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Our Contribution

• First backdoor for McEliece-like systems
• Applicable to Classic McEliece (uncompressed keys)

• Simple countermeasure for this backdoor
• First post-quantum secure backdoor
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Backdoor

• Transformation of simplified McEliece-like cryptosystem
• Leaks secret information

• Only accessible to adversary 𝒜
• Indistinguishable from original system
• Adversary substitutes implementation of user 𝒰

Goal
Use secret information to recompute the secret key of the user.
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Properties of a SETUP Scheme (Young and Yung, 1997)

Transform a cryptosystem into a backdoored cryptosystem.

1. Inputs of functions agree with specification.
2. Backdoor remains efficient and calls Encpk𝒜

.
3. Exclusive access for 𝒜.
4. Outputs of functions remain compatible, but contain additional information.

Strong SETUP
• Outputs are polynomially

indistinguishable
• Exception: 𝒜

• Even with knowledge about SETUP

Weak SETUP
• Outputs are polynomially

indistinguishable
• Exception: 𝒜, 𝒰

• Even with knowledge about SETUP
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Vanilla McEliece



Vanilla McEliece

Key Generation

𝑆 × 𝐻 × 𝑃 ≕ pk

𝛿

Goal of the Backdoor
Leak 𝛿 to 𝒜, embedded in pk
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Vanilla McEliece

Backdoor for Vanilla McEliece

𝛿

𝑆 × 𝐻 × = p̃k𝑃 ′

Lexicographic ordering

× ̃𝑃

Encpk𝒜
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Vanilla McEliece

Recovering 𝛿 (View of 𝒜)

𝛿

𝑆 × 𝐻 × 𝑃 ′× = p̃k

Lexicographic ordering

̃𝑃

Decsk𝒜

Hemmert, May, Mittmann, Schneider McEliece Backdoor 7



Vanilla McEliece

Recovering 𝛿 (View of 𝒜)

𝛿

𝑆 × 𝐻 × 𝑃 ′× = p̃k

Lexicographic ordering

̃𝑃

Decsk𝒜

Hemmert, May, Mittmann, Schneider McEliece Backdoor 7



Vanilla McEliece

Recovering 𝛿 (View of 𝒜)

𝛿

𝑆 × 𝐻 × 𝑃 ′× = p̃k

Lexicographic ordering

̃𝑃

Decsk𝒜

Hemmert, May, Mittmann, Schneider McEliece Backdoor 7



Vanilla McEliece

Recovering 𝛿 (View of 𝒜)

𝛿

𝑆 × 𝐻 × 𝑃 ′× = p̃k

Lexicographic ordering

̃𝑃

Decsk𝒜

Hemmert, May, Mittmann, Schneider McEliece Backdoor 7



Vanilla McEliece

Recovering 𝛿 (View of 𝒜)

𝛿

𝑆 × 𝐻 × 𝑃 ′× = p̃k

Lexicographic ordering

̃𝑃

Decsk𝒜

Hemmert, May, Mittmann, Schneider McEliece Backdoor 7



Vanilla McEliece

Is this a SETUP?

1. Inputs are identical
2. K̃GenV(1𝑛, pk𝒜) remains efficient
3. Exclusive access due to asymmetric cryptography
4. Outputs remain compatible

Type of SETUP (Theorem 1)
This is a strong SETUP, assuming the ciphertext is indistinguishable from random
(IND$ − CPA).
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Vanilla McEliece

Countermeasure

• Skip 𝛿, sample directly from randomness?
• SETUP can resort to PRG
• We lost reproducibility

• Reliance on 𝛿
• Key generation is deterministic in 𝛿
• User can verify key generation with a different implementation

Advice for Implementors (Theorem 2)
If 𝛿 is part of sk, only weak SETUPs are possible.
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Classic McEliece

Relevant Differences to Vanilla McEliece

1. 𝑆 is chosen so that 𝑆𝐻 = [𝐼𝑛−𝑘‖𝑇]
• Focus on systematic form

2. 𝛿 is part of sk
• Only weak SETUP

3. No explicit 𝑃
4. Fixed to Binary Goppa codes

Goppa Codes

𝐻 =
⎛⎜⎜⎜⎜⎜⎜
⎝

1
𝑔(𝛼1)

1
𝑔(𝛼2) ⋯ 1

𝑔(𝛼𝑛)
𝛼1

𝑔(𝛼1)
𝛼2

𝑔(𝛼2) ⋯ 𝛼𝑛
𝑔(𝛼𝑛)

⋮ ⋱
𝛼𝑡−1

1
𝑔(𝛼1)

𝛼𝑡−1
2

𝑔(𝛼2) ⋯ 𝛼𝑡−1
𝑛

𝑔(𝛼𝑛)

⎞⎟⎟⎟⎟⎟⎟
⎠
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Classic McEliece

Instances for Encpk𝒜
(𝛿)

• Randomized Niederreiter Cryptosystem (Nojima et al., 2008)
• Provides IND$ − CPA
• Instantiate with Category 5 code parameters
• Ciphertext size: 1664 bit

Data Rate

Target instance Category 𝑛 𝑘 ⌈log2(𝑘!)⌉

kem/mceliece348864 1 3488 2720 27117
kem/mceliece460896 3 4608 3360 34520

kem/mceliece6688128 5 6688 5024 54528
kem/mceliece6960119 5 6960 5413 59332
kem/mceliece8192128 5 8192 6528 73316
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Conclusion

Summary

• Backdoor for McEliece-like cryptosystems
• (Ab)uses deterministic key generation
• Prevented by knowledge of the seed
• Instantiable with McEliece itself

Open Question
What about other code-based schmes?

Advice for Implementors
Store 𝛿 to make keys verifiable.

Hemmert, May, Mittmann, Schneider McEliece Backdoor 12



Conclusion

Summary

• Backdoor for McEliece-like cryptosystems
• (Ab)uses deterministic key generation
• Prevented by knowledge of the seed
• Instantiable with McEliece itself

Open Question
What about other code-based schmes?

Advice for Implementors
Store 𝛿 to make keys verifiable.

Hemmert, May, Mittmann, Schneider McEliece Backdoor 12



Conclusion
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