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Introduction



Textbook Example: Wage Data Set

e Wage for males in the central Atlantic region of the US

Average wage is non-linear and non-smooth in age

e Does it make sense to you that the true expected wage
E[wage|age] to be non-smooth?
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e The fraction a = k/n observations with the smallest distance

to a given feature value x.
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Local Linear Regression

e Target values y; and univariate feature values x; € R,
i=1,...,n
e Assign a weight K(x;, x) which is larger for x; closer to x

e Fit a weighted least squares regression by minimizing

Y K x) (vi = Bo— Brxi)® = D K(xix) (vi = Bo = B1xi)?,
i=1 ieENa(x)

where the equality holds when we assign zero weight
K(xi,x) = 0 for i & N,(x), and N,(x) denotes the index set
of the nearest neighbors of x.

e The fitted value at x is given by f(x) = Bo + Bix
e Both By = Bo(x) and By = Bl(x) depend on x.
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Wage Data Set: Local Linear Regression

e Red line: fitted value with o = 0.25,0.75
e Estimated regression function gets ‘smoother’ for a larger a:
bias-variance tradeoff
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Polynomial and Step Regression



Basis Functions

Let us begin with the case for uni-variate feature X € R. A smooth
regression function u(x) = E[Y|X = x] often admits the expansion

11(x) = Bobo(x) + Brb1(x) + ... + Brbk(x) + Brr1bky1(x) + - ..
To be fitted bias

where

e {b;} are fixed, known basis functions, often by(x) =1
e Coefficients {(;}'s do not depend on x

e the ‘dimension’ of the problem is represented by the number of
basis functions required for a sufficiently good approximation
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Linear Regression on Transformed Data

e Suppose we use the approximation
p(x) = Bo bo(x) +B1 b1(x) + ... + Bk bk (x) =: f(x),
~—— ~—— ~——
known known known

where K is a hyperparameter.

e Least-squares regression for y; on transformed features
bo(xi), b1(xi), - - -, br(xi)

e Larger K, smaller bias but larger variance.
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Naive Examples of the Basis functions

Polynomial functions
(Auto Example in Lecture 2)

e Taylor expansion: b;(x) = x'
e Not suitable for dummy variables: 0’ =0 and 1/ =

e Sensitive to outliers

Step functions
e Cutpoints ci,...,ck in the range of X

e K + 1 interval indicators:
bo(x) =1(x < c1), b1(x) =1(c1 < x < @),...,bk_1(x) =
]l(CK_l <x< CK), bK(X) = ]l(X > CK)

e fitted function is discontinuous at cutpoints

More choices will be discussed later on.
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Polynomial and Step Regression

QUVA

e May choose K using cross-validation

e Cutpoints are usually specified based on interpretive

convenience in practice
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Spline Regression




Cubic Spline

Knots (cutpoints): £ <& < ... <&um

A cubic polynomial in any sub interval [§j, &j41]
f(X) = 50,1' + 517J'X + (527J'X2 -+ 5371-)(3, j=0,...,M,

where o = min(X) and &1 = max(X)

e Twice continuously differentiable (at knots):

lim f(x) = lim f(x), lim f'(x) = lim f/(x), lim f”(x) = lim f”(x
x1E; () x{&; () xT¢j () x1&j () xT¢j () x{&j ()

e 4+ M(4—3) =4+ M free coefficients: 4 in [, 1], and add
4 —3 =1 at each knot
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Constraints at Knots: lllustration
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ISLR Figure 7.3
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Go to www.menti.com and use the code 4850 9341

Does it make sense to you that the true regression
function is smooth?
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Regression Splines

A cubic spline with knots &7,...,&y can be represented by a basis

function
M+3

F(x)=Bo+ Y bi(x)Bi
i=1

where

e b; are the B-spline basis functions (not to be discussed),

depending on the knots

e M + 3 features, excluding the intercept

e generate b;'s using bs(...,df=M+3) function in splines
package

e Linear regression: y; on bi(x;), ba(x;),. .., bp+3(x;), including

an intercept
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Natural Boundary Conditions

As it is easy to overfit around/beyond data boundary, we often
impose that the so-called natural boundary conditions:
f(x) is a linear function when x < & or x > &py1-

That is,
80,0 + 01,0% + 0o ogxX+<50x> —00 < x <&
801 + 011X + 82.1x2 + 6313 o <x<&

f(x) = Q do,2 + 61,0x + 02.2x% + 830> &1 <x<&

0,M+2 + 01,m+2X +W Em1 < x <00

e 4+ (M+2)—2x2= M+ 2 free coefficients

e M + 1 degrees of freedom, excluding an intercept
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Natural Cubic Splines

R Package: splines

Wage
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bs(x,...) for any degree splines
ns(x,...) for natural cubic splines: boundary knots are the
smallest and largest observations

: : —— Natural Cubic Spline
m : : —— Cubic Spline
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Knot Placement

e Knots may be specified based on convenient interpretation in
real-life problems

e Otherwise, we often place the knots at appropriate quantiles
of the observed feature values.

e To decide the number of knots, one may use cross validation.

1660 1680
.

Mean Squared Error

Mean Squared Error
1600 1620 1640 1660 1680
|

1600 1620  16:

7 S a—e— —e—,

T T T T T T T T T T
2 4 6 8 10 2 4 6 8 10

Degrees of Freedom of Natural Spline Degrees of Freedom of Cubic Spline

ISLR Figure 7.6: the x-axis is the number of basis functions (K)
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Smoothing Splines




Consider any twice continuously differentiable function g(x).

We measure roughness (non-linearity) of the function g(x) at
point x through the magnitude of its second derivative g”(x).

No roughness g”(x) = 0 everywhere implies that g is linear.

The overall roughness over the domain D is given by

[ @ora
D

Following our textbook, from now on we omit the domain D and

write this definite integral in short as
/(g”(t))2dt.

QUVA 16



Penalized Least Squares

Like in Lecture 3, imposing an inequality constraint
[(g"(t))* dt < b is equivalent to solving the unconstrained

optimization problem:

penalty

where C? denotes the class of twice continuously differentiable

functions.

e g(xi) = Average{y;j : x; = x;} if A = 0: non-smoothed solution
e g(x) — linear least-squares estimates, as A — oo

e )\ controls the smoothness of the estimated function
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Optional Material: Finding the Smoothing Splines

e Suppose n>2and a< & < ...<&, < b. Given any values
z1,...,2n, there is a unique natural cubic spline g with knots
at the points &, satisfying g(&,) = z;.

e For any twice continuously differentiable function g on [a, b]
with g(§;) =z forall i=1,...,n,

[ @@yaz [ @)

= the solution must be a natural cubic spline,with knots at

X1,y ..y Xp!

Otherwise we could choose a natural spline with same values g(x;)
but smaller penalty, a contradiction.
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Ridge Regression

Consider only the natural spline g with knots at xi, ..., Xp.
e |t can be shown that
[ (&) dt =" We. &= (). glxn):
where W is a closed-form symmetric positive-definite matrix.
The optimization problem becomes

minimize + e W
Z de’We

quadratic penalty

Tute Q2: the solution is

g=(+ W)y, y=(n,-o)
Finally, we solve the (unique) natural spline function g.
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smooth.spline in R

e Degrees of freedom df = tr (I + AW) ™~ € (0, n]
e The corresponding A can be calculated
e One may choose A by using cross-validation in practice

Smoothing Spline

—— 16 Degrees of Freedom
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Extra Remarks




Local Regression

For multivariate feature X = (Xq,...,X,) ",

e The local linear regression can still work for small p
e Measure the distance via vector length ||x; — x;|

e For (very) large p, the Euclidean norm becomes a meaningless
measure (not to be shown) and the local regression performs
badly in general: beyond our course
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Additive Models

For multivariate feature X = (X1,...,X,)", we may consider an
additive model:

f(Xl, ce ,Xp) = fl(Xl) + ...+ fp(Xp).
For example,

wage = o + fi(year) + f(age) + fz(education) + €

e restrictive model: bias-variance tradeoff
e expand unknown fi(x) = Z,’f’zl bf(i)(x)ﬁkﬂ-
e ISLR Section 7.7.1: beyond our course
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