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Outline

▪ Introduction  
▪  Context, problem, research questions 
▪ Threat model formulation 

▪ Part 1: Attacking input data 

▪ Part 2: Attacking model and output data 

▪ Outlook and discussion
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Threat model

• Threat model describes the adversary by looking at the resources at the adversary's 
disposal and the adversary's objective [Salter, C., et (1998)]. 

• What the attacker is capable of. 

• What the attacker goal is. 

• The vulnerability, including the opportunity that makes an attack possible. 

• The countermeasures that can be taken to prevent the attack. 

Salter, C., Saydjari, O.S., Schneier, B., Wallner, J.: Toward a secure system engineering methodology. In: Proceedings of the 1998 Workshop on New Security Paradigms. pp. 2-10. NSPW (1998)
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Part 1: 
Chapter 2: PerBlur: Towards User-Oriented 
Privacy for Recommender System Data: A 

Personalization-based Approach to Gender 
Obfuscation for User Profiles 

9
Manel Slokom, , Alan Hanjalic, and Martha Larson. Towards User-Oriented Privacy for Recommender System Data: A Personalization-based Approach to Gender Obfuscation for User Profiles. Information 
Processing & Management, 2021, vol. 58, no 6, p. 102722.



Threat Model
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Obfuscation for Recommendation
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Data Obfuscation for Recommendation
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Data Obfuscation: 
• Hide implicit sensitive 

information by modifying 
the data. 

• BlurMe (Weinsberg et al., 
2012) 

• BlurM(or)e (Strucks et al., 
2019)

Udi Weinsberg, Smriti Bhagat, Stratis Ioannidis and Nina Taft (2012) BlurMe: Inferring and obfuscating user gender based on ratings. In: Proceedings of the 2012 ACM Conference on Recommender Systems. pp. 195–202. 
Christopher Strucks, Manel Slokom, and Martha Larson (2019) BlurM(or)e: Revisiting gender obfuscation in the user-item matrix. Recommendation in Multistakeholder Environments in conjunction with  13th ACM RecSys.



PerBlur – Personalized Blurring
▪ PerBlur creates the personalized lists of indicative items by intersecting: 

▪ Two lists of indicative items: Lm and Lf 

▪ A personalized list of items ranked in order of the probability that the user will 
have rated them. 

▪ Standard PerBlur 

▪ Obfuscation by adding extra items from the personalized lists of indicative items 

▪ Level of obfuscation: Adds (p%) fake items from the opposite gender 

▪ PerBlur with removal 

▪ Similar to Standard PerBlur but we also remove certain items.
13



Data obfuscation for recommendation
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In the table: we used ML1M data set. PerBlur is created with addition from the personalized lists of indicative items. 
Logistic regression classifier.



Results: Gender inference
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Achieving diverse recommendation
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In the table: we used ML1M data set. PerBlur is created with addition from the personalized lists of indicative items and removal from Lm or Lf  



Outlook Part 1: Attacking input data

▪ A simple, yet effective personalized-based approach to gender obfuscation for user 
profiles 

▪ A recommender system trained on the obfuscated data is able to reach performance 
comparable to what is attained when trained on the original data 

▪ A classifier can no longer reliably predict the gender of users 

▪ The ability to recommend diverse items.
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Part 2:  
Chapter 4 & 5: When Machine Learning Models 
Leak: An Exploration of Synthetic Training Data

18
Manel Slokom, Peter-Paul de Wolf, Martha Larson. When Machine Learning Models Leak: An exploration of Synthetic Training Data. Privacy in Statistical Databases 2022. 
Manel Slokom, Peter-Paul de Wolf, Martha Larson. Exploring Privacy-Preserving Synthetic Data as a Defense Against Model Inversion Attacks. Information Security Conference 2023.   
  



Threat model
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Threat model

• Try to recover sensitive features or the full data sample based on output labels and 
partial knowledge (subset of data) of some features [Mehnaz, S et al (2022)]

20
Mehnaz, S., Dibbo, S.V., Kabir, E., Li, N., Bertino, E.: Are your sensitive attributes private? novel model inversion attribute inference attacks on classification models. In: 31st USENIX Security Symposium. pp. 4579–
4596. (2022)

• What information is leaked from a model that is trained on original data? 
• Does a machine learning model trained on data that has been synthesized 

prevent this leak? 



Machine learning using synthetic training data
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Machine learning using synthetic training data

Credits picture from Synthpop an R package for generating synthetic microdata by Beata Nowok and Gillan Raab (2013).

Sequentially replacing original values by synthetic values generated from 
conditional probability distributions [Beata. N et al, (2013)].
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Evaluation of machine learning algorithms
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Evaluation of machine learning algorithms
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Model inversion attribute inference attack (Real training data)
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Model inversion attribute inference attack (PP + synthetic training data)
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Attribute Disclosure using Correct Attribution Probability (CAP)
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Outlook: Attacking model and output data
• Investigation of an attack on a machine learning model 

• Exploration of the ability of privacy-preserving techniques on synthetic training 
data to protect against model inversion attribute inference attack 

• Measuring the disclosure risk per individuals using correct attribution probability
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Take-aways
• A specific purpose should be always behind the creation of synthetic data 

• Synthetic data does not necessarily protect against inference attack  

• Exploration of other more threat models, e.g., gray-box or white-box attacks. 
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Part 2:  
Chapter 6: A Closer Look at User Attributes in 
Recommendations: Implications for Privacy 

and Diversity

30This chapter is under preparation as Manel Slokom, Jesse Brons, Özlem Özgobek and Martha Larson. A closer Look at User Attributes in Recommendations: Implications for Privacy and 
Diversity. 
 



Threat model
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Recommendation Performance of Standard Recommenders
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Leaking in the Output of Standard Recommenders
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Recommendation Performance of Context-aware Recommenders
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Factorization
Machine 

GNN-Pre-train



Leaking in the Output of Context-aware Recommenders
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Factorization Machine 



Leaking in the Output of GNN Recommenders
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GNN-Pre-train



Diversity in the Output of Context-aware Recommenders
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Diversity in the Output of GNN Recommenders
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Conclusion: Attacking model and output data
• Investigation of user attributes from a perspective of privacy and diversity 

• Privacy: standard recommenders leak and that using user attributes as side 
information during the training of a context-aware recommender system may 
exacerbate this leak. 

• Diversity: user attributes restricts the coverage of a recommender system and 
lowers the diversity. 

• Recommender system platforms should consider carefully whether it is 
advantageous to make use of user attributes for training recommender systems.
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Take-aways
• It is important to consider whether side information is actually bringing a 

substantial benefit and to ensure that there are no hidden ‘side effects’.  

• We should not assume that making recommendation lists more indicative of a 
particular user attribute, i.e., ‘female’ will better satisfy users with that attribute. 

• We should not assume that there is a trade-off between leak reduction and 
recommender system performance. 

• The best of both is worth pursuing 
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Outlook and Discussion
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Outlook

1. Attacking input data 
▪ Data obfuscation for recommender systems. 

▪ Personalized blurring. 

▪ From privacy to fairness and diversity. 

2. Attacking model and output data 
▪ Investigation of an attack on a machine learning model. 

▪ Exploration of the ability of privacy-preserving techniques on synthetic data to protect against model 
inversion attribute inference attack.  

▪ Investigation of user attributes from a perspective of privacy and diversity in context-aware 
recommendations 
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Moving forward (Self-reflections)!

1. Trade-offs should not exist 

▪ Bias mitigation,  

▪ Fair / diverse recommendations 

2. Responsible predictions for: Individual vs group 

3. Averaging scores could result in a loss of information: 
➢ What privacy, fairness, diversity should be in a user-level! 

➢ Users should be treated differently as they are different, i.e., different profile sizes, interests! 

4. Diverse and fair recommendations are context dependent
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Thank You! 
 

Martha Larson (Radboud University)
Alan Hanjalic (TU Delft) 

Peter-Paul de Wolf (CBS) 
Laura Hollink (CWI)


