

Design and Implemenation of Image Based Control Systems

- Dip Goswami (TU/e)

In collaboration with Sajid Mohamed (TU/e), Robinson Medina (TNO), Sayandip De (TU/e), Mojtaba Haghi (TU/e), Raghu Rajappa (Sioux Logena), Vishak Nathan (Sioux Logena), Koen Rutten (Sioux CCM), Vigneswar Madras (Sioux CCM), Chinmay Kamate (TU/e), Kees Goossens (TU/e) and Twan Basten (TU/e)

Electronic Systems group, Electrical Engineering

What is Image Based Control?

- Regulate behavior of a system
- System: Dynamical systems
 - $\dot{x} = Ax + Bu$; y = Cx
- Camera is used as a sensor
- Sensing operation
 - Image Signal Processing (ISP)
 - Percenption (PR)

Image Based Sensing

- ISP pipeline converts the raw image to a compressed image
- ISP performs a series of signal processing
- PR performs a set of application specific processing

Image Signal Processing (ISP)

Perception (PR)

Image Based Sensing

- ISP takes 82% of runtime
- ISP takes 93% of energy

 f_h = period of camera frame arrival; h = sampling period or start of two successive sensor processing trans τ = sensing-to-actuator delay *Lane Kee

*Lane Keeping Assist Sys (LKAS) 8-core Intel i9; 256 KB L2+16MBL3+64GB RAM

Some known examples... autonomous cars

Courtesy: Tesla.com

Courtesy: Daimler.com

Why Image (and Camera) in the feedback loop?

- Richer information which is hard to by one sensor;
- Low-cost of processing units and advancement of CMOSbased imaging technology;
- No alternative sensor in some scenarios;

What is the challenge?

- ISP takes 82% of runtime
- ISP takes 93% of energy

Too slow response!

- f_h = period of camera frame arrival;
- h = sampling period or start of two successive sensor processing
- $\tau = \text{sensing-to-actuator delay}$

How do we deal with it?

ES ELECTRONIC SYSTEMS

- Pipelining sensing task \rightarrow shorten sampling period h and unaltered long delay τ
- Parallelizing sensing task → shorten both sampling period h and delay τ; limited by degree of parallelism;
- Approximation of the sensing block \rightarrow shorten both sampling period h and delay τ ;

Soln 1: Pipelined control

• Sampling period
$$h = \frac{\tau}{2} = 3f_h$$
; Delay = $\tau = 6f_h$

• Sampling period
$$h = \frac{\tau}{3} = 2f_h$$
; Delay = $\tau = 6f_h$

System/

plant

Camer

Actuation

Pipelined control

- Sampling period $h = \frac{\tau}{\nu}$
- γ = number of available control computing cores

• Plant in discrete-time: $x(kh + h) = \phi x(kh) + \Gamma u(kh - \gamma h)$

Pipelined control: model

Discretized model: $x(kh + h) = \phi x(kh) + \Gamma u(kh - \gamma h)$

Define augmented states:

$$z(kh) = \begin{bmatrix} x(kh) \\ u(kh - \gamma h) \\ u(kh - \gamma h + h) \\ u(kh - \gamma h + 2h) \\ \dots \\ u(kh - h) \end{bmatrix}$$

 $z(kh + h) = [\dots]z(kh) + [\dots]u(kh)$

Pipelined control: model

Discretized model: $x(kh + h) = \phi x(kh) + \Gamma u(kh - \gamma h)$

Define augmented states:

$$z(kh) = \begin{bmatrix} x(kh) \\ u(kh - \gamma h) \\ u(kh - \gamma h + h) \\ u(kh - \gamma h + 2h) \\ \dots \\ u(kh - h) \end{bmatrix}$$
$$z(kh + h) = \begin{bmatrix} x(kh + h) \\ u(kh - \gamma h + h) \\ u(kh - \gamma h + 2h) \\ u(kh - \gamma h + 3h) \\ \dots \\ u(kh) \end{bmatrix} = \begin{bmatrix} \phi x(kh) + \Gamma u(kh - \gamma h) \\ u(kh - \gamma h + h) \\ u(kh - \gamma h + 2h) \\ u(kh - \gamma h + 3h) \\ \dots \\ u(kh) \end{bmatrix} = \begin{bmatrix} x(kh) + \Gamma u(kh - \gamma h) \\ u(kh - \gamma h + h) \\ u(kh - \gamma h + 3h) \\ \dots \\ u(kh) \end{bmatrix}$$

ELECTRONIC SYSTEMS

Pipelined control: model

Discretized model: $x(kh + h) = \phi x(kh) + \Gamma u(kh - \gamma h)$

$$z(kh+h) = \begin{bmatrix} x(kh+h) \\ u(kh-\gamma h+h) \\ u(kh-\gamma h+2h) \\ u(kh-\gamma h+3h) \\ \dots \\ u(kh) \end{bmatrix} = \begin{bmatrix} \phi x(kh) + \Gamma u(kh-\gamma h) \\ u(kh-\gamma h+h) \\ u(kh-\gamma h+2h) \\ u(kh-\gamma h+3h) \\ \dots \\ u(kh) \end{bmatrix}$$

$$z(kh+h) = \begin{bmatrix} \phi & \Gamma & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & I \\ \mathbf{0} & \mathbf{0} & \mathbf{0} \end{bmatrix} z(kh) + \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ 1 \end{bmatrix} u(kh)$$

Controller: u(kh) = K z(kh)

Implementation architecture

Pipelined control: Predictive suspension system

• Sequential implementation

• Settling time = 400 ms → too slow

16 Dip Goswami, TU/e

Performance vs cores

17 Dip Goswami, TU/e

Soln 2: Parallelized sensing operation

- WC design is resource inefficient;
- Workload scenarios: wide variation;
- Average-case execution time is much lower than the WC execution time

Parallel sensor processing

- Identify parameters in input data that relates to workload
- For our example, workload is quantified by #RoI (=w)
- #Rol for workload, w = 2

Workload variation in sensing

- #Rol for workload, w = 2
- #Rol for workload, w = 3 ٠

Application model: dataflow – 2-core case

21

Application mapping

- Mapping depends on available cores;
- Different mapping gives different mapping period and hence, difference control performance;

IBC design: parallelization

- Compute the best-case and worst-case sampling periods
- The realizable set H is framerate depended discretized set
- System = controller + mapping

IBC design: parallelization

Soln 3: Approximation-in-the-loop

• ISP Approximation: tuning knobs

Version	ISP Stages	Explanation No change to data			
v0	None				
v1	Rto, Rg, Rtr, Ftr, Fto	Skip gamut mapping			
v2	Rto, Rg, Rtr, Ftr, Fg	Skip tone mapping			
v3	Rto, Rg, Rtr, Fg, Fto	Skip color transform			
v4	Rto, Rg, Rtr, Ftr	Only do color transform			
v5	Rto, Rg, Rtr, Fg	Only do gamut mapping			
v6	Rto, Rg, Rtr, Fto	Only do tone mapping			
v7	Rto, Rg, Rtr	Reverse to demosaic			

	v0	v1	v2	v3	v4	v5	v6	v7
Delay (ms)	68.3	24.3	57.6	69.6	20.1	55.2	23	19.5
Sampling Period (ms)	70	25	60	70	25	60	25	20

Performance evaluation: HiL setup

Conclusions

- Image based control getting popular due to low cost of processing and imaging technology;
- Main bottleneck is image signal processing which takes 80-90% of the total runtime and energy in a typical control loop;
- ISP needs low latency and high throughput (a harder constraint due to periodicity requirement in sampling period);
- Pipelining, parallelizing and approximating three explored directions have potential;

