CIEM5110-2: FEM, lecture 4.2

Plastic hinges and arc-length

Frans van der Meer and Iuri Rocha

Agenda

Another lecture on nonlinear analysis of frames

- Material nonlinearity in the form of plastic hinges
- Arclength solution method
- Comparison with analytical rigid-plastic solution from *Stability* unit

CIEM5110-2 workshops and lectures

	(Theory)	BarModel (MUDE)	SolidModel (1.2)	TimoshenkoModel (2.1)	FrameModel (4.1)
SolverModule	(1.2)	2.2	2.2	3.2	3.2
NonlinModule	(3.1)		6.1		4.1 + <mark>4.2</mark> + 5.1
ArclenModule	(4.2)				4.2
LinBuckModule	(4.1)				4.1 + 5.1
ModeShapeModule	(6.2)		7.1		7.1 + 8.1
ExplicitTimeModule	(6.2)				7.2 + 8.1
NewmarkModule	(6.2)				7.2 + 8.1

Nonlinear finite element analysis

Nonlinear system of equations

 $\mathbf{f}_{\mathrm{int}}(\mathbf{a}) = \mathbf{f}_{\mathrm{ext}}$

with

$$\mathbf{f}_{\text{int}} = \int \mathbf{B}^T \boldsymbol{\sigma} \, \mathrm{d}\Omega$$

- Material nonlinearity ($\sigma(\mathbf{a})$) and/or geometric nonlinearity ($\mathbf{B}(\mathbf{a})$)
- Incremental-iterative analysis: "time stepping"
- Displacement control or load control
- Newton-Raphson scheme to solve nonlinear system of equations
- Arclength method for snapback and for post-peak response with proportional loads

Nonlinear finite element analysis

Nonlinear system of equations

$$\mathbf{f}_{\mathrm{int}}(\mathbf{a}) = \mathbf{f}_{\mathrm{ext}}$$

with

$$\mathbf{f}_{\text{int}} = \int \mathbf{B}^T \boldsymbol{\sigma} \, \mathrm{d}\Omega$$

- Material nonlinearity ($\sigma(\mathbf{a})$) and/or geometric nonlinearity ($\mathbf{B}(\mathbf{a})$)
- Incremental-iterative analysis: "time stepping"
- Displacement control or load control
- Newton-Raphson scheme to solve nonlinear system of equations
- Arclength method for snapback and for post-peak response with proportional loads Two arc-length parameters: $\Delta \ell$ and β

$$\Delta \ell = \sqrt{\Delta \mathbf{a} \cdot \Delta \mathbf{a} + \beta^2 \Delta \mathbf{f} \cdot \Delta \mathbf{f}}$$

Plastic hinges in pyJive

The framemodel can deal with plastic hinges:

- **Set** plastic = True
- Define Mp as additional material parameter
- Use subtype = linear or subtype = nonlin for geometrically linear/nonlinear analysis

Plastic hinges in pyJive

The framemodel can deal with plastic hinges:

- **Set** plastic = True
- Define Mp as additional material parameter
- Use subtype = linear or subtype = nonlin for geometrically linear/nonlinear analysis

When bending moment exceeds plastic moment, a plastic hinge is added

- Additional rotational degree of freedom is introduced
- External forces are added (pair of opposite bending moments)

Plastic hinges in pyJive

The framemodel can deal with plastic hinges:

- **Set** plastic = True
- Define Mp as additional material parameter
- Use subtype = linear or subtype = nonlin for geometrically linear/nonlinear analysis

When bending moment exceeds plastic moment, a plastic hinge is added

- Additional rotational degree of freedom is introduced
- External forces are added (pair of opposite bending moments)

The code could be made more complete by adding

- Possibility of unloading of plastic hinge
- Influence of normal force on $M_{\rm p}$
- Development of plasticity in nonlinear $M(\kappa)$ -relation

Plastic hinges in solution algorithm: single time step

Require: Solution from previous time step \mathbf{a}^n

Require: Nonlinear relation ${\bf f}_{\rm int}({\bf a})$ with ${\bf K}({\bf a})=\frac{\partial {\bf f}_{\rm int}}{\partial {\bf a}}$

1: Get new external force vector: $\mathbf{f}_{\mathrm{ext}}^{n+1}$

2: Initialize new solution at old one: $\mathbf{a}^{n+1} = \mathbf{a}^n$

3: Compute internal force and stiffness: $f_{int}^{n+1}(a^{n+1})$, $K^{n+1}(a^{n+1})$

4: Evaluate residual: $\mathbf{r} = \mathbf{f}_{\text{ext}}^{n+1} - \mathbf{f}_{\text{int}}^{n+1}$

5: repeat

- 6: Solve linear system of equations: $\mathbf{K}^{n+1}\Delta \mathbf{a} = \mathbf{r}$
- 7: Update solution: $\mathbf{a}^{n+1} = \mathbf{a}^{n+1} + \Delta \mathbf{a}$
- 8: Compute internal force and stiffness: $\mathbf{f}_{int}^{n+1}(\mathbf{a}^{n+1})$, $\mathbf{K}^{n+1}(\mathbf{a}^{n+1})$
- 9: Evaluate residual: $\mathbf{r} = \mathbf{f}_{\text{ext}}^{n+1} \mathbf{f}_{\text{int}}^{n+1}$

10: **until** $|\mathbf{r}| < \text{tolerance}$

11: if $\max(abs(M)) > M_p$ then

- 12: Insert plastic hinge at the position of max(abs(M))
- 13: Go back to 3.
- 14: **else**
- 15: Go to next time step
- 16: **end if**

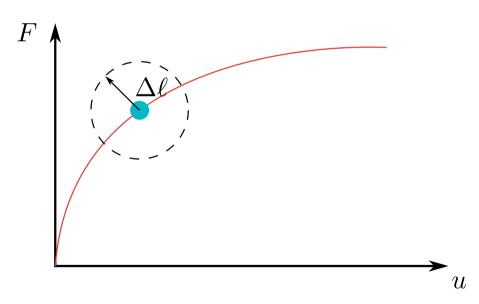
A check is added to the end of the algorithm for a single time step.

See lines 11-16

Arc-length control – linearization

Redefine the external load vector:

$$\mathbf{r}(\mathbf{a}) = \mathbf{f}_{\text{ext}} - \mathbf{f}_{\text{int}}(\mathbf{a}) \Rightarrow \mathbf{r}(\mathbf{a}, \lambda) = \lambda \hat{\mathbf{f}} - \mathbf{f}_{\text{int}}(\mathbf{a})$$



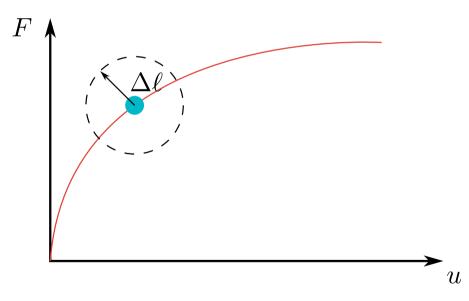
Arc-length control – linearization

Redefine the external load vector:

$$\mathbf{r}(\mathbf{a}) = \mathbf{f}_{\text{ext}} - \mathbf{f}_{\text{int}}(\mathbf{a}) \quad \Rightarrow \quad \mathbf{r}(\mathbf{a}, \lambda) = \lambda \hat{\mathbf{f}} - \mathbf{f}_{\text{int}}(\mathbf{a})$$

Too many unknowns, so introduce a new constraint equation:

 $g\left(\Delta \mathbf{a}, \Delta \lambda, \Delta \ell\right) = 0$



Arc-length control – linearization

Redefine the external load vector:

$$\mathbf{r}(\mathbf{a}) = \mathbf{f}_{\text{ext}} - \mathbf{f}_{\text{int}}(\mathbf{a}) \quad \Rightarrow \quad \mathbf{r}(\mathbf{a}, \lambda) = \lambda \hat{\mathbf{f}} - \mathbf{f}_{\text{int}}(\mathbf{a})$$

Too many unknowns, so introduce a new constraint equation:

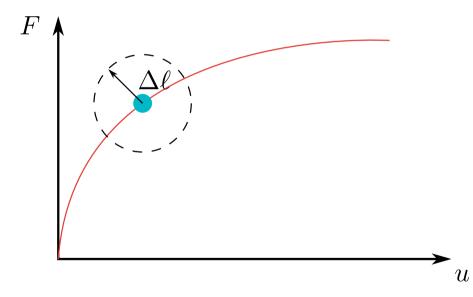
 $g\left(\Delta \mathbf{a}, \Delta \lambda, \Delta \ell\right) = 0$

The linearization then changes:

$$\begin{bmatrix} \mathbf{K} & -\hat{\mathbf{f}} \\ \mathbf{h}^{\mathrm{T}} & s \end{bmatrix} \begin{bmatrix} \Delta \mathbf{a} \\ \Delta \lambda \end{bmatrix} = \begin{bmatrix} \mathbf{r} \\ -g \end{bmatrix}$$

where:

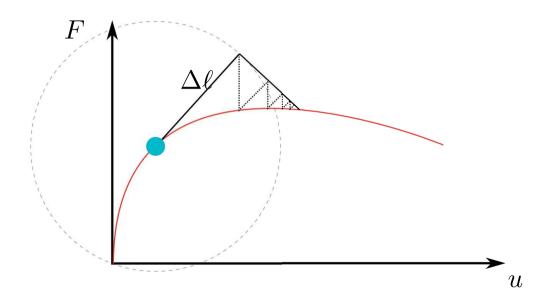
$$\mathbf{h} = \frac{\partial g}{\partial \mathbf{a}} \quad s = \frac{\partial g}{\partial \lambda}$$



Arc-length control – constraints

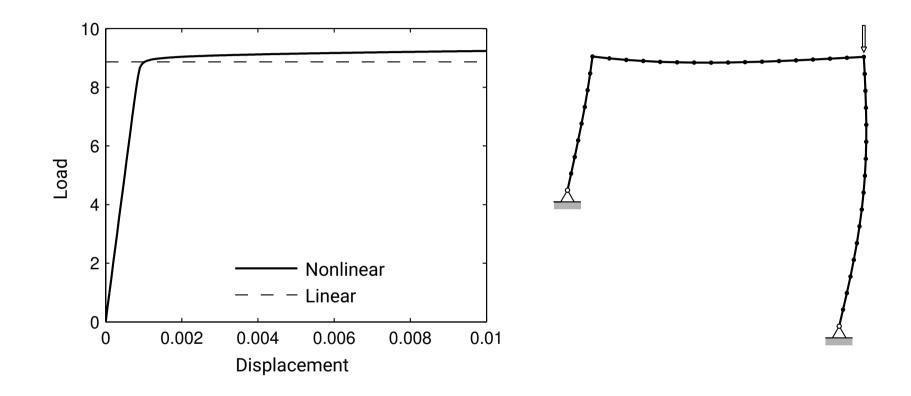
Linearized constraint, modified linearization

• Implemented in pyJive

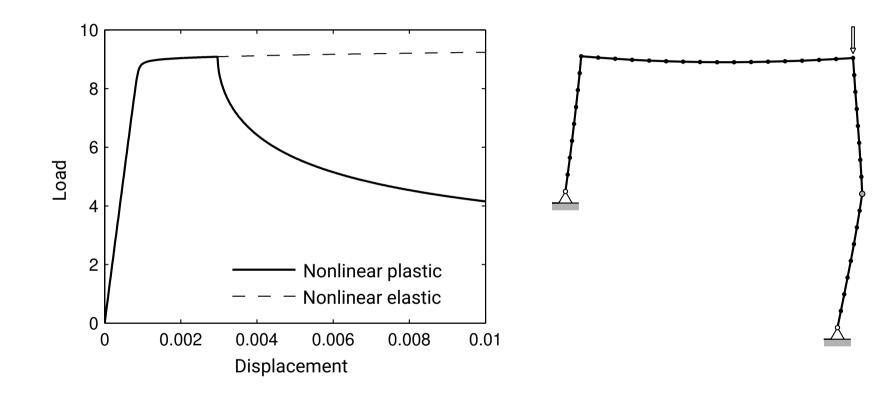


$$g = \Delta \mathbf{a}_0^{\mathrm{T}} \Delta \mathbf{a}_{j+1} + \beta^2 \Delta \lambda_0 \Delta \lambda_{j+1} \hat{\mathbf{f}}^{\mathrm{T}} \hat{\mathbf{f}} - \Delta \ell^2$$

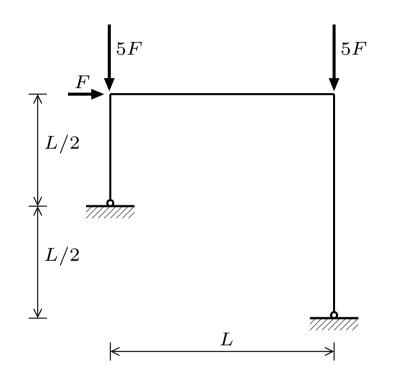
First load case (treated in elastic FEM lecture)



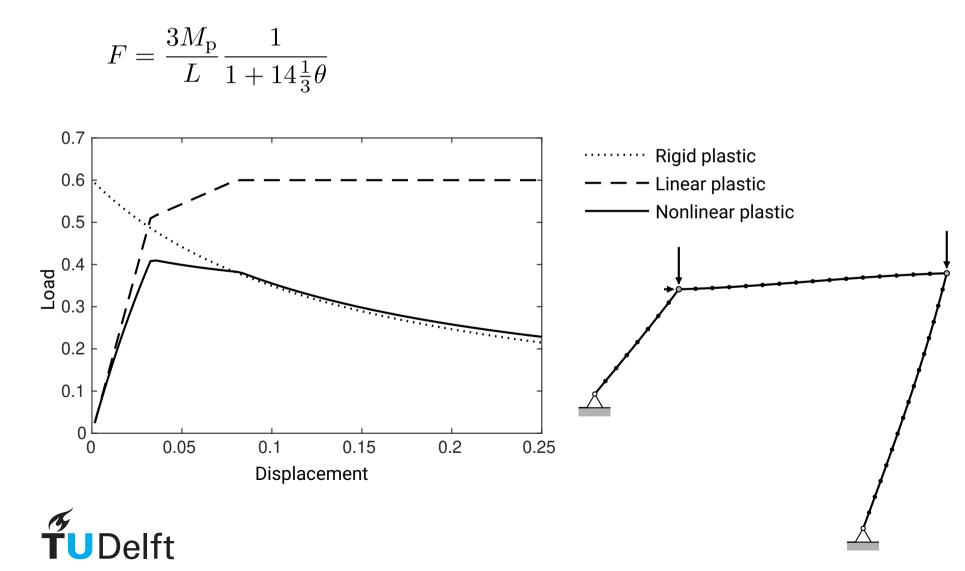
Results after adding plasticity



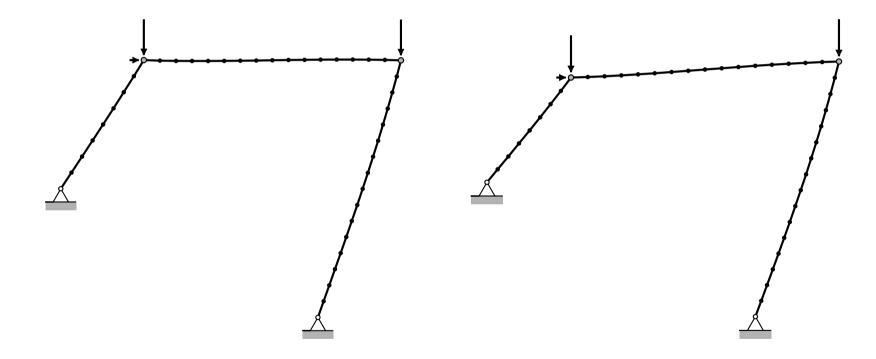
Second load case (treated in plasticity lecture): Including lateral load



Second load case (treated in plasticity lecture): Including lateral load Results from rigid-plastic hand calculation:



Second load case (treated in plasticity lecture): Including lateral load Comparing geometrically linear/nonlinear collapse mechanism



Final considerations

Different approaches to the problem of structural collapse

- Linear buckling analysis
- Geometrically nonlinear elastic FEA
- Linear plastic hand calculation
- Nonlinear (2nd order) plastic hand calculation
- Full nonlinear FEA

Essential choices for running nonlinear FEA

- Watch out for bifurcations
- Choose appropriate increments (force/displacement/arclength)
- Consistent linearization

