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Course plan

I Week 1: Introduction to convexity

I Week 2: More on convex sets

I Week 3: Dual view of convex sets + more on convex functions

I Week 4: Dual view of convex functions

I Week 5: Duality and optimization

I Week 6: Introduction to algorithms, descend methods

I Week 7: Proximal methods, projected gradients

I Weeks 8 - 9: Fix point approach, averaged operators
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Special cones

Convex cones based on a given set:

I Conic hull (smallest convex cone containing a given set)

I Recession cone (determines directions of unboundedness of a set)

I Polar cone (dual description of a set)

I Dual cone (dual description of a set)

I Normal cone (dual descriptions, optimality conditions)
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Polar and dual cones of set S ✓ Rn

Polar cone: S
�
:= {x 2 Rn

: x
>
y  0 8y 2 S}

Dual cone: S
⇤
:= �S

�
= {x 2 Rn

: x
>
y � 0 8y 2 S}
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Polar and dual cone properties

For a non-empty set S (so, no convexity or closedness assumed):

S
�
= cl(S)

�
= conv(S)

�
= cone(S)

�

Polar Cone Thm: (S
�
)
�
= cl(conv(S)) for a non-empty cone S

All above also holds for the dual cone (i.e., if we replace � with ⇤).
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Normal cone

Def: the normal cone of S ✓ Rn
in x 2 S is

NS(x) := {y 2 Rn
: y

>
(z � x)  0 8z 2 S}.

That is, the normal cone of S in x is (S � x)
�
.

NS(x)={0} if x2int(S);NS(x) contains at least one half-line otherwise.

Occurs in duality, optimality conditions.
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Hyperplanes

Recall: hyperplane for some 0 6= a 2 Rn, b 2 R

H := {x 2 Rn
: a

>
x = b} = x̄ + {x 2 Rn

: a
>
x = 0} for some x̄ 2 H

Def: H separates sets S , S̄ ✓ Rn
if a

>
y  b  a

>
x , 8y 2 S̄ 8x 2 S
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Set separation by hyperplane

S , S̄ ✓ Rn
separable: 9a 6= 0, b : a

>
y  b  a

>
x , 8y 2 S̄ 8x 2 S .

Equiv: 9a : sup

y2S̄
a
>
y  inf

x2S
a
>
x (*)

Properly separable: (*) and 9a 6= 0 : inf
y2S̄

a
>
y < sup

x2S
a
>
x

Strictly separable: 9a 6= 0, b : a
>
y < b < a

>
x , 8y 2 S̄ 8x 2 S

Strongly separable: 9a 6= 0 : sup

y2S̄
a
>
y < inf

x2S
a
>
x

Equiv: a
>
y  a

>
x , 8y 2 S̄+B(0, ") 8x 2 S+B(0, "), for some ">0
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Proper Separation Theorem

Thm: Let S ✓ Rn
be nonempty and convex, and let x̄ 2 Rn

. There is

a hyperplane properly separating x̄ and S if and only if x /2 ri(S).

Def: hyperplane H := x̄ + {x 2 Rn
: a

>
x = 0} supports set S in

point x̄ if x̄ 2 cl(S) and inf
x2S

a
>
x = a

>
x̄ (i .e., a>x̄  a

>
x 8x 2 S).
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Proof of Proper Separation Theorem
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Separating two sets

Let S , S̄ ✓ Rn
be nonempty, convex, and disjoint.

Thm (separation): There is a hyperplane separating S and S̄ .

Thm (proper s.): There is a hyperplane properly separating S and S̄

if and only if ri(S) \ ri(S̄) = ;.

Thm (strict s.): There is a hyperplane strictly separating S and S̄ if

S � S̄ is closed.

Thm (strong s.): There is a hyperplane strongly separating S and S̄

if and only if 0 /2 cl(S � S̄).
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Dual description of convex sets

Thm: For S ✓ Rn
, the set cl(conv(S)) is the intersection of the

closed halfspaces that contain S .

Corollary: If S is closed and convex, S is the intersection of the

closed halfspaces that contain it.
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More info on convex functions

I Popular convex functions

I Convexity preserving operations on functions

I Continuity and closedness

I Di↵erentiable convex functions (for next lecture)
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Some definitions

Consider f : Rn ! (�1,1].

Convexity/continuity/some other property over a set

Def: Let C✓ S✓ Rn
, then f is [property] over S if its restriction to S

defined by [f̂ :S ! R, f̂ (x)=f (x) 8x2S ] is [property].

Strict convexity

Def: f is strictly convex if f (↵x + (1� ↵)y) < ↵f (x) + (1� ↵)f (y)
for ↵ 2 (0, 1), x 6= y .

Strong convexity

Def: f is strongly convex if f � �kxk2 is convex for some � > 0.
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Popular convex functions

I A�ne functions: a
>
x + b or

nP
i=1

Aijxij + b if x is a matrix

I Norms: lp norm for p � 1: (

nP
i=1

= |x |1/p)p, 1-norm:
n

max
i=1

|xi |;

spectral norm: �max(x) = (�max(x
>
x))

1/2
if x is a matrix

I Sums of squares of polynomials:

mP
j=1

(pj(x))
2

I Max:
n

max
i=1

xi

I Log-sum-exp: log(

nP
i=1

exp(xi ))

I log-determinant: -log(det(x)) is convex on the set of positive

definite matrices x
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Convexity preserving operations on functions

Consider functions Rn ! (�1,1]. The following is convex.

I Sum of convex functions, even of infinitely many functions

I For convex f : f (Ax + b), A 2 Rn⇥m
, b 2 Rn

I Conic combination of convex functions

I Supremum: sup
i2I

fi (x), sup
y2Y

f (x , y) if f is convex in x for all y

I Partial inf: inf
y2Y

f (x , y) if Y is convex and f is convex in (x , y)

I Integral:
R

y2Y
f (x , y)dy if f is convex in x for all y

I Composition: f (g1(x), . . . , gn(x)) is convex if f is convex and for

each i = 1, . . . , n at least one of three facts holds: [gi convex, f

non-decreasing in xi ]; [gi concave, f non-increasing in xi ]; [gi a�ne]
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Restricting a convex function to a line

Thm: f :Rn!(�1,1] is convex if and only if its restriction to a line

gx ,v (t) is convex for any fixed x , v , where g(t):=f (x+tv).
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Types of continuity

Consider a function f :S ! R

Def: f is lower semicontinuous in x if f (x) lim inf
y!x

f (y), 8(y) ⇢ S .

Def: f is continuous in x 2dom(f ) if f (x)= lim
y!x

f (y), 8(y)⇢dom(f )

Def: f is Lipshitz-continuous with constant L > 0 if

kf (x)� f (y)k  Lkx � yk for all x , y 2 dom(f )
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Semicontinuity and closedness

Def: f : S ! R is closed if its epigraph epi(f ) is a closed set.

Thm: Function f : Rn ! R is closed if and only if

() f is lower-semicontinuous

() level set V� =: {x 2 Rn
: � � f (x)} is closed for any � 2 R
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Continuity and convexity

Thm: f :S!R proper and convex ) f continuous over ri(dom(f )).

Corollary: A convex function Rn ! R is continuous.

20 / 24



If there is time: Farkas’ lemma as an example of using polar cones
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Farkas’ lemma

Let a1, . . . , am 2 Rn
. Then {x 2 Rn

: a
>
j x�0 8j = 1, . . . ,m} and

cone(a1, . . . , am) are closed convex cones dual to each other.

Note: Textbook uses a
>
j x0, and so the cones become polar.
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Interpretations of Farkas’ lemma

Let c , a1, . . . , am 2 Rn
. Then c

>
x � 0 for all x 2 S , where

S := {x 2 Rn
: a

>
j x � 0 8j = 1, . . . , k , a

>
i x = 0 8i = k + 1, . . . ,m}

if and only if

c =

kX

j=1

ajyj +

mX

i=k+1

aiyi for some y 2 Rm, y1, . . . , yk � 0.
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Generalized Farkas’ lemma

Let K ✓ Rm
be a closed convex cone, c 2Rn

and A 2 Rn⇥m
. Let the

cone {Ay : y 2 K
⇤} be closed. Then x

>
c � 0 for all x 2 S , where

S := {x 2 Rn
: A

>
x 2 K}

if and only if

c = Ay for some y 2 K
⇤.
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