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Abstract

We study a model in which agents with single-peaked preferences can participate

in a costly voting procedure to determine the value of a one-dimensional variable. We

show that, for all positive participation cost and all profiles of individual preferences,

there exists a generically unique equilibrium with one single participant whenever the

voting mechanism is strategy-proof, anonymous, and responsive in the sense that the

outcome reacts to a unanimous move of the votes of all agents in the same direction.

Since this single participant is never the median voter, we obtain as a corollary that no

deterministic mechanism can implement the median if all participants vote according

to their unique dominant strategy; even worse, the peak of the single participant in

equilibrium is maximally far away from the median voter. By contrast, there are simple

∗Previous versions of this work have been presented at the conference ‘Improving Public Debate
and Political Decision Making,’ London, March 2019, the ‘International Conference on Mathemat-
ical Programming and Fair Social Decisions,’ Paris, December 2019, and in seminars at Université
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probabilistic strategy-proof mechanisms that yield the median as outcome. Inspired

by this observation, we investigate if the median can be ‘approximately implemented’

by a natural deterministic counterpart, and come to a negative conclusion.
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1 Introduction

One of the central possibility results in social choice theory, the median voter the-

orem, demonstrates that pairwise majority voting implements the median if voters’

preferences are single-peaked. More generally, by a path-breaking result of Moulin

(1980), there is an entire class of ‘strategy-proof’ social choice functions that are

implementable in dominant strategies if all voters’ preferences are single-peaked, the

class of ‘generalized’ medians. Within this class the standard median has the im-

portant property that it minimizes the sum of the distances to the individual top

alternatives. If individual utilities can be measured by objective distance, the median

thus represents the utilitarian welfare optimum for the group of individuals.

However, this positive result assumes that voting is costless and that all vot-

ers therefore indeed participate in the collective decision making process. In this

paper, we prove a general result on dominant strategy implementation under single-

peakedness if voting is costly. We consider the class of anonymous voting rules that

are strategy-proof for any given set of participants and satisfy a weak condition of

responsiveness. We show that such voting rules can only have one of two possible

outcomes: either the choice of the lowest, or the highest top alternative among the

potential voters; moreover, in the (generically) unique dominant strategy equilibrium

only one voter actually participates and casts a vote. This result holds indepen-

dently of how participation costs are specified, as long as every voter prefers not to

participate if the outcome does not change by her (unilateral) abstention.

Our main result thus uncovers a tension between two fundamental kinds of incen-

tive properties of voting mechanisms: strategy-proofness, i.e. the incentive to reveal

preferences truthfully, and participation, i.e. the incentive to invest the cost of cast-

ing one’s vote. Strategy-proofness is desirable because without it the social outcome

cannot be assessed vis-à-vis the true preferences of voters.1 But for the same rea-

son, participation is crucial because one cannot assess the merit of an alternative as

1For a closely related recent argument for strategy-proofness, see Dasgupta and Maskin (2019).
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a social outcome if only few of the agents in fact provide information about their

respective preferences even if these signals are truthful. Our analysis is based on the

pivotal voter model (Downs, 1957; Palfrey and Rosenthal, 1983) which posits that

rational agents will engage in a voting procedure if and only if the expected benefit of

doing so exceeds its costs. Since the expected benefit can be positive only if an agent

is indeed able to influence the outcome, the possibility of being pivotal is essential

for a positive participation decision whenever participation comes even at a small

but positive cost. On the other hand, strategy-proofness limits the extent to which

an agent can influence the outcome; specifically, in our context strategy-proofness

implies the property of uncompromisingness, i.e. voters cannot change the outcome

by taking more extreme positions on the same side of the outcome, see e.g. Sprumont

(1995).

Our analysis is embedded in a simple voting model with complete information.

Our main departure from the bulk of the literature on the pivotal voter model is

that we assume a rich one-dimensional space of alternatives in which individuals

generically have different top alternatives. As we shall see, this radically changes

the properties of equilibria. Of course, our assumption requires that there are more

alternatives than voters, therefore our model applies to decisions in small committees

and not to ‘large’ elections in which there are many more voters than alternatives.

Agents take two decisions: whether or not to participate in the voting procedure,

and if so, which vote to cast. We consider two versions of this general set-up: a

sequential model and a simultaneous model. The sequential model has two stages:

in the first stage agents simultaneously decide whether or not to participate in a

committee, and in the second stage a simultaneous vote is cast by the committee

members on the level of a one-dimensional variable. In the simultaneous model, the

participation and voting decisions are made simultaneously by all agents. In either

model, we assume that agents incur positive cost if and only if they in fact cast a

vote. We shall see that while the two models may lead to different predictions in
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general, for our main result the timing of decisions is in fact not relevant. In order

to ensure the existence of strategy-proof voting mechanisms, we will assume that

voters’ preferences are single-peaked. In this case, the class of all anonymous and

strategy-proof mechanisms for a fixed number of participants has been characterized

by Moulin (1980) as the generalized median mechanisms, or the median rule with

‘phantom voters.’

As a simple example, think of a faculty meeting on a Friday afternoon at which

the yearly expenditure shares, say, for research and teaching have to be determined

(given a fixed budget). Each faculty member deliberates about whether or not to

participate in the voting procedure. In the sequential model, one can think of the

participation decision as being taken before the actual meeting. In the simultaneous

model, there could be an announcement during the meeting that a vote would be taken

after extensive discussion, and committee members may decide to leave early thereby

abstaining from the collective decision. The assumption of complete information is

strong but does not seem to be unrealistic in such a scenario; in fact, since all strategy-

proof mechanisms only depend on the top alternative of each voter, it is sufficient to

know each colleagues’ top choice.

Our main result, Theorem 1, shows that in either version of the model there exists

a generically unique equilibrium in which (at most) one single individual participates

provided that the voting mechanism satisfies, in addition to strategy-proofness and

anonymity, a condition of ‘responsiveness’ in the sense that the collective outcome

reacts to a uniform strict increase (or strict decrease) of all votes. The identity of the

single participant depends on the voting mechanism, but it is always either the agent

with the lowest, or the agent with the highest top alternative.

The conclusion is in stark contrast to other voting mechanisms that are not

strategy-proof. For instance, if the collective outcome is determined to be the av-

erage of the individual votes (Renault and Trannoy, 2005), every voter can shift the

outcome by a positive amount and full participation is indeed an equilibrium if par-
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ticipation costs are sufficiently small. But while anonymous and responsive, taking

the average does evidently not define a strategy-proof mechanism.

The intuition behind the single participation equilibrium under strategy-proofness

is easily explained by looking at the case of two voters. Strategy-proofness and the

responsiveness condition jointly imply that in the case of two voters the outcome must

coincide with one of the two voters’ top alternative; anonymity implies that it cannot

depend on the identity of the voter, hence it must be either the lower or the higher top

alternative. In the first case, if the agent with the lowest top alternative participates,

no other agent has an incentive to participate (since costs are positive); in the latter

case, the same holds if the agent with the highest top alternative participates. The

proof that there are no other equilibria is more involved (see Section 3). Ultimately

then, our main ‘impossibility’ result can be traced back to the fact that strategy-

proofness necessitates the use of an asymmetric tie-breaking rule in the case of an

even number of participants; and the counterfactual situation of an even number of

participants is of course also relevant for the equilibrium even if the potential and

actual number of voters is odd. This observation suggests that the incompatibility of

strategy-proofness and (non-minimal) participation may vanish under a probabilistic

and symmetric tie-breaking rule in the case of an even number of participants, and

we show by means of a simple example that this is indeed true. A detailed analysis

of the probabilistic case is however beyond the scope of the present paper and left to

future work.

Relation to the Literature

The question of participation when voting is costly has been extensively discussed in

the literature ever since the first formal formulation of the pivotal voter model by

Palfrey and Rosenthal (1983), see among many others, Börgers (2004) for a seminal

theoretical contribution and Levin and Palfrey (2007) for empirical results based on

experimental data. The vast majority of the contributions in the literature studies
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the case of majority voting among two alternatives. Under complete information, a

key issue is to analyze the equilibrium consequences of the fact that a large fraction

of voters shares the same preferences. The resulting coordination problem is typically

addressed by an analysis of mixed equilibria, see Nöldeke and Peña (2016); Mavridis

and Serena (2018) for recent contributions. In the present paper, we set this problem

aside by assuming that voters have distinct preferences (and preference tops) which

is the generic case in our framework with a rich set of alternatives.

The paper closest to ours is Osborne et al. (2000). These authors also study

costly voting in committees in a complete information environment with individuals

that have single-peaked preferences. In their model, the authors assume that agents

vote truthfully and show that ‘extreme’ voters are more likely to participate than

‘moderate’ voters. However, in the relevant results of Osborne et al. (2000) the

outcome with an even number of participants is determined by the symmetric median,

i.e. by the average of the two middle votes. But this specification does not give rise to

a strategy-proof voting rule, and in fact sincere voting is no longer optimal in general.

By contrast, in our model participants vote sincerely not by assumption but because

truth-telling is a dominant strategy. While our main result does not strictly contradict

the intuition of Osborne et al. (2000), it qualifies it in an important way. Under the

responsiveness condition, the single participant is indeed always an ‘extreme’ voter:

either the agent with the lowest or the agent with the highest top alternative; but

as explained above, the rationale is not that the moderate voters cancel each other

out. Moreover, without the responsiveness property, equilibria can occur in which

only ‘moderate’ agents participate, see Section 3.1 below. In Section 4, we analyze

optimal (but non-sincere) voting behavior under the symmetric median rule for an

even number of participants. Theorem 2 provides a complete characterization of the

subgame perfect equilibria of the sequential game if participation costs are sufficiently

small but positive; taking the unit interval as outcome space, there are only two types

of equilibria: the single participation of the voter whose peak is closest to the midpoint
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0.5, or (almost) full participation with outcome 0.5.2

2 The model

We denote the set of agents by N = {1, 2, ..., n}. Each agent i is characterized by

a single-peaked (ordinal) preference relation <i over a compact interval in the reals

which we assume to be normalized to unity, i.e. [0, 1] ⊆ R. One possible interpretation

is that each 0 ≤ x ≤ 1 represents the expenditure share for a public project; but there

are other, purely ordinal interpretations as well (e.g. potential positions on a political

spectrum). In fact, none of our results depends on the assumption of a continuous

space of alternatives; what is important is that there are sufficiently many more

alternatives than agents.

Single-peakedness means that each agent i has a unique top alternative 0 ≤ pi ≤ 1

(the ‘peak’) such that, for all x, y ∈ [0, 1], we have x �i y whenever y < x ≤ pi or

pi ≤ x < y.3

Agents decide whether or not to participate in a committee that decides on the

level of the one-dimensional variable x ∈ [0, 1] by a voting procedure. Each agent i

faces a positive participation cost ci > 0. This cost may vary from agent to agent, it

may depend on the finally chosen outcome, and even on the set of the other partici-

pating agents; in fact, all what matters for our purpose is that these costs are strictly

positive for all agents. In particular, we could allow the cost to be private informa-

tion. For each possible non-empty set K ⊆ N of participants, there is a social choice

function FK(<1, ....,<#K) ∈ [0, 1] that maps every profile of preferences of the agents

in K to an outcome in [0, 1]. The collection F = {FK}∅6=K⊆N of these social choice

functions is referred to as a voting mechanism. The employed voting mechanism is

2In the latter case, if there is a voter with top alternative at 0.5 that voter will be the only one
to abstain.

3Note that we do not need to make any assumptions about the comparisons of alternatives on
different sides of the peak; in fact, the preference relation may even be incomplete and refrain from
making such comparisons.
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common knowledge among the agents.

In our model with endogenous participation, we need to specify agents’ preferences

<̂i over pairs (x,K) of outcomes and sets of participants K who actually cast a vote.

We denote by x0 the (exogenously determined) outcome if nobody participates in the

voting process, and will make the following assumptions. For all i ∈ N ,

(i) the outcome x0 is strictly worse than the most preferred outcome with single

own participation, i.e.

(pi, {i}) �̂i (x0, ∅),

(ii) for every fixed set K 6= ∅ the preference over outcomes is given by <i, i.e.

(x,K) <̂i (y,K) ⇐⇒ x <i y,

(iii) for every fixed x ∈ [0, 1], non-participation is strictly preferred to participation

(and indifference with respect to the composition of the set of participants

otherwise), i.e. for all K,K ′ 6= ∅,

{i 6∈ K or i ∈ K ′} =⇒ (x,K) <̂i (x,K ′),

{i 6∈ K and i ∈ K ′} =⇒ (x,K) �̂i (x,K ′).

Observe that, except for the ‘non-triviality’ condition (i), no assumptions are made

about how agents compare an outcome without participation to a strictly better out-

come with own participation; indeed, such trade-offs would determine the particular

magnitude of participation cost which plays no role in our present analysis.

We will consider two variants of the model, a simultaneous and a sequential ver-

sion. In the sequential version, agents first simultaneously decide whether or not to

participate and vote simultaneously in a second stage after having observed who the

other participants are. By contrast, in the simultaneous version, both the voting

and participation decisions are made simultaneously. While the equilibria in general
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differ in the two models (see the discussion section below), the main conclusions of

the present paper are robust with respect to the timing of decision.

In our main result, Theorem 1 in Section 3 below, we will require the voting

mechanism to be anonymous and strategy-proof. The anonymity condition has two

components: first, for each given set of participants K, the outcome under FK is

invariant with respect to permutations of the agents in K; secondly, the employed

social choice function FK should depend only on the number of agents in K. Using the

latter condition, we can write F k for all social choice functions FK with #K = k, and

describe the voting mechanism F = {F k}1≤k≤n in terms of n social choice functions,

one for each number of participants.

Strategy-proofness requires that truth-telling be a (weakly) dominant strategy for

all participating agents: for all K, i ∈ K, <i, <′i, <K−i,

F k(<i,<K−i) <i F k(<′i,<K−i),

where k = #K and <K−i denotes any profile of preferences for the agents in K other

than i.

By a famous result of Moulin (1980), the conditions of anonymity and strategy-

proofness jointly imply that all social choice functions F k are ‘generalized medians’

with k + 1 so-called ‘phantom voters.’ Specifically, for each k ∈ {2, ..., n}, F k only

depends on the individual peaks, i.e. for some function fk : [0, 1]k → [0, 1]

F k(<1, ....,<k) = fk(p1, ..., pk),

and there exist fixed values αk
1, α

k
2, ..., α

k
k+1 ∈ [0, 1] such that

fk(p1, ..., pk) = med{p1, ..., pk, αk
1, α

k
2, ..., α

k
k+1}, (2.1)

where med denotes the usual median operator and the pi are the peaks of <i for
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each participating agent i; note that there are 2k + 1, i.e. an odd number of values

in (2.1). An important example is the standard median rule with an odd number

of participants; in this case, half of the phantom voters are placed at 0 and half are

placed at 1.

We will say that F k, respectively fk, satisfies responsiveness if, for all p1, ..., pk,

p′1, ..., p
′
k,

p′i > pi for all i ∈ K ⇒ fk(p′1, ..., p
′
k) 6= fk(p1, ..., pk).

Responsiveness can be viewed as a condition of ‘local non-imposition:’ if every agent

desires a strictly higher (lower) outcome, the chosen alternative should move at least

minimally.4

While arguably a weak and plausible condition, responsiveness does restrict the

set of admissible voting mechanisms, as follows.

Observation. The generalized median functions fk in (2.1) satisfy responsiveness if

and only if all ‘phantom voters’ are either at 0 or at 1, i.e. for all j = 1, ..., k + 1,

αk
j ∈ {0, 1}, and neither are all phantom voters located at 0 nor at 1. In particular, in

this case the generalized median always coincides with one of the peaks of the agents

and the corresponding voting mechanism is efficient.

Proof. To verify this, suppose that, for some k and j0 ≤ k + 1, one has 0 < αk
j0
< 1.

Clearly, for any given set of the other phantom voters αk
j , j 6= j0, one can choose

peaks pi ∈ (0, 1) all distinct from αk
j0

such that med{p1, ..., pk, αk
1, ..., α

k
k+1} = αk

j0
.

But then the generalized median does not react to a sufficiently small uniform move

of all peaks. The same is evidently true if all k+ 1 phantom voters are located either

at 0 or at 1. Conversely, if all k + 1 phantom voters are either at 0 or at 1, but not

all of them at the same location, the generalized median must be one of the k peaks

4Intuitively, it should clearly move in the same direction; in the present context, this slightly
stronger requirement is redundant because it follows from responsiveness plus strategy-proofness.
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of the real agents; hence the underlying mechanism is efficient and must react to a

uniform move of all peaks.

It is well-known (Moulin, 1980) that under efficiency, the generalized median func-

tions fk in (2.1) can be assumed to have k− 1 instead of k+ 1 phantom voters. Gen-

eralized medians for which all k − 1 phantom voters are at one of the two extremes

are also known as the order statistics. Specifically, the choice of the i-th lowest value

of the {p1, ..., pk} is referred to as the i-th order statistic, and corresponds to the

generalized median in which k− i phantom voters are at 0 and i− 1 phantom voters

are at 1, see Caragiannis et al. (2016) for further discussion.

In the present work, we are not focusing on the coordination problem that arises

if several agents have the same top alternative. We therefore assume in all what

follows that agents’ peaks are in generic position, i.e. that no two peaks coincide:

pi 6= pj for all pairs i, j ∈ N of distinct agents. If all social choice functions F k are

strategy-proof, voting truthfully is the unique (weakly) dominant strategy for every

participant in the simultaneous game, and in every second-stage voting subgame of

the sequential game. We will therefore assume that all participants who actually

cast a vote submit their true peak. This assumption could be further justified by an

appeal to an equilibrium refinement concept such as perfectness (Selten, 1975), or

strong equilibrium (Aumann, 1959)5.

3 Main result

The following is our main result.

Theorem 1. Suppose that the voting mechanism is anonymous, strategy-proof and

5In the implementation literature, there has been some discussion on the fact that that the
median rule (as well as generalized medians) may have other Nash equilibria, in which agents do
not follow their unique weakly dominant strategy; see, e.g., Yamamura and Kawasaki (2013); Núñez
et al. (2020). For instance, if k ≥ 3 and all agents cast exactly the same (non-truthful) vote nobody
is pivotal, and hence such vote profile constitutes a Nash equilibrium. However, such equilibria are
evidently neither robust against trembles, nor against deviations by coalitions of agents.
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responsive, and that all individuals’ voting costs are positive.

a) The simultaneous voting game has a unique perfect equilibrium in which exactly

one agent participates.

b) The sequential voting game has a unique subgame perfect equilibrium in which

all agents choose their unique (weakly) dominant strategy in the second stage;

in this equilibrium, again exactly one agent participates.

In either model, the participating agent is either the individual with the highest peak,

or the individual with the lowest peak.

Proof. The assumptions on the voting mechanism imply that, for all non-empty sets

K ⊆ N of participating agents, the outcome is determined by a generalized median

with #K − 1 phantom voters. Moreover, by anonymity, the set of phantom voters

only depends on k = #K.

We first show that this implies the existence of an equilibrium with a single partic-

ipant. As before, denote by p1, ..., pn the preference peaks of the agents, and assume

without loss of generality that p1 < p2 < ... < pn. For #K = 2, there is one phantom

voter α2
1, and by the Observation in the previous section, we have either α2

1 = 0, or

α2
1 = 1. Suppose the former, then the single participation of agent 1 (who reports

truthfully) constitutes an equilibrium. Indeed, the outcome then is p1 which by as-

sumption is preferred by agent 1 to x0 (the outcome if nobody participates). Every

other agent has a higher peak and can thus not unilaterally change the outcome be-

cause α2
1 = 0; hence, if costs are positive each other agent prefers not to participate.

The argument is completely symmetric if α2
1 = 1, in which case single participation of

individual n is an equilibrium. Note that the argument applies to the dynamic model

in the same way as to the simultaneous game.6

It remains to show that there are no other equilibria. By contradiction, suppose

we have an equilibrium with the set K ⊆ N of participants where #K > 1. If this

6Of course, the complete strategy in the dynamic game also specifies, for each non-participant,
truth-telling in all counterfactual participation situations.
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situation constitutes an equilibrium, it is optimal for all i ∈ K to participate; we

will show that this is not possible. By re-numbering agents, we may assume that

K = {1, ...., k} and p1 < p2 < ... < pk. By the Observation above, there exists j ∈ K

with fk(p1, ..., pk) = pj. First assume that j = 1, i.e. that the voter with the lowest

peak gets her most preferred alternative. Then, voter k (the one with the highest

peak among the participants) has an incentive to abstain; indeed, by the efficiency of

fk−1 the outcome without voter k cannot be smaller than p1. By a similar argument,

one can show that j 6= k.

Thus, we must have that 1 < j < k for the individual j who receives her peak pj.

In this case, the assumed optimality of participation by agent 1 implies that

fk−1(p2, ..., pk) = med{p2, ..., pk, αk−1
1 , ..., αk−1

k−2} > pj, (3.2)

since otherwise agent 1 would prefer not to participate thereby saving the associated

cost. Similarly, the assumed participation of agent k implies that

fk−1(p1, ..., pk−1) = med{p1, ..., pk−1, αk−1
1 , ..., αk−1

k−2} < pj. (3.3)

Without agent 1 there are j − 1 peaks that are below or equal to pj. By (3.2), the

generalized median fk−1(p2, ..., pk) with k − 1 participants (i.e. agents 1 to k − 1) is

strictly above pj; this implies that at most (k − 1 − j) of the k − 2 phantom voters

{αk−1
1 , ..., αk−1

k−2} can be located at 0. Similarly, without agent k there are k− j peaks

above or equal to pj. By (3.3), the generalized median fk−1(p1, ..., pk−1) with k − 1

participants (i.e. agents 2 to k) is strictly below pj; this implies that at most j − 2 of

the k−2 phantom voters {αk−1
1 , ..., αk−1

k−2} can be located at 1. By the responsiveness,

all of the k − 2 phantom voters have to be located either at 0 or at 1. But we have

just shown that under conditions (3.2) and (3.2) this is not possible since

(k − 1− j) + (j − 2) = k − 3 < k − 2.
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Thus, there can be no equilibrium in which more that one agent participates. This

concludes the proof of Theorem 1.

3.1 Discussion

In order to assess the scope and the robustness of Theorem 1, we now consider each

of its assumptions. We explain why they are necessary for the conclusion and we

discuss what happens if they were dropped.

Anonymity

Our anonymity condition has two components. First, it requires the voting mecha-

nism not to depend on the ‘names’ of voters for any given set of participants; secondly,

it requires that the same voting mechanism is employed for all subsets with the same

number of participants. Arguably, both conditions are natural in the present context.

The first part is a standard assumption in voting theory, and in fact Moulin’s char-

acterization of all strategy-proof mechanisms for single-peaked preferences in terms

of phantom voters needs this assumption. In our present variable electorate context

the second part also appears to be highly plausible. Importantly, it also guarantees

the existence of an equilibrium in pure strategies (and its uniqueness). We show this

by means of two simple examples, as follows.

Assume that all conditions of Theorem 1 are satisfied except the second part of the

anonymity condition, and consider the following examples with N = {1, 2, 3}. Sup-

pose that if the set of participants consists of agents 1 and 2, the outcome function

f {1,2} chooses the higher peak, i.e. we have α
{1,2}
1 = 1 for the corresponding phantom

voter; if the set of participants consists of agents 1 and 3, the outcome function f {1,3}

chooses the lower peak, i.e. α
{1,3}
1 = 0 for the corresponding phantom voter; and fi-

nally, if the set of participants consists of agents 2 and 3, the outcome function f {2,3}

chooses again the higher peak, i.e. α
{2,3}
1 = 1 for the corresponding phantom voter.
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Evidently, this specification violates the (second part of the) anonymity condition.

Suppose that agents are ordered so that p1 < p2 < p3. For no agent single participa-

tion is an equilibrium: if agent 1 is the single voter, agent 2 has an incentive to join;

if agent 2 is the single voter, agent 3 has an incentive to join; and if 3 is the single

voter, agent 1 has an incentive to join. A situation with two participants cannot be

an equilibrium either because, by the responsiveness condition, one of the two gets

her peak in which case the other has an incentive to abstain and save the voting costs.

Finally, full participation cannot be an equilibrium either. Indeed, suppose that all

agents participate; again by the responsiveness condition, one of the agents must

receive her peak. If agent 1 receives her peak, agent 2 has an incentive to abstain,

because this would not change the outcome and agent 2 would save the participation

cost; similarly, if agent 2 receives her peak, agent 3 has an incentive to abstain, and if

agent 3 receives her peak, agent 1 has an incentive to abstain. Hence, in this example

there is no equilibrium in pure strategies.

Here is an example in which there are several equilibria, including one with full

participation. If all agents participate, the social choice function f {1,2,3} chooses the

standard median, in other words, the corresponding phantom voters are given by

α
{1,2,3}
1 = 0 and α

{1,2,3}
2 = 1; if agents 1 and 2 participate, the social choice function

f {1,2} chooses the lower peak, i.e. the corresponding phantom voter is given by α
{1,2}
1 =

0; if agents 2 and 3 participate, the social choice function f {2,3} chooses the higher

peak, i.e. the corresponding phantom voter is given by α
{2,3}
1 = 1. No matter how we

specify the outcome in the case that the set of participants consists of agents 1 and 3,

this already implies that for sufficiently small participation costs full participation is

an equilibrium. Indeed, if all agents participate the agent with the median peak gets

her peak and hence has no incentive to abstain if her participation costs are sufficiently

small; for either of the other two agents, unilateral non-participation would move the

outcome further away from their respective peak, so neither of them has an incentive

to abstain as well. There also exists an additional single participation equilibrium.
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Indeed, for the set of participants {1, 3} we either have α
{1,3}
1 = 0 or α

{1,3}
1 = 1. In

the first case, single participation of the agent with the lowest peak is an equilibrium

(since none of the other two agents can unilaterally change the outcome); in the

second case, single participation of the agent with the highest peak is an equilibrium.

Responsiveness

Above, we have justified the responsiveness condition by an appeal to a ‘local non-

imposition’ property: if all agents uniformly move in one direction, the outcome

should not remain unchanged. We have also shown that this condition is equivalent

to the property that all phantom voters should be at the two extreme points 0 or

1. There may exist an even deeper justification for the responsiveness condition in

purely ordinal contexts. Indeed, if the set of alternatives is linearly ordered but in

a purely ordinal way, any specific location of a phantom voter in the interior of the

interval [0, 1] seems arbitrary. On the other hand, if cardinal information is available,

such as in the example of the dividing a fixed budget, phantoms may be placed in

the midpoint (at 0.5), or distributed uniformly in [0, 1] (the latter specification is

also known as the ‘uniform’ or ‘linear’ median, see Jennings et al. (2020)). In any

case, Theorem 1 fails without the responsiveness condition. As a simple example,

consider the case of an even number of agents N = {1, 2, ..., 2m}, and suppose that

the phantom voters are located as follows: m − 1 phantom voters are at 0, m − 1

phantom voters are at 1, and one phantom voter is located in the interior, say at

x ∈ (0, 1). Also, suppose that for any set of 2m− 1 participants the standard median

is chosen as the outcome. Consider any distribution such that m agents have their

peak below x and m agents have their peak above x. Then, if all individuals’ costs

are sufficiently small, full participation is an equilibrium. Indeed, the outcome under

full participation is x, and for any agent unilateral abstention moves the outcome

further away from her peak.

But even without the responsiveness condition, there often also exist profiles of
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peaks such that only one single agent participates in equilibrium. Specifically, let

p1 < p2 < ... < pN be such that (i) {αk
j}

k=1,...,N
j=1,...,k+1 ∩ [p1, pN ] = ∅, i.e. all phantom

voters are either below the smallest peak or above the highest peak, and (ii) for all

k = 1, ..., N , minj{αk
j} < p1 and pN < maxj{αk

j}. (Note that condition (ii) is implied

by efficiency of the voting mechanism.) Then, we obtain single participation as the

unique equilibrium by the same logic as in the proof of Theorem 1.

Strategy-proofness

The assumption of strategy-proofness is essential for the conclusion of Theorem 1.

Strategy-proofness together with a suitable refinement concept such as robustness

against small trembles (‘perfectness’) implies that all participants will cast their vote

truthfully. Evidently, the proof of Theorem 1 hinges on that property. In particular,

also the fact that the equilibrium does not depend on individual costs (as long as

they are all positive) crucially depends on the strategy-proofness (together with the

responsiveness condition).

To illustrate this, suppose we can use cardinal information and employ the fol-

lowing symmetric version of the median rule. Let the peaks of the participants be

ordered such that p1 < p2 < ... < pk; for an odd number k = 2m− 1 the outcome is

the standard median pm, and for an even number k = 2m the outcome is the midpoint

between the two middle peaks (pm + pm+1)/2. This rule is not strategy-proof, and

therefore we cannot assume that the reported peaks coincide with the true peaks.7

Consider the peak distribution p1 = 0.1, p2 = 0.45 and p3 = 0.9. Let p̃i be the

reported peak by agent i, and assume that the participation costs of the two extreme

agents 1 and 3 are small but positive. Then, the equilibrium depends, among other

things, on the magnitude of the participation cost (i.e. the precise shape of the pref-

erences) of the median agent. If the participation cost of agent 2 is sufficiently small,

7It is well-known that there exist no strategy-proof, anonymous and symmetric (‘neutral’) social
choice functions on the domain of single-peaked preferences for an even number of individuals, see
Moulin (1980, 1988).
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full participation and truth-telling is an equilibrium in the simultaneous game; on

the other hand, if agent 2 prefers the outcome 0.5 without own participation to the

outcome 0.45 while participating, p̃1 = 0 and p̃3 = 1 is a (non-truthful) equilibrium.

Moreover, it is because of truthful voting in equilibrium that the conclusion of

Theorem 1 is robust with respect to the timing of decisions. Indeed, in the sequential

model participants’ voting strategy may depend on the set of other participants which

becomes common knowledge after all agents have made their participation decision.

To illustrate this point, consider again the peak distribution p1 = 0.1, p2 = 0.45

and p3 = 0.9 and the symmetric median rule, but now assume that agents move

sequentially. In this case, full participation is no longer an equilibrium; indeed, if

agent 3 does not participate, agents 1’s and 2’s optimal votes are p̃1 = 0 and p̃2 =

0.9, respectively, with the outcome 0.45. Since this is the same outcome as under

full participation, agent 3 prefers to abstain whenever she has positive participation

costs. However, participation of agents 1 and 2 with outcome 0.45 can also not be

an equilibrium since then agent 1 has an incentive to abstain. In this example, if

all agents have sufficiently small (but strictly positive) participation cost, the unique

subgame perfect equilibrium of the sequential voting game is given by participation

of agents 2 and 3 with votes p̃2 = 0 and p̃3 = 1, resulting in the outcome 0.5. A

complete characterization of the equilibria under the symmetric median rule in the

sequential model is provided in the next section under the assumption that in the

second stage a strong Nash equilibrium is played.

4 On the possibility of implementing the median

if voting is costly

One may interpret Theorem 1 as saying that, if voting is costly, no anonymous and

deterministic voting rule can implement the median if all participants vote according

to their unique dominant strategy. Specifically, we have the following corollary of
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Theorem 1.

Corollary 1. Suppose that the number of agents is odd. There does not exist an

anonymous and strategy-proof voting mechanism that yields the median peak for all

distributions of individual peaks if voting is costly and all actual participants vote

according to their unique dominant strategy.

To verify this simply note that by the remarks in Section 3.1, even without the

responsiveness condition there always exist (generic) peak distributions for which the

unique dominant strategy equilibrium involves the single participation either of the

agent with the highest peak, or the agent with the lowest peak.

An important implicit assumption of our analysis is that we require voting mech-

anisms to be deterministic. One may argue that this is a strong assumption; and

in fact, together with anonymity and strategy-proofness it forces an asymmetric tie-

breaking rule in the case of an even number of participants. Consider the following

probabilistic voting mechanism: for an odd number of participants choose the median

peak, and for an even number choose a fair lottery that yields the two middle peaks

with equal probability of 1/2. Moreover, suppose that all voters have expected utility

preferences with a single-peaked von-Neumann-Morgenstern utility function. Then,

for any fixed number of participants, it is the unique (weakly) dominant strategy to

submit one’s true preference peak as in the deterministic case. But unlike in the

deterministic case, participation and truthful reporting now always changes the out-

come to one’s benefit at generic profiles.8 In particular, at every generic profile with

different peaks full participation with truthful reporting is an equilibrium if voting

costs are sufficiently small.

With a fixed set of participants and without voting costs, strategy-proof proba-

bilistic social choice rules with single-peaked preferences have been investigated by

Ehlers et al. (2002) and Peters et al. (2014). A detailed analysis of the probabilistic

8We are grateful to Klaus Nehring and Martin Osborne who independently pointed this out to
us.
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case if voting is costly is beyond the scope of the present paper. But the question

arises if one can implement the median in an ‘approximate’ sense using the symmet-

ric median rule (and thus giving up strategy-proofness only for a fixed even number

of participants). The following result provides a complete characterization of all

subgame-perfect equilibria of the sequential game if costs are sufficiently small and

answers this question to the negative. Note that in the case of an even number of

participants truth-telling no longer constitutes a dominant strategy. To avoid the dis-

cussion of an artificial multiplicity of equilibria, we assume that in the second stage a

strong Nash equilibrium is played (i.e. an equilibrium such that no subgroup of agents

can profitably deviate); for every fixed number k of participants, a strong equilibrium

exists (see Appendix). Say that a participant with peak pi 6= 0.5 exhibits extreme

reporting if she reports 0 if pi < 0.5 and 1 if pi > 1.

Theorem 2. Consider the symmetric median rule and assume that individuals have

sufficiently small but positive costs of participation. Then all subgame-perfect equi-

libria such that in the second stage a strong Nash equilibrium is played are of the

following four types:

Case 1. There exists an individual j ∈ N with peak pj = 0.5. Then single

participation of individual j (who reports truthfully) is an equilibrium.

Case 2. The peaks of all individuals are on the same side of 0.5, i.e. either

pi ≥ 0.5 or pi ≤ 0.5 for all i ∈ N . Then single participation of the individual

whose peak is closest to 0.5 (who reports truthfully) is an equilibrium.

Case 3. The number of potential voters n is even with half of them having

a peak strictly below 0.5 and half of them a peak strictly above 0.5. Then full

participation with extreme reporting is an equilibrium and the outcome is 0.5.

Case 4. The number of potential voters n is odd, there exists an individual j

with peak pj = 0.5 and the peaks of the other n− 1 individuals are evenly split
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to both sides of 0.5. Then it is an equilibrium that all individuals in N \ {j}

participate with extreme reporting; the resulting outcome is 0.5.

In all other cases, there does not exist a pure strategy equilibrium such that in the

second stage a strong Nash equilibrium is played.

(Proof in Appendix)

Note that there are cases in which the equilibrium outcome of the symmetric

median rule is very far from the median peak. For instance, in Case 2 the median

peak could be close to 0 while the equilibrium outcome is the highest peak which

could be even at 0.5. The intuition behind this equilibrium is as follows. Suppose

that only the voter with the highest peak participates and votes truthfully; clearly,

this gives the best outcome for that voter (given her participation). If any of the

remaining voters decides to participate, the voter with the highest peak can adjust

her voting behavior in the sequential model and receive her peak again by optimally

responding to the vote of the other participant. Thus, the outcome does not change

hence none of the remaining voters has an incentive to participate. In Case 3, the

outcome is always 0.5 while the symmetric median (i.e. the midpoint between the two

middle peaks) could be arbitrarily close to 0.25 (resp. 0.75).

Finally, let us compare the findings of Theorem 2 with the intuition put forward

by Osborne et al. (2000) that more extreme voters are more likely to participate.

Cases 1, 3 and 4 do not confirm this intuition: in Case 1 the single participant is

not determined be her being ‘moderate’ or ‘extreme,’ but simply by the fact that

her peak is at 0.5; in Cases 3 and 4 we have (almost) full participation (albeit with

extreme reporting). On the other hand, Case 2 comes closer to the intuition since

the single participant is either the voter with the left-most or the right-most peak;

however, within the spectrum of conceivable positions, this is also the voter with the

most ‘moderate’ view among all potential voters since, by assumption, all of them

are on the same side of 0.5.
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5 Conclusion

Our main result reveals a strong tension between two kinds of incentive properties

if voting is costly: participation and truthful reporting. If a voting mechanism is

anonymous, strategy-proof and responsive the only equilibrium in which all partic-

ipants follow their unique dominant strategy consists of the single participation of

either the agent with the highest, or the agent with the lowest peak. In particular,

there is no anonymous and strategy-proof deterministic voting mechanism that yields

the median peak if participants vote according to their unique dominant strategy.

While in this result the need for a tie-breaking rule in the case of an even number of

actual participants plays an important role, it is remarkable that the result holds for

any number of potential voters.

A possible way out of the problem is to consider probabilistic mechanisms, and

indeed we have shown by means of example that a simple and natural strategy-

proof probabilistic mechanism implements the median with full participation if voting

costs are sufficiently small. A full fledged analysis of probabilistic mechanisms in the

context of costly voting in committees appears to be a worthwhile subject for future

work.
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Núñez, M., Pimienta, C. and Xefteris, D. (2020). Implementing the median. Preprint.

Osborne, M. J., Rosenthal, J. S. and Turner, M. A. (2000). Meetings with costly participa-

tion. American Economic Review, 90 (4), 927–943.

24



Palfrey, T. R. and Rosenthal, H. (1983). A strategic calculus of voting. Public Choice, 41 (1),

7–53.

Peters, H., Roy, S., Sen, A. and Storcken, T. (2014). Probabilistic strategy-proof rules over

single-peaked domains. Journal of Mathematical Economics, 52, 123–127.

Renault, R. and Trannoy, A. (2005). Protecting minorities through the average voting rule.

Journal of Public Economic Theory, 7 (2), 169–199.

Selten, R. (1975). Reexamination of the perfectness concept for equilibrium points in extensive

games. International Journal of Game Theory, 4 (1), 25–55.

Sprumont, Y. (1995). Strategyproof collective choice in economic and political environments. Cana-

dian Journal of Economics, 28, 68–107.

Yamamura, H. and Kawasaki, R. (2013). Generalized average rules as stable Nash mechanisms

to implement generalized median rules. Social Choice and Welfare, 40 (3), 815–832.

25



Appendix: Proof of Theorem 2

We split the proof of Theorem 2 in two parts. Proposition 1 deals with Cases 1 and

2, while Proposition 2 proves the claim for Cases 3 and 4.

The following lemma ensures that in all subgames on the second stage of the

sequential voting game there exists a strong Nash equilibrium and additionally, that

if several strong Nash equilibria exist, they necessarily result in the same outcome.

Lemma 1. Consider the symmetric median rule with a fixed number of participants

k. There always exists a strong Nash equilibrium. Moreover,

• if k is odd, the outcome is the median of the peaks in all strong Nash equilibria.

• if k is even, the outcome is the median of {p k
2
, 0.5, p k

2
+1} in all strong Nash

equilibria, given that the peaks p1, ..., pk are ordered.

Proof. Let k be odd. Thus the symmetric median rule coincides with the median rule

that is well-known to be strategy-proof. Hence there exists a strong Nash equilibrium,

and in all strong equilibria the outcome is the median of the peaks of the participants.

Let k be even.

Case 1: p k
2
< 0.5 < p k

2
+1 :

In this case, it is easily verified that there is a unique strong Nash equilibrium: the

k/2 agents with peak lower than 0.5 vote for 0, while the k/2 agents with peak larger

than 0.5 vote for 1, resulting in the outcome 0.5.

Case 2: p k
2
< p k

2
+1 ≤ 50 :

In this case strong Nash equilibrium is not unique (unless p k
2
+1 = 50) but all strong

equilibria in fact result in the same outcome. In all strong equilibria the k/2 agents

with the lowest peaks vote for 0, agent k
2

+ 1 votes for 2 · p k
2
+1 (≤ 1), and all other
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agents submit a vote between 2 · p k
2
+1 and 1, resulting in the outcome p k

2
+1.

Case 3: 50 ≤ p k
2
< p k

2
+1 :

Analogously to Case 2, in all strong equilibria the k/2 individuals with the highest

peaks vote for 1, individual k/2 votes for 2 · p k
2
− 1 (≥ 0), and all other individuals

submit a vote between 0 and 2 · p k
2
− 1 resulting in the outcome p k

2
.

As the symmetric median rule differentiates between odd and even number of

participants, so do we in our equilibrium analysis, starting with odd number of par-

ticipants.

Lemma 2. Consider the symmetric median rule. There are no subgame-perfect equi-

libria in which a strong Nash equilibrium is played in the second stage with an odd

number of participants greater than 1.

Proof. By contradiction, let k > 1 be the number of participants and let k be odd.

Then, in every (strong) Nash equilibrium, the median participant i = k+1
2

determines

the outcome by truthfully revealing her peak p k+1
2

.

Case 1: p k+1
2

= 0.5 :

Then, there are k−1
2

participants with a peak below 0.5 and k−1
2

participants with a

peak above 0.5. Hence if agent k+1
2

abstains, the outcome will be the median of p k−1
2

,

0.5 and p k+3
2

by Lemma 1, that is the outcome will be 0.5. Thus, since the outcome

would not change, agent k+1
2

has an incentive to abstain.

Case 2: p k+1
2
< 0.5 :

If an agent i > k+1
2

(i.e. an agent with peak above the outcome) abstains, the outcome

becomes the median of p k−1
2

, 0.5 and p k+1
2

by Lemma 1. But since p k−1
2
< p k+1

2
< 0.5,

this means that the outcome does not change; hence, agent i will rather abstain.

Case 3: p k+1
2
> 0.5 :

This case is symmetric to Case 2.
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With the help of Lemma 2, we can characterize all equilibria with an odd number

of participants.

Proposition 1. Consider the symmetric median rule. There exists a single partic-

ipation equilibrium (with a strong Nash equilibrium played on the second stage) for

all positive participation costs if and only if one of the following two conditions holds

true:

1. There exists one individual j ∈ N with a peak of pj = 0.5.

2. The peaks of all individuals are on the same side of 0.5, i.e. either pi ≥ 0.5 for

all i ∈ N or pi ≤ 0.5 for all i ∈ N .

In Case 1 the single participant is individual j, i.e. the individual with peak pj = 0.5.

In Case 2 the single participant is the individual whose peak is the closest to 0.5.

Proof. Case 1: It is easy to see that the existence of an individual j with peak pj = 0.5

leads to a single participation equilibrium with this individual being the single partic-

ipant. If j is the single participant, the outcome is pj = 0.5. Whenever one individual

joins, individual j will adapt her vote such that the outcome remains 0.5. Hence no

individual (apart from j) has an incentive to participate. Moreover there is no other

single participant equilibrium for all positive participation costs as individual j could

move the outcome to 0.5 by joining which is profitable for her for sufficiently small

participation costs.

Case 2: Assume that all peaks are on the same side of 0.5, w.l.o.g. assume pi ≥ 0.5

for all i ∈ N . Then by a similar argument one can show that there is only one single

participation equilibrium in which individual 1 is the only participant. As before, if

another individual decides to join her, she can adapt her vote such that the outcome

doesn’t change. Thus no individual has an incentive to join her. Moreover individual

1 has an incentive to join given that there is a different single participant as she can
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move the outcome to her peak which again is profitable for sufficiently small costs of

participation. The case of all peaks below 0.5 can be dealt with by replacing indi-

vidual 1 by individual n, who in this case is the individual with her peak closest to 0.5.

It remains to show that in all other cases there exists no single participation

equilibrium for all positive participation costs. As neither Case 1 nor Case 2 apply,

there is no individual with a peak of 0.5 and given ordered peaks we have p1 <

0.5 < pn, i.e. at least one individual with a peak strictly below 0.5 and at least one

individual with a peak strictly above 0.5. Assume that there is a single participation

equilibrium for all positive participation costs with an individual with a peak below

0.5 participating. Then individual n has an incentive to join, as she could move the

outcome to 0.5 by participating, which is profitable for sufficiently small participation

costs. Analogously, if there were a single participation equilibrium with an individual

with peak above 0.5 participating, then individual 1 has an incentive to join for

sufficiently small costs of participation. Hence there exists no single participation

equilibrium for all positive participation costs if Cases 1 or 2 do not apply.

One can easily see that if there exists a single-participation equilibrium for some

participation cost, then this equilibrium remains an equilibrium if participation costs

increase. Even with the lower costs of participation all non-participants preferred to

abstain and the single-participant will never want to abstain. Thus we obtain that

there are no other single-participation equilibria for small but strictly positive costs

of participation, than the ones identified in Proposition 1.

We now turn to the analysis of an even number of participants, starting with

a lemma stating that in a strong Nash equilibrium with a fixed even number of

participants the outcome is 0.5. Moreover the peaks of the participants need to differ

from 0.5 and need to be evenly distributed to both sides of 0.5.

Lemma 3. Consider an equilibrium of the sequential participation game under the
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symmetric median rule with an even number of participants. Given that in the second

stage participants play a strong Nash equilibrium, the outcome is 0.5. Moreover in all

such equilibria half of the participants have a peak above and half of the participants

have a peak below 0.5.

Proof. Assume, by way of contradiction, that there exists an equilibrium of the re-

quired sort with an even number of participants k and an outcome that is different

from 0.5. We will show that this is not possible. By Lemma 1, the outcome is the

median of p k
2
, 0.5 and p k

2
+1. As the outcome is assumed to be different from 0.5, we

must have either p k
2
< p k

2
+1 < 0.5 or 0.5 < p k

2
< p k

2
+1.

Case 1: p k
2
< p k

2
+1 < 0.5 :

In this case, Lemma 1 implies that the outcome is p k
2
+1. If an agent i < k

2
+ 1 (i.e.

with a peak below p k
2
+1) abstains, then there are k

2
−1 participants with a peak below

p k
2
+1 and k

2
− 1 participants with a peak above p k

2
+1. Hence j = k

2
+ 1 is the median

participant and the outcome is p k
2
+1. Since the outcome is unchanged, agent i has an

incentive to abstain whenever her participation costs are positive.

Case 2: 0.5 < p k
2
< p k

2
+1 :

By a completely symmetric argument, one shows that in this case every agent i > k
2

(i.e. with a peak above pn
2
) has an incentive to abstain since this would again not

change the outcome.

Hence we have shown that the outcome in equilibrium is 0.5. This implies directly

that the number of individuals whose peak is below 0.5 needs to be same as the

number of those individuals with a peak above 0.5. Furthermore there cannot be an

individual with peak 0.5. Otherwise some individual will find it profitable to abstain

as the outcome will not change as 0.5 will be the median vote after the abstention.

With the result of Lemma 3, we obtain an equilibrium characterization result for

an even number of participants. We find full participation equilibria when the number
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of individuals is even, and equilibria in which all but one individual participate, when

the number of individuals is odd. We say that a participant with peak pi 6= 0.5

exhibits extreme reporting if she reports 0 if pi < 0.5 and 1 if pi > 1. In both types

of equilibria we find that all participants exhibit extrem reporting.

Proposition 2. Consider the symmetric median rule. The only subgame-perfect equi-

libria (with a strong Nash equilibrium played on the second stage) with an even num-

ber of participants for small but positive participation costs are of one of the following

types:

• The number of potential voters n is even with half of them having a peak strictly

below 0.5 and half of them a peak strictly above 0.5. Then full participation with

extreme reporting is an equilibrium and the outcome is 0.5.

• The number of potential voters n is odd, there exists an individual j with peak

pj = 0.5 and the peaks of the other n − 1 individuals are evenly split to both

sides of 0.5. Then it is an equilibrium that all individuals in N \ {j} participate

with extreme reporting; the resulting outcome is 0.5.

In all other cases there does not exist an equilibrium of the specified form (with an

even number of participants).

Proof. Let the peaks p1, . . . , pn be ordered. As peaks are generic, we get #{i ∈ N :

pi < 0.5} = #{i ∈ N : pi > 0.5} =
⌊
n
2

⌋
, as there is at most one individual with a

peak of 0.5. If n is odd, then p(n+1)/2 = 0.5.

Case 1: n is even.

By Lemma 3 we obtain that the outcome if all individuals participate is 0.5. If an

individual i with peak below 0.5 abstains, the outcome shifts to p(n/2)+1 which is worse

for individual i for sufficiently small participation costs. Similarly, if an individual i′

with peak above 0.5 abstains, the outcome changes to pn/2 which again is worse for

individual i′ for sufficiently small participation costs. Hence full participation is an

equilibrium given this distribution of peaks.
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Case 2: n is odd.

By Lemma 3 we obtain that the outcome if all individuals except for individual

j = (n + 1)/2 participate is 0.5. By a similar argument one can show that no par-

ticipant has an incentive to abstain for small but positive participation costs. As the

outcome corresponds already to her peak, there is no incentive for individual j to

participate, hence this constitutes an equilibrium.

It remains to show that the existence of these equilibrium implies the even distri-

bution of the peaks required in the proposition.

Assume that there exists an equilibrium with full participation if n is even and

with only one abstention if n is odd. As the number of participants is even in both

cases, we know by Lemma 3 that there need to be as many individuals with a peak

strictly below 0.5 as there are with peak strictly above 0.5. If n is odd, there exists

one individual who did not participate and even for very small costs has no incentive

to participate. This implies that the peak of this individual has to correspond to the

outcome, which is 0.5.

It remains to show that there are no other equilibria with an even number of

participants. Assume that for small costs of participation there exists an equilibrium

with an even number of participants k, such that k < n − 1. By Lemma 3 we know

that the outcome is 0.5. As k < n − 1 there are at least 2 individuals who do not

participate. As peaks are generic at least one of those individuals has a peak that

is different from 0.5. This individual can shift the outcome closer to her peak by

participating. For (sufficiently) small participation costs this is profitable for her.

Hence this cannot constitute an equilibrium.

The proof of Theorem 2 follows at once from combining Propositions 1 and 2.

We conclude with two examples. The first demonstrates that there could be several

equilibria of the sort required in Theorem 2 in the sequential model, the second shows
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that there could exist no equilibria in pure strategies.

Example 1. Let p1 = 0.1, p2 = 0.5 and p3 = 0.7. Then there exists an equilibrium of

the sort required in Theorem 2 with one participant and an equilibrium with an even

number of participants and outcome 0.5.

If agent 2 is the only participant, the outcome is 0.5. Neither agent 1 nor 3 has an

incentive to participate since the outcome would not change. If, on the other hand,

agents 1 and 3 participate the outcome is again 0.5, hence agent 2 has no incentive to

participate. If cost are sufficiently small, agents 1 and 3 indeed prefer to participate,

since otherwise the outcome changes to 0.1 or 0.7 respectively.

Example 2. Let p1 = 0.1, p2 = 0.8 and p3 = 0.9. Then there is no equilibrium of

the sort required in Theorem 2 (provided that costs of participation are small).

With full participation the outcome would be the median of the votes cast, that is:

0.8. In that case agent 1 has an incentive to abstain, since without her the outcome

remains unchanged: indeed, agent 2 would vote p̃2 = 0.6 and agent 3 would vote of

p̃3 = 1 in the equilibrium of the subgame. But this situation cannot constitute an

equilibrium either, since agent 3 would rather abstain. If agents 1 and 2, or agents 1

and 3 are the participants, the outcome is 0.5. But for small participation costs, the

respective abstainer would prefers to join and change the result to 0.8. Finally, all

single participation cases do not constitute an equilibrium since there always exists

someone who abstains and could profitably change the outcome to 0.5 (provided that

participation costs are small).
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