How to Backdoor (Classic) McEliece and How to Guard Against Backdoors

PQCrypto 2022

Tobias Hemmert ¹ Alexander May ² Johannes Mittmann ¹ <u>Carl Richard Theodor Schneider</u> ²

¹Bundesamt für Sicherheit in der Informationstechnik, Bonn

²Ruhr-University Bochum

Our Contribution

- First backdoor for McEliece-like systems
 - Applicable to Classic McEliece (uncompressed keys)
- Simple countermeasure for this backdoor
- First post-quantum secure backdoor

Backdoor

- Transformation of simplified McEliece-like cryptosystem
- Leaks secret information
 - ullet Only accessible to adversary ${\mathcal A}$
- Indistinguishable from original system
- Adversary substitutes implementation of user ${\mathcal U}$

Backdoor

- Transformation of simplified McEliece-like cryptosystem
- Leaks secret information
 - ullet Only accessible to adversary ${\mathcal A}$
- Indistinguishable from original system
- Adversary substitutes implementation of user ${\mathcal U}$

Goal

Use secret information to recompute the secret key of the user.

Transform a cryptosystem into a backdoored cryptosystem.

1. Inputs of functions agree with specification.

- 1. Inputs of functions agree with specification.
- 2. Backdoor remains efficient and calls $\mathsf{Enc}_{\mathsf{pk}_{\mathcal{A}}}.$

- 1. Inputs of functions agree with specification.
- 2. Backdoor remains efficient and calls $\operatorname{Enc}_{\operatorname{pk}_d}$.
- 3. Exclusive access for A.

- 1. Inputs of functions agree with specification.
- 2. Backdoor remains efficient and calls $\operatorname{Enc}_{\operatorname{pk}_{\mathcal{A}}}$.
- 3. Exclusive access for A.
- 4. Outputs of functions remain compatible, but contain additional information.

Transform a cryptosystem into a backdoored cryptosystem.

- 1. Inputs of functions agree with specification.
- 2. Backdoor remains efficient and calls $\operatorname{Enc}_{\operatorname{pk}_{\mathcal{A}}}$.
- 3. Exclusive access for A.
- 4. Outputs of functions remain compatible, but contain additional information.

Strong SETUP

- Outputs are polynomially indistinguishable
 - ullet Exception: $\mathcal A$
- Even with knowledge about SETUP

Transform a cryptosystem into a backdoored cryptosystem.

- 1. Inputs of functions agree with specification.
- 2. Backdoor remains efficient and calls $\mathsf{Enc}_{\mathsf{pk}_{\mathcal{A}}}$.
- 3. Exclusive access for A.
- 4. Outputs of functions remain compatible, but contain additional information.

Strong SETUP

- Outputs are polynomially indistinguishable
 - Exception: A
- Even with knowledge about SETUP

Weak SETUP

- Outputs are polynomially indistinguishable
 - Exception: \mathcal{A}, \mathcal{U}
- Even with knowledge about SETUP

Vanilla McEliece

Key Generation

$$S \times H \times P =: pk$$

Key Generation

Key Generation

Goal of the Backdoor

Leak δ to $\mathcal{A}\text{, embedded in pk}$

Backdoor for Vanilla McEliece

Backdoor for Vanilla McEliece

Backdoor for Vanilla McEliece

$$=\widetilde{\mathsf{pk}}$$

1. Inputs are identical

- 1. Inputs are identical 🗸
- 2. $\widetilde{\mathrm{KGen}}_{\mathrm{V}}(1^n,\mathrm{pk}_{\mathcal{A}})$ remains efficient \checkmark

- 1. Inputs are identical 🗸
- 2. $\widetilde{\mathsf{KGen}}_{\mathtt{V}}(1^n,\mathsf{pk}_{\mathcal{A}})$ remains efficient \checkmark
- 3. Exclusive access due to asymmetric cryptography <

- 1. Inputs are identical 🗸
- 2. $\widetilde{\mathsf{KGen}}_{\mathtt{V}}(1^n,\mathsf{pk}_{\mathcal{A}})$ remains efficient \checkmark
- 3. Exclusive access due to asymmetric cryptography <
- 4. Outputs remain compatible

- 1. Inputs are identical 🗸
- 2. $\widetilde{\mathsf{KGen}}_{\mathtt{V}}(1^n,\mathsf{pk}_{\mathtt{A}})$ remains efficient \checkmark
- 3. Exclusive access due to asymmetric cryptography <
- 4. Outputs remain compatible 🗸

Type of SETUP (Theorem 1)

This is a **strong SETUP**, assuming the ciphertext is indistinguishable from random (IND\$ – CPA).

• Skip δ , sample directly from randomness?

- Skip δ , sample directly from randomness?
 - SETUP can resort to PRG
 - We lost reproducibility

- Skip δ , sample directly from randomness?
 - SETUP can resort to PRG
 - We lost reproducibility
- Reliance on δ
 - Key generation is deterministic in δ

- Skip δ , sample directly from randomness?
 - SETUP can resort to PRG
 - We lost reproducibility
- Reliance on δ
 - Key generation is deterministic in δ
 - User can verify key generation with a different implementation

- Skip δ , sample directly from randomness?
 - SETUP can resort to PRG
 - We lost reproducibility
- Reliance on δ
 - ullet Key generation is deterministic in δ
 - User can verify key generation with a different implementation

Advice for Implementors (Theorem 2)

If δ is part of sk, only weak SETUPs are possible.

Classic McEliece

Relevant Differences to Vanilla McEliece

- 1. S is chosen so that $SH = \left[I_{n-k} \| T\right]$
 - Focus on systematic form

- 1. S is chosen so that $SH = \left \lceil I_{n-k} \| T \right \rceil$
 - Focus on systematic form
- 2. δ is part of sk
 - Only weak SETUP

- 1. S is chosen so that $SH = \left \lceil I_{n-k} \| T \right \rceil$
 - Focus on systematic form
- 2. δ is part of sk
 - Only weak SETUP
- 3. No explicit ${\cal P}$

- 1. S is chosen so that $SH = \left[I_{n-k} \| T\right]$
 - Focus on systematic form
- 2. δ is part of sk
 - Only weak SETUP
- 3. No explicit P
- 4. Fixed to Binary Goppa codes

- 1. S is chosen so that $SH = \begin{bmatrix} I_{n-k} \| T \end{bmatrix}$
 - Focus on systematic form
- 2. δ is part of sk
 - Only weak SETUP
- 3. No explicit P
- 4. Fixed to Binary Goppa codes

Goppa Codes

$$H = \begin{pmatrix} \frac{1}{g(\alpha_1)} & \frac{1}{g(\alpha_2)} & \cdots & \frac{1}{g(\alpha_n)} \\ \frac{\alpha_1}{g(\alpha_1)} & \frac{\alpha_2}{g(\alpha_2)} & \cdots & \frac{\alpha_n}{g(\alpha_n)} \\ \vdots & & \ddots & \\ \frac{\alpha_1^{t-1}}{g(\alpha_1)} & \frac{\alpha_2^{t-1}}{g(\alpha_2)} & \cdots & \frac{\alpha_n^{t-1}}{g(\alpha_n)} \end{pmatrix}$$

Instances for $\mathsf{Enc}_{\mathsf{pk}_{\mathcal{A}}}(\delta)$

Instances for $\mathrm{Enc}_{\mathrm{pk}_{_{\mathcal{A}}}}(\delta)$

- Randomized Niederreiter Cryptosystem (Nojima et al., 2008)
 - Provides IND\$ CPA
 - Instantiate with Category 5 code parameters
 - Ciphertext size: 1664 bit

Instances for $\mathsf{Enc}_{\mathsf{pk}_{\mathcal{A}}}(\delta)$

- Randomized Niederreiter Cryptosystem (Nojima et al., 2008)
 - Provides IND\$ CPA
 - Instantiate with Category 5 code parameters
 - Ciphertext size: 1664 bit

Data Rate

Target instance	Category	n	k	$\lceil \log_2(k!) \rceil$
kem/mceliece348864	1	3488	2720	27117
kem/mceliece460896	3	4608	3360	34520
kem/mceliece6688128	5	6688	5024	54528
kem/mceliece6960119	5	6960	5413	59332
kem/mceliece8192128	5	8192	6528	73316

Conclusion

Summary

- Backdoor for McEliece-like cryptosystems
 - (Ab)uses deterministic key generation
 - Prevented by knowledge of the seed
 - Instantiable with McEliece itself

Summary

- Backdoor for McEliece-like cryptosystems
 - (Ab)uses deterministic key generation
 - Prevented by knowledge of the seed
 - Instantiable with McEliece itself

Open Question

What about other code-based schmes?

Advice for Implementors

Store δ to make keys verifiable.

Bibliography

- Kreher, D. L., and Stinson, D. R. (1999). *Combinatorial Algorithms: Generation, Enumeration, and Search*. CRC Press.
- Nojima, R., Imai, H., Kobara, K., and Morozov, K. (2008). "Semantic security for the McEliece cryptosystem without random oracles." *Des. Codes Cryptography*, 49, 289–305.
- Young, A., and Yung, M. (1997). "Kleptography: Using Cryptography Against Cryptography." *EUROCRYPT'97*, LNCS, W. Fumy, ed., Springer, Heidelberg, 62–74.