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Motivation

BIKE (Bit-Flipping Key Encapsulation) is a code-based KEM (key
encapsulation mechanism) based on QC-MDPC (Quasi-Cyclic
Moderate-Density Parity-Check) codes.

Relevance to post-quantum cryptography

One of four remaining KEMs in the 4th round of the NIST PQC
Standardization process
One of three code-based KEMs still under consideration

IND-CCA security

The GJS key-recovery attack exploits decoding failures in an IND-CCA
security model
Decoding failure rate (DFR) of a code-based KEM that claims
IND-CCA security must be sufficiently low to prevent GJS attack

BIKE: Bit flipping key encapsulation - https://bikesuite.org
Guo, Johansson, and Stankovski. A Key Recovery Attack on MDPC with CCA Security Using Decoding Errors (2016)
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Background

A binary linear code C = C (n, k) is a linear subspace of Fn
2 of

dimension k. Vectors in C are called codewords.

A parity check matrix of C is a (n − k)× n matrix H such that for
all v ∈ V , we have HvT = 0 if and only if v ∈ C .

That is, the rows of H give linear relations satisfied by codewords.
Note that H determines C .

For any x ∈ Fn
2, Hx

T is called the syndrome of x .
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QC-MDPC codes

A Moderate-Density Parity-Check code (MDPC code) is a binary
linear code C (n, k) that has a parity check matrix H such that each
row has weight w ≈

√
n.

A circulant matrix is a matrix in which each row is obtained by
shifting the previous row one element to the right.

Definition

A QC-MDPC code (QC = quasicyclic) is a MDPC code with a parity
check matrix composed of circulant blocks.
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BIKE at a high level

Based on binary linear codes with

Quasi-cyclic structure: private key composed of two circulant blocks
H0,H1

Moderately-dense parity check matrices

Let r denote circulant block length. Let t denote maximum error
weight.

Secret key H ∈ Fr×2r
2 is of the form H = [H0|H1]

Public key H ′ = H−1
0 (H)

Message encoded as error vector e ∈ F2r
2 of weight t

Ciphertext is syndrome s = HeT ∈ Fr
2. Decrypt using Black-Grey-Flip

syndrome decoder
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BIKE at a high level

Parameters Design principles

r : block length r prime
w : row weight of secret key x r − 1 has only two irreducible factors
t: maximum error weight w ∈ O(

√
n)

λ: security parameter w = 2d , d odd
λ ≈ t − 1

2 log2 r ≈ w − 1
2 log2 r
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What is an error floor?

Graphs of DFRs on a log scale for low- to moderate-density parity check
codes with iterative decoders display a phenomenon:

Initial, rapid decrease of decoding failures (waterfall region)

Eventual plateau, more linear decrease (error floor region)

To accurately predict the DFR for
higher code length (signal-to-noise
ratio), one must account for the
error floor region.

Image credit: Vasseur, V. (2021). Post-quantum cryptography: a study of the decoding of QC-MDPC codes. PhD thesis,
Université de Paris
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LDPC code approach

Represent code in Tanner graph form:

Sparse bipartite graph

Results on minimum distance based on girth (length of shortest cycle)

Prevalence of small, closed loops increase probability of decoding
failure

Definition

Let H be a parity-check matrix describing a code C . A (u, v)-near
codeword is an error vector e of weight u whose syndrome s = HeT has
weight v .

McKay, Postol (2003): near codewords with small u, v and low-weight
codewords cause high error floor for certain LDPC codes.

Marco Baldi. QC-LDPC Code-Based Cryptography (2014)
David J.C. MacKay, Michael S. Postol. Weaknesses of Margulis & Ramanujan-Margulis Low-Density Parity-Check Codes (2003)
Tom Richardson. Error floors of LDPC codes (2003)
Gerd Richter. Finding small stopping sets in the Tanner graphs of LDPC codes (2006)
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MDPC code approach

Tanner graph is less sparse for MDPC codes. Too expensive to directly
extend LDPC code results and techniques.

Approaches towards studying error floors of MDPC codes:

Baldi et al. (2021) rigorously prove existence of error floor for
QC-MDPC codes as a function of code length.

Vasseur (2021) defines three sets of near-codewords and low-weight
codewords, and analyzes their impact on the BIKE DFR.

Marco Baldi, Alessandro Barenghi, Franco Chiaraluce, Gerardo Pelosi, and Paolo Santini, Performance bounds for QC-MDPC
codes decoders (2021)
Valentin Vasseur. Post-quantum cryptography: a study of the decoding of QC-MDPC codes (2021)
Valentin Vasseur. QC-MDPC codes DFR and the IND-CCA security of BIKE (2021)
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Our approach

Arpin, Billingsley, Hast, Lau, Perlner, Robinson



20-bit DFR simulations

To better understand the error floor behavior of BIKE DFR curves, we
experimentally consider BIKE at the 20-bit security level.

1 Use BIKE design parameters to
generate parameter sets for
λ = 20.

2 Use Boston University Shared
Computing Cluster to run highly
parallelizable experiments.

3 Examine factors that increase
decoding failures, affecting the
error floor.

Image credit: https://www.bu.edu/tech/services/research/computation/scc/
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Methods

Parameter selection:

(r ,w , t, λ) = (523, 30, 18, 20)

Extend set of block sizes to “find” error floor

Weak key considerations:

Vasseur identifies 3 classes of BIKE weak keys based on threshold T .

We determine T = 3 for λ = 20.

Average DFR per r for all messages:

1 Sample a random key H, reject if H is a weak key.

2 Sample a random message e.

3 Compute s = HeT .

4 Run BGF decoder on input (H, s). For output e ′, decoder is said to
have failed if e ′ ̸= e.

5 Repeat N times.
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20-bit DFR plot

95% confidence intervals
shown on plot.

Tested 108 keys for
r ∈ [587, 827].

Fewer keys tested for
smaller r because higher
DFR means fewer trials
needed to narrow
confidence intervals.

Fit lines are quadratic
(blue) for waterfall region
and linear (red) for error
floor region.
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Special sets of problematic error vectors

Near codewords of small weight and syndrome weight are expected to
cause decoding failures.
Vasseur identified three sets:

C: Weight w codewords in null(H).

N : Weight d , syndrome-weight d near-codewords.

2N : Sums of two elements of N .

Vasseur also introduced sets of vectors which are near C,N , 2N :
For S ∈ {C,N , 2N} and a general vector e ∈ F2r

2 , ℓ := maxs∈S |e ⋆ s|.
Vectors with ℓ close to |e| are near S.
Let δ denote the distance from S. Vectors with small δ are near S.

Vectors in/near C,N , 2N are difficult to distinguish in syndrome decoding
⇒ decoding failures.
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The sets C, N , and 2N

H =

1 0 0 0 0 1
0 1 0 1 0 0
0 0 1 0 1 0


C : nullspace of H.

0
1
0
1
0
0



N : half-rows of H

1
0
0
0
0
0



2N : n1 + n2, ni ∈ N

0
1
0
0
0
1


Our Contribution: experimentally identify which vectors cause decoding
failures at the 20-bit security level.
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DFR for special sets

For r = 523, 587, 659, we computed the DFR on vectors of weight t = 18
of varying distances δ from the sets C,N , and 2N .

How does the DFR of weight-t vectors close to C,N , 2N compare to the
DFR on generic weight-t vectors?
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DFR for special sets

Figure: DFR versus δ for r = 587

Vectors with small δ are near S.
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Special sets vs. general error vectors

In our generic DFR computation, we recorded decoding failures.
How many overlaps do decoding failure vectors have with C,N , 2N?
r = 587. For each decoding failure vector, we found the maximum number
of overlaps with an element of S for each S ∈ {C,N , 2N}.
We repeat for the same number of random vector of weight t = 18.

Decoding failure vectors are not unusually close to C,N , 2N .
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Syndrome weights of decoding failure vectors

Given a parity check matrix H, a vector v , the syndrome of v is s := HvT .
The syndrome weight, |s|, is the number of nonzero entries of s.
Vectors causing decoding failures have smaller-than-average syndrome
weights.
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r = 587, syndrome weights vs. overlaps with C,N ,2N

For decoding failure vectors, we had the following average ℓ numbers of
overlaps with C, N , and 2N :

C: mean ℓ ≈ 3.31

N : mean ℓ ≈ 3.42

2N : mean ℓ ≈ 5.77
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Conclusions and Next Steps
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Conclusions

The waterfall/error-floor DFR picture remains at the 20-bit security
level for BIKE.

C, N , 2N , and the corresponding At,ℓ sets are not overly represented
among decoding failures at the 20-bit level.

Decoding failure vectors do have lower-than-average syndrome weight.
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Next Steps

Where does the error floor begin at higher security levels? Can we
make a conjecture based on our 20-bit data?

How can we classify the error vectors which heavily contribute to
decoding failures? Are there new categories, in addition to C,N , 2N ,
and the At,ℓ sets?

Is it possible for the error vectors to be brought closer to C,N , 2N
during the iterative decoding process?

Can Tanner graph techniques from LDPC codes be useful in
identifying new classes of vectors which contribute to decoding
failure?
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Thank you.
https://eprint.iacr.org/2022/1043
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