CIEM5110-2: FEM, lecture 2.1

Derivation of the finite element method for Timoshenko beam elements

Frans van der Meer & Iuri Rocha

Objectives

This lecture focuses on the formulation of the finite element method for Timoshenko beams

- Another example of how to go from PDEs to the FE formulation
- Specifically for a case with multiple fields and multiple equations
- Illustration of shear locking
- Stepping stone towards frame analysis for upcoming workshops

The basic ingredients

Equilibrium relations	$M_{,x} - V = 0$
	$V_{,x} + q = 0$
Constitutive relations	$M = -EI\kappa$
	$V = GA_{\rm s}\gamma$
Kinematic relations	$\kappa= heta_{,x}$
	$\gamma = w_{,x} - heta$
Strong form equations	$-EI\theta_{,xx} - GA_{\rm s}\left(w_{,x} - \theta\right) = 0$
	$GA_{\rm s}\left(w_{,xx} - \theta_{,x}\right) + q = 0$

Some remarks:

- Notations follow from Track Base except:
 - $\boldsymbol{\theta}$ instead of φ for rotations
 - y (and w) are pointing upward
- The strong form has two coupled ODEs
- There are two unknown fields: w and θ

The basic ingredients

Equilibrium relations	$M_{,x} - V = 0$
	$V_{,x} + q = 0$
Constitutive relations	$M = -EI\kappa$
	$V = GA_{\rm s}\gamma$
Kinematic relations	$\kappa= heta_{,x}$
	$\gamma = w_{,x} - \theta$
Strong form equations	$-EI\theta_{,xx} - GA_{\rm s}\left(w_{,x} - \theta\right) = 0$
	$GA_{\rm s}\left(w_{,xx} - \theta_{,x}\right) + q = 0$

Some remarks:

- Notations follow from Track Base except:
 - $\boldsymbol{\theta}$ instead of φ for rotations
 - y (and w) are pointing upward
- The strong form has two coupled ODEs
- There are two unknown fields: w and θ

The alternative would be an Euler beam:

- Single ODE but of 4th order
- Not treated in this unit
- FE derivation is given in the book

Discretized form

The coupled structure remains visisble in the system of equations

$$\begin{bmatrix} \mathbf{K}_{\theta\theta} & \mathbf{K}_{\theta w} \\ \mathbf{K}_{w\theta} & \mathbf{K}_{ww} \end{bmatrix} \begin{bmatrix} \mathbf{a}_{\theta} \\ \mathbf{a}_{w} \end{bmatrix} = \begin{bmatrix} \mathbf{f}_{\theta} \\ \mathbf{f}_{w} \end{bmatrix}$$

with

$$\begin{aligned} \mathbf{K}_{\theta\theta} &= \int_{\Omega} \mathbf{B}_{\theta}^{T} E I \mathbf{B}_{\theta} + \mathbf{N}_{\theta}^{T} G A_{s} \mathbf{N}_{\theta} \, \mathrm{d}\Omega \\ \mathbf{K}_{\theta w} &= -\int_{\Omega} \mathbf{N}_{\theta}^{T} G A_{s} \mathbf{B}_{w} \, \mathrm{d}\Omega \\ \mathbf{K}_{w\theta} &= -\int_{\Omega} \mathbf{B}_{w}^{T} G A_{s} \mathbf{N}_{\theta} \, \mathrm{d}\Omega \\ \mathbf{K}_{ww} &= \int_{\Omega} \mathbf{B}_{w}^{T} G A_{s} \mathbf{B}_{w} \, \mathrm{d}\Omega \\ \mathbf{f}_{\theta} &= \int_{\Gamma_{M}} \mathbf{N}_{\theta}^{T} T \, \mathrm{d}\Gamma \\ \mathbf{f}_{w} &= \int_{\Gamma_{V}} \mathbf{N}_{w}^{T} F \, \mathrm{d}\Gamma + \int_{\Omega} \mathbf{N}_{w}^{T} q \, \mathrm{d}\Omega \end{aligned}$$

TUDelft

Extensible beam element

Combining the Timoshenko element with a bar element:

$$\begin{bmatrix} \mathbf{K}_{uu}^{\mathrm{e}} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{K}_{ww}^{\mathrm{e}} & \mathbf{K}_{w\theta}^{\mathrm{e}} \\ \mathbf{0} & \mathbf{K}_{\thetaw}^{\mathrm{e}} & \mathbf{K}_{\theta\theta}^{\mathrm{e}} \end{bmatrix} \begin{bmatrix} \mathbf{a}_u \\ \mathbf{a}_w \\ \mathbf{a}_\theta \end{bmatrix} = \begin{bmatrix} \mathbf{f}_u \\ \mathbf{f}_w \\ \mathbf{f}_\theta \end{bmatrix}$$

with

$$\begin{aligned} \mathbf{K}_{uu} &= \int_{\Omega} \mathbf{B}_{u}^{T} E A \mathbf{B}_{u} \, \mathrm{d}\Omega \\ \mathbf{f}_{u} &= \int_{\Gamma_{N}} \mathbf{N}_{u}^{T} F_{x} \, \mathrm{d}\Gamma + \int_{\Omega} \mathbf{N}_{u}^{T} q_{x} \, \mathrm{d}\Omega \\ \mathbf{f}_{w} &= \int_{\Gamma_{V}} \mathbf{N}_{w}^{T} F_{y} \, \mathrm{d}\Gamma + \int_{\Omega} \mathbf{N}_{w}^{T} q_{y} \, \mathrm{d}\Omega \\ \mathbf{f}_{\theta} &= \int_{\Gamma_{M}} \mathbf{N}_{\theta}^{T} T \, \mathrm{d}\Gamma \end{aligned}$$

Now there are three coupled PDEs

$$EAu_{,xx} + q_x = 0$$

- $EI\theta_{,xx} - GA_s (w_{,x} - \theta) = 0$
 $GA_s (w_{,xx} - \theta_{,x}) + q_y = 0$

Alternative formulation

Discretized form from the derivation

$$\mathbf{K}^{\mathrm{e}} = egin{bmatrix} \mathbf{K}^{\mathrm{e}}_{uu} & \mathbf{0} & \mathbf{0} \ \mathbf{0} & \mathbf{K}^{\mathrm{e}}_{ww} & \mathbf{K}^{\mathrm{e}}_{w heta} \ \mathbf{0} & \mathbf{K}^{\mathrm{e}}_{ heta w} & \mathbf{K}^{\mathrm{e}}_{ heta heta} \end{bmatrix}, \quad \mathbf{a}^{\mathrm{e}} = egin{bmatrix} \mathbf{a}^{\mathrm{e}}_{u} \ \mathbf{a}^{\mathrm{e}}_{w} \ \mathbf{a}^{\mathrm{e}}_{ heta} \end{bmatrix}$$

with

$$\begin{aligned} \mathbf{K}_{uu}^{\mathrm{e}} &= \int_{\Omega} \mathbf{B}_{u}^{T} E A \mathbf{B}_{u} \, \mathrm{d}\Omega \\ \mathbf{K}_{ww}^{\mathrm{e}} &= \int_{\Omega} \mathbf{B}_{w}^{T} G A_{s} \mathbf{B}_{w} \, \mathrm{d}\Omega \\ \mathbf{K}_{w\theta}^{\mathrm{e}} &= -\int_{\Omega} \mathbf{B}_{w}^{T} G A_{s} \mathbf{N}_{\theta} \, \mathrm{d}\Omega \\ \mathbf{K}_{\theta w}^{\mathrm{e}} &= -\int_{\Omega} \mathbf{N}_{\theta}^{T} G A_{s} \mathbf{B}_{w} \, \mathrm{d}\Omega \\ \mathbf{K}_{\theta \theta}^{\mathrm{e}} &= \int_{\Omega} \mathbf{B}_{\theta}^{T} E I \mathbf{B}_{\theta} + \mathbf{N}_{\theta}^{T} G A_{s} \mathbf{N}_{\theta} \, \mathrm{d}\Omega \end{aligned}$$

Alternative: collect all deformations in a single vector

$$oldsymbol{arepsilon} oldsymbol{arepsilon} oldsymbol{arepsilon} \equiv egin{cases} u_{,x} \ \gamma \ \kappa \end{pmatrix} = egin{cases} u_{,x} \ w_{,x} - heta \ heta \ heta ,x \end{pmatrix} = \mathbf{Ba}^{\mathrm{e}}$$

with

$$\mathbf{B} = egin{bmatrix} \mathbf{B}_u & \mathbf{0} & \mathbf{0} \ \mathbf{0} & \mathbf{B}_w & -\mathbf{N}_ heta \ \mathbf{0} & \mathbf{0} & \mathbf{B}_ heta \end{bmatrix}$$

The stiffness matrix takes a familiar form

$$\mathbf{K}^{\mathrm{e}} = \int_{\Omega} \mathbf{B}^T \mathbf{D} \mathbf{B} \, \mathrm{d}\Omega$$

with

$$\mathbf{D} = \begin{bmatrix} EA & 0 & 0\\ 0 & GA & 0\\ 0 & 0 & EI \end{bmatrix}$$

Objective: pure bending deformation ($\kappa \neq 0, \varepsilon = 0, \gamma = 0$):

Node 1:
$$u_1 = w_1 = 0$$
, $\theta_1 = -\frac{L^e}{2}\kappa$, $N_1 = 1 - \frac{x}{L^e}$
Node 2: $u_2 = w_2 = 0$, $\theta_2 = \frac{L^e}{2}\kappa$, $N_2 = \frac{x}{L^e}$
Interpolations: $u(x) = 0$, $w(x) = 0$, $\theta(x) = N_i\theta_i = \kappa x - \frac{L^e}{2}\kappa$

Objective: pure bending deformation ($\kappa \neq 0, \varepsilon = 0, \gamma = 0$):

Node 1:
$$u_1 = w_1 = 0$$
, $\theta_1 = -\frac{L^e}{2}\kappa$, $N_1 = 1 - \frac{x}{L^e}$
Node 2: $u_2 = w_2 = 0$, $\theta_2 = \frac{L^e}{2}\kappa$, $N_2 = \frac{x}{L^e}$
Interpolations: $u(x) = 0$, $w(x) = 0$, $\theta(x) = N_i\theta_i = \kappa x - \frac{L^e}{2}\kappa$
Strains: $\kappa = \theta_{,x} = \kappa \checkmark$, $\varepsilon = u_{,x} = 0 \checkmark$, $\gamma = w_{,x} - \theta = -\kappa x + \frac{L^e}{2}\kappa \bigstar$

Objective: pure bending deformation ($\kappa \neq 0, \varepsilon = 0, \gamma = 0$):

Node 1:
$$u_1 = w_1 = 0$$
, $\theta_1 = -\frac{L^e}{2}\kappa$, $N_1 = 1 - \frac{x}{L^e}$
Node 2: $u_2 = w_2 = 0$, $\theta_2 = \frac{L^e}{2}\kappa$, $N_2 = \frac{x}{L^e}$
Interpolations: $u(x) = 0$, $w(x) = 0$, $\theta(x) = N_i\theta_i = \kappa x - \frac{L^e}{2}\kappa$
Strains: $\kappa = \theta_{,x} = \kappa \checkmark$, $\varepsilon = u_{,x} = 0 \checkmark$, $\gamma = w_{,x} - \theta = -\kappa x + \frac{L^e}{2}\kappa \bigstar$

Solution: reduced integration

- Only evaluate shear strain at the centere (where $\gamma = 0$ above)
- In Timoshenko beam: for terms that are not related to γ , 1 point is enough for exact integration
- Using only 1 point removes shear locking without side effects

Objective: pure bending deformation ($\kappa \neq 0, \varepsilon = 0, \gamma = 0$):

Node 1:
$$u_1 = w_1 = 0$$
, $\theta_1 = -\frac{L^e}{2}\kappa$, $N_1 = 1 - \frac{x}{L^e}$
Node 2: $u_2 = w_2 = 0$, $\theta_2 = \frac{L^e}{2}\kappa$, $N_2 = \frac{x}{L^e}$
Interpolations: $u(x) = 0$, $w(x) = 0$, $\theta(x) = N_i\theta_i = \kappa x - \frac{L^e}{2}\kappa$
Strains: $\kappa = \theta_{,x} = \kappa \checkmark$, $\varepsilon = u_{,x} = 0 \checkmark$, $\gamma = w_{,x} - \theta = -\kappa x + \frac{L^e}{2}\kappa \bigstar$

Solution: reduced integration

- Only evaluate shear strain at the centere (where $\gamma = 0$ above)
- In Timoshenko beam: for terms that are not related to γ , 1 point is enough for exact integration
- Using only 1 point removes shear locking without side effects

Alternative solution: mixed interpolation (quadratic for w, linear for θ)

TUDelft

Objectives

This lecture focuses on the formulation of the finite element method for Timoshenko beams

- Another example of how to go from PDEs to the FE formulation
- Specifically for a case with multiple fields and multiple equations
- Illustration of shear locking
- Stepping stone towards frame analysis for upcoming workshops

