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Abstract

In this paper we study and compare the properties of several bootstrap unit root tests

recently proposed in the literature. The tests are Dickey-Fuller or Augmented DF-tests,

either based on residuals from an autoregression and the use of the block bootstrap or on

first differenced data and the use of the stationary bootstrap or sieve bootstrap. We extend

the analysis by interchanging the data transformations (differences versus residuals), the

types of bootstrap and the presence or absence of a correction for autocorrelation in the

tests.

We show that two sieve bootstrap tests based on residuals remain asymptotically valid.

In contrast to the literature which focuses on a comparison of the bootstrap tests with an

asymptotic test, we compare the bootstrap tests among them using response surfaces for

their size and power in a simulation study.

This study leads to the following conclusions: (i) augmented DF-tests are always

preferred to standard DF-tests; (ii) the sieve bootstrap performs better than the block

bootstrap; (iii) difference-based tests appear to have slightly better size properties but

residual-based tests appear more powerful.
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1 Introduction

Due to the good performance of the bootstrap in finite samples for stationary processes, its

application to nonstationary series has recently become increasingly popular. In this paper we

study and compare the properties of some bootstrap unit root tests that have recently been

proposed in the literature. We also introduce some new tests, show their first order asymptotic

validity and compare them to existing tests. The tests considered are Dickey-Fuller (DF) or

Augmented Dickey-Fuller (ADF) tests, either based on residuals from an autoregression and

the use of the block bootstrap (Paparoditis and Politis, 2003) or on first differenced data and

the use of the stationary bootstrap (Swensen, 2003a) or sieve bootstrap (Psaradakis, 2001;

Chang and Park, 2003). As mentioned, these papers differ in the way the bootstrap unit root

tests. Besides showing the asymptotic validity,1 all these papers compare the finite sample

performance of their test(s) to the asymptotic counterpart(s), and the results are overall

encouraging. It is however less clear how these tests perform compared to each other. The

goal of this paper is to find out which tests perform best under circumstances to be given,

and which aspects of the tests determine their finite sample performance. We will analyse

and compare the asymptotic properties of these tests, and we will also consider Monte Carlo

simulations.

We distinguish three main features of the tests. The first feature is the actual test statistic.

Some tests use the DF test, others the ADF. As the ADF statistic is asymptotically pivotal,

whereas the DF is not, we might expect a bootstrap ADF test to offer asymptotic refinements

over the bootstrap DF test and asymptotic tests (Horowitz, 2001).2 The second feature is

which series exactly should be resampled. Bootstrapping a nonstationary series directly is not

valid (Basawa et al., 1991). Therefore a stationary series has to be constructed first. Some

tests use residuals from a first-order autoregression of the series, others use first-differences

of the series. Swensen (2003b) shows that power functions are the same for both cases if the

innovations are iid. However as shown by Paparoditis and Politis (2003, 2005), the use of

differences leads to poor behaviour of the bootstrap tests under the alternative. The third

feature is the time series bootstrap method that is employed. Some tests that we consider

use some form of the block bootstrap, in which blocks of (restricted) residuals are resampled.

Other tests use the sieve bootstrap, that fits an AR model to the (restricted) residuals and

resamples the residuals of this AR model. The sieve bootstrap is somewhat easier to use and

performs better when valid, but the block bootstrap is valid for more general processes.

Currently, to our knowledge no tests that use the sieve bootstrap based on residuals have

been shown to be asymptotically valid for the Data Generating Processes (DGPs) considered

in this paper. We adapt the sieve bootstrap tests by Psaradakis (2001) and Chang and Park

1We call a test asymptotically valid if the bootstrap distribution under the null converges to the asymptotic
null distribution.

2Park (2003) shows that bootstrap ADF tests offer asymptotic refinements under the assumption the errors
are a finite AR process with known order.
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(2003) by constructing them using residuals instead of differences and show that these new

tests are asymptotically valid. As residual-based tests may have better properties under the

alternative than difference-based tests, this is an important extension. With these results, all

the tests considered in this paper have been shown to be asymptotically valid.

A word on notation. We denote weak convergence by ‘
d−→’, convergence in probability by

‘
p−→’ and almost sure convergence by ‘

a.s.−−→’. W (r) indicates a standard Brownian motion. As

usual, we use the superscript ‘∗’ to denote bootstrap quantities, both for bootstrap samples

and statistics calculated for bootstrap samples. Similarly, ‘
d∗−→’ indicates weak convergence of

a bootstrap statistic conditional on the original series.

The structure of the paper is as follows. In Section 2, we discuss the bootstrap unit

root tests, highlight several features of these tests and prove the asymptotic validity of the

new tests proposed. Section 3 contains an extensive Monte Carlo simulation analysis of the

various bootstrap unit root tests. The results are summarised using response surfaces. Section

4 concludes.

2 The tests

In this section we discuss several bootstrap unit root tests from a theoretical point of view.

2.1 DF sieve bootstrap test

2.1.1 Difference-based DF sieve bootstrap test: Psaradakis (2001)

Psaradakis (2001) considers the following DGP for the time series yt, t = 1, . . . , n:

yt = dt + vt, vt = ρvt−1 + ut, (1)

where dt consists of deterministic components. Three cases for the deterministic components

are considered: the first case is without deterministics, dt = 0, the second case is with only

a constant term, dµ
t = δ0, and the third case is with constant term and linear time trend,

dτ
t = δ0 + δ1t. The process ut is assumed to satisfy the following condition with r = 4 and

s = 1:

Assumption 1

(i) the process ut is generated by ut =
∑∞

j=0 ψjεt−j , with εt a sequence of iid random

variables with E[εt] = 0, E[ε2t ] = σ2
ε > 0 and E[εrt ] <∞.

(ii) (A) Let ψ0 = 1,
∑∞

j=1 j
s|ψj | <∞ and

∑∞
j=0 ψj 6= 0.

(B)
∑∞

j=0 ψjz
j is bounded, and bounded away from zero for {z ∈ C : |z| ≤ 1}.
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Note that this assumption implies that ut is an invertible linear process; see Phillips and

Solo (1992) for more details. We can rewrite the model (1) into the following form

yt = ρyt−1 + d†t + ut, (2)

where d†t = γ0 + γ1t := (1− ρ)δ0 + ρδ1 +(1− ρ)δ1t (in the first case δ0 = δ1 = 0, in the second

case δ1 = 0). Psaradakis considers the DF coefficient test n(ρ̂ − 1) and t-test in equation

(2) for testing ρ = 1. As stated above, the assumptions on the innovations allow for a sieve

bootstrap.

Psaradakis (2001) furthermore needs the following assumption on the order of the autore-

gression:

Assumption 2 The order p of the autoregressive approximation is such that p = p(n) → ∞
as n→ ∞ with p(n) = o((n/ ln n)1/4).

The exact bootstrap procedure can be described as follows.

Bootstrap Test 1 (Psaradakis, 2001)

1. Fit an AR(p) model to ût, where ût = ∆yt if the deterministic part consists of at most

a constant term, and ût = ∆yt −n−1
∑n

t=1 ∆yt if the deterministic part contains both a

constant term and a linear time trend, to obtain estimates φ̂j,n and

ε̂t,n = ût −
p
∑

j=1

φ̂j,nût−j , t = 1 + p, . . . , n.

2. Generate an iid sample ε∗t,n by drawing randomly with replacement from ε̂t,n − (n −
p)−1

∑n
t=1+p ε̂t,n.

3. Construct bootstrap errors by the recursion

u∗t,n =

p
∑

j=1

φ̂j,nu
∗
t−j,n + ε∗t,n. (3)

4. The bootstrap sample y∗t,n is generated recursively by

y∗t,n = y∗t−1,n + u∗t,n

in case of no deterministic components or an intercept only, and by

y∗t,n = n−1
n
∑

t=1

∆yt + y∗t−1,n + u∗t,n

in case of a constant term and a linear trend.
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5. Calculate the DF coefficient test and t-test using the bootstrap sample for the previously

specified deterministic specification.

6. Repeat steps 2 to 5 B times to find the bootstrap distributions where B denotes the

number of bootstrap replications.

Psaradakis (2001) suggests to estimate the AR(p) model in step 1 using the Yule-Walker

equations to ensure that the generated innovations u∗t,n admit a one-sided MA(∞) represen-

tation. The asymptotic distribution of the bootstrap statistics under the null is shown to be

the same as the asymptotic distribution of the original DF statistics. Note that although the

limiting distributions contain nuisance parameters, this does not matter for the bootstrap

approach as the critical values for testing are based on the (empirical) distributions of the

bootstrap tests that can be approximated by simulation with any accuracy desired.

2.1.2 Residual-based DF sieve bootstrap test: Psaradakis modified

The test we propose here is very similar to the test by Psaradakis (2001), except that it is

based on residuals. Paparoditis and Politis (2005) have proposed an ADF coefficient test, and

we construct our test in the same way as they do. We will show that our test is asymptotically

valid when considering the assumptions made by Psaradakis (2001).

The new algorithm differs from that for the tests by Psaradakis (2001) only in step 1:

Bootstrap Test 2 (Residual-based DF sieve bootstrap procedure)

Replace step 1 from Bootstrap Test 1 by calculating the residuals from the regression

ε̂t,n = ỹt − ρ̂nỹt−1 −
p
∑

j=1

φ̂j,n∆ỹt−j, t = 1 + p, . . . , n, (4)

where ỹt = yt in the case of a (possibly zero) intercept and ỹt = yt − γ̂0 − γ̂1t in the case of a

linear trend, and γ̂0 and γ̂1 are the corresponding OLS estimates.

The next theorem shows that, under the assumptions given above, the bootstrap distri-

butions converge to the same limit distribution as the standard test statistics:

Theorem 1 Let τ∗n = n(ρ̂∗n − 1) and t∗n be the coefficient and t-statistic, respectively, that

follow from Bootstrap Procedure 2. Let σ2
u = E[u2

t ] and σ2 = limn→∞ n−1 E[(
∑n

t=1 ut)
2].

Under Assumptions 1 with r = 4 and s = 1 and 2, we have that

τ∗n
d∗−→
∫ 1
0 W (r)dW (r) + (σ2 − σ2

u)/2σ2

∫ 1
0 W (r)2dr

in probability

t∗n
d∗−→
∫ 1
0 W (r)dW (r) + (σ2 − σ2

u)/2σ2

(

(σ2
u/σ

2)
∫ 1
0 W (r)2dr

)1/2
in probability.
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where W (r) is a standard Brownian motion on [0, 1].

Proof : See Appendix A.

We have shown that the DF sieve test as constructed by Psaradakis (2001) remains asymp-

totically valid if it is based on residuals instead of differences.

2.2 ADF sieve bootstrap test

2.2.1 Difference-based ADF sieve bootstrap test: Chang and Park (2003)

Chang and Park (2003) consider the DGP

yt = ρyt−1 + ut, (5)

where ut =
∑∞

j=0 ψjεt−j . They employ Assumption 1 with r ≥ 4 and s ≥ 1. For the order of

the autoregressive approximation, Chang and Park (2003) consider two different assumptions:

Assumption 3 Let p(n) → ∞ and p(n) = o(nκ) with κ < 1
2 as n→ ∞.

The following assumption is stronger.

Assumption 4 Let p(n) = cnκ for some constant c and 1/rs < κ < 1
2 .

The bootstrap procedures of Chang and Park (2003) and Psaradakis (2001) are very

similar:

Bootstrap Test 3 (Chang and Park, 2003)

Follow the same steps as in Bootstrap Test 1, but only for the deterministic specification

dt = 0. Replace step 5 by

5. Calculate the ADF coefficient statistic (1−∑p
j=1 φ̂j,n)−1n(ρ̂∗n−1) and the corresponding

t-statistic3 from the ADF regression

y∗t,n = ρ∗y∗t−1,n +

p
∑

j=1

φ∗j∆y
∗
t−j,n + ε∗t .

Chang and Park (2003) show that their bootstrap tests converge to the same asymptotic

distributions under the null as the asymptotic tests. The convergence is shown to hold almost

surely under the strong assumptions, and in probability under the weaker assumptions. They

claim that their tests are also valid when applied to demeaned or detrended data, but they

do not provide any further analysis.

3Chang and Park suggest using σ̂2
ε,n (calculated from the original sample) for the t-test instead of σ̂∗2

ε,n

(calculated from the bootstrap sample), although both are appropriate. Similarly, it is possible to use 1 −

∑p

j=1
φ̂∗

j,n for the coefficient test.
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2.2.2 Residual-based ADF sieve bootstrap test: Chang and Park modified

Similar to the previous section, we construct a residual-based test that is based on the test by

Chang and Park (2003) and resembles the residual-based ADF test of Paparoditis and Politis

(2005) strongly.

Bootstrap Test 4 (Residual-based ADF sieve bootstrap test)

Replace step 1 from Bootstrap Test 3 by calculating the residuals from an ADF regression as

in the following equation

ε̂t,n = yt − ρ̃nyt−1

p
∑

j=1

φ̂j,n∆yt−j, t = 1 + p, . . . , n. (6)

The next theorem shows that, under the assumptions given above, the bootstrap distri-

butions converge to the same limit distributions as the asymptotic test statistics.

Theorem 2 Let τ∗n and t∗n be the bootstrap coefficient statistic and t-statistic, respectively,

that follow from Bootstrap Test 4. Let Assumptions 1 with r ≥ 4 and s ≥ 1 and 3 hold. Then

τ∗n
d∗−→
∫ 1
0 W (r)dW (r)
∫ 1
0 W (r)2dr

in probability,

t∗n
d∗−→

∫ 1
0 W (r)dW (r)

(

∫ 1
0 W (r)2dr

)1/2
in probability.

Proof : See Appendix A.

We have shown that the ADF sieve test as constructed by Chang and Park (2003) is also

asymptotically valid if it is based on residuals. In Theorem 2 we have obtained convergence in

probability whereas Chang and Park (2003) proved a.s. convergence for their strong assump-

tions. By imposing the unit root restriction difference-based tests rely on stationary series for

which a.s. convergence holds. Although not imposing the unit root when applying the sieve

bootstrap is certainly a drawback, our result is worthwhile as it does provide justification for

using a residual-based sieve bootstrap, even if it is not the same justification as Chang and

Park (2003) provide for their tests.

For finite order AR(p) processes, Paparoditis and Politis (2005) show that under fixed

alternatives the bootstrap distribution of the residual-based sieve bootstrap coefficient test

is the same as that under the null. For the difference-based sieve bootstrap the distribution

under the null differs from that under the alternative for the coefficient test, but not for

the t-test. This results in a loss of power for the difference-based sieve bootstrap coefficient

test. For the t-tests, both methods are asymptotically equivalent. For AR(∞) processes,

Paparoditis and Politis (2005) do not discuss the residual-based sieve test, but they state
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that the difference-based sieve bootstrap is inappropriate as the differenced process is not

invertible if the alternative is true.

2.3 (A)DF block bootstrap test

2.3.1 Residual-based (A)DF block bootstrap test: Paparoditis and Politis (2003)

Paparoditis and Politis (2003) propose a block bootstrap method to test for unit roots. Their

method, the residual-based block bootstrap (RBB), is a block bootstrap method applied to

residuals of a regression of the series yt on its first lag. We first state the assumptions under

which the RBB is appropriate. Two sets of assumptions are considered, such that one of these

should be satisfied by the process yt to validate the use of the RBB. Paparoditis and Politis

(2003) consider the process yt = α+ ρyt−1 + ut where if α 6= 0 there is a drift under the null

of ρ = 1.

Paparoditis and Politis (2003) consider two sets for ut. The first is that Assumption 1 (i)

and (ii)(A) hold with r = 4 and s = 1 under the null. Under the alternative these assumptions

should hold for yt as well. Under the additional assumption (ii)(B) the process is invertible

as well. This assumption is similar to those Psaradakis and Chang and Park employ.

The second assumption that Paparoditis and Politis (2003) use, is that ut is strong mixing:

Assumption 5 For each value of ρ, the series ut is strong mixing and satisfies the following

conditions: E[ut] = 0, E |ut|r < ∞ for some r > 2, fu(0) > 0, where fu denotes the spectral

density of ut, i.e., fu(λ) =
∑∞

h=−∞ γu(h) exp(iλh) and γu(h) = E[utut+h]. Furthermore,
∑∞

k=0 α(k)1−2/r <∞, where α(·) denotes the strong mixing coefficient of ut.

In contrast to the condition needed for the sieve bootstrap, one should note that the generating

process of ut does not have to be belong to the class of linear processes to satisfy this condition.

Hence, we see here a class of processes (possibly non-linear) for which the block bootstrap is

valid but the sieve bootstrap is not.

The procedure proposed by Paparoditis and Politis (2003) can be described as follows.

Bootstrap Test 5 (Paparoditis and Politis, 2003)

1. Calculate the centred residuals

ũt,n = ût,n − 1

n− 1

n
∑

j=2

ût,n = (yt − ρ̃nyt−1) −
1

n− 1

n
∑

j=2

(yt − ρ̃nyt−1),

where ρ̃n is a consistent estimator of ρ.

2. Choose the block length b, and draw points i0, i1, . . . , ik−1, where k = ⌊(n− 1)/b⌋,4 from

the uniform distribution on the set {1, 2, . . . , n − b}. These points will serve as the

4The bootstrap sample y∗

t will have total length l = kb + 1.
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beginning points of the blocks of centred residuals:

y∗t,n =

{

y1 for t = 1

α∗ + y∗t−1,n + ũim+s,n for t = 2, 3, . . . , n
, (7)

where m = ⌊(t − 2)/b⌋, s = t −mb − 1, and α∗ is a drift parameter that is either set

equal to zero or it is a consistent estimator of α.

3. From the bootstrap series y∗t,n compute the desired statistics.

4. Repeat steps 2 to 3 B times to find the bootstrap distribution.

Although most bootstrap unit root tests are based on differences, Paparoditis and Politis

(2003) formally show that the residual-based block bootstrap coefficient test performs well

asymptotically both under the null and under contiguous alternatives whereas the asymptotic

distribution of the difference-based block bootstrap (DBB) statistic differs from that of the

RBB statistic under the alternative, leading to a loss of power of the DBB test. Moreover,

the convergence rate for this DBB bootstrap test is slower under the alternative than for the

RBB test. For fixed alternatives, the slower rate of convergence leads to a loss of power of

the DBB test compared to the RBB test. For sequences of n−1 local alternatives, the two

tests have the same power.

In step 1 of the bootstrap procedure, ρ̃n should be a consistent estimator of ρ. Further-

more, it is required that ρ̃n is op(1) if ρ 6= 1, Op(n
−1) if ρ = 1 and α = 0, and Op(n

−3/2) if

ρ = 1 and α 6= 0. Many estimators satisfy these conditions. Paparoditis and Politis (2003)

focus on what they call the least squares (LS) estimator, which is just the DF estimator, and

the ADF estimator (they call this the DF estimator). For the validity of the ADF estimator

the additional condition (ii)(B) is needed to ensure invertibility.

They prove the consistency of the RBB for the DF coefficient test and the ADF coefficient

test. For models where α = 0, they recommend to use the OLS estimator of ρ in

yt = α+ ρyt−1 + ut (8)

or the ADF equivalent5 as ρ̃n, which is used to construct the residuals. In the second step

α∗ is set to zero, as there should be no drift. They also recommend for the RBB ADF test

to use the block bootstrap6 of yt − yt−1 directly as lagged differences instead of y∗t,n − y∗t−1,n.

For both the tests without deterministic components and the tests with a constant included,

the consistency of the DF and ADF RBB tests is proved.

For the case of α 6= 0, Paparoditis and Politis (2003) recommend using the same estimator

for ρ̃n as before but setting α∗ = α̃n where α̃n is the estimator of α in (8). They prove the

5Depending on which unit root test is performed.
6Using the same blocks as for the residuals.
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consistency of the DF coefficient test with constant and trend and claim the consistency of

the corresponding ADF test can be established similarly.

2.3.2 Difference-based (A)DF block bootstrap test: Paparoditis and Politis (2003)

Again we consider an alternative version of the tests by Paparoditis and Politis (2003). As

the original tests are based on residuals, the modified tests will be based on differences. The

new procedure simply replaces ρ̃n by 1. Paparoditis and Politis (2003) already showed the

asymptotic validity of these alternative tests (also see the discussion of power above).

2.4 DF stationary bootstrap test

2.4.1 Difference-based DF stationary bootstrap test: Swensen (2003a)

Swensen (2003a) considers a unit root test without deterministic components based on the

stationary bootstrap of Politis and Romano (1994). He assumes the DGP yt = ρyt−1 + ut

with the following assumptions on ut.

Assumption 6

(i) The process ut is strictly stationary with E[ut] = 0 for all t.

(ii) If γ(k) = E[utut+k], then γ0 +
∑∞

r=0 |rγ(r)| <∞

(iii)
∑

r,s,t κ4(r, s, t) = K < ∞ where κ4(r, s, t) is the fourth cumulant of the distribution of

(uj , uj+r, uj+r+s, uj+r+s+t).

Assumption (iii) is used to ensure that the variance of 1
n

∑

t u
2
t tends to zero and im-

plies that σ2 can be consistently estimated. Under these conditions Swensen (2003a) proves

the consistency of the DF tests without deterministic components based on the stationary

bootstrap. The conditions needed are significantly weaker than those needed for the sieve

bootstrap.

The algorithm can be described as follows:

Bootstrap Test 6 (Swensen, 2003)

1. Compute centred differences

ũt = ∆yt − (n− 1)−1
n
∑

j=2

∆yj.

2. Apply the stationary bootstrap of Politis and Romano (1994) to the centred residuals to

obtain bootstrap errors u∗t,n:
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(a) Draw the index of the starting points of the blocks, i1, i2, . . ., from the uniform

distribution P (t1 = t) = 1
n , t = 1, . . . , n. Let pL be a fixed number between 0 and 1.

Draw the length of the blocks b1, b2, . . . from the geometric distribution P (b1 = l) =

(1 − pL)l−1pL. The expected block length is 1/pL.

(b) Form blocks using the drawn starting points and block lengths. For block m+ 1 we

have

u∗t,n = ũim+1+t−b(m)−1 (9)

where t = b(m) + 1, . . . , b(m) + bm+1 and b(m) =
∑m

j=1 bj.

(c) Stop after generating B blocks if lB =
∑B

j=1 bj ≥ n. Lay the blocks end-to-end in

the order sampled, and cut off the resulting series u∗1,n, . . . , u
∗
lB ,n at u∗n,n if lB > n.

3. Construct the bootstrap sample y∗t,n with the recursion y∗t,n = y∗t−1,n + u∗t,n.

4. Compute the bootstrap DF coefficient and t-statistic.

5. Repeat steps 2 to 4 B times to find the bootstrap distribution.

2.4.2 Residual-based DF stationary bootstrap test: Parker, Paparoditis, and

Politis (2006)

Again, we also consider a modified version of these tests. Here we base the modified version

on residuals instead of differences. Instead of the centred differences we calculate in step 1

centred residuals as in the bootstrap procedure of Paparoditis and Politis (2003). This test

has been proposed by Parker et al. (2006) who also show its asymptotic validity.

2.5 Summary of tests considered

When comparing these tests, we will mainly focus on three aspects: whether differences or

residuals are used, the bootstrap method and the test statistic.

Table 1 summarises all the test statistics and their main features. A note on the notation:

we use τ for a coefficient test and t for a t-test. The first subscript indicates the bootstrap

method: S stands for sieve bootstrap, B for block bootstrap, and St for stationary bootstrap;

the second subscript indicates whether a test is based on differences (d) or residuals (r). A

superscript a states that the test is an augmented DF test.

[Table 1 about here.]

3 Finite sample performance: Monte Carlo results

We analyse and compare the finite sample behaviour of the tests by Monte Carlo simulations.
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3.1 Monte Carlo setup

We generate a series yt, t = 1, . . . , n, according to the recursion

yt = ρyt−1 + ut, y0 = 0, (10)

where different values for ρ are used: 1, 0.99, 0.95, 0.9 and 0.8. We let ut be generated by an

ARMA(1,1) process:

ut = φut−1 + εt + θεt−1, (11)

where εt ∼ IN(0, 1). The values used for φ and θ vary from -0.8 to 0.8. 7

As sample sizes we consider n = 50, 100 and 250. We use three different significance levels:

0.01, 0.05 and 0.10. All experiments will be based on 5000 simulations and 999 bootstrap

replications. All simulations are performed using GAUSS 6.0.

AIC is used to select the lag length for the sieve bootstrap. We estimate the AR(p) models

by OLS.8 For the lag length in the ADF tests we use the modified AIC by Ng and Perron

(2001), both outside and inside the bootstrap procedures. For the block length we choose

fixed numbers: 5 for n = 50, 8 for n = 100 and 15 for n = 250. The fact that there is no easy

way to estimate block lengths remains a problem.

We perform two sets of simulations with these models. The first set considers the tests

based on models without deterministic components. In the second set of simulations the

DGPs remain unchanged but the tests are based on models with a constant and a trend.

These extensions are not discussed in all papers, so that not all tests we consider have been

shown to be theoretically valid. For the ADF test of Paparoditis and Politis (2003), we follow

their instructions on how to handle the test allowing for a trend. Chang and Park (2003)

indicate that their tests can be applied for the model with trend by applying the bootstrap

test to the detrended data. We detrend both the original series (by OLS) and the bootstrap

series.9 For the test proposed by Swensen (2003a), deterministic components are added in

the same way as in Psaradakis (2001).10

Note however that this is in fact not necessary, as the tests applied are actually invariant

to the deterministic components present in the DGP, provided sufficient deterministics are

included in the test regression. Therefore, the bootstrap test statistics are also invariant to

the deterministics in the bootstrap DGP as long they are correctly specified in the bootstrap

test regression.

7Specific values used for (φ, θ) are: (0, 0), (−0.8, 0), (−0.4, 0), (0.4, 0), (0.8, 0), (0,−0.8), (0,−0.4), (0, 0.4),
(0, 0.8), (0.4, 0.4), (−0.4,−0.4).

8The estimated AR(p) model may not be invertible. A solution could be to impose a root bound as in
Burridge and Taylor (2004). This is however mainly important for empirical work, as in a large simulation
study as ours the number of cases in which the estimated process is not invertible, is very small.

9It is crucial to detrend the bootstrap series as well, otherwise the bootstrap distribution will not converge
to the correct asymptotic distribution.

10More efficient detrending methods are not considered in this paper.
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The large number of DGP’s and tests statistics in our simulations leads to a huge number

of results that is rather hard to analyse in standard tables. We circumvent this problem by

estimating different response surfaces for the rejection frequencies observed in our simulations

for each of the test statistics. Because the empirical rejection frequency P̂ lies between 0 and

1, we use the following transformation:

L(P̂ ) = ln

(

P̂

1 − P̂

)

. (12)

The dependent variable is L(P̂ ). As explanatory variables we consider several functions

of the nominal level and the parameters in the underlying DGP. We will provide more details

below. The specific form of the response surfaces is test specific. To avoid lengthy specifica-

tion searches, we rely on PcGets (Hendry and Krolzig, 2001) to select the most appropriate

specification from a large set of possible variables. The reported standard errors are White’s

heteroscedasticity consistent standard errors. Apart from the coefficient estimates and their

standard errors, the adjusted R2 of the regression is also reported.

3.2 Results

In this section we will give the main findings of our simulation study. We focus here on

the results for the tests without deterministic trends. The results for the tests allowing for

deterministic trends will be briefly discussed below.11

Size Tables 2 give a summary of the response surfaces for the size. We consider the following

response surface for the size:

L(P̂i) = β1L(Pa,i) + β′2f(L(Pa,i), φi, θi, ni) + νi, i = 1, . . . ,M, (13)

where Pa is the nominal size of the test, f(L(Pa,i), φi, θi, ni) is a vector of functions (all of

order O(n−1/2) and O(n−1/2)) of L(Pa), the ARMA parameters φi and θi and the sample size

ni and νi denotes a disturbance. The number of simulation experiments M is 99.

The term β′2f(·) captures the deviations of the actual size from the nominal size as a

function of the parameters of the DGP and sample size. β1L(Pa,i) gives an indication of the

asymptotic size of the tests. When β1 is equal to 1, the empirical size of the test is equal to

the nominal size for large n. The table gives the estimate of β1 and its standard error, as well

a measure of the fit.

[Table 2 about here.]

11The collection of all simulation results, response surfaces and graphical analyses is available on the Internet:
www.personeel.unimaas.nl/s.smeekes/outputreport.pdf
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Several things can be seen from the tables. We see that for some tests β1 is significantly

different from 1, although for most it is close to it. The estimates for the residual-based sieve

tests are all not significantly different from one. Most of the other estimates are different from

one, where especially the estimates for the DF test are far away from one. Note that these

are all DF tests, as opposed to the ADF tests for which β1 is much closer to 1. The coefficient

and t-tests appear to have similar size in most cases. For the block tests, the value for β1 is

higher for the difference-based version than the residual-based version, which indicates that in

general the residual-based block tests give higher rejection frequencies than difference-based

block tests.

We also see for all tests that the fit increases when we include variables of higher order.

Especially the increase in the fit from the first setting to the second is noticeable. This shows

that all tests suffer from finite-sample distortions, although some more than others. As can

be clearly seen, the adjusted R2 for the regression on only the nominal size is much higher

for the sieve tests than for the block tests. This shows that the (especially ADF) sieve tests

suffer less from finite sample distortions than the other tests.

[Figure 1 about here.]

[Figure 2 about here.]

Figure 1 and 2 show graphs of the fitted size plotted against the autoregressive and moving-

average parameters φ and θ. As nominal level we take 0.05 and as sample size we take 100.

The green area indicates a size between 0.03 and 0.07, the blue area indicates a size below

that range and the red area above that range.

The fitted transformed sizes are calculated from the response surfaces (13) for specific

values φ0, θ0, n0 and Pa,0, substituting estimates β̂1 and β̂2 for β1 and β2 respectively and

dropping the disturbance νi. Next we apply the inverse of the L(·) transformation to the

fitted values to obtain the fitted size.

As well as confirming what the tables tell us, the graphs show how the AR and MA

parameter influence the empirical size. For all the tests, we see the well-known size distortions

for a large negative MA parameter. The extent of this size distortion differs however. The

stationary bootstrap tests and the DF block tests have massive size distortions, that also

increase when the AR parameter becomes large and negative. We see that these tests are

much more sensitive to the values of φ and θ, as they also exhibit a large undersize for large

positive values. The ADF block tests mainly exhibit large undersize, especially for large

absolute values of φ and θ. The sieve tests can be seen to perform quite well; especially the

ADF sieve tests, for which the graphs are quite flat and in the correct range. We can also see

that in general residual-based tests have higher rejection frequencies than the difference-based

tests, except for the ADF sieve tests where both perform equally well.
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Power Tables 3 and 4 give summaries of the response surfaces for the power. We choose

to report only unadjusted power as we feel this is the most relevant, because this is what

matters in practice. We now estimate the following response surface:

L(P̂i) = β0+β1L(Pa,i)+

3
∑

k=1

β2,k(ρi−1)k+β′3f(ρi, L(Pa,i), φi, θi, ni)+νi, i = 1, . . . ,M. (14)

The number of simulation experiments M is 396. Again all variables in f(ρ, L(Pa,i), φi, θi, ni)

are either of order O(n−1/2) or O(n−1). So in this case the asymptotic behaviour can be

deduced from βa = (β0, β1, β
′
2)

′. The tables give the estimates plus standard error for the

O(1) variables and a measure of the fit. Again we see that the fit increases when we add

higher order terms.

[Table 3 about here.]

[Table 4 about here.]

In Figures 3 to 4 we give power curves for varying sample sizes. These plots are derived

from the response surfaces in the same way as the surface graphs for the size. For all cases,

we have taken φ = θ = 0.12 Most of the graphs show that the residual-based tests have higher

power than the difference-based tests. However, as we also found that the residual-based tests

have larger size distortions than the difference-based tests in general, the higher power will

partly be caused by the size distortions. In that respect, we see that the power difference

between residual-based and difference-based ADF sieve tests is quite small, while for these

tests the behaviour under the null of residual-based tests and difference-based tests was also

comparable. Hence, if there is a power advantage for residual-based tests, it is only small.

[Figure 3 about here.]

[Figure 4 about here.]

Deterministic trends The tests allowing for deterministic trends give qualitatively similar

results as the ones described above. All tests perform worse, however the effect of including

the deterministic trends where in fact none are needed is similar for all tests. Power becomes

lower in general, and size seems to fluctuate more for different AR and MA parameters.

4 Conclusion

We have analysed the behaviour of a set of bootstrap unit root tests in finite samples. More-

over, we have shown the validity of two procedures that turn out to work well in finite samples.

12Unreported results show the dependence of the empirical power on φ and θ is similar as in the case of the
size.
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From our simulation study we can draw several conclusions. First, ADF tests clearly

perform better than DF tests, which is what we expected from our discussion about asymp-

totically pivotal statistics. We do not observe a clear difference between the coefficient tests

and t-tests.

Second, it seems that sieve tests perform better in terms of size than block tests for ARMA

models, which is in line with the results for stationary series. We also see that the stationary

bootstrap test performs worse in terms of size than the block bootstrap. Added to this,

there is also a practical reason to use the sieve bootstrap. The selection of the lag length

can be done quite easily, and appears to work if based on an information criterion like AIC

or modified AIC. On the other hand, choosing the block length on the basis of intuition is

difficult, and there exist no satisfactory methods for it. Taking all this into account, for our

set of models the sieve bootstrap is preferable over the block bootstrap.

Third, the choice between difference-based tests and residual-based tests is less obvious.

While the residual-based tests have higher power than the difference-based tests, these tests

also have higher size distortions. However, when we consider ADF sieve bootstrap test, the

residual-based tests perform similarly as the difference-based tests both in terms of size and

in terms of power.

These findings are in line with the simulation results reported in the previous studies

mentioned in the introduction, in the way the tests perform for different ARMA parameters.

Our findings however allowed us to systematically compare existing and newly proposed tests.

On the basis of previous studies only, it was not clear how the various tests compared.

Summarising, for the type of processes considered, the ADF sieve tests perform best in

our simulation study. Therefore, for settings comparable to ours, we can recommend to use

either the tests by Chang and Park (2003) or the ADF sieve tests based on residuals that we

proposed. For other types of processes, allowing for broken trends, heteroskedasticity, etc.,

further research is needed.
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A Proofs

Our proofs are adaptations of the proofs of Psaradakis (2001) and Chang and Park (2003) (which

in turn depends on Park (2002)). We only elaborate where our proofs differ from theirs due to the

use of residuals instead of differences. To be specific, the residuals to be resampled in our tests are

constructed as

ε̂t,n = yt − ρ̂nyt−1 −
p
∑

j=1

φ̂j,n∆yt−j , (15)
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where ρ̂n, φ̂1,n, . . . , φ̂p,n are the OLS estimates from the (augmented Dickey-Fuller) regression of yt on

yt−1,∆yt−1, . . . ,∆yt−p.

The residuals to be resampled in the tests of Psaradakis (2001) and Chang and Park (2003) are

constructed as

ε̃t,n = ∆yt −
p
∑

j=1

φ̃j,n∆yt−j , (16)

where φ̃1,n, . . . , φ̃p,n are the OLS (or Yule-Walker) estimates from the regression of ∆yt on ∆yt−1, . . . ,∆yt−p.

Let φ̃n = (φ̃1,n, . . . , φ̃p,n)′, φ̂n = (φ̂1,n, . . . , φ̂p,n)′ and xp,t = (∆yt−1, . . . ,∆yt−p)
′. Then φ̂n and φ̃n

are related by

φ̂n = φ̃n + (ρ̂n − 1)

(

n
∑

t=1

xp,tx
′
p,t

)−1( n
∑

t=1

xp,tyt−1

)

(17)

as in Chang and Park (2002, Proof of Lemma 3.5). From this we can deduce that

φ̂j,n = φ̃j,n +Op(n
−1) (18)

under the null hypothesis of a unit root.

One consequence of not imposing the unit root restriction is that ρ has to be estimated so that

we are only able to show some results in terms of convergence in probability instead of almost sure

convergence.

Note that we only focus on the bootstrap distributions under the null, in line with most of the

literature and specifically the papers that we base the new tests on. To analyse power properties, one

needs to look at the bootstrap distribution under alternatives as well. In the main text we discuss the

findings of Paparoditis and Politis (2005), who consider the power of these type of tests.

A.1 Proof of Theorem 1

In order to prove this theorem we need the following lemmas:

Lemma 1 Suppose Assumptions 1 (with r = 4 and s = 1) and 2 hold. Then

E∗[(ε∗t,n)2w] = E[(εt)
2w] + op(1) for w = 1, 2. (19)

Proof of Lemma 1 We adapt the proof of Bühlmann (1997, Proof of Lemma 5.3). First note

that

E∗[(ε∗t,n)2w ] = (n− p)−1
n
∑

t=p+1

(ε̂t,n − ε̂(·)n )2w, (20)

where ε̂
(·)
n = (n− p)−1

∑n
t=p+1 ε̂t,n.

We first show that

ε̂(·)n = op(1). (21)
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Note that under the null

εt = ∆yt −
∞
∑

j=1

φj∆yt−j (22a)

ε̂t,n = yt − ρ̂nyt−1 −
p
∑

j=1

φ̂j,n∆yt−j . (22b)

Then we write

ε̂(·)n = (n− p)−1
n
∑

t=p+1

(εt − εt + ε̂t,n)

= (n− p)−1
n
∑

t=p+1



εt − (∆yt −
∞
∑

j=1

φj∆yt−j) + (yt − ρ̂nyt−1 −
p
∑

j=1

φ̂j,n∆yt−j)





= (n− p)−1
n
∑

t=p+1

[

εt − (∆yt − (yt − ρ̂nyt−1))

−
p
∑

j=1

(φ̂j,n − φj)∆yt−j +

∞
∑

j=p+1

φj∆yt−j

]

= (n− p)−1
n
∑

t=p+1

(At,n +Bt,n + Ct,n +Dt,n)

(23)

Hence it has to be shown that the four right hand side components in (23) are op(1).

It is trivial that (n−p)−1
∑n

t=p+1At,n and (n−p)−1
∑n

t=p+1Dt,n are op(1). Next we turn to Bt,n:

Bt,n = −∆yt + yt − ρ̂nyt−1

= (1 − ρ̂n)yt−1

(24)

Under the null 1 − ρ̂n = Op(n
−1) (Chang and Park, 2002), so that

(n− p)−1
n
∑

t=p+1

(1 − ρ̂n)yt−1 = (1 − ρ̂n)(n− p)−1
n
∑

t=p+1

yt−1 = op(1). (25)

Finally, we consider Ct,n. By the Cauchy-Schwartz inequality,

∣

∣

∣

∣

∣

∣

(n− p)−1
n
∑

t=p+1

p
∑

j=1

(φ̂j,n − φj)∆yt−j

∣

∣

∣

∣

∣

∣

≤





p
∑

j=1

(φ̂j,n − φj)
2





1/2 

(n− p)−1
n
∑

t=p+1

p
∑

j=1

(∆yt−j)
2





1/2

.

(26)

As φ̂j,n−φj = Op

(

(lnn/n)1/2
)

+o
(

p−1
)

(Chang and Park, 2002, Lemma 3.5) and p(n) = o
(

(n/ lnn)1/4
)

,
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we have





p
∑

j=1

(φ̂j,n − φj)
2





1/2

=





p
∑

j=1

{

Op

(

(lnn/n)1/2
)

+ o
(

p−1
)

}2





1/2

=





p
∑

j=1

{

Op

(

(lnn/n)1/4
)

+ op

(

p−1(lnn/n)1/2
)

+ o
(

p−2
)

}





1/2

=
[

Op

(

p(lnn/n)1/4
)

+ op

(

(lnn/n)1/2
)

+ o
(

p−1
)

]1/2

=
[

op

(

(lnn/n)1/2
)

+ o(p−1)
]1/2

.

(27)

Therefore,

(n− p)−1
n
∑

t=p+1

Ct =
[

op

(

(lnn/n)1/2
)

+ o(p−1)
]1/2

Op(p
1/2) = op(1). (28)

Having shown (21), we now need to show that

(n− p)−1
n
∑

t=p+1

(ε̂t,n)2w = E[(εt)
2w] + op(1). (29)

As in (23), write

ε̂t,n = εt − (∆yt − (yt − ρ̂nyt−1)) −
p
∑

j=1

(φ̂j,n − φj)∆yt−j +

∞
∑

j=p+1

φj∆yt−j

= At,n +Bt,n + Ct,n +Dt,n.

(30)

Using the arguments in (24) to (28), we have

(n− p)−1
n
∑

t=p+1

|Bt,n|2w = op(1), (31a)

(n− p)−1
n
∑

t=p+1

|Ct,n|2w = op(1), (31b)

(n− p)−1
n
∑

t=p+1

|Dt,n|2w = op(1). (31c)

Then

(n− p)−1
n
∑

t=p+1

(ε̂t,n)2w = (n− p)−1
n
∑

t=p+1

(At,n +Bt,n + Ct,n +Dt,n)2w.

If we expand the right-hand side of this last equation, we will get a sum of terms of the form

(n− p)−1
n
∑

t=p+1

Aa
t,nB

b
t,nC

c
t,nD

d
t,n

where a, b, c, d ≥ 0 and a+ b+ c+ d = 2w. Next we apply Hölder’s inequality to each of these terms.

20



Then, because of (31), all these terms are op(1) apart from the term (n− p)−1
∑n

t=p+1 A
2w
t,n. Hence,

(n− p)−1
n
∑

t=p+1

(ε̂t,n)2w = (n− p)−1
n
∑

t=p+1

(εt,n)2w + op(1).

We can then establish (29) by applying the weak law of large numbers.

Finally, we expand the right-hand side of (20) and again apply Hölder’s inequality to the cross-

terms. The proof is then completed using (29) and (21). �

Lemma 2 Suppose Assumptions 1 (with r = 4 and s = 1) and 2 hold. Then as n→ ∞:

(a) there exists a random variable n0 such that supn≥n0

∑∞
j=0 j|ψ̂j,n| <∞ in probability;

(b) sup0≤j≤∞ |ψ̂j,n − ψj | = op(1);

(c) Var∗[ε∗t,n] − σ2
ε = op(1)

(d) Var∗[n−1/2
∑n

t=1 ε
∗
t,n] − σ2 = op(1).

Proof of Lemma 2 (a) As shown in Bühlmann (1995, Lemma 2.2) it is sufficient to prove that

∞
∑

j=0

j|φ̂j,n − φj | = op(1). (32)

From the triangular inequality, we have

∞
∑

j=0

j|φ̂j,n − φj | ≤
∞
∑

j=0

j|φ̂j,n − φ̃j,n| +
∞
∑

j=0

j|φ̃j,n − φj |. (33)

Bühlmann (1995, Proof of Lemma 3.1) shows that
∑∞

j=0 j|φ̃j,n − φj | = o(1) a.s. and furthermore we

have that
∞
∑

j=0

j|φ̂j,n − φ̃j,n| ≤ p2 max
1≤j≤p

|φ̂j,n − φ̃j,n| = op(1). (34)

Hence,
∑∞

j=0 j|φ̂j,n − φj | = op(1) and the proof of part (a) is completed. �

Proof of Lemma 2 (b) See Bühlmann (1995, Proof of Theorem 3.2) for the proof. �

Proof of Lemma 2 (c) and (d) Using Lemma 1 and parts (a) and (b) these results follow as

in Psaradakis (2001, Proof of Lemma 2). �

Lemma 3 Let Sn(r) = n−1/2
∑⌊nr⌋

t=1 u∗t,n and suppose Assumptions 1 (with r = 4 and s = 1) and 2

hold. Then

Sn(r) ⇒ σW (r). (35)

Proof of Lemma 3 See Psaradakis (2001, Proof of Lemma 3). �

Lemma 4 Let ξ∗t,n =
∑t

i=1 u
∗
t,n and let Assumptions 1 (with r = 4 and s = 1) and 2 hold. Then
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a n−3/2
∑n

t=1 ξ
∗
t−1,n ⇒ σ

∫ 1

0 W (r)dr,

b n−2
∑n

t=1 ξ
∗2
t−1,n ⇒ σ2

∫ 1

0
W (r)2dr,

c n−5/2
∑n

t=1 tξ
∗
t−1,n ⇒ σ

∫ 1

0 rW (r)dr,

d n−1
∑n

t=1 ξ
∗
t−1,nu

∗
t,n ⇒ σ2

∫ 1

0
W (r)dW (r) + 1

2 (σ2 − σ2
u),

e n−3/2
∑n

t=1 tu
∗
t,n ⇒ σ

∫ 1

0
rdW (r).

Proof of Lemma 4 See Psaradakis (2001, Proof of Lemma A.1). �

Proof of Theorem 1 See Psaradakis (2001, Proof of Theorem 1). �

A.2 Proof of Theorem 2

Again we first need several lemmas.

Lemma 5 Let Assumption 1 (with r ≥ 4 and s ≥ 1) hold and let p(n) = o((n/ lnn)1/2). Then it

follows that

(a) max1≤j≤p |φ̂j,n − φj | = Op((lnn/n)1/2) + o(p−s)

(b) σ̂2
n = σ2 +Op((lnn/n)1/2) + o(p−s)

(c)
∑p

j=1 φ̂j,n =
∑∞

j=1 φj +Op(p(lnn/n)1/2) + o(p−s).

Proof of Lemma 5 part (a) See Chang and Park (2002, Lemma 3.5). �

Proof of Lemma 5 part (b) See Bühlmann (1995, Proof of Theorem 3.2) �

Proof of Lemma 5 part (c) See Chang and Park (2002, Lemma 3.5). �

Lemma 6 Let Assumption 1 (with r ≥ 4 and s ≥ 1) hold and let p(n) = o((n/ lnn)1/2). Then

n1−r/2 E∗ |ε∗t,n|r
p−→ 0 and

W ∗
n (i) =

1

σ̂n
√
n

[ni]
∑

k=1

ε∗k,n
d∗−→W (i) as n→ ∞.

Proof of Lemma 6 As shown in Park (2002, Theorem 2.2) we only need to show

n1−r/2 E∗ |ε∗t,n|r = n1−r/2

(

1

n

n
∑

t=1

∣

∣

∣

∣

∣

ε̂t,n − 1

n

n
∑

t=1

ε̂t,n

∣

∣

∣

∣

∣

r)

p−→ 0. (36)

Our proof will follow the lines of Park (2002, Proof of Lemma 3.2). We have that

1

n

n
∑

t=1

∣

∣

∣

∣

∣

ε̂t,n − 1

n

n
∑

t=1

ε̂t,n

∣

∣

∣

∣

∣

r

≤ c(An +Bn + Cn +Dn) (37)
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where

An =
1

n

n
∑

t=1

|εt|r Bn =
1

n

n
∑

t=1

|εt,n − εt|r

Cn =
1

n

n
∑

t=1

|ε̂t,n − εt,n|r Dn =

∣

∣

∣

∣

∣

1

n

n
∑

t=1

ε̂t,n

∣

∣

∣

∣

∣

r

and

εt,n = ∆yt −
p
∑

j=1

φj∆yt−j . (38)

ε̂t,n is defined in (15). Furthermore, let φj,n be defined such that in

∆yt =

p
∑

j=1

φj,n∆yt−j + et,n, (39)

et,n is uncorrelated with ∆yt−1, . . . ,∆yt−p.

Hence we have to show that n1−r/2An, n1−r/2Bn, n1−r/2Cn and n1−r/2Dn
p−→ 0. The results for

An and Bn are shown in Park (2002, Proof of Lemma 3.2).

Next we turn to Cn. We write

ε̂t,n = yt − ρ̂nyt−1 −
p
∑

j=1

φ̂j,n∆yt−j

= (yt − ρ̂nyt−1 − ∆yt) + (∆yt −
p
∑

j=1

φ̂j,n∆yt−j)

= −(ρ̂n − 1)yt−1 + (εt,n −
p
∑

j=1

(φ̂j,n − φj,n)∆yt−j −
p
∑

j=1

(φj,n − φj)∆yt−j)

(40)

It then follows that

|ε̂t,n − εt,n|r ≤ c



|(ρ̂n − 1)yt−1|r +

∣

∣

∣

∣

∣

∣

p
∑

j=1

(φ̂j,n − φj,n)∆yt−j

∣

∣

∣

∣

∣

∣

r

+

∣

∣

∣

∣

∣

∣

p
∑

j=1

(φj,n − φj)∆yt−j

∣

∣

∣

∣

∣

∣

r

 . (41)

where c = 3r−1. We define

C0n =
1

n

n
∑

t=1

|(ρ̂n − 1)yt−1|r (42a)

C1n =
1

n

n
∑

t=1

∣

∣

∣

∣

∣

∣

p
∑

j=1

(φ̂j,n − φj,n)∆yt−j

∣

∣

∣

∣

∣

∣

r

(42b)

C2n =
1

n

n
∑

t=1

∣

∣

∣

∣

∣

∣

p
∑

j=1

(φj,n − φj)∆yt−j

∣

∣

∣

∣

∣

∣

r

(42c)

so that it needs to be shown that n1−r/2Cin
a.s.−−→ 0 for i = 0, 1, 2. The result for C2n follows from

Park (2002, Proof of Lemma 3.2).
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Again following Park (2002, Proof of Lemma 3.2), C1n is majorised by

(

max
1≤j≤p

|φ̂j,n − φj,n|r
)

1

n

n
∑

t=1

p
∑

j=1

|∆yt−j |r

≤
(

max
1≤j≤p

|φ̂j,n − φj,n|r
)

p

n

(

n−1
∑

t=0

|∆yt|r +

1−p
∑

t=−1

|∆yt|r
)

≤ c

(

max
1≤j≤p

(|φ̃j,n − φj,n|r + |φ̂j,n − φ̃j,n|r)
)

p

n

(

n−1
∑

t=0

|∆yt|r +

1−p
∑

t=−1

|∆yt|r
)

=
[

O ((lnn/n)r) +Op

(

n−r
)]

(p/n)O(n) = O (p(lnn/n)r) = op

(

(lnn/n)r−1/2
)

.

(43)

As r ≥ 4, C1n
p−→ 0.

Next we consider C0n. Rewrite the expression in (42a) for C0n as

1

n

n
∑

t=1

|(ρ̂n − 1)yt−1|r = |ρ̂n − 1|r 1

n

n
∑

t=1

|yt−1|r = op(1). (44)

This proves that n1−r/2Cn
p−→ 0.

For Dn we need to prove that

1

n

n
∑

t=1

ε̂t,n =
1

n

n
∑

t=1

εt,n + op(1) =
1

n

n
∑

t=1

εt + op(1), (45)

which, by (40) and the result that εt,n = εt +
∑∞

j=p+1 φj∆yt−j , holds if

1

n

n
∑

t=1

∞
∑

j=p+1

φj∆yt−j
p−→ 0, (46)

1

n

n
∑

t=1

∞
∑

j=p+1

(φj,n − φj)∆yt−j
p−→ 0, (47)

1

n

n
∑

t=1

∞
∑

j=p+1

(φ̂j,n − φj,n)∆yt−j
p−→ 0, (48)

1

n

p
∑

t=1

(1 − ρ̂n)yt−1
p−→ 0, (49)

where (46) and (47) follow from Park (2002, Proof of Lemma 3.2). For (48) we define

Nn =

p
∑

j=1

(φ̂j,n − φj,n)

n
∑

t=1

∆yt−j (50)

and

Qn =

p
∑

j=1

∣

∣

∣

∣

∣

n
∑

t=1

∆yt−j

∣

∣

∣

∣

∣

. (51)
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Then Nn is dominated by

Qn max
1≤j≤p

|φ̂j,n − φj,n|. (52)

Park (2002, Proof of Lemma 3.2) shows that Qn = o
(

pn1/2(lnn)1/r(ln lnn)(1+δ)/r
)

a.s. for any δ > 0.

Furthermore,

max
1≤j≤p

|φ̂j,n − φj,n| ≤ max
1≤j≤p

(|φ̃j,n − φj,n| + |φ̂j,n − φ̃j,n|) = O
(

(lnn/n)1/2
)

a.s. +Op

(

n−1
)

, (53)

from which we can conclude that Nn = op(n), which proves the result.

Finally, from (25) it is easy to see (49) holds as well. This completes the proof of Dn and hence

of Lemma 6. �

Lemma 7 Let Assumption 1 (with r ≥ 4 and s ≥ 1) hold and let p(n) = O((n/ lnn)1/3). Then

V ∗
n (i) =

1√
n

[ni]
∑

k=1

u∗k,n
d∗−→ σ





∞
∑

j=0

ψj



W (i) as n→ ∞.

Proof of Lemma 7 Given Lemma 2, see Park (2002, Proof of Theorem 3.3). �

Lemma 8 Let ω2 = (1/n)
∑n

t=1 ∆yt and ω∗2 = (1/n)
∑n

t=1 ∆y∗t . Furthermore assume that Assump-

tion 1 holds with r ≥ 4 and s ≥ 1. and p(n) = o((n/ lnn)1/2). Then we have for any δ > 0,

P [|ω∗2 − ω2| ≥ δ]
p−→ 0.

Proof of Lemma 8 See Park (2002, Proof of Lemma 4.1). �

Proof of Theorem 2 Given Lemmas 5 to 8, all the relevant lemmas found in Chang and Park

(2003) are valid for the test with residuals. The proof then concludes by Chang and Park (2003, Proof

of Theorem 2). �
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Table 1: Main features of the tests.
Testa Bootstrap Method Based on Test Statistic

τS,d Sieve Differences DF τ
tS,d Sieve Differences DF t
τS,r Sieve Residuals DF τ
tS,r Sieve Residuals DF t
τa
S,d Sieve Differences ADF τ

taS,d Sieve Differences ADF t

τa
S,r Sieve Residuals ADF τ

taS,r Sieve Residuals ADF t

τB,r Block Residuals DF τ
τB,d Block Differences DF τ
τa
B,r Block Residuals ADF τ

τa
B,d Block Differences ADF τ

τSt,d Stationary Differences DF τ
tSt,d Stationary Differences DF t
τSt,r Stationary Residuals DF τ
tSt,r Stationary Residuals DF t

aWe use τ for a coefficient test and t for a t-test. The first subscript indicates the bootstrap method:
S stands for sieve bootstrap, B for block bootstrap, and St for stationary bootstrap; the second subscript
indicates whether a test is based on differences (d) or residuals (r). A superscript a states that the test is an
augmented DF test.
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Panel A: Sieve tests

τS,d tS,d τS,r tS,r τa
S,d taS,d τa

S,r taS,r

Explanatory variables up to order O(1)

L(Pa) 1.15 1.15 0.95 0.95 1.01 0.91 0.95 0.93
(0.03) (0.03) (0.02) (0.02) (0.02) (0.01) (0.02) (0.01)

Adj. R2 0.76 0.77 0.66 0.66 0.82 0.89 0.82 0.91

Explanatory variables up to order O(n−1/2)

L(Pa) 0.86 0.87 0.96 0.96 0.95 0.99 0.97 1.02
(0.03) (0.03) (0.02) (0.02) (0.02) (0.01) (0.02) (0.02)

Adj. R2 0.95 0.95 0.95 0.95 0.97 0.98 0.97 0.98

Explanatory variables up to order O(n−1)

L(Pa) 0.88 0.87 0.98 1.00 0.86 0.96 1.00 1.00
(0.03) (0.04) (0.02) (0.02) (0.03) (0.01) (0.01) (0.01)

Adj. R2 0.95 0.95 0.95 0.95 0.97 0.98 0.97 0.98

Panel B: Block-type tests

τB,r τB,d τa
B,r τa

B,d τSt,d tSt,d τSt,r tSt,r

Explanatory variables up to order O(1)

L(Pa) 0.68 1.05 1.04 1.34 1.20 1.23 0.69 0.64
(0.08) (0.05) (0.04) (0.05) (0.05) (0.05) (0.09) (0.09)

Adj. R2 0.12 0.40 0.48 0.45 0.46 0.53 0.11 0.10

Explanatory variables up to order O(n−1/2)

L(Pa) 0.50 1.03 1.17 1.72 1.15 1.12 0.51 0.53
(0.12) (0.06) (0.06) (0.12) (0.06) (0.06) (0.14) (0.13)

Adj. R2 0.88 0.93 0.85 0.71 0.93 0.93 0.86 0.87

Explanatory variables up to order O(n−1)

L(Pa) 0.90 1.07 0.92 1.30 1.23 1.19 0.91 0.87
(0.03) (0.05) (0.02) (0.05) (0.06) (0.05) (0.03) (0.03)

Adj. R2 0.95 0.94 0.91 0.93 0.93 0.95 0.95 0.95

Table 2: Response surfaces of size
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τS,d tS,d τS,r tS,r τa
S,d taS,d τa

S,r taS,r

Explanatory variables up to order O(1)

L(Pa) 1.54 1.52 0.97 0.95 0.98 0.86 0.90 0.86
(0.11) (0.11) (0.05) (0.05) (0.05) (0.04) (0.05) (0.04)

Constant 1.50 1.47
(0.36) (0.36)

(ρ− 1) -50.58 -50.06 -58.09 -57.19 -54.45 -50.47 -51.80 -48.52
(5.48) (5.39) (6.17) (6.14) (6.62) (5.48) (6.33) (5.14)

(ρ− 1)2 -116.14 -116.80 -120.31 -117.36 -125.90 -123.84 -111.34 -122.96
(27.79) (27.35) (31.37) (31.37) (31.61) (26.28) (30.68) (24.47)

(ρ− 1)3

Adj. R2 0.55 0.55 0.51 0.50 0.49 0.51 0.49 0.52

Explanatory variables up to order O(n−1/2)

L(Pa) 1.54 1.52 1.04 1.03 2.19 1.98 2.03 1.98
(0.04) (0.04) (0.02) (0.02) (0.17) (0.15) (0.15) (0.14)

Constant 2.75 2.77 4.52 3.92 3.94 3.78
(0.21) (0.21) (0.59) (0.52) (0.55) (0.52)

(ρ− 1) -131.44 -128.45 -162.95 -159.51 -140.67 -127.78 -139.64 -139.05
(6.46) (6.81) (5.80) (6.24) (9.02) (7.13) (8.22) (10.26)

(ρ− 1)2 -335.05 -328.89 -405.38 -393.02 -362.25 -336.56 -340.95 -564.93
(33.69) (35.75) (32.58) (35.33) (43.06) (35.43) (39.92) (106.11)

(ρ− 1)3 -741.68
(327.03)

Adj. R2 0.95 0.94 0.93 0.93 0.89 0.89 0.90 0.89

Explanatory variables up to order O(n−1)

L(Pa) 3.36 3.39 1.33 1.04 3.40 3.17 3.20 3.16
(0.39) (0.40) (0.13) (0.02) (0.61) (0.51) (0.55) (0.50)

Constant 10.49 9.12 1.52 10.89 8.12 9.92 8.14
(1.37) (1.48) (0.51) (2.09) (1.84) (1.93) (1.78)

(ρ− 1) -180.89 -235.58 -272.02 -276.88 -179.23 -242.31 -183.29 -238.07
(8.11) (18.61) (14.28) (13.88) (9.43) (31.97) (8.73) (30.72)

(ρ− 1)2 -477.17 -888.64 -742.83 -764.57 -362.25 -991.26 -340.95 -1048.42
(52.85) (133.58) (87.88) (92.06) (38.60) (239.34) (33.83) (231.53)

(ρ− 1)3 -473.46 -1240.03 -1484.91 -1616.62
(165.86) (274.24) (493.75) (481.09)

Adj. R2 0.97 0.97 0.96 0.96 0.92 0.93 0.94 0.92

Table 3: Response surfaces of power - part I
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τB,r τB,d τa
B,r τa

B,d τSt,d tSt,d τSt,r tSt,r

Explanatory variables up to order O(1)

L(Pa) 1.09 1.48 0.96 1.23 1.72 1.87 1.15 1.07
(0.22) (0.16) (0.06) (0.06) (0.16) (0.16) (0.22) (0.22)

Constant 1.79 1.48 1.83 2.27 2.02 1.97
(0.78) (0.55) (0.55) (0.53) (0.82) (0.81)

(ρ− 1) -71.93 -62.79 -52.52 -46.45 -59.59 -57.91 -70.66 -69.22
(11.42) (8.34) (7.03) (6.90) (8.41) (8.11) (11.98) (11.76)

(ρ− 1)2 -174.04 -123.95 -97.71 -81.61 -112.72 -112.41 -170.92 -169.64
(52.80) (40.98) (33.92) (32.77) (41.34) (40.01) (55.16) (53.93)

(ρ− 1)3

Adj. R2 0.31 0.47 0.50 0.49 0.48 0.49 0.29 0.28

Explanatory variables up to order O(n−1/2)

L(Pa) 0.48 1.48 1.93 2.40 1.72 1.52 0.46 0.68
(0.21) (0.06) (0.18) (0.30) (0.06) (0.12) (0.21) (0.24)

Constant 1.02 1.71 2.94 2.56 2.16 1.58 1.26 0.89
(0.34) (0.36) (0.63) (1.04) (0.38) (0.23) (0.35) (0.39)

(ρ− 1) -178.26 -171.88 -147.07 -133.75 -164.84 -161.46 -170.06 -265.95
(14.23) (10.89) (10.53) (15.79) (11.50) (11.47) (14.47) (50.81)

(ρ− 1)2 -562.84 -457.14 -334.33 -304.25 -422.11 -416.20 -533.99 -2035.21
(65.82) (52.36) (48.79) (74.40) (55.18) (56.45) (67.15) (711.28)

(ρ− 1)3 -5177.00
(2381.08)

Adj. R2 0.89 0.93 0.90 0.80 0.93 0.92 0.89 0.89

Explanatory variables up to order O(n−1)

L(Pa) 0.53 1.48 1.93 2.40 1.72 1.65
(0.17) (0.05) (0.14) (0.17) (0.05) (0.10)

Constant 0.70 3.49 3.70 1.06 1.58 1.02 0.94
(0.20) (0.52) (0.65) (0.20) (0.20) (0.34) (0.33)

(ρ− 1) -351.34 -324.64 -204.24 -172.79 -313.36 -287.02 -276.15 -275.72
(39.12) (21.19) (8.50) (8.93) (21.05) (23.15) (35.27) (34.28)

(ρ− 1)2 -1979.17 -1068.85 -334.33 -304.25 -992.24 -889.42 -2067.15 -2150.97
(350.62) (130.46) (36.81) (42.35) (129.22) (133.88) (505.94) (488.18)

(ρ− 1)3 -3170.25 -5169.89 -5536.15
(782.36) (1732.32) (1664.08)

Adj. R2 0.91 0.95 0.94 0.91 0.95 0.95 0.92 0.92

Table 4: Response surfaces of power - part II

29



(a) DF tests

(b) ADF tests

Figure 1: Size as a function of φ and θ for sieve tests

30



(a) Block tests

(b) Stationary tests

Figure 2: Size as a function of φ and θ for block-type tests
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Figure 3: Power curves for sieve tests
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Figure 4: Power curves for block-type tests
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