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• More and more data comes from networks (graphs) with an irregular structure
– Explicit networks:

– Implicit networks:

Why signal processing on graphs?
• Digital signal processing deals with signals in the Euclidean domain

Audio: temporal regularity Images: spatial regularity

Transportation
Brain (anatomical) 
Sensors (proximity)

Social
Brain (functional) 
Sensors (similarity)
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Why signal processing on graphs?
• Data can be viewed as signals on top of the graph: graph signals

Temperature

fMRI time series 

Opinion profile 
Number of cars passing 
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Why signal processing on graphs?
• Graph signal processing: Given the graph and the signal, perform inference

tasks on the graph signal exploiting prior knowledge of the graph

Graph
signal

processing 
/ 

machine 
learning

Predict traffic
Recommend routes

Detect early stage Alzheimer
Link functional brain data to task

Detect fake news
Recommend friends

Detect faulty sensors
Distributed processing
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Why signal processing on graphs?
• These applications require new tools that can exploit the structure
• Filters are the central tool for digital signal processing and machine learning

– Linear systems with theoretical guarantees
– Links with the spectral response
– Can embed the data structure into the learning function
– Reduce the number of learnable parameters in neural networks
– Efficient implementations of neural networks

Goal: How can we extend filters for data that is linked to networks?
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Overview
• Introduction to graph signal processing

– Graphs and graph signals
– Signal variability and the graph Fourier transform
– Graph filters

• GSP research at the signal processing systems (SPS) group
– Graph-time signal processing
– Distributed optimization using graph filters 
– Other activities
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Graphs
Datasets with irregular support can be represented using a graph

• Graph     
•       is the set of nodes,
•       is the set of edges,
•                           is the adjacency matrix
•                           is the Laplacian matrix
•         is the neighborhood of node
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Graph signals
On top of the graph we can consider a graph signal

• Scalar value       on every node
• Collected all values into a vector
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Graph shift operator
The adjacency and Laplacian are graph shift operators (GSOs) 
• A GSO                       is any matrix capturing the graph structure
• Definition:                   implies that or
• Other candidates for are the normalized matrices                     

Normalized adjacency

Normalized Laplacian

Random-walk Laplacian

: eigenvalue with maximum absolute value
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Signal diffusion over graphs
• Signal diffuses along the edges – graph signal shifting

Undirected graph Directed graph
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Signal variability
• Undirected graph with GSO               and signal

How fast does the signal change over the graph?
• Important for filtering
• Initial thought: count sign changes
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Signal variability
• Consider graph Laplacian quadratic form

• Quantifies how much the signal changes over the graph
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Signal variability
• Directed graph with GSO                and signal
• Consider the total variation

• Normalization for practical reasons
• TV high: signal changes substantially
• TV low: signal changes little
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Graph Fourier transform
• Consider the eigendecomposition

• Graph Fourier transform (GFT): 
• Inverse GFT: 

How to order them?     How to measure their variability?

graph frequenciesgraph modes
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Graph Fourier transform
• Undirected graph with GSO
• GSO is symmetric and positive semi-definite

– Eigenvalue decomposition always exists
– Eigenvectors are real-valued orthogonal (one is all-one vector)
– Eigenvalues are real-valued and positive (one is zero)
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Graph Fourier transform
• Variability measured using Laplacian quadratic form
• Consider each eigenvector as a graph signal

• Graph mode variability:                            ,  

The variability increases with

LF HF
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Graph Fourier transform
• Directed graph with GSO
• GSO is not necessarilly symmetric

– Eigenvalue decomposition might not exist
– Eigenvectors and eigenvalues can be complex-valued

amplitude order phase order
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Graph Fourier transform
• Variability measured using total variation
• Consider each eigenvector as a graph signal

• Graph mode variability:                  

The variability increases with
the distance to

variability order

LFHF
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Time-domain as a graph
• The DFT matrix and the traditional frequency grid obtained by the 

adjacency matrix of the cycle graph 
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Time domain as a graph
• Any circulant graph (directed or not) in principle leads to the DFT as the 

matrix that diagonalises the GSO 
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Graph filters
• (I)GFT:      
• Graph filters can be used to modify the frequency content

Shift invariance:



22

Applications of graph filters

DenoisingInterpolation

Distributed optimization
Deep learning
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Graph filter design

• Graph-dependent vs. graph-independent (universal) filter design

graph dependent
graph independent

[Shuman’11, DCOSS] 
[Sandryhaila’13, TSP] 
[Shuman’13, SPM]  
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Graph filter implementation

• Freqency-domain vs. vertex-domain implementation
– No fast GFT implementations
– Need for parameterized filters in the vertex-domain

• Parameterization need to be eligible
– Polynomial functions of 
– Rational polynomial functions of 

• Parameterization should improve implementation efficiency
• Distributed implementation possible?
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FIR graph filters
• Polynomial of the GSO:                                                                                     

Finite impulse response (FIR) graph filter

• The graph filter is eligible (diagonizable by the GFT)
• The frequency response is given by

[Sandryhaila’13, TSP]
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FIR graph filters
• The GSO is the dual of a time delay in temporal FIR filters

• In both cases the output is a sum of shifted signals
• The graph FIR carries the notion of convolution in the graph domain

temporal FIRgraph FIR
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FIR properties

• Number of parameters
• No stability issues
• Efficient and distributed implementation
• Implementation cost of
• Least squares design – for (un)directed graphs, graph-(in)dependent
• Orthogonal polynomials design – for (un)directed graphs, graph-(in)dependent
• Good approximation requires high filter orders, which leads to ill-conditioning
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ARMA graph filters
• Rational polynomial of the GSO:                                                               

Autoregressive moving average (ARMA) graph filter

• The graph filter is eligible (diagonizable by the GFT)
• The frequency response is given by

Isufi, Loukas, Simonetto, Leus, Autoregressive moving average graph filtering, IEEE TSP, 2017 
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ARMA graph filters
• The GSO is the dual of a time delay in temporal ARMA filters

• Feedback is easy in temporal ARMA but difficult in graph ARMA

temporal ARMAgraph ARMA
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ARMA properties

• Number of parameters 
• Stability guaranteed by invertibility
• Efficient and distributed implementation
• Implementation cost of                   per iteration 
• (Iterative) least squares design – for (un)directed graphs, graph-(in)dependent
• Good approximation for low filter orders, so less ill-conditioning
• Exact solution for many GSP problems
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GSP Research at SPS
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Time-varying data on graphs
• So far we only considered a static signal (one scalar value per node)
• But signals on nodes are often time varying

• Data now have a graph depency as well as a temporal dependency

Temperature
fMRI time series 

Opinion profile 
Number of cars passing 
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Time-varying data on graphs
• This leads to a time series over the nodes: graph-time signals

• Goal: How to exploit the joint graph-time coupling?

Applications:
• Forecasting future values
• Interpolate graph-time signals
• Detect anomalous patterns
• Classify graph-time signals
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Graph-time signal processing
Graph recursive models
• Recursive time-aware filters
• Low complexity
• Scalable
• #parameters independent of graph

Product graphs
• Join the two graphs
• Interpretable
• Ready to use graph methods
• #parameters independent of graph
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Distributed optimization
• Goal is to solve the following problem distributively

• Requires data exchanges within the network: graph diffusions
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Distributed optimization
• We assume input data is available through
• We focus on problems of the form

• We assume solution is a linear transformation of the input data

• Can be relaxed using graph CNNs

input data
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Distributed optimization
Average consensus Distributed imaging Distributed beamforming

v



38

Leveraging graph filters
• All these applications have a global solution of the form

• Implement the known linear operation in a distributed manner
• Graph filters are distributed by nature

• Idea: Fit a graph filter to the operator       
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Simulation results
• Graph:
• Algorithm: cascaded implementation of different filter types

model error output error
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Other activities at SPS
• Data-driven topology identification

– Estimating the graph from data
– On-line adaptive topology identification from streaming data

• Signal processing on higher-order graphs
– Simplicial complexes (Hodge filter)
– Hyper graphs (Graph Volterra filter)
– Prediction and topology identification

• Array processing for (functional) ultrasound, radar, and wireless
– Array design and compressive sensing
– DoA estimation and imaging algorithms
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