
In collaboration with Sajid Mohamed (TU/e), Robinson Medina (TNO), Sayandip De (TU/e), Mojtaba Haghi (TU/e), Raghu
Rajappa (Sioux Logena) , Vishak Nathan (Sioux Logena), Koen Rutten (Sioux CCM), Vigneswar Madras (Sioux CCM), Chinmay
Kamate (TU/e), Kees Goossens (TU/e) and Twan Basten (TU/e)

- Dip Goswami (TU/e)

Design and Implemenation of Image Based Control Systems

Electronic Systems group, Electrical Engineering

What is Image Based Control?

• Regulate behavior of a system

• System: Dynamical systems

• 𝑥̇𝑥 = 𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵; y = Cx

• Camera is used as a sensor

• Sensing operation

• Image Signal Processing (ISP)
• Percenption (PR)

Dip Goswami, TU/e2

𝑥𝑥

𝑢𝑢

Image Based Sensing

• ISP pipeline converts the
raw image to a compressed
image

• ISP performs a series of
signal processing

• PR performs a set of
application specific
processing

Dip Goswami, TU/e3

Image Signal Processing (ISP) Perception (PR)

Image Based Sensing

• ISP takes 82% of runtime

• ISP takes 93% of energy

Dip Goswami, TU/e4

*Lane Keeping Assist Sys (LKAS)
8-core Intel i9; 256 KB L2+16MBL3+64GB RAM

𝑓𝑓ℎ = period of camera frame arrival;
ℎ = sampling period or start of two successive sensor processing
𝜏𝜏 = sensing-to-actuator delay

Some known examples… autonomous cars

Dip Goswami, TU/e5

Courtesy: Tesla.com

Courtesy: Daimler.com

Why Image (and Camera) in the feedback loop?

• Richer information which is hard to by one sensor;
• Low-cost of processing units and advancement of CMOS-

based imaging technology;
• No alternative sensor in some scenarios;

Dip Goswami, TU/e6

What is the challenge?

• ISP takes 82% of runtime

• ISP takes 93% of energy

Dip Goswami, TU/e7

𝑓𝑓ℎ = period of camera frame arrival;
ℎ = sampling period or start of two successive sensor processing
𝜏𝜏 = sensing-to-actuator delay

Too slow response!

How do we deal with it?

• Pipelining sensing task → shorten sampling period h and unaltered long
delay 𝜏𝜏

• Parallelizing sensing task → shorten both sampling period h and delay 𝜏𝜏;
limited by degree of parallelism;

• Approximation of the sensing block → shorten both sampling period h
and delay 𝜏𝜏;

Dip Goswami, TU/e8

Soln 1: Pipelined control

Dip Goswami, TU/e9

Core 1

𝜏𝜏 = 6𝑓𝑓ℎ

Core 2

• Sampling period h = 𝜏𝜏
2

= 3𝑓𝑓ℎ; Delay = 𝜏𝜏 = 6𝑓𝑓ℎ

h = 3𝑓𝑓ℎ

Pipelined control

Dip Goswami, TU/e10

Core 1

𝜏𝜏 = 6𝑓𝑓ℎ

Core 2

Core 3

• Sampling period h = 𝜏𝜏
3

= 2𝑓𝑓ℎ; Delay = 𝜏𝜏 = 6𝑓𝑓ℎ

h = 2𝑓𝑓ℎ

Pipelined control

Dip Goswami, TU/e11

• Sampling period h = 𝜏𝜏
𝛾𝛾

• 𝛾𝛾= number of available control computing cores

• Plant in discrete-time: 𝑥𝑥 𝑘𝑘𝑘 + ℎ = 𝜙𝜙𝜙𝜙 𝑘𝑘𝑘 + Γ 𝑢𝑢(𝑘𝑘𝑘 − 𝛾𝛾𝛾)

Pipelined control: model

Discretized model: 𝑥𝑥 𝑘𝑘𝑘 + ℎ = 𝜙𝜙𝜙𝜙 𝑘𝑘𝑘 + Γ 𝑢𝑢(𝑘𝑘𝑘 − 𝛾𝛾𝛾)

Define augmented states:

𝑧𝑧 𝑘𝑘𝑘 =

𝑥𝑥(𝑘𝑘𝑘)
𝑢𝑢(𝑘𝑘𝑘 − 𝛾𝛾𝛾)

𝑢𝑢(𝑘𝑘𝑘 − 𝛾𝛾𝛾 + ℎ)
𝑢𝑢(𝑘𝑘𝑘 − 𝛾𝛾𝛾 + 2ℎ)

…
𝑢𝑢(𝑘𝑘𝑘 − ℎ)

𝑧𝑧 𝑘𝑘𝑘 + ℎ = … 𝑧𝑧 𝑘𝑘𝑘 + … 𝑢𝑢(𝑘𝑘𝑘)

1
5

Pipelined control: model

Discretized model: 𝑥𝑥 𝑘𝑘𝑘 + ℎ = 𝜙𝜙𝜙𝜙 𝑘𝑘𝑘 + Γ 𝑢𝑢(𝑘𝑘𝑘 − 𝛾𝛾𝛾)

Define augmented states:

𝑧𝑧 𝑘𝑘𝑘 =

𝑥𝑥(𝑘𝑘𝑘)
𝑢𝑢(𝑘𝑘𝑘 − 𝛾𝛾𝛾)

𝑢𝑢(𝑘𝑘𝑘 − 𝛾𝛾𝛾 + ℎ)
𝑢𝑢(𝑘𝑘𝑘 − 𝛾𝛾𝛾 + 2ℎ)

…
𝑢𝑢(𝑘𝑘𝑘 − ℎ)

𝑧𝑧 𝑘𝑘𝑘 + ℎ =

𝑥𝑥(𝑘𝑘𝑘 + ℎ)
𝑢𝑢(𝑘𝑘𝑘 − 𝛾𝛾𝛾 + ℎ)
𝑢𝑢(𝑘𝑘𝑘 − 𝛾𝛾𝛾 + 2ℎ)
𝑢𝑢(𝑘𝑘𝑘 − 𝛾𝛾𝛾 + 3ℎ)

…
𝑢𝑢(𝑘𝑘𝑘)

=

𝜙𝜙𝜙𝜙 𝑘𝑘𝑘 + Γ 𝑢𝑢(𝑘𝑘𝑘 − 𝛾𝛾𝛾)
𝑢𝑢(𝑘𝑘𝑘 − 𝛾𝛾𝛾 + ℎ)
𝑢𝑢(𝑘𝑘𝑘 − 𝛾𝛾𝛾 + 2ℎ)
𝑢𝑢(𝑘𝑘𝑘 − 𝛾𝛾𝛾 + 3ℎ)

…
𝑢𝑢(𝑘𝑘𝑘)

1
6

Pipelined control: model

Discretized model: 𝒙𝒙 𝒌𝒌𝒌𝒌+ 𝒉𝒉 = 𝝓𝝓𝝓𝝓 𝒌𝒌𝒌𝒌 + 𝜞𝜞 𝒖𝒖(𝒌𝒌𝒌𝒌− 𝜸𝜸𝜸𝜸)

𝑧𝑧 𝑘𝑘𝑘 + ℎ =

𝑥𝑥(𝑘𝑘𝑘 + ℎ)
𝑢𝑢(𝑘𝑘𝑘 − 𝛾𝛾𝛾 + ℎ)
𝑢𝑢(𝑘𝑘𝑘 − 𝛾𝛾𝛾 + 2ℎ)
𝑢𝑢(𝑘𝑘𝑘 − 𝛾𝛾𝛾 + 3ℎ)

…
𝑢𝑢(𝑘𝑘𝑘)

=

𝜙𝜙𝜙𝜙 𝑘𝑘𝑘 + Γ 𝑢𝑢(𝑘𝑘𝑘 − 𝛾𝛾𝛾)
𝑢𝑢(𝑘𝑘𝑘 − 𝛾𝛾𝛾 + ℎ)
𝑢𝑢(𝑘𝑘𝑘 − 𝛾𝛾𝛾 + 2ℎ)
𝑢𝑢(𝑘𝑘𝑘 − 𝛾𝛾𝛾 + 3ℎ)

…
𝑢𝑢(𝑘𝑘𝑘)

𝑧𝑧 𝑘𝑘𝑘 + ℎ =
𝜙𝜙 Γ 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝐼𝐼
𝟎𝟎 𝟎𝟎 𝟎𝟎

𝑧𝑧 𝑘𝑘𝑘 +
𝟎𝟎
𝟎𝟎
1
𝑢𝑢(𝑘𝑘𝑘)

Controller: 𝒖𝒖 𝒌𝒌𝒌𝒌 = 𝑲𝑲 𝒛𝒛(𝒌𝒌𝒌𝒌)

1
7

Implementation
architecture

Dip Goswami, TU/e15

Sensing
task

Computing
task

Actuating
task

𝑥𝑥(𝑘𝑘𝑘 − 𝜏𝜏)

Camera
frames
@𝒇𝒇𝒉𝒉

𝐾𝐾

𝑢𝑢 𝑘𝑘𝑘 − 𝜏𝜏 − 𝑓𝑓ℎ ;
𝑢𝑢 𝑘𝑘𝑘 − 𝜏𝜏 − 2𝑓𝑓ℎ ;

…
𝑢𝑢 𝑘𝑘𝑘 − 𝜏𝜏 − 6𝑓𝑓ℎ ;

𝑢𝑢 𝑘𝑘𝑘 − 𝜏𝜏 − 𝛾𝛾𝛾
…

𝑢𝑢 𝑘𝑘𝑘 − 𝜏𝜏 − ℎ

𝑢𝑢 𝑘𝑘𝑘 − 𝜏𝜏

Shared memory

Core i

Local
memory

Physical
actuation

𝑢𝑢 𝑘𝑘𝑘 − 𝜏𝜏

Pipelined control: Predictive suspension system

• Sequential implementation

• Settling time = 400 ms → too slow

Dip Goswami, TU/e16

Camera is
used to sense W

0 1 2 3 4 5 6 7

0

0.002

0.004

0.006

0.008

0.01

0.012

X: 2.3

Y: 0.01

W

Performance vs cores

Dip Goswami, TU/e17

𝛾𝛾 =6
Settling time = 150 ms

0 0.5 1 1.5 2 2.5

0

0.002

0.004

0.006

0.008

0.01

0.012

X: 0.8333

Y: 0.01

𝛾𝛾 = 1
Settling time = 400 ms

0 1 2 3 4 5 6 7

0

0.002

0.004

0.006

0.008

0.01

0.012

X: 2.3

Y: 0.01

𝛾𝛾 = 3
Settling time = 200 ms

0 0.2 0.4 0.6 0.8 1 1.2

0

0.002

0.004

0.006

0.008

0.01

0.012

X: 0.4667

Y: 0.01

𝛾𝛾 = 2
Settling time = 250 ms

0 0.5 1 1.5 2 2.5 3 3.5

0

0.002

0.004

0.006

0.008

0.01

0.012

X: 1.2

Y: 0.01

Soln 2: Parallelized sensing operation

• WC design is resource inefficient;

• Workload scenarios: wide variation;

• Average-case execution time is much
lower than the WC execution time

Dip Goswami, TU/e18

h1

Parallel sensor processing

• Identify parameters in input data that relates to workload

• For our example, workload is quantified by #RoI (=w)

• #RoI for workload, w = 2

Dip Goswami, TU/e19

RoIP
ep

RoIM
2*em

RoID
ed

RoIP
ep

Workload variation in sensing

• #RoI for workload, w = 2

• #RoI for workload, w = 3

Dip Goswami, TU/e20

RoIP
ep

RoIM
3*em

RoID
ed

RoIP
ep

RoIP
ep

RoIM
2*em

RoID
ed

RoIP
ep

RoIP
ep

Application model: dataflow – 2-core case

Dip Goswami, TU/e21

A
ea

1

C
ec

Camera
input RoIP

ep

RoIM
w*em

RoID
ed

y1

RoIP
ep

y2
z2 z2

y2

y1

1

2

1 2

2
2

{1,..., / 2 }

{0,1,..., / 2 }

0, if y 0
1, otherwise

y w

y w
y y w

z

=   
=   
+ =

=
= 


Application mapping

• Mapping depends on available cores;

• Different mapping gives different
mapping period and hence, difference
control performance;

Dip Goswami, TU/e22

ℎ1

ℎ2

IBC design: parallelization

• Compute the best-case and
worst-case sampling periods

• The realizable set H is frame-
rate depended discretized set

• System = controller + mapping

Dip Goswami, TU/e23

Application
model

Platform
model

Compute {hbc,hwc}
Compute

realisable set H

Controller
design

Stable? No

Select subset of
H

Yes

Controller
configurations

Identify optimal
system scenarios

Mapping
configurations

IBC design: parallelization

Dip Goswami, TU/e24

Soln 3: Approximation-in-the-loop

• ISP Approximation: tuning knobs

Dip Goswami, TU/e25

Performance evaluation: HiL setup

Dip Goswami, TU/e26

Conclusions

• Image based control – getting popular due to low cost of processing and
imaging technology;

• Main bottleneck is image signal processing which takes 80-90% of the
total runtime and energy in a typical control loop;

• ISP needs low latency and high throughput (a harder constraint due to
periodicity requirement in sampling period);

• Pipelining, parallelizing and approximating – three explored directions
have potential;

Dip Goswami, TU/e27

	Design and Implemenation of Image Based Control Systems
	What is Image Based Control?
	Image Based Sensing
	Image Based Sensing
	Some known examples… autonomous cars
	Why Image (and Camera) in the feedback loop?
	What is the challenge?
	How do we deal with it?
	Soln 1: Pipelined control
	Pipelined control
	Pipelined control
	Pipelined control: model
	Pipelined control: model
	Pipelined control: model
	Implementation�architecture
	Pipelined control: Predictive suspension system�
	Performance vs cores
	Soln 2: Parallelized sensing operation
	Parallel sensor processing
	Workload variation in sensing
	Application model: dataflow – 2-core case
	Application mapping
	IBC design: parallelization
	IBC design: parallelization
	Soln 3: Approximation-in-the-loop
	Performance evaluation: HiL setup
	Conclusions

