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What is Image Based Control?

• Regulate behavior of a system

• System: Dynamical systems

• 𝑥̇𝑥 = 𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵; y = Cx

• Camera is used as a sensor

• Sensing operation 

• Image Signal Processing (ISP) 
• Percenption (PR)
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Image Based Sensing

• ISP pipeline converts the 
raw image to a compressed 
image

• ISP performs a series of 
signal processing

• PR performs a set of 
application specific 
processing
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Image Signal Processing (ISP) Perception (PR)



Image Based Sensing

• ISP takes 82% of runtime

• ISP takes 93% of energy
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*Lane Keeping Assist Sys (LKAS)
8-core Intel i9; 256 KB L2+16MBL3+64GB RAM

𝑓𝑓ℎ = period of camera frame arrival;
ℎ = sampling period or start of two successive sensor processing
𝜏𝜏 = sensing-to-actuator delay



Some known examples… autonomous cars 
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Courtesy: Tesla.com

Courtesy: Daimler.com



Why Image (and Camera) in the feedback loop? 

• Richer information which is hard to by one sensor;
• Low-cost of processing units and advancement of CMOS-

based imaging technology;
• No alternative sensor in some scenarios;

Dip Goswami, TU/e6



What is the challenge? 

• ISP takes 82% of runtime

• ISP takes 93% of energy
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𝑓𝑓ℎ = period of camera frame arrival;
ℎ = sampling period or start of two successive sensor processing
𝜏𝜏 = sensing-to-actuator delay

Too slow response!



How do we deal with it? 

• Pipelining sensing task → shorten sampling period h and unaltered long 
delay 𝜏𝜏

• Parallelizing sensing task → shorten both sampling period h and delay 𝜏𝜏; 
limited by degree of parallelism;

• Approximation of the sensing block → shorten both sampling period h 
and delay 𝜏𝜏; 
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Soln 1: Pipelined control 
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Core 1

𝜏𝜏 = 6𝑓𝑓ℎ

Core 2

• Sampling period h = 𝜏𝜏
2

= 3𝑓𝑓ℎ; Delay = 𝜏𝜏 = 6𝑓𝑓ℎ

h = 3𝑓𝑓ℎ



Pipelined control 
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Core 1

𝜏𝜏 = 6𝑓𝑓ℎ

Core 2

Core 3

• Sampling period h = 𝜏𝜏
3

= 2𝑓𝑓ℎ; Delay = 𝜏𝜏 = 6𝑓𝑓ℎ

h = 2𝑓𝑓ℎ



Pipelined control 
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• Sampling period h = 𝜏𝜏
𝛾𝛾

• 𝛾𝛾= number of available control computing cores

• Plant in discrete-time: 𝑥𝑥 𝑘𝑘𝑘 + ℎ = 𝜙𝜙𝜙𝜙 𝑘𝑘𝑘 + Γ 𝑢𝑢(𝑘𝑘𝑘 − 𝛾𝛾𝛾)



Pipelined control: model

Discretized model: 𝑥𝑥 𝑘𝑘𝑘 + ℎ = 𝜙𝜙𝜙𝜙 𝑘𝑘𝑘 + Γ 𝑢𝑢(𝑘𝑘𝑘 − 𝛾𝛾𝛾)

Define augmented states:

𝑧𝑧 𝑘𝑘𝑘 =

𝑥𝑥(𝑘𝑘𝑘)
𝑢𝑢(𝑘𝑘𝑘 − 𝛾𝛾𝛾)

𝑢𝑢(𝑘𝑘𝑘 − 𝛾𝛾𝛾 + ℎ)
𝑢𝑢(𝑘𝑘𝑘 − 𝛾𝛾𝛾 + 2ℎ)

…
𝑢𝑢(𝑘𝑘𝑘 − ℎ)

𝑧𝑧 𝑘𝑘𝑘 + ℎ = … 𝑧𝑧 𝑘𝑘𝑘 + … 𝑢𝑢(𝑘𝑘𝑘)
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Pipelined control: model

Discretized model: 𝑥𝑥 𝑘𝑘𝑘 + ℎ = 𝜙𝜙𝜙𝜙 𝑘𝑘𝑘 + Γ 𝑢𝑢(𝑘𝑘𝑘 − 𝛾𝛾𝛾)

Define augmented states:

𝑧𝑧 𝑘𝑘𝑘 =

𝑥𝑥(𝑘𝑘𝑘)
𝑢𝑢(𝑘𝑘𝑘 − 𝛾𝛾𝛾)

𝑢𝑢(𝑘𝑘𝑘 − 𝛾𝛾𝛾 + ℎ)
𝑢𝑢(𝑘𝑘𝑘 − 𝛾𝛾𝛾 + 2ℎ)

…
𝑢𝑢(𝑘𝑘𝑘 − ℎ)

𝑧𝑧 𝑘𝑘𝑘 + ℎ =

𝑥𝑥(𝑘𝑘𝑘 + ℎ)
𝑢𝑢(𝑘𝑘𝑘 − 𝛾𝛾𝛾 + ℎ)
𝑢𝑢(𝑘𝑘𝑘 − 𝛾𝛾𝛾 + 2ℎ)
𝑢𝑢(𝑘𝑘𝑘 − 𝛾𝛾𝛾 + 3ℎ)

…
𝑢𝑢(𝑘𝑘𝑘)

=

𝜙𝜙𝜙𝜙 𝑘𝑘𝑘 + Γ 𝑢𝑢(𝑘𝑘𝑘 − 𝛾𝛾𝛾)
𝑢𝑢(𝑘𝑘𝑘 − 𝛾𝛾𝛾 + ℎ)
𝑢𝑢(𝑘𝑘𝑘 − 𝛾𝛾𝛾 + 2ℎ)
𝑢𝑢(𝑘𝑘𝑘 − 𝛾𝛾𝛾 + 3ℎ)

…
𝑢𝑢(𝑘𝑘𝑘)
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Pipelined control: model

Discretized model: 𝒙𝒙 𝒌𝒌𝒌𝒌+ 𝒉𝒉 = 𝝓𝝓𝝓𝝓 𝒌𝒌𝒌𝒌 + 𝜞𝜞 𝒖𝒖(𝒌𝒌𝒌𝒌− 𝜸𝜸𝜸𝜸)

𝑧𝑧 𝑘𝑘𝑘 + ℎ =

𝑥𝑥(𝑘𝑘𝑘 + ℎ)
𝑢𝑢(𝑘𝑘𝑘 − 𝛾𝛾𝛾 + ℎ)
𝑢𝑢(𝑘𝑘𝑘 − 𝛾𝛾𝛾 + 2ℎ)
𝑢𝑢(𝑘𝑘𝑘 − 𝛾𝛾𝛾 + 3ℎ)

…
𝑢𝑢(𝑘𝑘𝑘)

=

𝜙𝜙𝜙𝜙 𝑘𝑘𝑘 + Γ 𝑢𝑢(𝑘𝑘𝑘 − 𝛾𝛾𝛾)
𝑢𝑢(𝑘𝑘𝑘 − 𝛾𝛾𝛾 + ℎ)
𝑢𝑢(𝑘𝑘𝑘 − 𝛾𝛾𝛾 + 2ℎ)
𝑢𝑢(𝑘𝑘𝑘 − 𝛾𝛾𝛾 + 3ℎ)

…
𝑢𝑢(𝑘𝑘𝑘)

𝑧𝑧 𝑘𝑘𝑘 + ℎ =
𝜙𝜙 Γ 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝐼𝐼
𝟎𝟎 𝟎𝟎 𝟎𝟎

𝑧𝑧 𝑘𝑘𝑘 +
𝟎𝟎
𝟎𝟎
1
𝑢𝑢(𝑘𝑘𝑘)

Controller: 𝒖𝒖 𝒌𝒌𝒌𝒌 = 𝑲𝑲 𝒛𝒛(𝒌𝒌𝒌𝒌)
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Implementation
architecture
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Sensing
task

Computing
task

Actuating
task

𝑥𝑥(𝑘𝑘𝑘 − 𝜏𝜏)

Camera
frames
@𝒇𝒇𝒉𝒉

𝐾𝐾

𝑢𝑢 𝑘𝑘𝑘 − 𝜏𝜏 − 𝑓𝑓ℎ ;
𝑢𝑢 𝑘𝑘𝑘 − 𝜏𝜏 − 2𝑓𝑓ℎ ;

…
𝑢𝑢 𝑘𝑘𝑘 − 𝜏𝜏 − 6𝑓𝑓ℎ ;

𝑢𝑢 𝑘𝑘𝑘 − 𝜏𝜏 − 𝛾𝛾𝛾
… 

𝑢𝑢 𝑘𝑘𝑘 − 𝜏𝜏 − ℎ

𝑢𝑢 𝑘𝑘𝑘 − 𝜏𝜏

Shared memory

Core i

Local 
memory

Physical
actuation

𝑢𝑢 𝑘𝑘𝑘 − 𝜏𝜏



Pipelined control: Predictive suspension system

• Sequential implementation

• Settling time = 400 ms → too slow
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Camera is 
used to sense W
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Performance vs cores
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𝛾𝛾 =6 
Settling time = 150 ms
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Soln 2: Parallelized sensing operation

• WC design is resource inefficient;

• Workload scenarios: wide variation;

• Average-case execution time is much 
lower than the WC execution time

Dip Goswami, TU/e18

h1



Parallel sensor processing

• Identify parameters in input data that relates to workload

• For our example, workload is quantified by #RoI (=w)

• #RoI for workload, w = 2

Dip Goswami, TU/e19
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Workload variation in sensing

• #RoI for workload, w = 2

• #RoI for workload, w = 3
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Application model: dataflow – 2-core case

Dip Goswami, TU/e21
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Application mapping 

• Mapping depends on available cores;

• Different mapping gives different 
mapping period and hence, difference 
control performance;

Dip Goswami, TU/e22

ℎ1

ℎ2



IBC design: parallelization

• Compute the best-case and 
worst-case sampling periods

• The realizable set H is frame-
rate depended discretized set

• System = controller + mapping
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Application 
model

Platform 
model

Compute {hbc,hwc}
Compute 

realisable set H

Controller 
design

Stable? No

Select subset of 
H

Yes

Controller 
configurations

Identify optimal 
system scenarios
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configurations



IBC design: parallelization
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Soln 3: Approximation-in-the-loop

• ISP Approximation: tuning knobs

Dip Goswami, TU/e25



Performance evaluation: HiL setup

Dip Goswami, TU/e26



Conclusions

• Image based control – getting popular due to low cost of processing and 
imaging technology;

• Main bottleneck is image signal processing which takes 80-90% of the 
total runtime and energy in a typical control loop;

• ISP needs low latency and high throughput (a harder constraint due to 
periodicity requirement in sampling period);

• Pipelining, parallelizing and approximating – three explored directions 
have potential; 

Dip Goswami, TU/e27
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