

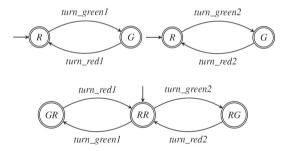
Networked Supervisory Control of Discrete-Event Systems

Aida Rashidinejad, PhD Candidate

Department of Mechanical Engineering

Discrete-Event Systems

Discrete-state, event-driven systems of which the state evolution depends entirely on the occurrence of asynchronous discrete events over time.



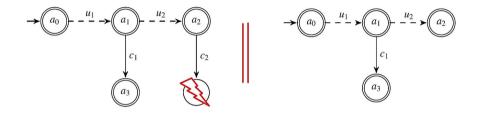
Supervisory Control Theory

A method for synthesizing supervisors that restrict the behavior of a plant such that as much as possible of the given specifications are fulfilled.

Motivation for Control People

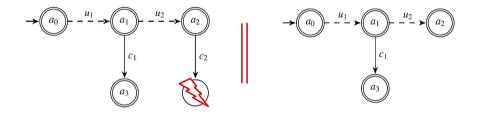
- Low-level control requirements focus on the performance of the system; how to achieve the goal.
- High-level requirements focus on making the right decision; what is the goal to achieve.

Example. Autonomous Vehicle.


- The low-level controller is responsible for steering, the speed.
- The high-level controller is responsible for lane changes, speed selection, merging into or crossing the traffic.

Kurt & Ozguner, "Hybrid State System Development for Autonomous Vehicle Control in Urban Scenarios", IFAC, (2008)

Conventional Supervisory Control Theory

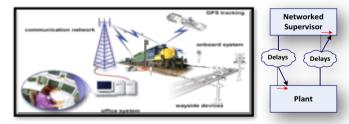


- Plant modelled as (network of) DES
- Specifications describing allowed behaviour
- Synchronous composition between plant and supervisor

[single plant automaton] [only nonblocking] [supervised plant]

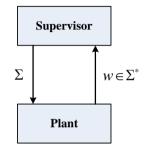
Conventional Supervisory Control Theory

Properties of supervised plant:


- nonblockingnes
- controllability
- maximal permissiveness

[only disable controllable events] [only disable when necessary]

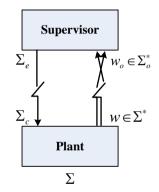
Networked Control: Benefits & Challenges



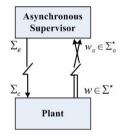
Supervisory Control in Implementation

- Avalanche effect (single event triggers multiple state changes)
- Choice (several alternatives in a state)
- Inexact synchronization
- Interleave sensitivity (observation \neq execution order)
- Causality (spontaneous vs commanded execution)

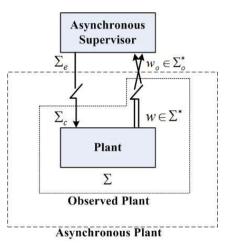
Fabian & Hellgren, "PLC-based implementation of super-visory control for discrete event systems", CDC, (1998) Bastile & Chiacchio, "On the implementation of supervised control of discrete event systems", IEEE Trans. on Cont. Sys. Tech., (2007) Zaytoon & Riera, "Synthesis and implementation of logic controllers- a review", Ann. Rev. in Cont. (2017) Balemi, "Communication delays in connections of input/output discrete event processes", CDC (1992)


Supervisory Control of Discrete-Event Systems in an Asynchronous Setting

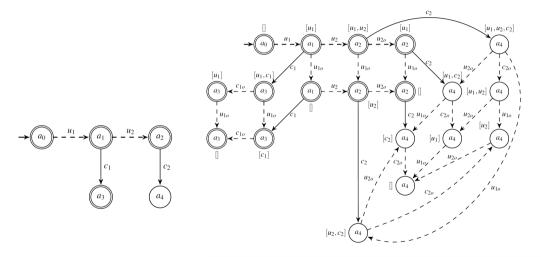
Asynchronous Supervisory Control


- A controllable event can be executed in the plant only if commanded by the supervisor.
- Uncontrollable events occur spontaneously in the plant.
- A control command may not necessarily be accepted by the plant, and in this case it remains in the channel.
- Any plant event is observable to the supervisor. The observation of an event may occur immediately or at some point in the future.
- Consecutive events that occur in the plant may be observed in any possible order

Problem Statement

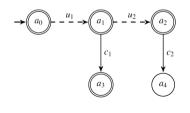

Problem Statement: for a given plant G, we aim to find an asynchronous supervisor AS such that AS|/|G is nonblocking.

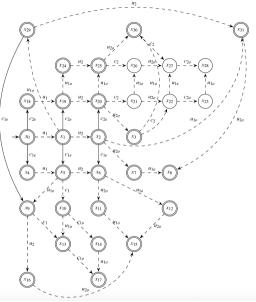
Property of the ASC Setting: for any asynchronous supervisor *AS* and plant *G*, (asynchronous) controllability is always guaranteed.



Synthesis Technique

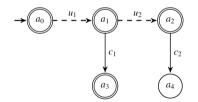
Observed plant (add observation events to plant)

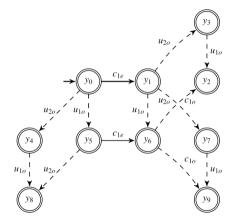




Asynchronous Plant

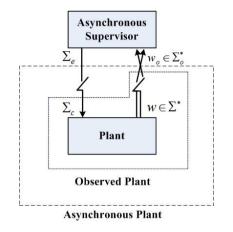
 Insert enabling events whenever appropriate (enabled in observed plant)





Asynchronous Supervisor

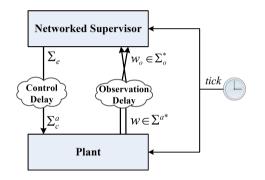
• Disable enabling events in asynchronous plant taking care that same decision is made in observationally equivalent states observed events



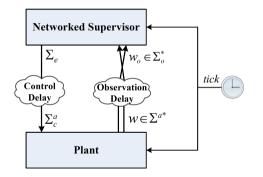
Conclusions

- Introduced asynchronous supervisory control setting
- Define asynchronous composition operator and asynchronous controllability
- Asynchronous controllability always holds for any asynchronously composer supervisor and plant
- Synthesis of asynchronous supervisor guaranteeing nonblockingness

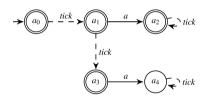
Rashidinejad & Reniers & Fabian, "Supervisory Control of Discrete-Event Systmes in an Asynchronous Setting", CASE, (2019)

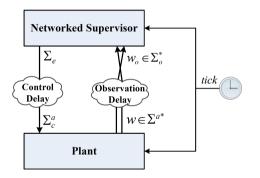


Networked Supervisory Control


- A controllable event can be executed in the plant only if commanded by the supervisor.
- Uncontrollable events occur spontaneously in the plant.
- A control command reach the plant after a constant amount of time.
- A control command may not necessarily be accepted by the plant, and in this case it remains in the channel.
- The control channel is FIFO.

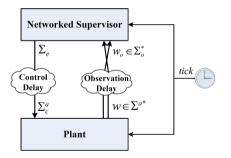
Networked Supervisory Control

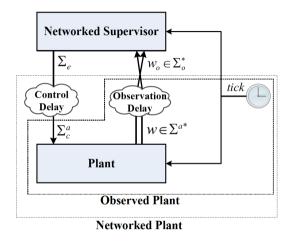

- Any event executed in the plant is observable to the supervisor.
- The observation of a plant event occurs after a constant amount of time.
- The observation channel is non-FIFO.



Networked Supervisory Control

• TDES:




Problem Statement

Basic NSC Problem Statement: for a given plant *G*, the control delay N_c , and observation delay N_o , we aim to find a networked supervisor *NS* such that $NS|N_c, N_o|G$ is nonblocking, (time networked) controllable, time-lock free, and maximally permissive.

Synthesis Technique

Conclusions

- The assumption of synchronous interactions between the plant and supervisor is not valid anymore in a network-based control setting.
- A networked supervisory control framework is proposed in which delays are measured based on time.
- A synthesis technique is presented that results in a networked supervisor satisfying controllability, nonblockingness, time-lock freeness, and maximally permissiveness.
- Future research: from TDES to timed automata.
- Rashidinejad, Lin, Wetzels, Zhu, Reniers, Su, "Supervisory Control of Discrete-Event Systems under Attacks: An Overview and Outlook", ECC (2019).

Acknowledgement

This research has received funding from the European Union's Horizon 2020 Framework Programme for Research and Innovation under grant agreement no 674875.

Thank you for your kind attention.

Networked Supervisory Control of Discrete-Event Systems

Aida Rashidinejad, PhD Candidate

Department of Mechanical Engineering