CIEM5110-2: FEM, lecture 2.1

Derivation of the finite element method for Timoshenko beam elements

Frans van der Meer

Objectives

This lecture focuses on the formulation of the finite elmenent method for Timoshenko beams

- Another example of how to go from PDEs to the FE formulation
- Specifically for a case with multiple fields and multiple equations
- Illustration of shear locking
- Stepping stone towards frame analysis for upcoming workshops

The basic ingredients

Equilibrium relations	$M_{,x} - V = 0$
	$V_{,x} + q = 0$
Constitutive relations	$M = -EI\kappa$
	$V = GA_{\rm s}\gamma$
Kinematic relations	$\kappa = \theta_{,x}$
	$\gamma = w_{,x} - \theta$
Strong form equations	$-EI\theta_{,xx} - GA_{s}(w_{,x} - \theta) = 0$
	$GA_{\rm s}\left(w_{,xx}-\theta_{,x}\right)+q=0$

Some remarks:

- Notations follow from Track Base except:
 - θ instead of φ for rotations
 - y (and w) are pointing upward
- The strong form has two coupled ODEs
- There are two unknown fields: w and θ

The basic ingredients

Equilibrium relations	$M_{,x} - V = 0$
	$V_{,x} + q = 0$
Constitutive relations	$M = -EI\kappa$
	$V = GA_{\rm s}\gamma$
Kinematic relations	$\kappa = \theta_{,x}$
	$\gamma = w_{,x} - \theta$
Strong form equations	$-EI\theta_{,xx} - GA_{s}(w_{,x} - \theta) = 0$
	$GA_{\rm s}\left(w_{,xx}-\theta_{,x}\right)+q=0$

Some remarks:

- Notations follow from Track Base except:
 - θ instead of φ for rotations
 - y (and w) are pointing upward
- The strong form has two coupled ODEs
- There are two unknown fields: w and θ

The alternative would be an Euler beam:

- Single ODE but of 4th order
- Not treated in this unit
- FE derivation is given in the book

Discretized form

The coupled structure remains visisble in the system of equations

$$egin{bmatrix} \mathbf{K}_{ heta heta} & \mathbf{K}_{ heta w} \ \mathbf{K}_{w heta} & \mathbf{K}_{w w} \end{bmatrix} egin{bmatrix} \mathbf{a}_{ heta} \ \mathbf{a}_{w} \end{bmatrix} = egin{bmatrix} \mathbf{f}_{ heta} \ \mathbf{f}_{w} \end{bmatrix}$$

with

$$\mathbf{K}_{\theta\theta} = \int_{\Omega} \mathbf{B}_{\theta}^{T} E I \mathbf{B}_{\theta} + \mathbf{N}_{\theta}^{T} G A_{s} \mathbf{N}_{\theta} \, \mathrm{d}\Omega$$

$$\mathbf{K}_{\theta w} = -\int_{\Omega} \mathbf{N}_{\theta}^{T} G A_{s} \mathbf{B}_{w} \, \mathrm{d}\Omega$$

$$\mathbf{K}_{w\theta} = -\int_{\Omega} \mathbf{B}_{w}^{T} G A_{s} \mathbf{N}_{\theta} \, \mathrm{d}\Omega$$

$$\mathbf{K}_{ww} = \int_{\Omega} \mathbf{B}_{w}^{T} G A_{s} \mathbf{B}_{w} \, \mathrm{d}\Omega$$

$$\mathbf{f}_{\theta} = \int_{\Gamma_{M}} \mathbf{N}_{\theta}^{T} T \, \mathrm{d}\Gamma$$

$$\mathbf{f}_{w} = \int_{\Gamma_{M}} \mathbf{N}_{w}^{T} F \, \mathrm{d}\Gamma + \int_{\Omega} \mathbf{N}_{w}^{T} q \, \mathrm{d}\Omega$$

Extensible beam element

Combining the Timoshenko element with a bar element:

$$egin{bmatrix} \mathbf{K}_{uu}^{\mathrm{e}} & \mathbf{0} & \mathbf{0} \ \mathbf{0} & \mathbf{K}_{ww}^{\mathrm{e}} & \mathbf{K}_{w heta}^{\mathrm{e}} \ \mathbf{0} & \mathbf{K}_{ heta w}^{\mathrm{e}} & \mathbf{K}_{ heta heta}^{\mathrm{e}} \end{bmatrix} egin{bmatrix} \mathbf{a}_u \ \mathbf{a}_{ heta} \end{bmatrix} = egin{bmatrix} \mathbf{f}_u \ \mathbf{f}_w \ \mathbf{f}_{ heta} \end{bmatrix}$$

with

$$\mathbf{K}_{uu} = \int_{\Omega} \mathbf{B}_{u}^{T} E A \mathbf{B}_{u} \, d\Omega$$

$$\mathbf{f}_{u} = \int_{\Gamma_{N}} \mathbf{N}_{u}^{T} F_{x} \, d\Gamma + \int_{\Omega} \mathbf{N}_{u}^{T} q_{x} \, d\Omega$$

$$\mathbf{f}_{w} = \int_{\Gamma_{V}} \mathbf{N}_{w}^{T} F_{y} \, d\Gamma + \int_{\Omega} \mathbf{N}_{w}^{T} q_{y} \, d\Omega$$

$$\mathbf{f}_{\theta} = \int_{\Gamma_{M}} \mathbf{N}_{\theta}^{T} T \, d\Gamma$$

Now there are three coupled PDEs

$$EAu_{,xx} + q_x = 0$$
$$-EI\theta_{,xx} - GA_s(w_{,x} - \theta) = 0$$
$$GA_s(w_{,xx} - \theta_{,x}) + q_y = 0$$

Alternative formulation

Discretized form from the derivation

$$\mathbf{K}^{\mathrm{e}} = egin{bmatrix} \mathbf{K}_{uu}^{\mathrm{e}} & \mathbf{0} & \mathbf{0} \ \mathbf{0} & \mathbf{K}_{ww}^{\mathrm{e}} & \mathbf{K}_{w heta}^{\mathrm{e}} \ \mathbf{0} & \mathbf{K}_{ heta w}^{\mathrm{e}} & \mathbf{K}_{ heta heta}^{\mathrm{e}} \end{bmatrix}, \quad \mathbf{a}^{\mathrm{e}} = egin{bmatrix} \mathbf{a}_{u}^{\mathrm{e}} \ \mathbf{a}_{w}^{\mathrm{e}} \ \mathbf{a}_{ heta}^{\mathrm{e}} \end{bmatrix}$$

with

$$\mathbf{K}_{uu}^{e} = \int_{\Omega} \mathbf{B}_{u}^{T} E A \mathbf{B}_{u} \, d\Omega$$

$$\mathbf{K}_{ww}^{e} = \int_{\Omega} \mathbf{B}_{w}^{T} G A_{s} \mathbf{B}_{w} \, d\Omega$$

$$\mathbf{K}_{w\theta}^{e} = -\int_{\Omega} \mathbf{B}_{w}^{T} G A_{s} \mathbf{N}_{\theta} \, d\Omega$$

$$\mathbf{K}_{\theta w}^{e} = -\int_{\Omega} \mathbf{N}_{\theta}^{T} G A_{s} \mathbf{B}_{w} \, d\Omega$$

$$\mathbf{K}_{\theta \theta}^{e} = \int_{\Omega} \mathbf{B}_{\theta}^{T} E I \mathbf{B}_{\theta} + \mathbf{N}_{\theta}^{T} G A_{s} \mathbf{N}_{\theta} \, d\Omega$$

Alternative: collect all deformations in a single vector

$$oldsymbol{arepsilon} oldsymbol{arepsilon} egin{aligned} oldsymbol{arepsilon} & oldsymb$$

with

$$\mathbf{B} = egin{bmatrix} \mathbf{B}_u & \mathbf{0} & \mathbf{0} \ \mathbf{0} & \mathbf{B}_w & -\mathbf{N}_ heta \ \mathbf{0} & \mathbf{0} & \mathbf{B}_ heta \end{bmatrix}$$

The stiffness matrix takes a familiar form

$$\mathbf{K}^{\mathrm{e}} = \int_{\Omega} \mathbf{B}^T \mathbf{D} \mathbf{B} \, \mathrm{d}\Omega$$

with

$$\mathbf{D} = \begin{bmatrix} EA & 0 & 0\\ 0 & GA & 0\\ 0 & 0 & EI \end{bmatrix}$$

Objective: pure bending deformation ($\kappa \neq 0, \varepsilon = 0, \gamma = 0$):

Node 1:
$$u_1=w_1=0$$
, $\theta_1=-\frac{L^{\mathrm{e}}}{2}\kappa$, $N_1=1-\frac{x}{L^{\mathrm{e}}}$
Node 2: $u_2=w_2=0$, $\theta_2=\frac{L^{\mathrm{e}}}{2}\kappa$, $N_2=\frac{x}{L^{\mathrm{e}}}$
Interpolations: $u(x)=0$, $w(x)=0$, $\theta(x)=N_i\theta_i=\kappa x-\frac{L^{\mathrm{e}}}{2}\kappa$

Objective: pure bending deformation ($\kappa \neq 0, \varepsilon = 0, \gamma = 0$):

Node 1:
$$u_1=w_1=0$$
, $\qquad \theta_1=-\frac{L^{\mathrm{e}}}{2}\kappa, \qquad N_1=1-\frac{x}{L^{\mathrm{e}}}$ Node 2: $u_2=w_2=0$, $\qquad \theta_2=\frac{L^{\mathrm{e}}}{2}\kappa, \qquad N_2=\frac{x}{L^{\mathrm{e}}}$ Interpolations: $u(x)=0, \qquad w(x)=0, \qquad \theta(x)=N_i\theta_i=\kappa x-\frac{L^{\mathrm{e}}}{2}\kappa$ Strains: $\kappa=\theta_{,x}=\kappa$, $\qquad \varepsilon=u_{,x}=0$, $\qquad \gamma=w_{,x}-\theta=-\kappa x+\frac{L^{\mathrm{e}}}{2}\kappa$

Objective: pure bending deformation ($\kappa \neq 0, \varepsilon = 0, \gamma = 0$):

Node 1:
$$u_1=w_1=0$$
, $\qquad \theta_1=-\frac{L^{\rm e}}{2}\kappa, \qquad N_1=1-\frac{x}{L^{\rm e}}$ Node 2: $u_2=w_2=0$, $\qquad \theta_2=\frac{L^{\rm e}}{2}\kappa, \qquad N_2=\frac{x}{L^{\rm e}}$ Interpolations: $u(x)=0$, $\qquad w(x)=0$, $\qquad \theta(x)=N_i\theta_i=\kappa x-\frac{L^{\rm e}}{2}\kappa$ Strains: $\kappa=\theta_{,x}=\kappa$, $\qquad \varepsilon=u_{,x}=0$, $\qquad \gamma=w_{,x}-\theta=-\kappa x+\frac{L^{\rm e}}{2}\kappa$

Solution: reduced integration

- Only evaluate shear strain at the centere (where $\gamma=0$ above)
- In Timoshenko beam: for terms that are not related to γ , 1 point is enough for exact integration
- Using only 1 point removes shear locking without side effects

Objective: pure bending deformation ($\kappa \neq 0, \varepsilon = 0, \gamma = 0$):

Node 1:
$$u_1=w_1=0$$
, $\qquad \theta_1=-\frac{L^{\mathrm{e}}}{2}\kappa, \qquad N_1=1-\frac{x}{L^{\mathrm{e}}}$ Node 2: $u_2=w_2=0$, $\qquad \theta_2=\frac{L^{\mathrm{e}}}{2}\kappa, \qquad N_2=\frac{x}{L^{\mathrm{e}}}$ Interpolations: $u(x)=0$, $\qquad w(x)=0$, $\qquad \theta(x)=N_i\theta_i=\kappa x-\frac{L^{\mathrm{e}}}{2}\kappa$ Strains: $\kappa=\theta_{,x}=\kappa$, $\qquad \varepsilon=u_{,x}=0$, $\qquad \gamma=w_{,x}-\theta=-\kappa x+\frac{L^{\mathrm{e}}}{2}\kappa$

Solution: reduced integration

- Only evaluate shear strain at the centere (where $\gamma = 0$ above)
- In Timoshenko beam: for terms that are not related to γ , 1 point is enough for exact integration
- Using only 1 point removes shear locking without side effects

Alternative solution: mixed interpolation (quadratic for w, linear for θ)

Objectives

This lecture focuses on the formulation of the finite elmenent method for Timoshenko beams

- Another example of how to go from PDEs to the FE formulation
- Specifically for a case with multiple fields and multiple equations
- Illustration of shear locking
- Stepping stone towards frame analysis for upcoming workshops

