
Convex Analysis for Optimization

Olga Kuryatnikova (Erasmus University Rotterdam)
kuryatnikova@ese.eur.nl

September-October 2024
Lecture 2

1 / 23



Course plan

I Week 1: Introduction to convexity

I Week 2: More on convex sets

I Week 3: Dual view of convex sets + more on convex functions

I Week 4: Dual view of convex functions

I Week 5: Duality and optimization

I Week 6: Introduction to algorithms, descend methods

I Week 7: Proximal methods, projected gradients

I Weeks 8 - 9: Fix point approach, averaged operators
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Recap concepts of interior

Let S ⊆ Rn

I Interior:
int(S) := {x ∈ S : ∃ open ball A such that x ∈ A ⊆ S}

I Algebraic interior:
core(S) := {x ∈ S : ∀z ∈ Rn ∃δ > 0 such that [x , x + δz ] ⊆ S}

core(S) = int(S) for convex sets of a finite dimension.

I Relative interior:
ri(S) := {x ∈ S : ∃ open ball A such that x ∈ A ∩ aff(S) ⊆ S}.

core(S) = int(S) = ri(S) for convex full-dim. sets of a finite dim.
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Recap line segment principle

Let S ⊆ Rn be a convex set. If x ∈ int(S) (resp. ri(S)) and
y ∈ cl(S), then [x , y) ⊂ int(S) (resp. ri(S)). In particular, int(S)
(resp. ri(S)) is a convex set. This is called “Line segment principle”.
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Non-emptiness of relative interior

Let S be a nonempty convex set. Then
(a) ri(S) is a nonempty convex set
(b) ri(S) has the same affine hull as S .
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Prolongation lemma

Let S ⊆ Rn be a non-empty convex set. Then

ri(S) = {x ∈ S : ∀y ∈ S ∃ε > 0 such that x + ε(x − y) ∈ S}

Interpretation: any line segment in S having x ∈ ri(S) as one of its
endpoints can be prolonged a bit beyond x without leaving S .
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Prolongation lemma and algebraic interior

Prolongation lemma (PL) extends the idea of core(S) = ri(S) to not
full-dimensional sets. The proof of core(S) = int(S) is essentially the
same as of PL, just take y ∈ Rn instead of y ∈ S .
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A little bit of optimization

The set of minimizers of a concave function on a convex set S either
belongs to the relative boundary of S (rb(S) := S \ ri(S)) or consists
of the whole set S . Proof: prolongation lemma + concavity.
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Operations on relative interior and closure

Let S , S̄ be different non-empty convex sets

I cl(S) = cl(ri(S))

I ri(S) = ri(cl(S))

I ri(S) = ri(S̄) if and only if cl(S) = cl(S̄)

I ri(S × S̄) = ri(S)× ri(S̄)

I cl(S × S̄) = cl(S)× cl(S̄)

I ...and many others, see the Textbook Section 1.3.1
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Prove of cl(S) = cl(ri(S))
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Special cones

Convex cones based on a given set:

I Conic hull

I Recession cone

I Polar cone

I Dual cone

I Normal cone
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Recession cone

Def: d ∈ Rn is a direction of recession of set S ⊆ Rn if
x + αd ∈ S ∀x ∈ S , α ≥ 0

Def: Recession cone of set S consists of all its directions of recession:
RS = rec(S) = {d ∈ Rn : x + αd ∈ S ∀x ∈ S , α ≥ 0}.
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Useful facts about recession cone

Let S ⊆ Rn be non-empty, convex and closed

I The recession cone RS is a convex and closed cone

I RS={d∈Rn: ∃x∈S such that x + αd∈S ∀α≥0} (one x is enough)

I RS = {0} ⇐⇒ S is bounded

I RS = Rri(S)
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Faces and extreme points

Def: a face of a convex set S is any convex F ⊆ S whose elements
cannot be in the relative interior of some line segment that lies
outside of F but in S .

More formally: F ⊆ S is face of S when αx + (1− α)y ∈ F for some
x , y ∈ S and α ∈ (0, 1) if an only if x , y ∈ F .

Def: extreme point of a convex set S is a face that consists of one
point (0-dimensional face). Set of all extreme points of S is ext(S).
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Extreme directions and rays

Def: extreme direction of a convex set S is the direction of a face
consisting of a half-line. The set of all extreme directions is extr (S).

Def: extreme rays of a closed convex cone K are its faces consisting
of half-lines.These half-lines emanate from 0 in K ’s extreme directions.

By definition, extr (S) ⊆ extr (RS)
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Lineality space of set S ⊆ Rn

Def: lineality space is the set of all directions in which S contains a
whole line: LS :=RS ∩ −RS = {d∈Rn : x + αd∈S ∀x∈S , α∈R}.

Def: S is pointed if LS = {0}; usually defined for closed cones, then
this is equivalent to having no straight lines contained in the cone.

16 / 23



Minkovsky theorem on convex sets

Minkovsky Thm: Let S ⊂ Rn be a closed pointed convex set. Then

S = conv(ext(S)) + RS = conv(ext(S) ∪ extr (S)).

Corollary 1 (Krein-Milman Thm): Let S ⊂ Rn be compact and
convex. Then S = conv(ext(S)).

Corollary 2: Let S ⊆ Rn be a closed, convex, pointed cone such that
S 6= {0}. Then S = cone(extr (S)) = RS .
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Polar and dual cones of set S ⊆ Rn

Polar cone: S◦ := {x ∈ Rn : x>y ≤ 0 ∀y ∈ S}

Dual cone: S∗ := −S◦ = {x ∈ Rn : x>y ≥ 0 ∀y ∈ S}
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Polar and dual cone properties

For a non-empty set S (so, no convexity or closedness assumed):

S◦ = cl(S)◦ = conv(S)◦ = cone(S)◦

Polar Cone Thm: (S◦)◦ = cl(conv(S)) for a non-empty cone S

All above also holds for the dual cone (i.e., if we replace ◦ with ∗).
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Farkas’ lemma

Let a1, . . . , am ∈ Rn. Then {x ∈ Rn : a>j x≥0 ∀j = 1, . . . ,m} and
cone(a1, . . . , am) are closed convex cones dual to each other.

Note: Textbook uses a>j x≤0, and so the cones become polar.
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Interpretations of Farkas’ lemma

Let c , a1, . . . , am ∈ Rn. Then c>x ≥ 0 for all x ∈ S , where

S := {x ∈ Rn : a>j x ≥ 0 ∀j = 1, . . . , k , a>i x = 0 ∀i = k + 1, . . . ,m}

if and only if

c =
k∑

j=1

ajyj +
m∑

i=k+1

aiyi for some y ∈ Rm, y1, . . . , yk ≥ 0.
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Generalized Farkas’ lemma

Let K ⊆ Rm be a closed convex cone, c ∈Rn and A ∈ Rn×m. Let the
cone {Ay : y ∈ K ∗} be closed. Then x>c ≥ 0 for all x ∈ S , where

S := {x ∈ Rn : A>x ∈ K}

if and only if
c = Ay for some y ∈ K ∗.
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Normal cone

Def: the normal cone of S ⊆ Rn in x ∈ S is

NS(x) := {y ∈ Rn : y>(z − x) ≤ 0 ∀z ∈ S}.

That is, the normal cone of S in x is (S − x)◦.

NS(x)={0} if x∈int(S);NS(x) contains at least one half-line otherwise.

Occurs in duality, optimality conditions.
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