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Introduction



FRED-MD Data Set

e Response = monthly growth rate US industrial production
index log(IP¢/IP¢_1)

e Features = one-month lagged observations of p ~ 100
economic variables from FRED-MD database

¢ Rolling-window forecasts with size n = 120
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Lecture 2: Selecting d = 9 variables improves prediction performance
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Revisiting Best Subset Selection

o Target y;, features x; = (Xj1,...,%p) , i=1,...,n

e B intercept, 3 = (B1,...,8p)" linear regression coefficients

e Finding the best subset with d predictors by minimizing mean
squared error

n

L 1 T )2
minimize — g = — X;
B0, n,; <y’ Bo=xi P

under the complexity constraint that

P P
D15 #0)=) 1(sign(5)) #0) <
j=1 Jj=1

Shall we take the magnitude of 3; into account?
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LASSO Regression



L; Norm Constraint

o Targety;,, i=1,...,n
e Standardized features x; = (Xi1,...,Xip)

Minimize the mean squared error
n

1 T ,)\2
mmm/g)lze ;Z(y,—ﬁo—x,- 5)

Bo,

... but under a different complexity constraint that

P
Z |Bj| < b, where b > 0 is some given “budget”.
j=1

——

L1 norm of

B=(B1,---8p)"

o We do not ‘weight’ coefficients thanks to the standardization

e The subdomain becomes convex*: can be solved efficiently
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LASSO Regression

Tute Q5: For every given b > 0, by using Lagrange multiplier
method, we can reformulate the constrained optimization problem
into a unconstrained optimization problem

n

L 1 72\ :
il - — X 2\ i
mlg(l)mﬁlze - E (y, Bo — X; 5) + j§:1 |18; )

i=1
penalty for complexity

where

A = A(b) > 0 is some hyperparameter that depends on b
The factor 2 is included for convention

From now on we choose A > 0 instead of b > 0.

No closed-form but numerical solution can be effectively

oluA found, even simultaneously for many different \'s.



Example: Credit Data Set

e LASSO performs model selection: sparse learning
e + Shrinkage at the same time:
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Warning: Sparsity as lllusion?

e Simulation example with n = 100, p = 200
e True 3; uniformly generated between -0.2 and 0.2: no zeros

e Best fitted model selected 18 variables
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Ridge Regression




Quadratic Constraint

e Targety;,, i=1,...,n

e Standardized features x; = (Xi1,...,Xip)

What if we minimize the mean squared error

N B T 2\2
mlnmﬁuze . Z (y, — Bo — X; B)

PBo,

. now under a quadratic constraint that

51-2 < b, where b > 0 is some given “budget”?

j=1
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Ridge Regression

Like for LASSO: for every given b > 0, by using Lagrange method,
we can again reformulate the constrained optimization problem
into a unconstrained optimization problem

2

1 p p
2 o 0o D)
minimize ¢ — g yi — Bo — E xiiBi | + A g B; ,
Bo,B n< 5 -
i=1 j=1 j=1
——
penalty for complexity
where

e A\ = \(b) > 0 is some hyper-parameter depending on b.
e From now on we choose A\ > 0 rather than b > 0.

e Tute Q3: We can derive a closed-form solution
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Credit Data Set: Ridge Regression

e Target: Balance

e features: income, limit, rating, student,...

e Shrinking towards zero as A 1 in general: variance | but bias 1

e All variables are used, suitable for dense forecasting

Standardized Coefficients
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Go to www.menti.com and use the code 8141828

d Mentimeter

Does the method perform variable selection
or/and shrinkage? O=No, 1=Yes

o Forward Regression
LASSO Regression

o Ridge Regression




LASSO VS Ridge Regression




Ridge is Better for Dense Models

e Consider the dense model on page 7 with n = 100, p = 200
e True 3; uniformly generated between -0.2 and 0.2: no zeros
e MSE of mean estimation: best ridge/best lasso = 82.84%

m
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MSE for mean estimation
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LASSO is Better for Sparse Models

Simulated data from a sparse model with n = 100, p = 200

The population model uses only d = 10 variables.

All ridge estimates are non-zeros: no model selection
MSE of regression function: best ridge/best lasso = 117.27%
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(c) Ridge (d) LASSO
QUVA 12



Why is LASSO Solution Sparse?

Consider the case p = 2 and omit

/"/ - “
//’,”f the intercept for simplicity.
Yy

A\

B.1 /) / Red= contour of MSE
ey LSy — x; . 2
[ (== 7 2ie1 (Vi = xi1P1 — Xi232)
‘ 7_1/’“/ Blue= the diamond
B Bl +162] < b
Solution is a corner point of the

diamond
ISLR Figure 6.7, LASSO

e Good performance if the true model is sparse (or
approximately so), and if predictors are not highly correlated
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Why is Ridge Solution Dense?

Consider the case p = 2 and omit
the intercept for simplicity.

Red= contour of MSE

IS (v — xi1B1 — Xi282)°

L Blue= the ball

B, B2+ B3<b

Tangent point on the sphere
ISLR Figure 6.7, Ridge

e No corner solution, usually more appropriate for dense models
e Bias variance trade-off via shrinkage
e Applicable in high dimensions with p > n
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Principal Component Regression




Data Projection

o Let ¢ = (¢1,...,0,) be a given unit vector with |¢| = 1.
e The projection of features x; = (xi1,...,Xi)" for i-th
observation is given by z¢ such that ||x; — zi¢||® is minimal.

e The solution is given by

Zi=g1xii ..t opxip=0"x ER

g% ISLR Figure 6.15 (left)
5,";7 {zi:i=1,...,n}is called a
2 . component
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Dimension Reduction

e The information from predictors may be best summarized by a
few components in orthogonal directions.

e For forward selection and LASSO: the projections are onto
coordinate basis and therefore we directly select variables.

e Now select the components (instead of variables) that
summarize most of the sample information: we use sample
variance to quantify the amount of sample information

e First principal component: component with largest sample
variance, i.e., by solving

up = argmax — Z o7 ( x))?
e:llell=1 M5
e Tute Q4: vy = first eigenvector of sample covariance matrix
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Principal Components

Repeat the procedures we can extra more PCs:

e 2" PC: maximizes sample variance again over the directions
orthogonal to that of 15t PC

1> = argmax = 3 (¢7 (x — %))?

_1 n
llell=1 =il

such that the scores ¢ (x; — X) are uncorrelated with

uf (x; — X) in sample

e 3 PC: maximizes sample variance again over the directions
orthogonal to that of 15t and 2"¢ PCs

e ... up to p principal components
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Principal Component Regression: Remarks

For training data:

e Demean and standardize the features
e Construct the m-th principal component

Zim = Uy x, E Um jXi j

form=1,..., M where M is smaII.
e Ordinary least squares estimation, using the PCs as features.
e The dimension of features is reduced to M

When making predictions:

e transform the new observation of features using

. the training mean and training standard deviation

use the component weights from training data
OUvA e Use these new PC scores and the OLS coefficients 18



Simulation Example: Factor Model

e PCR is particularly useful when the data are highly correlated
and the overlapping information are important to the target
e For example, consider the factor model
o Xij=0kfi+ 6 i~ N(0,1), €k ~ N(0,0.01),
Ok € [—0.2,0.2]
e yi=0.1fi+¢;, € ~ N(0,1)

Number of PCs. Number of PCs.

el (a) True Means(Oracle) (b) 5 fold CV =



FRED-MD: Correlations Between Predictions

Forward Ridge LASSO PCR
Forward 1.0000000 0.8214825 0.9250341 0.5726788
Ridge 0.8214825 1.0000000 0.9067102 0.8396510
LASSO 0.9250341 0.9067102 1.0000000 0.6995926
PCR 0.5726788 0.8396510 0.6995926 1.0000000
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