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1. Scientific guide for energy measurements 
2. Energy consumption data analysis 



Energy tests are flaky

• Multiple runs might yield different results


• There are many confounding factors that need to be controlled/minimized.
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Zen mode 🧘

• Close all applications.


• Turn off notifications.


• Only the required hardware should be connected (avoid USB drives, external 
disks, external displays, etc.).


• Kill unnecessary services running in the background (e.g., web server, file 
sharing, etc.).


• If you do not need an internet or intranet connection, switch off your network.


• Prefer cable over wireless – the energy consumption from a cable connection 
is more stable than from a wireless connection.
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Freeze and report your settings 🥶

• Fix display brightness; switch off auto brightness


• If Wifi is on, it should always be on, connected to the same network/
endpoint.…
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Warm-up 📶

• Energy consumption is highly affected by the temperature of your hardware.


• Higher the temperature -> higher the resistance of electrical conductors -> 
-> higher dissipation -> higher energy consumption 

• The first execution will appear more efficient because the hardware is still 
cold.


• Run a CPU-intensive task before measuring energy consumption. E.g., 
Fibonacci sequence. At least 1min; 5min recommended.


•
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Repeat 🔁

• The best way to make sure a measurement is valid is by repeating it.


• In a scientific project, the magic number is 30.
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Rest ⏸

• It is common practice to do a pause/sleep between executions/
measurements.


• Prevent tail energy consumption from previous measurements. ?


• Prevent collateral tasks of previous measurement from affecting the next 
measurement.


• There is no golden rule but one minute should be enough. It can be more or 
less depending on your hardware or the duration of your energy test.
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Tail Energy Consumption



Shuffle 🔀

• It is not a mystery that energy consumption depends on so many factors that 
it is impossible to control all of them.


• If you run 30 executions for version A and another batch for version B:


• External conditions that change over time will have a different bias in 
the 2 versions (e.g., room temperature changes).


• If you shuffle, you reduce this risk.
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Keep it cool 🌡

• Always make sure there is a stable room temperature.


• Tricky because, some times, experiments may have to run over a few days.


• If you cannot control room temperature: collect temperature data and filter 
out measurements where the room temperature is clearly deviating.
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Automate Executions 🤖

• (Already mentioned in the previous classes)


• One cannot run 30 shuffled experiments per version without automation…
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Data analysis
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1. Exploratory Analysis

• Plot the data and inspect outliers or 
unexpected biases.


• Violin+box plots are usually handy. (?)


• It’s a nice way of combining the 30 
experiments, and of showing 
descriptive statistics. (?)


• Shows the shape of the distribution 
of the data.
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1. Exploratory Analysis (II)
• Data should be Normal. Unless there’s a 

good reason.


• E.g., somewhere amongst the 30 executions, 
there might be 1 or 2 that failed to finish due 
to some unexpected error.


• (It happens and that’s ok!)– consequently, 
the execution is shorter and spends less 
energy – falsely appearing as more 
energy efficient.


• If data is not Normal there might be some 
issues affecting the measurements that 
might be ruining results. It is important to 
investigate this.
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Energy data is not normal. Why?

• It might be caused by one of the following reasons:


• There was an error in some of the executions. If not detected and fixed it 
might ruin results.


• Your tests are not fully replicable or are not deterministic. Quite frequent 
when you have internet requests or random-based algorithms.


• There is an unusual task being run by the system during some experiments.


• The computer entered a different power mode.


• External physical conditions have changed. E.g., someone opened a 
window.
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Energy data is not normal. How to fix?

• We have 2+1 options:


1. Remove outliers. If there are only a few points that deviate from the normal 
distribution, it is okay to simply remove them.


• Use the z-score outlier removal. (?)


• Remove all data points that deviate from the mean more than 3 standard 
deviations: 


2. Fix the issue and rerun experiments.


3. Conclude that nothing can be done about it and data will never be normal. (e.g., 
in AI, executions are rarely deterministic). ⚠ Only after ruling out the previous 
points.

| x̄ − x | > 3s
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How do we know whether data is Normal?

• Visualise distribution shape: violin plots, histograms, density plot. 




• Shapiro-Wilk test. 
data is not normal; 
we are not sure but it is okay to assume that data is 

normal.

p-value < 0.05 ⇒
p-value ≥ 0.05 ⇒
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After having all data ready, which artefact 
is more energy efficient(?) 

First approach: compare sample means. 

⚠ assuming normal distribution



Statistical significance

• Even if, on average, one artefact has lower 
energy consumption than other,  it might be just 
a random difference.


• When we extract a sample from a normal 
distribution it will never be the exact same


• Statistical significance tests help you 
understand the differences in the average are 
conclusive/significant or inconclusive/
insignificant.
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⚠ assuming normal distribution



Statistical significance test

• Two-sided parametric test Welch’s t-test.


• Less known alternative to student’s t-test.
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Welch’s t-test in Python

from scipy.stats import ttest_ind 

_,pvalue = ttest_ind(sample_a, sample_b, 
                     equal_var=False, 
                     alternative='two-sided')

(?)

⚠ assuming normal distribution



Effect Size analysis

• Now that we know that results are statistically significant we need to 
measure the difference between the two samples. 

• Mean difference: 


• Percent change: 


• Cohen’s d (informal definition: mean difference normalized by a combined 

standard deviation): 

Δx̄
xB − xA

xA
× 100 % =

Δx̄
xA

× 100 %

Δx̄
1
2 s2

1 + s2
2
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⚠ assuming normal distribution



Imagine that version A spends 70J and 
version B spends 69J with a 

.p-value = 0.04
On average, version B spent less energy than version A  —  ✅ 
There is statistical significance —  ✅ 
Effect size, percent-change is ≈1% — 🤔 
⚠ Do we care?

(?)



Practical Significance
• Depending on the case, a 2% improvement might be either wonderful or completely 

useless.


• Effect size analyses help assess practical significance but might not be enough.


• A critical discussion always needs to be performed. Consider context and explain in what 
sense the effect size might be relevant.


• E.g.:


•  to improve 2% in energy efficiency the code will be less readable or the user 
experience is not so appealing.


• A particular method improves 2% but it will only be used 1% of the time.


• There is no particular metric or structure, but this kind of critical analysis is very important.
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What if data is not Normal?
Same approach but different tests/metrics!



Non-normal data
• Statistical significance: non-parametric test (?)


• Mann-Whitney U test. Instead of looking at standard deviation or mean, it orders 
samples and compares with each other.


• Less power than parametric-tests (?)


• Effect size


• Median difference: 


• Percentage of pairs supporting a conclusion 
(i.e., # pairs where version A > version B/ total pairs)


• Common language effect size: 

ΔM

U1

N1N2
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Recap

Impossible to 
fix but 

explainable.



Energy Efficiency Across 
Programming Languages

https://sites.google.com/view/energy-efficiency-languages
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Rui Pereira, Marco Couto, Francisco Ribeiro, Rui Rua, Jácome 
Cunha, João Paulo Fernandes, and João Saraiva

https://sites.google.com/view/energy-efficiency-languages


• Is a faster programming language also more energy efficient?


• Comparing different programming languages is not an easy task.


• They differ in many mechanisms:


• Interpreted vs Compiled


• Optimisations at the compiler level


• Virtual machine


• Garbage collector


• Available libraries
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Research Questions

• Can we compare the energy efficiency of software languages? 


• Is the faster language always the most energy efficient?


• How does memory usage relate to energy consumption? (We don’t cover this one)


• Can we automatically decide what is the best programming language 
considering energy, time, and memory usage? 


• How do the results of our energy consumption analysis of programming 
languages gathered from rigorous performance benchmarking solutions 
compare to results of average day-to-day solutions?  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Methodology



The Computer Language Benchmarks Game 

• https://benchmarksgame-team.pages.debian.net/benchmarksgame/
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https://benchmarksgame-team.pages.debian.net/benchmarksgame/


Problems in the Computer Language Benchmarks Game
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• 27 Programming languages across different paradigms 


• Functional (e.g., Ocaml, F#, Haskell)


• Imperative (e.g., C, Go, Python)


• Object-oriented (e.g., C++, C#, Java)


• Scripting (or interpretative) (e.g., JavaScript, Python, Ruby)


• (These are not mutual exclusive)


• Intel RAPL’s C library to measure energy consumption
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• Execute each benchmark solution 10 times.


• Collect energy data and timestamps.


• Two-minute interval between executions
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Critical thinking

• There is no doubt this is an excellent study. Yet, as any excellent study, there’s 
a lot we can discuss and criticise constructively.


• What kind of issues you see in drawing conclusions from such a table of 
results?


• Is the benchmark representative of the most common usage behaviour?


• Are the implemented solutions representative?


• Does it make sense to use the average to compare energy consumption 
across different problems?


• …
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Reproducing with Rosetta Code 

• Rosetta Code is a programming chrestomathy repository 

 

• 900 usecases/tasks solved across 700 different programming languages


• Purpose: if you know a programming language we can easily learn how the 
same task is solved in a language you are not familiar with.

41

(?)







Revisiting Research Questions

• Can we compare the energy efficiency of software languages? 


• Is the faster language always the most energy efficient?


• How does memory usage relate to energy consumption? 


• Can we automatically decide what is the best programming language considering 
energy, time, and memory usage? 


• How do the results of our energy consumption analysis of programming 
languages gathered from rigorous performance benchmarking solutions 
compare to results of average day-to-day solutions? 


• What would happen if we cherry picked the tasks? 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