts both by the Σn-action on On and the
(Imφ)-action on V kerφ. As in the previous section, this is weakly equivalent to Confn(D(V )kerφ)Imφ

where again Imφ acts both by the Σn-action that permutes the points and the (Imφ)-action on
V kerφ.

We can further write Confn(D(V )kerφ)Imφ as a product of orbit configuration spaces. Orbit
configuration spaces are configuration spaces of m points on a space X with a free action by the
group G where the points are not allowed to share an orbit. We use the notation ConfGm(X) for
these orbit configuration spaces.

Proposition 4.2.1. For each compact Lie group K, each K-representation V , each n ≥ 1, and
each continuous homomorphism φ : K → Σn, the space Confn(D(V )kerφ)Imφ is naturally (on
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V) homeomorphic to
∏
γ∈Γ Conf

(NImφγ)/γ
mγ ((D(V )kerφ)γ) where Γ is a set of representatives of

conjugacy classes of subgroups of Imφ, (D(V )kerφ)γ is the subspace of points whose stabilizer is
γ, and mγ = |1 ≤ i ≤ n : (Imφ)i ∈ [γ]| where (Imφ)i is the stabilizer of i in the action of Imφ
on {1, . . . , n}.

The proof of this proposition is long and very technical, so it has been omitted.

To check that O is a global E∞-operad we would need to check that each map from ∂Dl into
Confn(V kerφ)Imφ is nullhomotopic after possibly embedding V in some bigger K-representation.

The terminal operad ∗ itself is already a global E∞-operad, but one of the benefits of having more
examples would be to be able to check that orthogonal spaces which are not ultracommutative
monoids are still algebras over a non-trivial global E∞-operad.
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Appendices

A Iterated pushout products of mapping cylinder inclusions

Let (C ,⊗,1C ) be a closed cocomplete symmetric monoidal category which is tensored over
Top. For a morphism f : X → Y , we want to obtain a filtration, similar to the one of [SS12,
Lemma A.8], that decomposes ι�nf , the n-fold pushout product of the inclusion ιf : X →Mf into
the mapping cylinder. Let Q , K and P be respectively the finite categories/posets:

0 4 0 1 1

2 3 2 3

We can write Mf as the K -shaped colimit of the functor Z : K → C given by the diagram:

X X q Y Mf

X qX X × [0, 1]

ιX

ιf

x

X×i1

idXqf (1)

As mentioned in [SS12, Lemma A.7], the n-fold pushout product of ιf can be identified with
Qnn−1(ιf ) → M⊗nf , where Qnn−1(ιf ) is the colimit colimα∈Q nn−1

Zα1 ⊗ · · · ⊗ Zαn , and Q n
n−1 is the

full subcategory of Q×n of objects (α1, . . . , αn) which have at least one component equal to 0,
and Z0 = X and Z4 = Mf .

For each 0 ≤ j ≤ i ≤ n, let K n
i,j ⊂ K ×n denote the full subcategory of those objects α =

(α1, . . . , αn) such that either (at least one component is 0 and at most i components are 3) or
(at most j components are 3). For j = −1 and 0 ≤ i ≤ n let K n

i,j ⊂ K ×n be those such that
at least one component is 0 and at most i components are 3, and let K n

−1,−1 = ∅ be the empty
subcategory.

We write Ki,j(Z) for the colimit colimα∈K n
i,j
Zα1 ⊗ · · · ⊗ Zαn . Note that for −1 ≤ j < i ≤ n− 1,

K n
i+1,j ∩ K n

i,j+1 = K n
i,j and K n

i+1,j ∪ K n
i,j+1 = K n

i+1,j+1 as subcategories, not just as subsets of
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objects, which implies that the following square diagram is a pushout diagram:

Ki,j(Z) Ki,j+1(Z)

Ki+1,j(Z) Ki+1,j+1(Z)
p

Note also that for each −1 ≤ j ≤ n − 1 K n
n−1,j = K n

n,j . This all fits together into the following
commutative diagram:

K−1,−1(Z) = ∅

K0,−1(Z) K0,0(Z)

K1,−1(Z) K1,0(Z) K1,1(Z)

. . . . . . . . . . . .

Kn−1,−1(Z) Kn−1,0(Z) Kn−1,1(Z) . . . Kn−1,n−1(Z)

Kn,−1(Z) Kn,0(Z) Kn,1(Z) . . . Kn,n−1(Z) Kn,n(Z)

p

p p

p p p

(2)

Since the monoidal product preserves colimits on each variable, we can see that Kn,n(Z) =
colimα∈K n Zα1 ⊗ · · · ⊗Zαn ∼= (colimK Z)⊗n = (Mf )⊗n. We now check that Kn,−1(Z) is precisely
Qnn−1(ιf ) and the composition of all of the morphisms in the bottom row is precisely ι�nf .

K n
n,−1 is the full subcategory of those objects where at least one component is 0. For each

U  {1, . . . , n} let KU denote the full subcategory given by {α ∈ K n : αi = 0 ∀i /∈ U }. Then the
KU cover K n

n,−1 as subcategories, and by the universal property that defines the colimit there is a
natural isomorphism colimα∈K n

n,−1
Zα1 ⊗ · · · ⊗Zαn ∼= colimU {1,...,n}(colimα∈KU Zα1 ⊗ · · · ⊗Zαn).

Since ⊗ preserves colimits, for each U  {1, . . . , n}, colimα∈KU Zα1 ⊗ · · · ⊗ Zαn is isomorphic
to ZγU1 ⊗ · · · ⊗ ZγUn where γUi = 0 if i /∈ U and γUi = 4 if i ∈ U , and Z0 = X and Z4 = Mf .
Therefore we obtain that Kn,−1(Z) ∼= colimU {1,...,n}(ZγU1

⊗ · · · ⊗ ZγUn ) = Qnn−1(ιf ). Since the
n-fold pushout product is the unique morphism obtained from the universal property of the
colimits, it is also the composition of the bottom row of Diagram (2).

We can now put all of this together in the following lemma:

Lemma A.1. Let C be a cocomplete symmetric monoidal category where the monoidal product
preserves all colimits in both variables, which is tensored over Top. For a morphism f : X → Y ,
let ιf : X →Mf denote the inclusion of X into the mapping cylinder of f .

Then there is a filtration Qnn−1(ιf ) = Kn,−1(f) → Kn,0(f) → · · · → Kn,n(f) = (Mf )⊗n that
decomposes ι�nf , the n-fold pushout product of ιf , such that for each 0 ≤ i ≤ n the morphism
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Kn,i−1(f)→ Kn,i(f) is a Σn-equivariant cobase change of Σn×Σn−i×ΣiY
⊗n−i⊗(X×i1)�i, where

we use the convention that (X × i1)�0 is the unique morphism ∅ → ∗ from the initial object to
the monoidal unit.

Proof. The only thing left to check is that Kn,i−1(f)→ Kn,i(f) is a cobase change of said map.

The sequence given by the diagonal of Diagram (2) is precisely the sequence Pni (X× i1, idX qf)
of [SS12, Lemma A.8] applied to the pushout square of Diagram (1). For each i ≥ 0, K n

i,i is the
full subcategory of K ×n of objects where at most i components are 3. We write Pni for the full
subcategory of P×n of objects where at most i components are 3. If we regard P as a full sub-
category of K , then Pni ⊂ K n

i,i is a terminal subcategory in the sense of [Hir03, Definition 14.2.1].
By [Hir03, Theorem 14.2.5] this means that the canonical morphism colimα∈Pni Zα1⊗· · ·⊗Zαn →
colimα∈K n

i,i
Zα1 ⊗ · · · ⊗ Zαn is an isomorphism.

This means that by [SS12, Lemma A.8] for each i ≥ 1 the morphism Ki−1,i−1(Z) → Ki,i(Z) is
a Σn-equivariant cobase change of Σn ×Σn−i×Σi (X q Y )⊗(n−i) ⊗ (X × i1)�i.

Since ⊗ preserves colimits, (X q Y )⊗i ∼=
∐
β∈{0,1}i Bβ1 ⊗ · · · ⊗ Bβi ∼= (

∐
β∈{0,1}i,β 6=(1,...,1)Bβ1 ⊗

· · · ⊗Bβi)q Y ⊗ · · · ⊗ Y = Qii−1(ιX)q Y ⊗i, where B0 = X and B1 = Y , and ιX is the inclusion
X → X qY . Note that K n

0,0 has a terminal object, (1, . . . , 1), so K0,0(Z) is precisely (X qY )⊗n,
and with this identification K0,−1(Z) is Qii−1(ιX) =

∐
β∈{0,1}i,β 6=(1,...,1)Bβ1 ⊗ · · · ⊗Bβi .

We can decompose (Qn−in−i−1(ιX)⊗ (X × i1)�i) q Y ⊗n−i ⊗ (X × i1)�i into [(Qn−in−i−1(ιX)⊗ (X ×
[0, 1])⊗i)qY ⊗n−i⊗(X×i1)�i]◦[(Qn−in−i−1(ιX)⊗(X×i1)�i)qY ⊗n−i⊗Qii−1(X×i1)], and we obtain
that the morphism Ki,i−1(Z)→ Ki,i(Z) is a cobase change of Σn ×Σn−i×Σi Y

⊗n−i ⊗ (X × i1)�i.
By Diagram (2) Kn,i−1(Z)→ Kn,i(Z) is also a cobase change of Σn×Σn−i×Σi Y

⊗n−i⊗(X×i1)�i.
If we adopt the convention that g�0 = ∅ → ∗ for any g then it also holds for i = 0.

51



A. ITERATED PUSHOUT PRODUCTS OF MAPPING CYLINDER INCLUSIONS

Remark A.2. An illustration of the case n = 3. Each "point" of the cube is a copy of the product
given by its color, so for example each point in the vertex, face and two edges colored green is a
copy of X ⊗ Y ⊗X.

52



B. LIST OF NOTATION

B List of Notation

1C - Unit of the monoidal category C .
Alg(O) - The category of algebras over the operad O 1.1.7.
� - The box product 2.1.5.
Confn - The configuration space of n points.
ConfGn - The orbit configuration space of n points in a free G-space.
F(−) - The functor associated to a symmetric object (1).
FAlg (O) - The free algebra functor C → Alg(O).
F (K,G) - The set of graph subgroups given by homomorphisms K → G Section 2.2.
Fun(−,−) - The functor category between two ordinary categories, or the enriched functor
category between two enriched categories.
(g!, g

∗) - The Quillen adjunction associated to a morphism of operads φ 3.2.2.
G - One-object-groupoid representing a group G.
I - Unit of Σ∗-C with the composition monoidal structure 1.1.3.
ιf - The inclusion of the mapping cylinder of f : X → Y , ιf : X →Mf .
il - The canonical inclusion ∂Dl → Dl

jl - The canonical inclusion [0, 1]l → [0, 1]l × [0, 1]

L - Category of real inner product spaces and linear isometric embeddings.
LG,V - A semifree orthogonal space 1.3.2.
LH,V ;G - A semifree G-orthogonal space 2.1.7.
Mf - Mapping cylinder of f .
Qnn−1(f) - The source of the n-fold pushout product of f f�n [SS12, Lemma A.7].
ρG,V,W - The restriction morphism LG,V⊕W → LG,V 1.3.3.
Set - Category of sets.
Σ∗-C - The category of symmetric sequences in a symmetric monoidal category C 1.1.1.
teli - The mapping telescope of a sequence of maps.
Top - Category of compactly generated weak Hausdorff topological spaces.
UAlg (O) - The forgetful functor Alg(O)→ C .
UOk - See 3.2.1.
Σn o G - The wreath product of Σn and G. Note that we mean Σn o{1,...,n} G and not
Σn oΣn G.
⊗, ◦ - In Σ∗-C , the tensor product 1.1.2 and the composition product 1.1.3.
� - the pushout product of two morphisms.
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