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Course plan

» Week 1: Introduction to convexity

» Week 2: More on convex sets

» Week 3: Dual view of convex sets + more on convex functions
» Week 4: Dual view of convex functions

» Week 5: Duality and optimization

» Week 6: Introduction to algorithms, descend methods

» Week 7: Proximal methods, projected gradients

» Weeks 8 - 9: Fix point approach, averaged operators
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Recap concepts of interior

Let SCR"

» Interior:
int(S) := {x € S : 3 open ball A such that x € AC S}

» Algebraic interior:
core(S) := {x € S§:Vz € R" 39 > 0 such that [x,x + dz] C S}

core(S) = int(S) for convex sets of a finite dimension.

> Relative interior:
ri(S) := {x € S : 3 open ball A such that x € Anaff(S) C S}.

core(S) = int(S) = ri(S) for convex full-dim. sets of a finite dim.
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Recap line segment principle

Let S C R” be a convex set. If x € int(S) (resp. ri(S)) and
y € cl(S), then [x,y) C int(S) (resp. ri(S)). In particular, int(S)
(resp. ri(S)) is a convex set. This is called “Line segment principle”.
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Non-emptiness of relative interior

Let S be a nonempty convex set. Then
(a) ri(S) is a nonempty convex set
(b) ri(S) has the same affine hull as S.
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Prolongation lemma

Let S C R" be a non-empty convex set. Then

ri(S) ={x€ S:Vy €S 3 >0such that x +e(x — y) € S}

Interpretation: any line segment in S having x € ri(S) as one of its
endpoints can be prolonged a bit beyond x without leaving S.
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Prolongation lemma and algebraic interior

Prolongation lemma (PL) extends the idea of core(S) = ri(S) to not
full-dimensional sets. The proof of core(S) = int(S) is essentially the
same as of PL, just take y € R” instead of y € S.
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A little bit of optimization

The set of minimizers of a concave function on a convex set S either
belongs to the relative boundary of S (rb(S) := S\ ri(S)) or consists
of the whole set S. Proof: prolongation lemma + concavity.
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Operations on relative interior and closure

Let S, S be different non-empty convex sets

cl(S) = cl(ri(S))

ri(S) = ri(cl(S))

ri(S) = ri(S) if and only if cI(S) = cI(S)
ri(S x S) = ri(S) x ri(S)

(S x ) = cl(S) x cl(5)

...and many others, see the Textbook Section 1.3.1
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Prove of cl(S) = cl(ri(5))



Special cones

Convex cones based on a given set:

Conic hull

Recession cone

>

>

» Polar cone
» Dual cone
>

Normal cone
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Recession cone

Def: d € R" is a direction of recession of set S C R" if
x+adeSv¥xeS, a>0

Def: Recession cone of set S consists of all its directions of recession:
Rs =rec(S)={deR":x+adeSV¥xeS, a>0}.
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Useful facts about recession cone

Let S C R” be non-empty, convex and closed

» The recession cone Rg is a convex and closed cone

» Rs={deR": 3xe€S such that x + adeS Ya>0} (one x is enough)
» Rs ={0} <= S is bounded
> Rs = Ris)
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Faces and extreme points

Def: a face of a convex set S is any convex F C S whose elements
cannot be in the relative interior of some line segment that lies
outside of F but in S.

More formally: F C S is face of S when ax + (1 — a)y € F for some
x,y € Sand a € (0,1) if an only if x,y € F.

Def: extreme point of a convex set S is a face that consists of one
point (O-dimensional face). Set of all extreme points of S is ext(S).
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Extreme directions and rays

Def: extreme direction of a convex set S is the direction of a face
consisting of a half-line. The set of all extreme directions is ext,(S).

Def: extreme rays of a closed convex cone K are its faces consisting
of half-lines. These half-lines emanate from 0 in K's extreme directions.

By definition, ext,(S) C ext,(Rs)
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Lineality space of set S C R”

Def: lineality space is the set of all directions in which S contains a
whole line: Ls:=Rs N —Rs = {d€R" : x + adeS VxS, acR}.

Def: S is pointed if Ls = {0}; usually defined for closed cones, then
this is equivalent to having no straight lines contained in the cone.
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Minkovsky theorem on convex sets

Minkovsky Thm: Let S C R"” be a closed pointed convex set. Then
S = conv(ext(S)) + Rs = conv(ext(S) U ext,(S)).

Corollary 1 (Krein-Milman Thm): Let S C R"” be compact and
convex. Then S = conv(ext(5)).

Corollary 2: Let S C R” be a closed, convex, pointed cone such that
S # {0}. Then S = cone(ext,(S)) = Rs.
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Polar and dual cones of set S C R”

Polar cone: S°:={x € R":x'y <0Vy e S}

Dual cone: §* := -S°={x€R":x'y >0Vy c S}
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Polar and dual cone properties

For a non-empty set S (so, no convexity or closedness assumed):

5° =cl(5)° = conv(S)° = cone(S)°

Polar Cone Thm: (5°)° = cl(conv(S)) for a non-empty cone S

All above also holds for the dual cone (i.e., if we replace o with x).
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Farkas’ lemma
Let a1,...,am € R". Then {x € R": ajTXZO Vj=1,...,m} and

cone(ay,...,am) are closed convex cones dual to each other.

Note: Textbook uses aij§0, and so the cones become polar.
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Interpretations of Farkas’ lemma

Let c,a1,...,am € R". Then ¢'x >0 for all x € S, where

S:={x€eR":a/x>0Vj=1,....k a/x=0Vi=k+1,...,m}

if and only if
k m
C:Zajyj—i- Z ajyj for some y € R™, yi,...,yx > 0.
j=1 i=k+1
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Generalized Farkas’ lemma

Let K C R™ be a closed convex cone, ¢ €ER" and A € R™™ Let the
cone {Ay : y € K*} be closed. Then x"c >0 for all x € S, where

S={xeR":ATx e K}

if and only if
c = Ay for some y € K*.
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Normal cone

Def: the normal coneof SCR"inxe Sis
Ns(x):={yeR":y"(z—x)<0VzeS}.

That is, the normal cone of S in x is (S — x)°.

Ns(x)={0} if x€int(S); Ns(x) contains at least one half-line otherwise.

Occurs in duality, optimality conditions.
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