Convex Analysis for Optimization

Olga Kuryatnikova (Erasmus University Rotterdam) kuryatnikova@ese.eur.nl

> September-October 2024 Lecture 3

Course plan

- ► Week 1: Introduction to convexity
- ► Week 2: More on convex sets
- ► Week 3: Dual view of convex sets + more on convex functions
- ► Week 4: Dual view of convex functions
- ▶ Week 5: Duality and optimization
- ► Week 6: Introduction to algorithms, descend methods
- ► Week 7: Proximal methods, projected gradients
- ► Weeks 8 9: Fix point approach, averaged operators

Convex cones based on a given set:

- Conic hull (smallest convex cone containing a given set)
- Recession cone (determines directions of unboundedness of a set)
- Polar cone (dual description of a set)
- Dual cone (dual description of a set)
- Normal cone (dual descriptions, optimality conditions)

Polar and dual cones of set $S \subseteq \mathbb{R}^n$

are starphy

Polar cone:
$$S^{\circ} := \{x \in \mathbb{R}^{n} : x^{\top}y \leq 0 \forall y \in S\}$$

Dual cone: $S^{*} := -S^{\circ} = \{x \in \mathbb{R}^{n} : x^{\top}y \geq 0 \forall y \in S\}$
 $\Rightarrow \cos\{\mathcal{L}(x, y)\} \neq 0 \forall y \in S\}$
 $\Rightarrow \cos\{\mathcal{L}(x, y)\} \neq 0 \forall y \in S\}$
 $\Rightarrow \cos\{\mathcal{L}(x, y)\} \neq 0 \Rightarrow \mathcal{L}(x, y) \in E_{2}^{*}, T\}$
 $\Rightarrow \cos\{\mathcal{L}(x, y)\} \neq 0 \Rightarrow \mathcal{L}(x, y) \in E_{2}^{*}, T\}$
 $\Rightarrow \cos\{\mathcal{L}(x, y)\} \neq 0 \Rightarrow \mathcal{L}(x, y) \in E_{2}^{*}, T\}$
 $\Rightarrow \cos\{\mathcal{L}(x, y)\} \neq 0 \Rightarrow \mathcal{L}(x, y) \in E_{2}^{*}, T\}$
 $\Rightarrow \cos\{\mathcal{L}(x, y)\} \neq 0 \Rightarrow \mathcal{L}(x, y) \in E_{2}^{*}, T\}$
 $\Rightarrow \cos\{\mathcal{L}(x, y)\} \neq 0 \Rightarrow \mathcal{L}(x, y) \in E_{2}^{*}, T\}$
 $\Rightarrow \cos\{\mathcal{L}(x, y)\} \neq 0 \Rightarrow \mathcal{L}(x, y) \in E_{2}^{*}, T\}$
 $\Rightarrow \cos\{\mathcal{L}(x, y)\} \neq 0 \Rightarrow \mathcal{L}(x, y) \in E_{2}^{*}, T\}$
 $\Rightarrow \cos\{\mathcal{L}(x, y)\} \neq 0 \Rightarrow \mathcal{L}(x, y) \in E_{2}^{*}, T\}$

Polar and dual cone properties

For a non-empty set S (so, no convexity or closedness assumed):

 $S^{\circ} = \operatorname{cl}(S)^{\circ} = \operatorname{conv}(S)^{\circ} = \operatorname{cone}(S)^{\circ}$ $S^{\circ} = \operatorname{cl}(S)^{\circ} = \operatorname{conv}(S)^{\circ} = \operatorname{cone}(S)^{\circ}$ $S^{\circ} = \operatorname{cl}(S)^{\circ} = \operatorname{cl}(\operatorname{conv}(S)) \text{ for a non-empty cone } S$

All above also holds for the dual cone (i.e., if we replace \circ with *).

Seen in LP Deality: by dued of the dual is the pumar In LP we optimize over AX-B>OED AX-BERT, so we optimize Oreo the care B.T. The dual of this cone is B.T. as well, check that.

Normal cone

Def: the normal cone of $S \subseteq \mathbb{R}^n$ in $x \in S$ is

$$N_S(x) := \{y \in \mathbb{R}^n : y^{ op}(z-x) \leq 0 \ \forall z \in S\}.$$

That is, the normal cone of S in x is $(S - x)^{\circ}$.

 $N_S(x) = \{0\}$ if $x \in int(S)$; $N_S(x)$ contains at least one half-line otherwise.

Pollow Show with pollow show or with of are hope on short

Hyperplanes

Recall: hyperplane for some $0 \neq a \in \mathbb{R}^n, b \in \mathbb{R}$ $H := \{x \in \mathbb{R}^n : a^\top x = b\} = \overline{x} + \{x \in \mathbb{R}^n : a^\top x = 0\}$ for some $\overline{x} \in H$ $a^{T}x=b, a^{T}x = b \notin a^{T}(x-\overline{x}) = 0, = PH=\overline{x} + \{X: Q^{T}x=0\}$ $X \in H$ $H: a^{T}(x-\overline{x}) = 0$ $H: a^{T}(x-\overline{x}) = 0$ $H: a^{T}(x-\overline{x}) = 0$ Def: *H* separates sets $S, \overline{S} \subseteq \mathbb{R}^n$ if $a^\top y \le b \le a^\top x$, $\forall y \in \overline{S} \ \forall x \in S$ We can always take a = -a, and it is still normal to Maso the above an inequalities could be reversed, tothe is fill, it's a matter of choice.

Set separation by hyperplane

 $S, \overline{S} \subseteq \mathbb{R}^n$ separable: $\exists a \neq 0, b : a^\top y \leq b \leq a^\top x, \forall y \in \overline{S} \forall x \in S$. Equiv: $\exists a : \sup a^{\top} y \leq \inf a^{\top} x$ (*) Separated ht hat separated property *x*∈*S* poper $y \in S$ and strictly, but Separated = Phot strict tot strong 14 strongly orstron (QJYmptofiecly but not strict (Converge to hyperplane Properly separable: (*) and $\exists a \neq 0$: inf $a^{\top}y < \sup a^{\top}x$ $y \in S$ $x \in S$ prese are also properly separated as only one lies fully inside the hyperplane the strict megnicity above tensus there is a point in 5 ers where the megnicity holds strictlys Strictly separable: $\exists a \neq 0, b : a^{\top}y < b < a^{\top}x, \forall y \in \overline{S} \forall x \in S$ strictly separated stricly separated (sets are open) (asymptotically converge to W/ prosane) open ball with center 0, Strongly separable: $\exists a \neq 0$: sup $a^{\top}y < \inf a^{\top}x$ x∈S radiuse $v \in S$ Equiv: $\underline{a}^{\top} y \leq \overline{a}^{\top} x$, $\forall y \in \overline{S} + B(0, \varepsilon) \ \forall x \in S + B(0, \varepsilon)$ for some $\varepsilon > 0$ strongly separated = sciparated even if we expand them a bit in an cirections. 8 / 24

Proper Separation Theorem

Thm: Let $S \subseteq \mathbb{R}^n$ be nonempty and convex, and let $\overline{x} \in \mathbb{R}^n$. There is a hyperplane properly separating \bar{x} and S if and only if $x \notin ri(S)$. s Separated YEd(S) Def: hyperplane $H := \overline{x} + \{x \in \mathbb{R}^n : a^\top x = 0\}$ supports set S in point \bar{x} if $\bar{x} \in cl(S)$ and $\inf a^{\top}x = a^{\top}\bar{x}$ (*i.e.*, $a^{\top}\bar{x} \leq a^{\top}x \ \forall x \in S$). *x*∈*S* both are suppor fing

Proof of Proper Separation Theorem

Assume $\overline{x} = 0$: we can shift $S = S - \overline{x}$, $\overline{x} + \overline{x} - \overline{x}$ and then shift back, DArgue that $0 \in ri(s) = D$ cannot properly separate 0 from S (either S = 30) or by Une segm. principle and propendation len $0 \in rigge \in n(S) = D \ ay, = dy \in S$ for some $d \in (0, 1)$. DNow let D&N(S). Simple case: O&d(S)=>inflit 11>0=> I x ecl(S) perplanes with normal x. reparating hyperplanes with normal x. norm and x=0 Take any hyperplane with direction X := a. We know: at X = a 0=0. Show: at y > 0 for all y Erils) =) intaty 7 sup at x=0. It dim(St=0, so s=xx3, the result tollows as at y for y Es is 11x112 >0. pollows from the request principle It dim(St=0, use contradiction' show that if at y=0, X toes how have minimal norm. Take y Eri(S), y = 7, t & e [0,1) we have z= xx+ (-x) y es When we shift back, the hyper-place equation changes from show: $zTz < \hat{\chi}T\hat{\chi}$ $1-d^2 - (1-d)^2$ $\frac{z}{z} = \frac{z}{x} = \frac{z}$ $a^{T}y=0$ to $a^{T}(y-\overline{x})=0=0$ $= (I-d)(I-d)(y^{T}y - x^{T}y) - (I+d)(x^{T}x - x^{T}y))$ por source , a close to 1,

 $\underbrace{Harder case}: \widetilde{O} \in d(s) \setminus i(s). Then inf x^{T} x = 0, so we$ cannot take &= 0 and a = $\frac{1}{11211}$. Thus, we take any sequence XK = O=X, XK & d(S). From the previous reasoning, we can separate Xx from S by hyperplaces with normal directions ak = The The argint 11×11 ±0 17K11, XES-{XKS Then ary so for all yeri (S-{xk}), for all k = P av (y-Xk) = o for all y en (s), for all k $= \mathcal{P} \lim_{k \to \infty} \alpha_k^T (y - \tilde{x}_k) = \alpha^T (y - \tilde{x}) \leq \mathcal{O} \quad \text{for all } y \in \tilde{x}(s)$ and trus fran y ed(s) as those are limit points of y evi(s) by the segment principle. Here we may assume that lim are reists as 1(ak11=1, so We get a bounded sequence and can restrict it to some convergent subsequence.

Separating two sets

not always necessary

Let $S, \overline{S} \subseteq \mathbb{R}^n$ be nonempty, convex, and disjoint.

Thm (separation): There is a hyperplane separating S and \overline{S} . But not hears and \overline{S} .

Idea of proofs, Separate S-S and O, use constrained by the proof from page before (or any other proof of separating a set from a point). Thm (proper s.): There is a hyperplane properly separating S and \overline{S} if and only if $ri(S) \cap ri(\overline{S}) = 0$. \neg disjoint is sufficient but not becessary, Follows from proper separation theorem and condition mis weaker. $0 \notin vi(S-\overline{S})=ri(S)-ri(\overline{S})$ if f $vi(S) nri(\overline{S}) = \phi$

Thm (strict s.): There is a hyperplane strictly separating S and \overline{S} if $S - \overline{S}$ is closed. There is a hyperplane strictly separating S and \overline{S} if Same Idea of proof as poper sep. Then, use disjointness and dosedeness of $S - \overline{S}$, so $0 \notin cl(S-\overline{S})$, so χ = arg min IIXII = 0, fax $a = \frac{1}{|K||}$, $b = \frac{|K||}{2} = p \underbrace{a^T \chi > \frac{\chi \chi}{R}}_{R = 1} > 0$ for $\chi \in S - \overline{S}$ and $\overline{a^T \chi < k}$ for $\chi \in S - \overline{S}$ Thm (strong s.): There is a hyperplane strongly separating S and \overline{S} if and only if $0 \notin cl(S - \overline{S})$. If even used disjoint, it follows from the condition Same idea there to introduce a small ball to show that the sets shifted by mat ball can still be separated

Dual description of convex sets

Thm: For $S \subseteq \mathbb{R}^n$, the set cl(conv(S)) is the intersection of the closed halfspaces that contain S.

 $S = \bigwedge \left(y + \xi X : a y^T X \ge 0 \right)$ $y \neq int(s) \left(y + \xi X : a y^T X \ge 0 \right)$

Corollary: If S is closed and convex, S is the intersection of the closed halfspaces that contain it.

Proof idea: a halfspace is defined by a hyperplane, and $\overline{\mathcal{J}(onv(s))}$ is closed and convex. If $x \in \overline{S} \to ay$ halfspace equations hold for x. If $x \notin \overline{S}$, at least one helf-space is defined by a hyperplane separating x from \overline{S} .

More info on convex functions

- Popular convex functions
- Convexity preserving operations on functions
- Continuity and closedness
- ► Differentiable convex functions (for next lecture)

Some definitions

Consider $f : \mathbb{R}^n \to (-\infty, \infty]$.

Convexity/continuity/some other property over a set Def: Let $C \subseteq S \subseteq \mathbb{R}^n$, then f is [property] over S if its restriction to S defined by $[\hat{f}: S \to \overline{\mathbb{R}}, \hat{f}(x) = f(x) \forall x \in S]$ is [property]. ለተ(ት) DUVER OVER S continuous over S Strict convexity over A Def: f is strictly convex if $f(\alpha x + (1 - \alpha)y) < \alpha f(x) + (1 - \alpha)f(y)$ for $\alpha \in (0, 1)$, $x \neq y$. vot shictly Strong convexity Def: f is strongly convex if $f - \sigma ||x||_{q}^{2}$ is convex for some $\sigma > 0$. Nery conver" i.e., at least as convex of Euclidean norm (2-norm). An affine function is not strongly convex, for example.

14 / 24

Popular convex functions

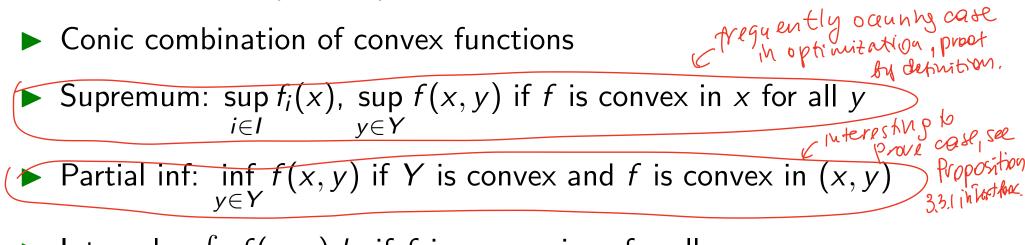
Affine functions: a^Tx + b or ∑_{i=1}ⁿ A_{ij}x_{ij} + b if x is a matrix
Norms: I_p norm for p ≥ 1: (∑_{i=1}ⁿ = |x|^{1/p})^p, ∞-norm: max |x_i|; spectral norm: σ_{max}(x) = (λ_{max}(x^Tx))^{1/2} if x is a matrix
Sums of squares of polynomials: ∑_{j=1}^m (p_j(x))²

- Max: $\max_{i=1}^{n} x_i$
- Log-sum-exp: $\log(\sum_{i=1}^{n} \exp(x_i))$
- log-determinant: -log(det(x)) is convex on the set of positive definite matrices x

Convexity preserving operations on functions

Consider functions $\mathbb{R}^n \to (-\infty, \infty]$. The following is convex.

- Sum of convex functions, even of infinitely many functions
- For convex f: f(Ax + b), $A \in \mathbb{R}^{n \times m}$, $b \in \mathbb{R}^n$

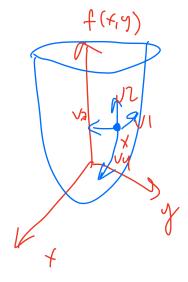


• Integral:
$$\int_{y \in Y} f(x, y) dy$$
 if f is convex in x for all y

► Composition: f(g₁(x),...,g_n(x)) is convex if f is convex and for each i = 1,..., n at least one of three facts holds: [g_i convex, f non-decreasing in x_i]; [g_i concave, f non-increasing in x_i]; [g_i affine] example f(x) = -x, fg(x) = x = D f (g(x)) = -x² is concave during hyperent f(x) = -x² = D f(h(x)) = x² is convex

Restricting a convex function to a line

Thm: $f:\mathbb{R}^n \to (-\infty,\infty]$ is convex if and only if its restriction to a line $g_{x,v}(t)$ is convex for any fixed x, v, where g(t):=f(x+tv).



Can follow the function in any direction, and the resulting line is waver, follows from the depinition of converting.

Types of continuity

Consider a function $f: S \to \mathbb{R}$ Def: f is lower semicontinuous in x if $f(x) \leq \liminf_{y \to x} f(y), \forall (y) \subset S$.

Def: f is continuous in $x \in dom(f)$ if $f(x) = \lim_{y \to x} f(y), \forall (y) \subset dom(f)$

Def: f is Lipshitz-continuous with constant L > 0 if $\|f(x) - f(y)\|_2 \le L \|x - y\|_2$ for all $x, y \in \text{dom}(f)$

Semicontinuity and closedness

Def: $f : S \to \overline{\mathbb{R}}$ is closed if its epigraph epi(f) is a closed set.

Thm: Function $f : \mathbb{R}^n \to \overline{\mathbb{R}}$ is closed if and only if

- \iff *f* is lower-semicontinuous
- \iff level set $V_{\gamma} =: \{x \in \mathbb{R}^n : \gamma \ge f(x)\}$ is closed for any $\gamma \in \mathbb{R}$

Continuity and convexity

Thm: $f: S \to \overline{\mathbb{R}}$ proper and convex $\Rightarrow f$ continuous over ri(dom(f)).

Corollary: A convex function $\mathbb{R}^n \to \mathbb{R}$ is continuous.

If there is time: Farkas' lemma as an example of using polar cones

Farkas' lemma

Let $a_1, \ldots, a_m \in \mathbb{R}^n$. Then $\{x \in \mathbb{R}^n : a_j^\top x \ge 0 \ \forall j = 1, \ldots, m\}$ and $\operatorname{cone}(a_1, \ldots, a_m)$ are closed convex cones dual to each other. Note: Textbook uses $a_j^\top x \le 0$, and so the cones become polar.

Interpretations of Farkas' lemma

Let
$$c, a_1, \ldots, a_m \in \mathbb{R}^n$$
. Then $c^T x \ge 0$ for all $x \in S$, where
 $S := \{x \in \mathbb{R}^n : a_j^T x \ge 0 \ \forall j = 1, \ldots, k, a_i^T x = 0 \ \forall i = k + 1, \ldots, m\}$
if and only if
 $c_{an write truis as } A_x \in \mathbb{R}_+^k + \langle o \rangle^{m-k}$
 $c_{an write truis as y \in \mathbb{R}_+^{k+1} \ \mathbb{R}_-^{m-k}}$
 $c_{an write truis as y \in \mathbb{R}_+^{k+1} \ \mathbb{R}_-^{m-k}}$
 $c_{an write truis as y \in \mathbb{R}_+^{k+1} \ \mathbb{R}_-^{m-k}}$
 $f = \sum_{j=1}^k a_j y_j + \sum_{i=k+1}^m a_i y_i \text{ for some } y \in \mathbb{R}_-^m, y_1, \ldots, y_k \ge 0.$
Tuterpretation as a theorem of alternatives:
Either $c^T x < 0$ or c has representation \oplus .
Interpretation as simplify cation of optimization!
Instead e_{f} for all $x \in S^{(1)}$ (hard Lowsdard) get $\exists y \text{ with repres.} \oplus \mathbb{T}_+$
(earlier constraint). 23/24

Generalized Farkas' lemma

Let
$$K \subseteq \mathbb{R}^m$$
 be a closed convex cone, $c \in \mathbb{R}^n$ and $A \in \mathbb{R}^{n \times m}$. Let the cone $\{Ay : y \in K^*\}$ be closed. Then $x^\top c \ge 0$ for all $x \in S$, where
In the previous slide
 $K^{\neq} = \mathbb{R}^K_+ \times \mathbb{R}^{m \times c}_+$
 $K = \mathbb{R}^K_+ \times \mathbb{Q}^{m \times c}_+$
if and only if
 $c = Ay$ for some $y \in K^*$.