3. Scientific Guide for Reliable
Energy Experiments

Sustainable Software Engineering
CS4575

":5 Luis Cruz .y Carolin Brandt ;ﬁg Enrique Barba Roque
a /. L.Cruz@tudelft.nl W § C.E.Brandt@tudelft.nl =}, E.BarbaRoque@tudelft.nl

SustainableSE 2025


mailto:l.cruz@tudelft.nl
mailto:C.E.Brandt@tudelft.nl
mailto:E.BarbaRoque@tudelft.nl

1. Scientific guide for energy measurements
2. Energy consumption data analysis



Energy tests are flaky

 Multiple runs might yield different results

* There are many confounding factors that need to be eentrelled/minimized.



Zen mode

 Close all applications.
 Turn off notifications.

* Only the required hardware should be connected (avoid USB drives, external
disks, external displays, etc.).

* Kill unnecessary services running in the background (e.g., web server, file
sharing, etc.).

* |f you do not need an internet or intranet connection, switch off your network.

* Prefer cable over wireless — the energy consumption from a cable connection
IS more stable than from a wireless connection.



Freeze and report your settings &

* Fix display brightness; switch off auto brightness

* |f Wifi is on, it should always be on, connected to the same network/
endpoint....



Warm-up il

 Energy consumption is highly affected by the temperature of your hardware.

 Higher the temperature -> higher the resistance of electrical conductors ->
-> higher dissipation -> higher energy consumption

* The first execution will appear more efficient because the hardware is still
cold.

 Run a CPU-intensive task before measuring energy consumption. E.g.,
Fibonaccl sequence. At least Tmin; Smin recommended.



Repeat @

* The best way to make sure a measurement is valid is by repeating It.

* |n a scientific project, the magic number is 30.



I

Iteration: 1
B 1s less energy efficient!

— —

- N

O -
| |

®) Qo
O O
| I

=
=
@)
QS
2,
=
-
n
=
)
O
>
)
=
0

Version A Version B




Rest 11

* |t is common practice to do a pause/sleep between executions/
measurements.

* Prevent tail energy consumption from previous measurements. ?

* Prevent collateral tasks of previous measurement from affecting the next
measurement.

* There is no golden rule but one minute should be enough. It can be more or
less depending on your hardware or the duration of your energy test.



Tail Energy Consumption




Shuffle =2

* |t is not a mystery that energy consumption depends on so many factors that
it is Impossible to control all of them.

* |f you run 30 executions for version A and another batch for version B:

 External conditions that change over time will have a different bias in
the 2 versions (e.g., room temperature changes).

* |f you shuffle, you reduce this risk.

11



Keep it cool %

* Always make sure there is a stable room temperature.
* [ricky because, some times, experiments may have to run over a few days.

* |f you cannot control room temperature: collect temperature data and filter
out measurements where the room temperature is clearly deviating.

12



Automate Executions °

* (Already mentioned in the previous classes)

 One cannot run 30 shuffled experiments per version without automation...

13



Data analysis



1. Exploratory Analysis

* Plot the data and inspect outliers or
unexpected biases.

* Violin+box plots are usually handy. (?)

* |t’s a nice way of combining the 30
experiments, and of showing
descriptive statistics. (?)

O
-

-
a
o
.43
o,
&
-
n
c
@)
@
)
@)
<
)
-
(]

Qo
)

 Shows the shape of the distribution
of the data.

~J
)

- -
Version A Version B

15



1. Exploratory Analysis (ll)

e Data should be Normal. Unless there’s a
good reason.

* E.g., somewhere amongst the 30 executions,
there might be 1 or 2 that failed to finish due
to some unexpected error.

co
-

* (It happens and that’s ok!)— consequently,
the execution is shorter and spends less
energy — falsely appearing as more
energy efficient.

®)!
-

-
a
o
.-llj
o,
&
>
%)
a
o
O
>
@)
<
b)]
(=
]

N
)

* |f data is not Normal there might be some
Issues affecting the measurements that
might be ruining results. It is important to
iInvestigate this.

Version A Version B

16



Energy data is not normal. Why?

* |t might be caused by one of the following reasons:

e There was an error in some of the executions. If not detected and fixed It
might ruin results.

* Your tests are not fully replicable or are not deterministic. Quite frequent
when you have internet requests or random-based algorithms.

* There is an unusual task being run by the system during some experiments.
 [he computer entered a different power mode.

» External physical conditions have changed. E.g., someone opened a
window.

17



Energy data is not normal. How to fix?

 \We have 2+1 options:

1. Remove outliers. If there are only a few points that deviate from the normal
distribution, it is okay to simply remove them.

 Use the z-score outlier removal. (?)

* Remove all data points that deviate from the mean more than 3 standard
deviations: |x — x| > 3s

2. Fix the Issue and rerun experiments.

3. Conclude that nothing can be done about it and data will never be normal. (e.g.,
in Al, executions are rarely deterministic). A Only after ruling out the previous
points.

18



How do we know whether data is Normal?

* Visualise distribution shape: violin plots, histograms, density plot.

 Shapiro-Wilk test.
p-value < 0.05 = data is not normal;

p-value > 0.05 = we are not sure but it is okay to assume that data is
normal.

19



A assuming normal distribution

After having all data ready, which artefact
IS more energy efficient(?)

First approach: compare sample means.



A assuming normal distribution

Statistical significance

 Even if, on average, one artefact has lower
energy consumption than other, it might be just
a random difference.

 When we extract a sample from a normal
distribution it will never be the exact same

o Statistical significance tests help you
understand the differences in the average are
conclusive/significant or inconclusive/
insignificant.

21



A assuming normal distribution

Statistical significance test

(?)
 Two-sided parametric test Welch’s t-test.

e Less known alternative to student’s t-test.

¢ Welch’s t-test in Python

from scilpy.stats i1mport ttest ind

~,pvalue = ttest ind(sample a, sample b,
equal var=False,
alternative="'two—-sided"')

22



A assuming normal distribution

Effect Size analysis %

 Now that we know that results are statistically significant we need to
measure the difference between the two samples.

e Mean difference: AXx

Xp — X AX
_ Percent change: ——2 2 % 100% = — x 100 %
XA XA

e Cohen’s d (informal deflnltgm mean difference normalized by a combined
X

L J24 &2

23

standard deviation):



(?)

Imagine that version A spends 70J and
version B spends 69J with a

p-value = 0.04.

On average, version B spent less energy than version A — V
There is statistical significance — ¥V
Effect size, percent-change is =1% — @

A Do we care?




Practical Significance

 Depending on the case, a 2% improvement might be either wonderful or completely
useless.

* Effect size analyses help assess practical significance but might not be enough.

» A critical discussion always needs to be performed. Consider context and explain in what
sense the effect size might be relevant.

e E.Q.:

* to improve 2% in energy efficiency the code will be less readable or the user
experience Is not so appealing.

* A particular method improves 2% but it will only be used 1% of the time.

* There is no particular metric or structure, but this kind of critical analysis is very important.

25



What if data is not Normal?

Same approach but different tests/metrics!



Non-normal data

o Statistical significance: non-parametric test (?)

« Mann-Whitney U test. Instead of looking at standard deviation or mean, it orders
samples and compares with each other.

* Less power than parametric-tests (?)

o Effect size

 Median difference: AM

* Percentage of pairs supporting a conclusion
(l.e., # pairs where version A > version B/ total pairs)

U
N1V,

, Common language effect size:

27



Energy Consumption
(versions A and B)

Improve

Energ

Data Collection

Zen mode

Freeze and report settings

warm up your setup

Repeat 30 times

Sleep between measurements

Shuffle measurements

Control Room Temperature

Create Automated Tests

Energy Data Analysis

v

distribution shapes

Analyse

v

Is data normal?

Investigate problems
in experiments

Remove
outliers

\_/

Repeat
experiments

Impossible to

fix but

explainable.

v

— Significance tests

\ 4
Effect size

Write your Paper!




Energy Efficiency Across
Programming Languages

Rui Pereira, Marco Couto, Francisco Ribeiro, Rui Rua, Jacome
Cunha, Joao Paulo Fernandes, and Joao Saraiva

https://sites.google.com/view/energy-efficiency-languages

29

Energy Efficiency across Programming Languages
How Do Energy, Time, and Memory Relatle?

Rari Pereira Mareo Couto Francisco Ribeira, Rui Rua
ELASLab/INESC TEC HASLab/INESC TEC HASLab/AINESC TEC
Universidade do Minho, Purtugal Universidade do Minhe, Pertugal Universidade do Minho, Poctugal

ruipercira@di.uminha pt marco Leoutal@inesctec.pt triheira@diuminho pt

rruagd di.uminhopt

Jacome Cunha Jodo Paulo Fernandes Jodo Saraiva
NOVA LINCS DL FOT Relesisef/LISP. CISUC HASLulINESC TEC
Cniv Nova de Lishoa, Portugal Universidade de Cowunbra, Portugal Unwversidade do Mmho, Portugal

Jacamed@tetunlpt jpr@sleiuc . pt saraivai@cdi.uminho.pt

Abstract

This paper presents a sbucdy of the mntime. memory nsage
end energy consumption of twenty scven well known soft
wire Languages We munitor the perforoaance ul such Lus-
gnages naing ten difterent programming prablems, expressed
it esch of the Janguages. Our rezults show interesting fing-
ing= such us, slower/lusier angzapes consuming, kessfmore
cncrgy, and how memory usage wflucnces coergy consump
tvn. We show how Lo use our results (o provide sollware
engineers suppart ta decide which language to nae wwhen
ENneXzxy eﬁ\mncv L5 a concern

COS Conceptx « Soltware and ity engineering — Soflt-
ware performance; General programming languages;

Keypwords Fnergy Fricieney, Pragramming Langna pes, Lan
guage Benchmarking Green Seftware

ACM Rulerenve Formal:

Fui Pereira, Marco Couto, Prancsco Risero, Ruz Rus, Jicome Cuanba,
Indn Padn Fermandec, and Jadn Saraiva. 20075, Fnerpye 'ficiency
MRS I’m:'rumm "y l.xrl-‘uul:rv How N Froeryly, Timn aml Memi-
ury Rl Tn .c'mmr."'iab.& x:.'. 1T AT SR AN Saternedionud
Canlirenve on Suflwure Larguage Enpinecering (GLEIT) ACNM, Now
York NY, USA, 12 pages. hetps 'dolarg 70,1145/ 2132014, 2136031

1 Introduction
Softosare language engineering provides powerful techniques

amit toals Lo desipn, implement amd evolve sallware Lan-

-

E_IIRW‘,‘, Such N‘i‘.hl‘.il’llﬂﬂ Aim at 2"\')1“‘1’"!‘[ PIT\E?AH\I‘TII‘.I‘

Permisniar sa =take & ptal or hard copies af all o0 ot of “hie wark for
presonsl co cliarioo soric pranied withot Tee proeideal “hal capiec sav nnl
made or Erdhmtes foe preoft ee somyneecal sdvantage and shat copres hear
Eroerntion and e tnlleian conon e it geoge Capgriphile T anmporsnts
nhthe week cowned =y athees thon ACR et ke honared Ahetrarsing with
ol G pennitied Te oy oteraiss anrepalilion o pod cowssmcarnd
rrdictribnite bo Face requires price oaeribe femvisian wedor s fre Tl et
Pt cens fiven pwe sabsveails sl
ST Cpsber e, 200, Vimeauews, Catade
¥ NT Asensation hee Camparting Mashivary
AN LN 57 L01-2583 =L I L SR

ARV I

productivity by tecorporeting edvanced features in the lan

guigge design ke for instance powerfu] modular and type
systems - and at etficiently exeonte such software - by de

veloping, for example, azzressive compeler optimizations.
Trebesend, st techmigques were tevelopesd with the main goal
of Ielpme software developers o producing faster programs.
In [acl, in the Just cenlury performance in sollwace languages
was in almast all cases symanymous of fase axecition tinue
{embedded svsteps were probably the single exception).

In thix century, this rezlity is gueckly changing and alt-
WAIC cnergy consumption is becoming a key concern for
compnter wanufacturers, sotbware langrage engineers, pro
gramuners, uod even repular compuler users. Nowadays, il
ozl o see mehile phane wsers (which ane powaerll com
paters) avoldmg using CPU ntensive applicatzons just to
save ballery/energy. While the convern on the compulers’
encrgy efficiency started hy the hardware manitacturers, it
quickly became a concern for software developers too [28].
In fuet, thicis n rerent anld intensivie ang ol research whers
several techuugues to apalyze and optimize the energy con
sumplion of svllware svstems are being developed. Such
techniques already pravide knowledge on the energy offi
crercy of data stroctures (15, 27] and android language [25],

impact af diflerent propramming prictices nth in

y | and desktop applications [26, 22], the en
ergy elficiency of spplicativas within the same seepe [217].
or caen on how ta predict energy cansumption in several
software systems 1, 11], among saveral other works.

Aninteresting questinn that frequeently arises in the sall-
ware cacrgy cfficiency arca s whether a fasrer program is
wlse an energy eflivient program, or not. I the wns wer is ves,
then apBmizing a pragram far speed alsa meanz optimizing
it for epergy, and tlus is exacthy what the compiler con-
struction community his been handly doing sinee the very
beginnmg of software languages, However, cncrgy consump
lwen does ol depends valy on execubion bme, ws shown
m the mpuation Eeo = Tine X P In liel there ane

several research works showing different recalts regarding



https://sites.google.com/view/energy-efficiency-languages

* |s a faster programming language also more energy efficient?
 Comparing different programming languages is not an easy task.
* They differ in many mechanisms:
* Interpreted vs Compiled
* Optimisations at the compiler level
* Virtual machine
» Garbage collector

e Avalilable libraries

30



Research Questions

« Can we compare the energy efficiency of software languages”
* |s the faster language always the most energy efficient?
* How-does-memory-usage-relate-to-energy-consumption?-(\We donr’tcoverthisone)

 Can we automatically decide what is the best programming language
considering energy, time, and memory usage”?

 How do the results of our energy consumption analysis of programming
languages gathered from rigorous performance benchmarking solutions
compare to results of average day-to-day solutions?

31



Methodology



The Computer Language Benchmarks Game

e https:.//benchmarksgame-team.pages.debian.net/benchmarksgame/

o ® [[] < > [ ) & benchmarksuame-team.pages,.debian.net e ¢

The Computer Language
22.02 Benchmarks Game

“Which programming language 1is
fastest?”

Let's go measure ... benchmark programs !

Fastest means lowest .. cpu seconds?

C++ C Rust Fortran Julia Ef

Ada Chapel Haskell Go Pascal

F# OCaml Java Swift JavaScript

Lisp Dart Racket PHP  Erlang

Lua Python Smalltalk  Ruby Perl

{ box plot summary charts }

33


https://benchmarksgame-team.pages.debian.net/benchmarksgame/

Problems in the Computer Language Benchmarks Game

Benchmark

Description

[Input

n-body
fannkuch-redux
spectral-norm
mandelbrot
pidigits
regex-redux
fasta
k-nucleotide
reverse-complement
binary-trees
chameneos-redux
meteor-contest
thread-ring

Double precision N-body simulation

Indexed access to tiny integer sequence

Eigenvalue using the power method

Generate Mandelbrot set portable bitmap file
Streaming arbitrary precision arithmetic

Match DNA 8mers and substitute magic patterns
Generate and write random DNA sequences
Hashtable update and k-nucleotide strings

Read DNA sequences, write their reverse-complement
Allocate, traverse and deallocate many binary trees
Symmetrical thread rendezvous requests

Search for solutions to shape packing puzzle
Switch from thread to thread passing one token

50M

12

5,500
16,000
10,000

fasta output
25M

fasta output
fasta output
21

6M

2,098

50M




e 27 Programming languages across different paradigms
* Functional (e.g., Ocaml, F#, Haskell)
* Imperative (e.g., C, Go, Python)
 Object-oriented (e.g., C++, C#, Java)
» Scripting (or interpretative) (e.qg., JavaScript, Python, Ruby)
e (These are not mutual exclusive)

* Intel RAPL’s C library to measure energy consumption

35



 Execute each benchmark solution 10 times.
* Collect energy data and timestamps.

e Two-minute interval between executions

36



binary-trees

Energy (J)

39.80

Time (ms)
1125 0.035

Ratio (J/ms)

Mb
131

(c) C++ 41.23 1129 0.037 132

(c) Rust >

(¢) Fortran 14

(c) Ada {4

(c) Ocaml |1 12

49.07
69.82
95.02
100.74

1263 0.039
2112 0.033
2822 0.034
3525 0.029

180
133
197
148

(v) Java 11 16 111.84 3306 0.034 1120

v) Lisp |3 U3
v) Racket |4 s
i) Hack 12 {9
v)GF 1 U
v)F#F |3

c) Pascal |3 15
c) Chapel 15 114

v) Erlang 15 1
) Haskell 12 {>

i) JavaScript |2 4

i) TypeScript |2 {2
) Go 13 fhi3

i) Jruby 12 {3

149.55
155.81
156.71
189.74
20713
214.64
237.29
266.14
270.15
290.27
312.14
315.10
636.71
720.53
855.12

10570 0.014
11261 0.014
4497 0.035
10797 0.018
15637 0.013
16079 0.013
7265 0.033
7327 0.036
11582 0.023
17197 0.017
21349 0.015
21686 0.015
16292 0.039
19276 0.037
26634 0.032

373
467
502
427
432
256
335
433
494
475
916
915
228
1671
482

1,397.51 42316 0.033 786
1,793.46 45003 0.040 275
2,452.04 209217 0.012 1961
3,542.20 96097 0.037 2148

i) Python fts

(
(
(
(
(
(
(
(
(c
(i 1
(
(
(c)
(
(i
(i
(
(i
(i
(c




binary-trees

Energy (J) Time (ms) Ratio (J/ms) Mb
(c) C 39.80 1125 0.035 131
(c) C++ 41.23 1129 0.037 132
(c) Rust |}, 49.07 1263 0.039 180
(c) Fortran 1t 69.82 2112 0.033 133
(c) Ada 1 95.02 2822 0.034 197
(c) Ocaml |1 1 100.74 3525 0.029 148
(v) Java t1 116 111.84 3306 0.034 1120
(v) Lisp {3 3 149.55 10570 0.014 373
(v) Racket |4 U6 155.81 11261 0.014 467
(i) Hack 12 9 156.71 4497 0.035 502
(v) C# |1 4 189.74 10797 0.018 427
(v) F# |3 {4 20713 15637 0.013 432
(c) Pascal |3 15 214.64 16079 0.013 256
(c) Chapel 15 14 237.29 7265 0.033 335
(v) Erlang 15 11 266.14 7327 0.036 433
(c) Haskell 12 > 270.15 11582 0.023 494
(i) Dart |1 11 290.27 17197 0.017 475
(i) JavaScript |2 4 312.14 21349 0.015 916
(i) TypeScript |2 > 315.10 21686 0.015 915
(c) Go 13 13 636.71 16292 0.039 228
(i) Jruby 1> 3 720.53 19276 0.037 1671

855.12 0.032 482

(i) Ruby 15

- P —

26634

P P —




Normalized global results for Energy, Time, and Memory.

Total

Energy (]) Time (ms) Mb
(c) C 1.00 (c) C 1.00 (c) Pascal 1.00
(c) Rust 1.03 (c) Rust 1.04 (c) Go 1.05
(c) C++ 1.34 (c) C++ 1.56 (c) C 117
(c) Ada 1.70 (c) Ada 1.85 (c) Fortran 1.24
(v) Java 1.98 (v) Java 1.89 (c) C++ 1.34
(c) Pascal 214 (c) Chapel 2.14 (c) Ada 1.47
(c) Chapel 2.18 (c) Go 2.83 (¢) Rust 1.54
(v) Lisp 2.27 (c) Pascal 3.02 (v) Lisp 1.92
(c) Ocaml 2.40 (c) Ocaml 3.09 (c) Haskell 2.45
(c¢) Fortran 2.52 (v) C# 3.14 (i) PHP 2.57
(c) Swift 2.79 (v) Lisp 3.40 (c) Swift 2.71
(c) Haskell 3.10 (c) Haskell 3.55 (i) Python 2.80
(v) Gi# 3.14 (c) Swift 4.20 (c) Ocaml 2.82
(c) Go 3.23 (c) Fortran 4.20 (v) C# 2.85
(i) Dart 3.83 (v) F# 6.30 (i) Hack 3.34
(v) F# 413 (1) JavaScript 6.52 (v) Racket 3.52
(i) JavaScript 445 (i) Dart 6.67 (i) Ruby 3.97
(v) Racket 7.91 (v) Racket 11.27 (c) Chapel 4.00
(i) TypeScript 21.50 (i) Hack 26.99 (v) F# 425
(i) Hack 24.02 (i) PHP 27.64 (i) JavaScript 459
(i) PHP 29.30 (v) Erlang 36.71 (i) TypeScript 469
(v) Erlang 42.23 (i) Jruby 43.44 (v) Java 6.01
(i) Lua 4598 (i) TypeScript 46.20 (i) Perl 6.62
(i) Jruby 46.54 (i) Ruby 59.34 (i) Lua 6.72
(i) Ruby 69.91 (i) Perl 65.79 (v) Erlang 7.20
(i) Python 75.88 (i) Python 71.90 (i) Dart 8.64
(i) Perl 79.58 (i) Lua 82.91 (i) Jruby 19.84




Critical thinking

* There is no doubt this is an excellent study. Yet, as any excellent study, there’s
a lot we can discuss and criticise constructively.

 What kind of issues you see in drawing conclusions from such a table of
results?

* |s the benchmark representative of the most common usage behaviour?

* Are the implemented solutions representative”?

* Does it make sense to use the average to compare energy consumption
across different problems?

40



Reproducing with Rosetta Code

(?)
 Rosetta Code is a programming chrestomathy repository

< chrestomathy

/kre 'stomaBi/

noun FORMAL

a selection of passages from an author or authors, designed to help in learning a language.

* 900 usecases/tasks solved across 700 different programming languages

 Purpose: if you know a programming language we can easily learn how the
same task is solved in a language you are not familiar with.

41



Remove-duplicates

(c) Rust
(c) C++
(c) C

(c) Go

(1) Lua

(i) Perl

(i) JavaScript
(v) Erlang
(v) Java
(i) PHP

(i) Python
(i) Ruby
(v) Racket

Time (ms)

1

5

10
13
21
53
73
96




Rosetta Code global ranking based on Energy.
Rosetta Code Global Ranking

Position Language

C

Pascal

Ada

Rust

C++, Fortran
Chapel

OCaml, Go

Lisp

Haskell, JavaScript
Java

PHP

Lua, Ruby

Perl

Dart, Racket, Erlang
Python

1
2
3
4
5
6
7/
8




Revisiting Research Questions

 Can we compare the energy efficiency of software languages?

* |s the faster language always the most energy efficient?

 Can we automatically decide what is the best programming language considering
energy, time, and memory usage?

 How do the results of our energy consumption analysis of programming
languages gathered from rigorous performance benchmarking solutions
compare to results of average day-to-day solutions?

 What would happen if we cherry picked the tasks?

44






3. Scientific Guide for Reliable
Energy Experiments

Sustainable Software Engineering
CS4575

":5 Luis Cruz .y Carolin Brandt ;ﬁg Enrique Barba Roque
a /. L.Cruz@tudelft.nl W § C.E.Brandt@tudelft.nl =}, E.BarbaRoque@tudelft.nl

SustainableSE 2025


mailto:l.cruz@tudelft.nl
mailto:C.E.Brandt@tudelft.nl
mailto:E.BarbaRoque@tudelft.nl

