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Introduction



e root = top node
root

e terminal node (leaf): node with
T no child

el e A elille e interior node: have left and right

/\ /\ children

leaf  leaf leaf right child o depth of a node = length of path
/\ from the node to the root

leaf leaf e height of a tree = maximum depth

e Stump if height=1
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Decision Tree: Example

Years<4.5

N

7 Hits<117.5

/\

7?7
ISLR Figure 8.1: Hitter data for
male baseball players, years=
the number of years that he has
played in the major leagues,
Hits= number of hits that he
made in the previous year.
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root/interior node =
condition for a single feature

TRUE: go left
FALSE: go right
Partition the data into

regions at the terminal
nodes
Forecast/Estimate at the

terminal nodes



Regression/Classification Tree



Partitioning the Feature Space

Tree-based model for regression function

Iy C1 X € Rl,
f(x) = Z cml[x € Rp] =

m=1
cv X € Ry

For every observation that falls into the region leaf R, our
prediction is constant cp,.

e Looks like local regression, but the ‘neighbors’ R, do not
depend on x.

e Looks like step regression, by using regions R, instead of
intervals for multivariate features

e ... but we will fit regions R, to the data: next part
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Partitioning the Feature Space: lllustration

ISLR Figure 8.2

238

Years<4.5

N -

R1  Hits<117.5
Ry 175

/N

R Rs

Hits

R

Years

More exercises in Tute.

QUVA



Fitting a Tree Model

e Target y; and features x; € X, i=1,...,n.
e Suppose that the partition {R,, : m=1,..., M} are given:

RnNR =0, m#1, UM R,=2x.

Later on we will estimate them as well. For now we take them

as known.
e We fit the parameters {cp} = {cm: m=1,...,M}. The
mean square error function

n M 2
{¢m} =argmin %Z <y,~ - Z cml [x € Rm]> .
{em} iz m=1
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Decompose the sum of squared errors

n

M 2
Z (y,- — Z cml[x € Rm]>
m=1

i=1
M

M
SIS =Py = Y Lnlem)
m=1

m=1 | i:x;€Rm

For each m, minimizing the univariate error function

Lm(C) = Z (yl - C)27

i:x;€Rm
yields that (see Tutel,Q2a):
R 1
i x € Rmy| = "

i:x;€Rm
the sample mean of the response values for the training
observations in the terminal node m. Here |Z| means the number

of elements in index set 7.
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Hitter Data Set: Prediction

ISLR Figure 8.2

238

Years<4.5

N .

5.11 Hits<117.5

N

6.00 6.74

1175

Ry

Hits

Re

2

Years
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Regression Versus Classification Trees

e For classification problem with binary target Y € {0,1} and
features X € X

e Recall from Lecture 4: the regression function is the posterior

probability
p(x) =E[Y|X =x]=P(Y =1|X = x).

and with (x) we can construct the Bayes classifier.

e We can use the similar prediction method for regression and
classification problems when the partition {Rp,} is given.

e However, we shall use different methods to construct the
subregions R, for regression and classification problems: next

part.
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Tree versus Linear models

e Linear model h(x) = 3o + x' 3
e Tree model h(x) = Z,Aﬂzl cml (x € Rp)

ISLR Figure 8.7: Two-class Classification Problem
@UVA 10



CART Algorithm




Splitting the Data Set

For each candidate feature X; and splitting threshold o

X<«

/\

Index Subset 7;  Index Subset 7o

Denote Z C {1,...,n} as the index set before the split.
Li={iel:xj<al, Ly={iel:xj>a}

In sample, we often choose « such that {i € Z: xjj = a} =0
to avoid boundary issues and thus Zo = {i € 7 : x;; > a}.

Accordingly we split the target values Y = {y; : i € Z} into
two subsets V1 = {y;:i € Z1} and Yo = {y; : i € Ir}.
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Impurity Function

e We wish the target values to be ‘pure’ within each subset of
target values V1 = {y;:i € Z1} and Yo = {y; : i € Tr}.
e We find the best split that minimizes the impurity criterion
|Z1 | | Z2|
= 1) + - £(dR)
|Z] IZ|
where ¢(Y,) measures the impurity of each subset Vp,.
e For regression trees, we measure impurity through sample
variance:
1 _ o - 1
(Vm) == > Vi = Im)>s Im === D ¥i
1 Zom| : 1 Zom| :
I€Lm I€Lm
e For two-class classification problem:

1
(YVm) = Y(Pm1; Pmo), Pmk = 75— Z 1[y; = k], k=0,1,
[Zom| i€T,
QUVA where ¢ is an impurity function to be specified. 12



Regression Tree

e The impurity criterion
|Z1| |Z>|

m'g(y)‘f'ﬁ £3%2)

_ 4l 1 Ll 1
7 2 g 2V
e |t is equivalent to minimize the sum of squared errors
D i—n)+ ) i— )
i€y i€

where y; and j» are the subset average target values (i.e. the
least-squares estimator for this candidate split).
e Choose the feature X; and threshold a that minimizes sum of

squared errors.
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Classification Tree

The impurity function
1
g(ym) - w(pmhme)) Pmk = T/ Z ]l[.yl — k]7 k = 07 17
1 Zm| i€Zm

needs to satisfy the following properties

e ¢ (3.3) > (p,1— p): lower is better

e 1 (0,1) =1 (1,0) = 0: the ideal separation

e (p,1— p) increases in p on [0,1/2] and decreases in [1/2,1]
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Impurity Functions

e Gini function
¥(p,1—p)=p(l—p)+(1-p)p=2p(1-p),
e Entropy
¢(p,1—p) = —plogp — (1 — p)log(1l — p).

(a) Gini ¥(p,1—p) (b) Entropy 1(p,1 — p)
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e Recursive binary splitting: repeat the splitting processes at
each node until a stopping criterion is reached

e for instance, may continue until no region contains more than

5 observations.
e or until the a maximum depth value is reached,. ..

e Without a stopping criterion, CART algorithm tends to isolate
all observations!

The stopping rule is crucial for bias variance tradeoff.
e Stopping early: | variance, 1 bias

e Stopping late: 1 variance, | bias
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Bagging and Random Forest




Aggregating Decision Trees

e Tree is unstable: a small change in the data can cause a large
change in the final estimate.

e Unstable estimator suffers in large predictive variances

o Aggregate many decision trees to smooth the estimated
regression function and reduce estimation variance

e Regression: average the target estimates over tree

e Classification: average the posterior probabilities estimates
over trees

e But... how to generate many trees, from one data set?
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Bagging

QUVA

Bagging = Bootstrap aggregating
Resample n* data points randomly with replacement from the
training database

S={yi,xi:i=1,...,n}
Repeat B times to extract the bootstrapped training sets
st ={ytxtii=1,.n"}, b=1,..B

Aggregate the estimates

Mm

fbag
b:
where £*b(x) is the estimate using the bootstrapped training
set S*b

Bagging uses n* = n.
18



Subagging
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Subagging = subsample aggregating

Subsample aggregating: resample n* < n times without
replacement for each bootstrap data set

Subagging could have substantial computational advantages
since the original predictor is only evaluated many times for n*
instead of n data points

Fraction subagging uses n* = [na], « € (0,1)
Small order subagging: n*/n ~ 0 but sufficiently large n*.

For small order subagging, re-sampling with replacement often
works similarly as that without replacement
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Real-life Example: Ozone Data Set

regression tree for ozone data

30

subagging
baggin
---- original

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

25
—

e n = 330 maximum daily
ozone in the Los Angeles

MSE
\

area

e p = 8 meteorological

\

predictor variables

15

e B =25 trees

0 50 100 150 200 250 300

Figure 10 in Biihlmann and Yu (2002,
AoS): MSE over 50 training-test-set

Al random divisions -



Correlations Between Trees
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Boostrapping does not generate new datal

Aggregation smooths the estimated regression function and
improves stability, but does not contain more information
beyond your original training set.

| won't accept the following explanations from the textbook in

exam as the trees are not independent:

Recall that given a set of n independent observations Zi, ..., Z,, each
with variance 02, the variance of the mean Z of the observations is given
by 02 /n. In other words, averaging a set of observations reduces variance.

Since the bootstrapped training sets S*? all depend on the
same random sample S, the tree estimators

F*b(x) = F*2(x; S) are correlated.

If the correlation is too high, law of large numbers is not
working well and aggregation makes little improvements.
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Random Forest

e A random sample of m predictors is chosen from the full set
of p predictors for each split

e ... to decorrelate the tree estimators f*P

e In bagging we use all predictors with m = p

e For classification you may take m ~ ,/p:

04

Test Classification Error
0.3

0.2

0 100 200 300 400 500

Number of Trees

QUVA ISLR Figure 8.10:The trees are less correlated for random forest 22
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