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2 Motivation - the gradient method

The gradient method

To minimize a convex differentiable function f : choose an initial point x0 and repeat

xk+1 = xk − ηk∇f(xk),

where step size ηk is chosen by line search or is some (small) fixed constant.

Advantages:

• every iteration is inexpensive,

• does not require second derivatives.

Disadvantages:

• often slow;

• does not handle non-differentiable problems.

We will study methods addressing the shortcomings of the gradient method:

1. subgradient method

2. proximal gradient method

3. DouglasRachford method

4. ADMM

2.1 Analysis of gradient method for fixed step ηk = η > 0

Assumption 1. In this section we assume

1. f is convex and differentiable with dom f = Rn

2. ∇f is L-Lipschitz continuous (L-C), with L > 0:

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖ for all x, y ∈ dom f
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3. optimal value f∗ = inf f(x) is finite and attained at x∗

4. 0 < η ≤ 1/L.

For any x let x+ = x− η∇f(x).

Lemma 1. For all x, f(x+) ≤ f(x)− η
2‖∇f(x)‖2.

Proof. Let d = ∇f(x). Let g(t) = f(x− td). Then g′(t) = dT f(x− td). From L-C we have

g′(t)− g′(0) = dT (∇f(x)−∇f(x− td)) ≤ ‖d‖‖∇f(x)−∇f(x− td)‖ ≤ Lt‖d‖2 = Lt‖∇f(x)‖2.

Then,

f(x+) = g(η) = g(0) +

∫ η

0
g′(t)dt ≤ f(x) + Lη

2

2 ‖∇f(x)‖2 + ηg′(0)

= f(x) + η(Lη2 − 1)‖∇f(x)‖2 ≤ f(x)− η

2
‖∇f(x)‖2.

Lemma 2. For all x,
f(x+)− f∗ ≤ 1

2η (‖x− x∗‖2 − ‖x+ − x∗‖2).

Proof. By Lemma 1

f(x+)− f∗ ≤ f(x)− f∗ − η
2‖∇f(x)‖2

≤ ∇f(x)T (x− x∗)− η
2‖∇f(x)‖2

= 1
2η

(
‖x− x∗‖2 − ‖x− x∗ − η∇f(x)‖2

)
= 1

2η

(
‖x− x∗‖2 − ‖x+ − x∗‖2

)
.

Descend properties of the gradient method

If ∇f(x) 6= 0 and 0 < η ≤ 1/L.

• Lemma 1 shows
f(x+) < f(x)

• Lemma 2 shows
‖x+ − x∗‖ < ‖x− x∗‖

Function value and distance to optimum are decreasing! - how fast?

Theorem 1. Number of iterations to reach f(xk)− f∗ ≤ ε is O(1/ε).

Proof. From Lemma 2

k∑
i=1

(f(xi)− f∗) ≤ 1
2η

k∑
i=1

(‖xi−1 − x∗‖2 − ‖xi − x∗‖2)

= 1
2η (‖x0 − x∗‖2 − ‖xk − x∗‖2)

≤ 1
2η‖x0 − x

∗‖2.
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From Lemma 1, f(xk) is non-increasing and thus

f(xk)− f∗ ≤ 1
k

k∑
i=1

(f(xi)− f∗) ≤ 1
2kη‖x0 − x

∗‖2.

2.2 Related results

Theorem 2. If f is strongly convex (on top of assumption 1) the number of iterations to reach
f(xk)− f∗ ≤ ε is O(log(1/ε)).

Limits on convergence rate of first-order methods

First order methods: Any iterative algorithm that selects xk+1 in the set

x0 + span{∇f(x0),∇f(x1), . . . ,∇f(xk)}.

Problem class: Any function satisfying assumption 1

Theorem 3. [Nesterov, Theorem 2.1.7 Lectures on Convex Optimization (2018)] For every
integer k ≤ (n − 1)/2 and every x0, there exist functions in the problem class such that any
first-order method

f(xk)− f∗ ≥
3

32

L‖x0 − x∗‖2

(k + 1)2
.
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3 Subgradient method

The subgradient method

To minimize a nondifferentiable convex function f : choose an initial point x0 and repeat

xk+1 = xk − ηkgk, k = 0, 1, . . .

where gk ∈ ∂f(xk) is a subgradient of f at xk.

Step size rules:

• fixed step: ηk constant
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• fixed length: ηk‖gk‖ = ‖xk+1 − xk‖ constant

• diminishing: tk → 0 and
∑∞

k=0 tk =∞.

Assumption 2 (Subgradient method). In this section we assume

1. f is convex with dom f = Rn

2. f is G-Lipschitz continuous:

|f(x)− f(y)‖ ≤ G‖x− y‖ for all x, y ∈ dom f

3. optimal value f∗ = inf f(x) is finite and attained at x∗

Lemma 3. Assumption 22 is equivalent to ‖g‖ ≤ G for all x and all g ∈ ∂f(x).

Proof. Assume ‖g‖ ≤ G for all x and all g ∈ ∂f(x). WLOG assume f(x) ≥ f(y). Let gx ∈ ∂f(x).
We have

|f(x)− f(y)| = f(x)− f(y) ≤ gTx (x− y) ≤ G‖x− y‖,

where the last inequality follows by the Cauchy-Schwarz inequality.
Now, assume f is G-Lipschitz continuous. Take x and g ∈ ∂f(x). Take y = x+ 1

‖g‖g, we have

f(y) ≥ f(x) + gT (y − x) = f(x) + ‖g‖ and thus ‖g‖ ≤ f(y)− f(x) ≤ G‖y − x‖ = G.

3.1 Analysis of the subgradient method

The subgradient method is not a descent method. Thus we are interested in the quantity f∗k =
mini=0,...,k f(xi) the best value obtained at iteration k.

Lemma 4. For all k,

f∗k − f∗ ≤
‖x0 − x∗‖2 +

∑k
i=0 η

2
i ‖gi‖2

2
∑k

i=0 ηi
.

Proof. For all i ≤ k

‖xi+1 − x∗‖2 = ‖xi − ηigi − x∗‖2

= ‖xi − x∗‖2 − 2ηig
T
i (xi − x∗) + η2i ‖gi‖2

≤ ‖xi − x∗‖2 − 2ηi(f(xi)− f∗) + η2i ‖gi‖2

≤ ‖xi − x∗‖2 − 2(f∗k − f∗)ηi + η2i ‖gi‖2.

Thus,

2(f∗k − f∗)
k∑
i=0

ηi ≤ ‖x0 − x∗‖2 − ‖xk+1 − x∗‖2 +

k∑
i=0

η2i ‖gi‖2

≤ ‖x0 − x∗‖2 +
k∑
i=0

η2i ‖gi‖2
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3.1.1 Fixed step size: ηk = η with η constant

From Lemma 4

f∗k − f∗ ≤
‖x0 − x∗‖2

2(k + 1)η
+
ηG2

2
.

We can not guarantee convergence of f∗k . When k is large f∗k is ηG2-suboptimal.

3.1.2 Fixed step length: ηk = η/‖gk‖ with η constant

From Lemma 4

f∗k − f∗ ≤
G‖x0 − x∗‖2

2(k + 1)η
+
ηG

2
.

We can not guarantee convergence of f∗k . When k is large f∗k is ηG-suboptimal.

3.1.3 Disminishing step size: ηk → 0 with
∑∞

i=0 ηi =∞

From Lemma 4

f∗k − f∗ ≤
‖x0 − x∗‖2

2
∑k

i=0 ηi
+
G2

2

∑k
i=0 η

2
i∑k

i=0 ηi
.

It can be shown that
∑k

i=0 η
2
i∑k

i=0 ηi
→ 0 (exercise) thus f∗k → f∗.

In practice some typical diminishing step sizes are ηi = η
i+1 and ηi = η√

i+1
.

3.2 Optimal step sizes

So far we only considered convergence. What about rates of convergence?

3.2.1 Optimal step size when f∗ is known

Assume f∗ known. Look at proof of Lemma 4. We have

‖xi+1 − x∗‖2 ≤ ‖xi − x∗‖2 − 2ηi(f(xi)− f∗) + η2iG
2.

Taking ηi = (f(xi)− f∗)/G2 we obtain for all i ≤ k,

(f∗k − f∗)2 ≤ (f(xi)− f∗)2 ≤ G2(‖xi − x∗‖2 − ‖xi+1 − x∗‖2)

And therefore,

f∗k − f∗ ≤
G‖x0 − x∗‖√

k + 1
.

3.2.2 Optimal step size for fixed number of iterations

Assume ‖x0 − x∗‖ ≤ R known, and k given. Let si = ηi‖gi‖. From Lemma 4

f∗k − f∗ ≤
G

2

R2 +
∑k

i=0 s
2
i∑k

i=0 si
.

The RHS is minimized by taking si = R√
k+1

, obtaining the bound

f∗k − f∗ ≤
GR√
k + 1

.
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3.2.3 Optimality of rate of convergence

In both cases we have obtained f∗k − f∗ ≤
GR√
k+1

. Such bound guarantees accuracy f∗k − f∗ ≤ ε in

k = O(1/ε2) iterations.

Question

Is the bound

f∗k − f∗ ≤
GR√
k + 1

.

the best we can do?

We will see that actually subgradient method is optimal in terms of convergence rate as this is the
best possible bound. For this we need to define the problem/algorithm class that we are looking
at:

Problem class: Minimize a function satisfying assumption 2.

• We are given x0 such that ‖x0 − x∗‖ ≤ R.

• We know G the Lipschitz constant of f on {x : ‖x− x∗‖ ≤ R}.

• f is given by an oracle: for any x the oracle returns f(x) and g ∈ ∂f(x).

Algorithm Class: Any iterative algorithm that selects xi+1 in the set

x0 + span{g0, g1, . . . , gi},

and stops after k iterations.

Theorem 4. For every integer k < n, there exist a function in the problem class such that any
algorithm in the algorithm class

f∗k − f∗ ≥
GR

2(2 +
√
k + 1)

.

Proof. Exercise.

3.3 Subgradient method to find point in intersection of convex sets

Problem: find point in the intersection of m closed convex sets C1, . . . , Cm

Model as optimization problem: Let fj(x) = infu∈Cj ‖x − u‖ be the distance from x to Cj .
Let f(x) = maxj=1,...,m fj(x). To find point on intersection solve,

min f(x).

We have that each fj is convex (exercise) and thus f is also convex. Also f∗ = 0 if and only if
intersection nonempty.

We need to compute subgradients. g ∈ ∂f(x) if g ∈ ∂fj(x) where Cj is the farthest set
from x. Now, we can find a subgradient g ∈ ∂fj(x). If x ∈ Cj take g = 0. If x /∈ Cj take
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g = 1
‖x−Pj(x)‖(x− Pj(x)) = 1

fj(xk)
(x− Pj(x)) where Pj(x) is the projection on Cj .

Exercise: Find ∂f(x) for all x.
As we are interested in the case of the non-empty intersection we consider the optimal step size

when f∗ = 0. For the considered subgradients in ∂f(x) we have ‖g‖ = 1 unless x is in C = ∩mj=1Cj .
From Section 3.2.1 we have that the optimal step size is ηi = f(xi). Thus at iteration i, find farthest
set Cj from xi and take

xi+1 = xi − ηigi = xi −
f(xi)

fj(xi)
(xi − Pj(xi)) = Pj(xi).

I.e. at each step project current point into the farthest set.

3.4 Projected subgradient method

We can extend the subgradient method to solve constrained problems. Let f be a (nondifferentiable)
convex function and C be a closed convex set.

The Projected subgradient method

To minimize a nondifferentiable convex function f on closed convex set C: choose an initial
point x0 and repeat

xk+1 = PC(xk − ηkgk), k = 0, 1, . . .

where gk ∈ ∂f(xk) is a subgradient of f at xk, PC is the Euclidean projection on C and ηk
chosen by same rules for the unconstrained version.

To apply the projected subgradient it is necessary to be able to compute PC(y) for any given
y. In general this is a difficult task. But there are available analytical forms for simple sets.

3.4.1 Examples of projections

1. Halfspace: C = {x : aTx ≤ b}

PC(x) =

{
x if x ∈ C
x+ b−aT x

‖a‖2 a otherwise.

2. Ball: C = {x : ‖x‖ ≤ R}

PC(x) =

{
x if x ∈ C
R
‖x‖x otherwise.

Works for many common norms (e.g. 1-norm, 2-norm, ∞-norm).

3.4.2 Analysis of projected subgradient

Assume C is closed convex set and assumption 2.

Lemma 5. For any x and any y ∈ C we have

‖PC(x)− y‖ ≤ ‖x− y‖.
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Proof. Exercise

Next we see that Lemma 4 still holds. We can replace the first two equalities by

‖xi+1 − x∗‖2 = ‖PC(xi − ηigi)− x∗‖2

≤ ‖xi − ηigi − x∗‖2

= ‖xi − x∗‖2 − 2ηig
T
i (xi − x∗) + η2i ‖gi‖2.

And thus the same analysis as for the unrestricted case applies.
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