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Introduction



Linear Regression Model

� Target yi , features xi = (xi ,1, . . . , xi ,p)
T , i = 1, . . . , n.

� Linear regression model

yi = β0 + xTi β + εi , E[εi |xi ] = 0.

� The least squares estimator β̂0 and β̂ minimizes the empirical

squared risk

1

n

n∑
i=1

(
yi − β0 − xTi β

)2
.

� There is no regularization yet.
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Curse of Dimensionality: FRED-MD

� Response = monthly growth rate US industrial production

index log(IPt/IPt−1)

� Features = one-month lagged observations of p ≈ 100

economic variables from FRED-MD database

� Rolling-window forecasts with size n = 120
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Stepwise Regression



Regularization under Complexity Constraint

� Now minimize the mean squared error (empirical risk) subject

to an additional complexity constraint

# active features=

p∑
j=1

1 (βj ̸= 0) = d ,

where d is some hyperparameter.

� It generates a restricted model

Md = {0} ∪
{
1 ≤ j ≤ p : β̂

(d)
j ̸= 0

}
of size 1 + d (including

intercept)

� The estimator is equivalent to the least-squares estimator

under the restricted model Md .
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Best Subset Selection: Comments

� Stepwise: we need to choose among M0,M1, . . . ,MD , for

some D ≤ min{p, n − 1}.
� Non-nested: M1 ̸⊂ M2 . . .

� Exhaustive search is expensive for (relatively) large D

Hastie, Tibshirani and Tibshirani (2017) for n = 500 and p = 100:

At 3 minutes per value of k [=d in our slides], if we wanted

to use 10-fold cross-validation to choose between the sub-

set sizes k = 0, ..., 50, then we are already facing 25 hours

of computation time.
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Textbook Example: Credit data set

� balance: average credit card debt for a number of individuals

Features

� age

� cards: number of credit cards

� education: years of education

� income in thousands of dollars

� limit: credit limit

� rating: credit rating

� student: dummy variable

� . . . see ISLR, page 83
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Credit Data Set: Correlation Plot
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Credit Data Set: ISLR Table 6.1 d = 1

ISLR Figure 3.6
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Credit Data Set: ISLR Table 6.1 d = 2

ISLR Figure 3.6
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Credit Data Set: ISLR Table 6.1 d = 3

ISLR Figure 3.6
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Credit Data Set: ISLR Table 6.1 d = 4

ISLR Figure 3.6
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Forward Stepwise Regression

� Nested: M0 ⊂ M1 ⊂ M2 . . .

� M0: only intercept

� Md+1 = Md + one predictor by minimizing the mean

squared error (= empirical risk)

� Credit data set: same as best subset for d = 1, 2, 3 but

different for d = 4.

� Computationally more attractive than best subset

� In practice, we also need to choose among M0,M1, . . . ,MD ,

D ≤ min{p, n − 1}.
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Forward Stepwise Regression: IP Example

� Prior-1990 sample as training set: choose d = 9 variables
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Model Selection



Empirical VS Population Risk

� Consider a sequence of nested models (such as that from

forward selection):

M0 ⊂ M1 ⊂ . . . ⊂ MD

� Choose Md with optimal criterion value C (Md).

� Can we use the empirical risk as criterion? Consider the

training mean squared error given by

1

n
RSS(Md) =

1

n

n∑
i=1

(yi − f̂d(xi ))
2,

where f̂d(xi ) are the estimated means using model Md .
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Mallows’ Cp

� True means µ(xi ) = β0 +
∑

j∈Md
βjxi ,j +

∑
j /∈Md

βjxi ,j

� Mean squared estimation error of the true means on the

training set

1

n

n∑
i=1

(
µ(xi )− f̂d(xi )

)2

≈1

n

RSS(Md) + 2dσ2︸ ︷︷ ︸
penalty for complexity

−n − 2

n
σ2︸ ︷︷ ︸

constant

where σ2 = var(εi ) denotes the true error variance.

� Mallows’ Cp = 1
n

{
RSS(Md) + 2d σ̂2

}
with some appropriate

estimator σ̂2

@UvA 15



Bayesian Information Criterion

� Suppose that the model is uncertain before observing the

data: prior probabilities P(Md), d = 0, . . . ,D.

� After observing the data we update the distribution:

P(Md |data) ∝ exp

(
−1

2
BIC(Md)

)
P(Md) d = 0, . . . ,D.

where

BIC(Md) ≡
1

n

RSS(Md) + log(n)dσ2︸ ︷︷ ︸
penalty for complexity


for Gaussian errors εi ∼ N (0, σ2) independent of xi .

� Replace σ2 with σ̂2 in practice.

� Mallows’ Cp uses a smaller factor 2 < log(n) when n ≥ 8

� BIC favors a less flexible model
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FRED-MD Example
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Validation Approach

� Treat dimension d as a hyperparameter.

� Divide the data into a training set and a validation set

� Fit the model Md using the training set

� Predict using the feature values on validation set but the

fitted coefficients β̂
(d)
0 and β̂(d) from the training set

� Calculate the test mean squared error on validation set

MSEd = Avgi∈validation set(yi − β̂
(d)
0 − xTi β̂(d))2

� Compare the test MSEd between models

� Cross-validation: leave-one-out or k-fold
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Textbook Example: Auto Dataset

� mpg: gas mileage in miles per gallon

� horsepower

� Polynomial regression

mpg = β0 + β1horsepower+ . . .+ βdhorsepower
d + ϵ
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Degree Selection
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Problems in High Dimensions



Why Cross Validation

� High dimensional dataset: p/n is large especially when p > n

� Perfectly fit all points in training data: useless!

� Cp and BIC are inappropriate: sample variance σ̂2 = 0

� Better use cross validation: model complexity maxd |Md |
cannot be too large for forward selection

� CV becomes expensive quickly as the model complexity grows
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Sparse and Dense Models

� Removing noise features

may improve forecasting

� If the true model is sparse:

p0 = #{βi : βi ̸= 0, i = 1, . . . , p}

is small (relative to n)

� Selecting a useful model

may reduce the

dimensionality problem

� Economic data tend to be

dense, however

� To be discussed further

Figure 1.1,Statistical Learning with

Sparsity : estimated nonzero feature

weights 15-class gene expression can-

cer data
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