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Introduction



Linear Regression Model

Target y;, features x; = (Xi1,...,Xip) , i=1,...,n.

e Linear regression model

yi=Bo+x!B+ei, Eleilx]=0.

The least squares estimator 5y and 3 minimizes the empirical

*Z(y, fo — X; 5)

There is no regularization yet.

squared risk
2
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Curse of Dimensionality: FRED-MD

e Response = monthly growth rate US industrial production
index log(IP¢/IP¢_1)

e Features = one-month lagged observations of p ~ 100
economic variables from FRED-MD database

¢ Rolling-window forecasts with size n = 120
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Stepwise Regression



Regularization under Complexity Constraint

e Now minimize the mean squared error (empirical risk) subject
to an additional complexity constraint

P
# active features= Z 1(8; #0) =d,
j=1
where d is some hyperparameter.

e |t generates a restricted model
My ={0}U {1 <j<p: Bj(d) # 0} of size 1 + d (including
intercept)

e The estimator is equivalent to the least-squares estimator
under the restricted model M.
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Best Subset Selection: Comments

e Stepwise: we need to choose among Mg, My, ..., Mp, for
some D < min{p,n — 1}.

e Non-nested: M1 & M,...

e Exhaustive search is expensive for (relatively) large D

Hastie, Tibshirani and Tibshirani (2017) for n = 500 and p = 100:
At 3 minutes per value of k [=d in our slides], if we wanted
to use 10-fold cross-validation to choose between the sub-
set sizes k = 0, ..., 50, then we are already facing 25 hours
of computation time.
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https://arxiv.org/abs/1707.08692v2

Textbook Example: Credit data set

e balance: average credit card debt for a number of individuals
Features

e age
e cards: number of credit cards
e education: years of education
e income in thousands of dollars
e limit: credit limit

e rating: credit rating

e student: dummy variable

... see ISLR, page 83
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Credit Data Set: Correlation Plot
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Credit Data Set: ISLR Table 6.1 d =1
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Credit Data Set: ISLR Table 6.1 4 =2
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Credit Data Set: ISLR Table 6.1 4 =3

QUVA

20 w0 6@ w0 10

5 10 15 2

200 800 14000

Balance

* | | Education

Income

Rating [

20 60 1000

ISLR Figure 3.6

10



Credit Data Set: ISLR Table 6.1 d =4
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Forward Stepwise Regression

o Nested: Mo C M; C M. ..
e My: only intercept

e Myy1 = My + one predictor by minimizing the mean
squared error (= empirical risk)

e Credit data set: same as best subset for d = 1,2,3 but
different for d = 4.

e Computationally more attractive than best subset

e In practice, we also need to choose among Mg, My, ..., Mp,
D < min{p,n — 1}.
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Forward Stepwise Regression: IP Example

e Prior-1990 sample as training set: choose d = 9 variables
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Forward Selection Improves Out-of-sample Rolling-window Forecasts
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Model Selection




Empirical VS Population Risk

e Consider a sequence of nested models (such as that from

forward selection):
MogCMiC...CMp

e Choose My with optimal criterion value C(My).

e Can we use the empirical risk as criterion? Consider the
training mean squared error given by

n

%RSS(Md) = %Z(y; — fa(x))?,

i=1

where l?d(x,-) are the estimated means using model M.

QUVA 14



Go to www.menti.com and use the code 159772 6

i Mentimeter

Can we use RSS as model selection criterion?

o o o

Yes, that is what use in the forward selection,isnt  No, RSS always prefers the most flexible model I do not know
it?




Mallows’ C,

e True means u(xi) = Bo + > jem, BiXij + 2jgm, BiXi
e Mean squared estimation error of the true means on the

training set
n ~ 2
=3 () - fal))
i=1
1 n—?2
~— ¢ RSS(My) + 2do? — o2
n (Ma) ~— n
penalty for complexity ) ~—~—"
constant
where 02 = var(e;) denotes the true error variance.

e Mallows' C, = % {RSS(.Md) + 2d&2} with some appropriate
estimator 52
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Bayesian Information Criterion

QUVA

Suppose that the model is uncertain before observing the
data: prior probabilities P(My), d =0,...,D.
After observing the data we update the distribution:

P(Mg|data) o exp <—;BIC(Md)> P(My) d=0,...,D.
where

1
BIC(Ma) = — | RSS(Ma) + log(n)do?

penalty for complexity
for Gaussian errors &; ~ N(0,0?) independent of x;.
Replace ¢ with 2 in practice.
Mallows' C, uses a smaller factor 2 < log(n) when n > 8
BIC favors a less flexible model
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FRED-MD Example

QUVA

Cp (forward)

100
1

80
1

60
1

40

oo
© ®%eeee,

T T T
8 10 15

Number of variables

BIC (forward)

-120 -110 -100 -90 -80 -70

-130

10 15

Number of variables

BIC chooses d = 9 while Mallows’ C, favors a larger model
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Validation Approach

e Treat dimension d as a hyperparameter.
e Divide the data into a training set and a validation set
e Fit the model M, using the training set

e Predict using the feature values on validation set but the
fitted coefficients B\(()d) and (9 from the training set

e Calculate the test mean squared error on validation set
_ 2(d) T A(d))2
MSE4 = AVgl'evalidation set(yi - BO — X /8( ))

o Compare the test MSE, between models

e Cross-validation: leave-one-out or k-fold
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Textbook Example: Auto Dataset

e mpg: gas mileage in miles per gallon
e horsepower

e Polynomial regression

mpg = Bo + Bihorsepower + . .. 4+ Bqhorsepower? + ¢

7 Linear
=== Degree 2
= Degree 5

= ISLR
Figure 3.8
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Selection

Loocv 10-fold CV
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Problems in High Dimensions




Why Cross Validation

High dimensional dataset: p/n is large especially when p > n

Perfectly fit all points in training data: useless!

Cp and BIC are inappropriate: sample variance 52 =0

Better use cross validation: model complexity maxy | M|
cannot be too large for forward selection

CV becomes expensive quickly as the model complexity grows

QUVA 21



Sparse and Dense Models

e Removing noise features - —

may improve forecasting

e If the true model is sparse:

POZ#{Bi:ﬁi#Oaizlw--aP} %

e

Ihdasgg bl

is small (relative to n)

e Selecting a useful model LS FES S

— i

S & S &

o T TS
&°

%,
K

may reduce the

dimensionality problem Figure 1.1,Statistical Learning with
o [Eeemeie dkis el o e Sparsity: estimated nonzero feature

dense, however weights 15-class gene expression can-

. cer data
e To be discussed further
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