
Luís Cruz
L.Cruz@tudelft.nl

3. Scientific Guide for Reliable
Energy Experiments
Sustainable Software Engineering 
CS4575

SustainableSE 2025

Carolin Brandt
C.E.Brandt@tudelft.nl

Enrique Barba Roque
E.BarbaRoque@tudelft.nl

mailto:l.cruz@tudelft.nl
mailto:C.E.Brandt@tudelft.nl
mailto:E.BarbaRoque@tudelft.nl

1. Scientific guide for energy measurements
2. Energy consumption data analysis

Energy tests are flaky

• Multiple runs might yield different results

• There are many confounding factors that need to be controlled/minimized.

3

?

Zen mode 🧘

• Close all applications.

• Turn off notifications.

• Only the required hardware should be connected (avoid USB drives, external
disks, external displays, etc.).

• Kill unnecessary services running in the background (e.g., web server, file
sharing, etc.).

• If you do not need an internet or intranet connection, switch off your network.

• Prefer cable over wireless – the energy consumption from a cable connection
is more stable than from a wireless connection.

4

Freeze and report your settings 🥶

• Fix display brightness; switch off auto brightness

• If Wifi is on, it should always be on, connected to the same network/
endpoint.…

5

Warm-up 📶

• Energy consumption is highly affected by the temperature of your hardware.

• Higher the temperature -> higher the resistance of electrical conductors -> 
-> higher dissipation -> higher energy consumption

• The first execution will appear more efficient because the hardware is still
cold.

• Run a CPU-intensive task before measuring energy consumption. E.g.,
Fibonacci sequence. At least 1min; 5min recommended.

•

6

Repeat 🔁

• The best way to make sure a measurement is valid is by repeating it.

• In a scientific project, the magic number is 30.

7

Rest ⏸

• It is common practice to do a pause/sleep between executions/
measurements.

• Prevent tail energy consumption from previous measurements. ?

• Prevent collateral tasks of previous measurement from affecting the next
measurement.

• There is no golden rule but one minute should be enough. It can be more or
less depending on your hardware or the duration of your energy test.

9

t

P

Tail Energy Consumption

Shuffle 🔀

• It is not a mystery that energy consumption depends on so many factors that
it is impossible to control all of them.

• If you run 30 executions for version A and another batch for version B:

• External conditions that change over time will have a different bias in
the 2 versions (e.g., room temperature changes).

• If you shuffle, you reduce this risk.

11

Keep it cool 🌡

• Always make sure there is a stable room temperature.

• Tricky because, some times, experiments may have to run over a few days.

• If you cannot control room temperature: collect temperature data and filter
out measurements where the room temperature is clearly deviating.

12

Automate Executions 🤖

• (Already mentioned in the previous classes)

• One cannot run 30 shuffled experiments per version without automation…

13

Data analysis

14

1. Exploratory Analysis

• Plot the data and inspect outliers or
unexpected biases.

• Violin+box plots are usually handy. (?)

• It’s a nice way of combining the 30
experiments, and of showing
descriptive statistics. (?)

• Shows the shape of the distribution
of the data.

15

1. Exploratory Analysis (II)
• Data should be Normal. Unless there’s a

good reason.

• E.g., somewhere amongst the 30 executions,
there might be 1 or 2 that failed to finish due
to some unexpected error.

• (It happens and that’s ok!)– consequently,
the execution is shorter and spends less
energy – falsely appearing as more
energy efficient.

• If data is not Normal there might be some
issues affecting the measurements that
might be ruining results. It is important to
investigate this.

16

Energy data is not normal. Why?

• It might be caused by one of the following reasons:

• There was an error in some of the executions. If not detected and fixed it
might ruin results.

• Your tests are not fully replicable or are not deterministic. Quite frequent
when you have internet requests or random-based algorithms.

• There is an unusual task being run by the system during some experiments.

• The computer entered a different power mode.

• External physical conditions have changed. E.g., someone opened a
window.

17

Energy data is not normal. How to fix?

• We have 2+1 options:

1. Remove outliers. If there are only a few points that deviate from the normal
distribution, it is okay to simply remove them.

• Use the z-score outlier removal. (?)

• Remove all data points that deviate from the mean more than 3 standard
deviations:

2. Fix the issue and rerun experiments.

3. Conclude that nothing can be done about it and data will never be normal. (e.g.,
in AI, executions are rarely deterministic). ⚠ Only after ruling out the previous
points.

| x̄ − x | > 3s

18

How do we know whether data is Normal?

• Visualise distribution shape: violin plots, histograms, density plot. 

• Shapiro-Wilk test. 
data is not normal; 
we are not sure but it is okay to assume that data is

normal.

p-value < 0.05 ⇒
p-value ≥ 0.05 ⇒

19

After having all data ready, which artefact
is more energy efficient(?)

First approach: compare sample means.

⚠ assuming normal distribution

Statistical significance

• Even if, on average, one artefact has lower
energy consumption than other, it might be just
a random difference.

• When we extract a sample from a normal
distribution it will never be the exact same

• Statistical significance tests help you
understand the differences in the average are
conclusive/significant or inconclusive/
insignificant.

21

⚠ assuming normal distribution

Statistical significance test

• Two-sided parametric test Welch’s t-test.

• Less known alternative to student’s t-test.

22

Welch’s t-test in Python

from scipy.stats import ttest_ind

_,pvalue = ttest_ind(sample_a, sample_b,
 equal_var=False,
 alternative='two-sided')

(?)

⚠ assuming normal distribution

Effect Size analysis

• Now that we know that results are statistically significant we need to
measure the difference between the two samples.

• Mean difference:

• Percent change:

• Cohen’s d (informal definition: mean difference normalized by a combined

standard deviation):

Δx̄
xB − xA

xA
× 100 % =

Δx̄
xA

× 100 %

Δx̄
1
2 s2

1 + s2
2

23

⚠ assuming normal distribution

Imagine that version A spends 70J and
version B spends 69J with a

.p-value = 0.04
On average, version B spent less energy than version A — ✅
There is statistical significance — ✅
Effect size, percent-change is ≈1% — 🤔
⚠ Do we care?

(?)

Practical Significance
• Depending on the case, a 2% improvement might be either wonderful or completely

useless.

• Effect size analyses help assess practical significance but might not be enough.

• A critical discussion always needs to be performed. Consider context and explain in what
sense the effect size might be relevant.

• E.g.:

• to improve 2% in energy efficiency the code will be less readable or the user
experience is not so appealing.

• A particular method improves 2% but it will only be used 1% of the time.

• There is no particular metric or structure, but this kind of critical analysis is very important.

25

What if data is not Normal?
Same approach but different tests/metrics!

Non-normal data
• Statistical significance: non-parametric test (?)

• Mann-Whitney U test. Instead of looking at standard deviation or mean, it orders
samples and compares with each other.

• Less power than parametric-tests (?)

• Effect size

• Median difference:

• Percentage of pairs supporting a conclusion 
(i.e., # pairs where version A > version B/ total pairs)

• Common language effect size:

ΔM

U1

N1N2

27

Recap

Impossible to
fix but

explainable.

Energy Efficiency Across
Programming Languages

https://sites.google.com/view/energy-efficiency-languages

29

Rui Pereira, Marco Couto, Francisco Ribeiro, Rui Rua, Jácome
Cunha, João Paulo Fernandes, and João Saraiva

https://sites.google.com/view/energy-efficiency-languages

• Is a faster programming language also more energy efficient?

• Comparing different programming languages is not an easy task.

• They differ in many mechanisms:

• Interpreted vs Compiled

• Optimisations at the compiler level

• Virtual machine

• Garbage collector

• Available libraries

30

Research Questions

• Can we compare the energy efficiency of software languages?

• Is the faster language always the most energy efficient?

• How does memory usage relate to energy consumption? (We don’t cover this one)

• Can we automatically decide what is the best programming language
considering energy, time, and memory usage?

• How do the results of our energy consumption analysis of programming
languages gathered from rigorous performance benchmarking solutions
compare to results of average day-to-day solutions?  

31

Methodology

The Computer Language Benchmarks Game

• https://benchmarksgame-team.pages.debian.net/benchmarksgame/

33

https://benchmarksgame-team.pages.debian.net/benchmarksgame/

Problems in the Computer Language Benchmarks Game

34

• 27 Programming languages across different paradigms

• Functional (e.g., Ocaml, F#, Haskell)

• Imperative (e.g., C, Go, Python)

• Object-oriented (e.g., C++, C#, Java)

• Scripting (or interpretative) (e.g., JavaScript, Python, Ruby)

• (These are not mutual exclusive)

• Intel RAPL’s C library to measure energy consumption

35

• Execute each benchmark solution 10 times.

• Collect energy data and timestamps.

• Two-minute interval between executions

36

Critical thinking

• There is no doubt this is an excellent study. Yet, as any excellent study, there’s
a lot we can discuss and criticise constructively.

• What kind of issues you see in drawing conclusions from such a table of
results?

• Is the benchmark representative of the most common usage behaviour?

• Are the implemented solutions representative?

• Does it make sense to use the average to compare energy consumption
across different problems?

• …

40

Reproducing with Rosetta Code

• Rosetta Code is a programming chrestomathy repository

• 900 usecases/tasks solved across 700 different programming languages

• Purpose: if you know a programming language we can easily learn how the
same task is solved in a language you are not familiar with.

41

(?)

Revisiting Research Questions

• Can we compare the energy efficiency of software languages?

• Is the faster language always the most energy efficient?

• How does memory usage relate to energy consumption?

• Can we automatically decide what is the best programming language considering
energy, time, and memory usage?

• How do the results of our energy consumption analysis of programming
languages gathered from rigorous performance benchmarking solutions
compare to results of average day-to-day solutions?

• What would happen if we cherry picked the tasks? 

44

Luís Cruz
L.Cruz@tudelft.nl

3. Scientific Guide for Reliable
Energy Experiments
Sustainable Software Engineering 
CS4575

SustainableSE 2025

Carolin Brandt
C.E.Brandt@tudelft.nl

Enrique Barba Roque
E.BarbaRoque@tudelft.nl

mailto:l.cruz@tudelft.nl
mailto:C.E.Brandt@tudelft.nl
mailto:E.BarbaRoque@tudelft.nl

