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The talk I would like to give is not unrelated to the first 
work I did with the Verlinde’s (and Dijkgraaf): 

The Operator Algebra of Orbifold Models 

With 

  Robbert Dijkgraaf (Utrecht U.), Erik P. Verlinde (Princeton, Inst. 
Advanced Study), Herman L. Verlinde (Princeton U.) (Jan 6, 1989) 

Published in: Commun.Math.Phys. 123 (1989) 485.

So in the talk today, I try to use orbifolds at least a little bit!

I want to first briefly say why this old paper has had a recent 
important application! 

https://inspirehep.net/literature/24933
https://inspirehep.net/authors/1011785
https://inspirehep.net/institutions/903317
https://inspirehep.net/authors/984772
https://inspirehep.net/institutions/903138
https://inspirehep.net/institutions/903138
https://inspirehep.net/authors/984771
https://inspirehep.net/institutions/903139






                         Non-invertible Global Symmetries 

Typical global symmetries form groups with every element 
of the group admitting an inverse.  However, recently it has 
been pointed out that this is not a complete list of 
symmetries.  Indeed line operators in non-abelian Chern-
Simons theories in 3d, and more generally non-cyclic 
Verlinde algebras exemplify this. 

Another example of this (not unrelated to the above) is in 
the context of orbifolds: 

Consider Strings propagating on M.  Next consider strings 
on orbifold M/G where G is a discrete isometry of M. 



This leads to symmetries: 



But if we project to invariant subgroup each twisted sector 
is represented by a conjugacy class; So we get a ring 
structure involving multiplication of conjugacy classes: 

 

Actually in our joint work with Verlinde’s and Dijkgraaf we 
refined this to take into account the group action in each 
sector. 

So as you can see, just like global symmetries there are 
selection rules when strings of different sectors interact. 
But which sector they end up is not completely determined 
for non-abelian groups, because the RHS involves a sum. 

Ci × Cj = ∑
k

Nk
ij Ck



So we learn that any non-abelian orbifold gives examples of 
non-invertible symmetries. 

A question was raised as to whether non-invertible 
symmetries can be gauged.  The answer is immediately 
clear from this construction:  Since all symmetries in string 
theory are gauged we therefore learn that non-invertible 
symmetries realized as non-abelian orbifolds of compact 
manifolds automatically give examples of non-invertible  
gauge symmetries.  Of course if we consider the same in a 
non-compact setup in string theory, we would get non-
invertible global symmetries of the type studied in QFT’s. 



The rest of my talk today is based on the paper: 

On Upper Bounds in Dimension Gaps of CFT’s 

T. Collins, D.Jafferis, CV, K. Xu and S.-T. Yau: 2201.03660 [hep-th]

https://arxiv.org/abs/2201.03660


Homogeneous solutions are of three types: 
Minkowski, AdS, dS

𝑉

𝜑

𝑑𝑆

𝐴𝑑𝑆

Minkowski



In principle we can obtain these by string 
compactification: 

 

No reliable dS constructed in string theory (if it exists). 

Minkowski space: many examples  
     scale of the internal space free parameter 

AdS: Many solutions.  But  are not independent: 
Swampland AdS distance conjecture (LPV):  
                                           
                is the strong form of this conjecture;  

Md × K, AdSd × K, dSd × K

lAdS, lK

lK ∼ la
AdS a ≥ 1

a = 1



CFT dual for AdS, dimension given by 

 

Note that if instead  
 

We get dimensions much larger than 1 in the limit of 
large AdS radius leading to large Dimension gap for CFT. 
If this were true, the mass scales of AdS excitations 
would be large enough and if there is strict gap, one 
could imagine getting dS by small SUSY breaking effect 
because all the massive excitations frozen out in AdS 
scale.  This is thus an important question. 

Δ ∼ mlAdS ∼
lAdS

lK
∼ l1−a

AdS

a < 1



What do we know about dimension gaps in CFT’s? 

 
 

No CFT is known with no low lying conformal operators.  
The biggest known gap is for d=2, the Monstrous 
Moonshine construction, where the first non-zero 

. 

We may even relax the condition and ask 
 Could there be a CFT with a few low lying operators but 
with a large gap after that?  None known!

Δ ≤ d relevant or marginal
Δ > d irrelevant

Δ = 4



Is this possible using holography? Related to whether the KK 
tower can be made heavy: 
Focus on first massive spin 2. 
Need to find first non-zero eigenvalue for scalar Laplacian 
                              
 (  is order 1, and  is eigenvalue of Laplacian). 
  

Δ(Δ − d) = m2 = aλ
a λ

We will consider holographic cases where branes probe 
singularities of internal manifold.  This leads to 
                                      
 where  is an Einstein manifold.  It will have 
More structure for various supersymmetric cases but all 
satisfy (where AdS length scale is set to 1) : 
                                  

AdSd × K
K

Rij = (n − 1)gij



Consider the case of   
Naively is seems it should be possible to have a very large 
first eigenvalue by considering quotients instead: 

 where  is a discrete subgroup of  

We can choose a large order for the discrete group and 
make the volume go to zero without changing the  

curvature:   

From this one would be led to conclude  

This turns out to be false!  We find a universal bound on 
 which only depends on the dimension of K, namely n.

K = Sn

K = Sn/G G SO(n + 1)

lK ∼ 1/ |G |1/n → 0 as |G | → ∞

λ1 ∼
1
lK

→ ∞

λ1



Zn



Zn



 For :    

Achieved by icosahedral subgroup 
 

For  

For 
Achieved again by icosahedral subgroup 

 

There is a similar bound for all sphere quotients of any  
dimension depending only on dimension.

S3 λ1 ∈ [3,168], D ∈ (0.32,π] → Δ1 ∈ [3,14]

G ⊂ SU(2)diag. ⊂ SU(2)L × SU(2)R

S5 : λ1 ∈ [5,32], D ∈ (0.96,π] → Δ1 ∈ [5,8]

S7 : λ1 ∈ [7,40], D ∈ (0.84,π] → Δ1 ∈ [3.5,5]

G ⊂ SU(2)diag. ⊂ SU(2) × SU(2) ⊂ SU(4)



Another class of examples, D3 branes probing CY 3-fold 
singularities, 4d N=1. Leads to Sasaki-Einstein manifolds.  
For Fermat type singularities:  

 the biggest gap for holomorphic 

eigenvalues   

For M2 branes probing CY 4-folds, leads to 3d N=2.  

For CY 4-fold fermat type   

the biggest gap for holomorphic eigenvalues 
 

f(z) =
3

∑
i=0

zai
i = 0

(ai) = (13,11,3,2) → Δ1 = 202

f(z) =
4

∑
i=0

zai
i = 0

(ai) = (85,83,7,3,2) → Δ1 = 6975



an = 2, ak = ∏
l>k

al + 1 (k > 1), a1 = 2∏
l>1

al − 1, a0 = 2∏
l>1

al + 1

More generally for CY n-fold Fermat type the one with 
 highest gap in holomorphic eigenvalue the biggest gap is 
achieved with 

                                   



Using the classification of regular singularities for CY 3-folds 
we have shown that for all of them there is a universal upper 
bound on the first eigenvalue of the scalar Laplacian.  
Studying all these examples leads us to 

Conjecture: 

The diameter of an n-dimensional Einstein manifold is 
bounded from below and the first non-vanishing eigenvalue 
of scalar Laplacian bounded from above, where the bounds 
depend only on n. 



From the worldsheet perspective probing singular CY, this 
leads to a conjecture: 

Consider the corresponding world sheet theory probing 
singular CY.  We get an arbitrary (2,2) SCFT in d=2 such that 

 -the balance of central charge is fixed by linear dilaton. 

 Then the holomorphic eigenvalue gap not being too large in 
the bulk translates to a condition for the world sheet theory 
chiral fields. 

                                   

where  is a universal constant which depends only on n. 

̂c < n

q
n − ̂c

≤ Cn

Cn



Let  be the R-charge of the lightest chiral operator.  
 Then the holomorphic eigenvalue gap not being too large in 
the bulk translates to a condition for the world sheet theory 
chiral fields. 

                                   

where  is a universal constant which depends only on n. 

For example for diagonal (2,2) minimal models, for n=1,  

 , with smallest  

We get                

q

q
n − ̂c

≤ Cn

Cn

̂c = 1 −
2
m

q =
1
m

1
m

1 − (1 − 2
m )

=
1
2

≤ C1



The biggest gap is achieved for the  minimal model with 

, leading  
                                    

                                       

                  

E8

W = x3 + y5 + z2

q
n − ̂c

≤ Cn

q =
1
5

, ̂c =
14
15

⇒
1
5

1 − 14
15

= 3 = C1



Dear Erik and Herman













One may think that this statement is rather restrictive and 
applies only to the case of branes probing singularities and 
not to more complicated cases like DGKT.  Indeed DGKT  
would correspond to a counter example to CFT with no large 
gap conjecture.  Even though our conjecture does not  
directly apply to this, Cribiori et. al. dualize some DGKT-like 
models to pure M-theory geometry with G-flux, leading to  
Einstein manifolds.  The naive reasoning may suggest scale 
separation (using generic length scales) —however our 
conjecture does apply to this class and would again suggest 
no scale separation 
(naive estimates assumed isotropic geometries). 


