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Introduction



Dr. Yi He

Associate Professor (QE) Niels & Floris

o | give all the lectures and am the chief examiner. Bring your
mobile phone to the class and join live polling.
e Tutorials are by Rutger Poldermans and myself.

oA Computer labs by Niels Marijnen and Floris Holstege.



Textbook: ISLR (1st Edition)

QUVA

Authors’ PDF link on

Canvas
Chapters 1-8

Textbook exercises in
tutorials

Applied exercises in labs

Springer Texts in Statisties

Gareth James

Daniela Witten
Trevor Hastie
Robert Tibshirani

with Applications in R

@ Springer



Schedule and Assessment

Date Topics Assignments

9 Jan  Bias-Variance Tradeoff Al available

11 Jan High-Dimensional Linear Regression

16 Jan  Shrinkage and Dimension Reduction

18 Jan Classification A2 available, Al due
23 Jan  Nonlinear Models

25 Jan  Tree-based Methods

30 Jan Course Review A2 due

3 Feb  Exam Check Rooster

e Group computer assignments: 20%+20%=40%
e Written exam (theory), 2 hours: 60%
e Sign up for an assignment group (max 3 students) voluntarily

until 11 Jan on Canvas. Otherwise we assign you to open

OUVA groups randomly on 12 Jan. 4



Advertising Dataset

e Sales of a particular product

e Advertising budgets for three different media

e TV, Radio, Newspaper

e Adjusting advertising budgets may (indirectly) increase sales

Sales
Sales
Sales

0 10 20 30 40 50 0 20 40 60 80 100

TV Radio Newspaper

QUVA
! ISLR Figure 2.1: Linear regressions show upward slopes



How to Predict Sales?

e Y = Sales is a response or target

TV, Radio, Newspaper are features or predictors

X = (TV,Radio, Newspaper)

Our prediction is a function of features:
Sales = f (TV,Radio, Newspaper),

where f is some prediction rule.

What prediction rule shall we use?
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Regression Function




Squared Loss Function

e Independent test observation Y, X of the training sample.

e Given any candidate prediction rule f € F, the squared loss is
given by
UF(X), Y) = (Y = F(X)?.

e The population risk (= expected loss)
R(f) = E[((f(X),Y)] = E [(v - f(X))ﬂ , ferF,

which depends on the joint distribution of Y, X.

e | will minimize the usage of brackets:
R(H) =E|(Y = f(X))?| =E(Y - F(X))?
Same for other formulas: | won't repeat this announcement.
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The Ideal Predictor

e Recall the quadratic risk function
R(f) = E(Y — f(X))?

e Tute Q2: the ideal prediction function minimizing R(f) is
given by
p(x) =E[Y[X =x].

This is called the regression function.

e The regression function is unknown in practice.
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Prediction Model

e The regression function (x) represents the systematic
information that X provides about Y

e Without loss of generality, we can always construct
e=Y — pu(X),
and the following regression model
Y = pu(X)+e

where € captures measurement errors and other discrepancies.
e Statistical learning aims to estimate the fixed but unknown
function p(x) from a set of data.

e State-of-art statistical learning methods usually means the
machine learning methods with theoretical guarantee.
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Empirical Risk Minimization




Empirical Risk Function

e A random sample S ={y;,x; : i =1,...,n} from some
population distribution, satisfying the prediction model
yi = p(xi) + €.

e The empirical risk for a candidate prediction rule f € F:

n

Ra(f) = = S UF () ) = = 3 (= F)?
i=1

i=1

which is an estimator of the population risk function
R(f) =E(Y — f(X))?.
e Shall we use the global empirical risk minimizer

f = argmin Rn(f)?
feF
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Go to www.menti.com and use the code 2810 8564

Do you think we should use the global empirical minimizer =~ #Vertmet=r
(e.g.. the least squares estimator)?

0 0 0

Yes, because the empirical risk approximates the  No, because the empirical risk is not equal to the Maybe, it depends on the problems
population risk population risk




One may wish that approximation error of the risk function

sup |Rn(f) — R(f)| to be small.
feFr

e In machine learning, we are generally interested in flexible
models where F is large.

e More flexible model uses larger F, enlarges the approximation
error and increases the variance of f in general.

e If F is very large, even the uniform convergence may fail as
the variance of R,(f) becomes too large = the variance of f
is too large.
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Simulation Example

e Income = i (Years of Education,Seniority)+e
e True model shown below
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ISLR Figure 2.3
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Simulation Example: Continued

e When F is large enough, we can fit the training data perfectly!

~

e Thatis, y; = f(x;) forall i=1,... n.
e Training MSE=0: better than the ideal predictor?
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ISLR Figure 2.6
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Regularization Bias

Restrict to a smaller domain H C F such that the law of large

numbers still holds (or at least approximately so).

The regularized estimator

f = argmin R,(f)
feH

The oracle estimator

foracle = argmin R(f)
feH

This may cause a bias foracle — fideal if H is too small:

bias-variance tradeoff.
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Bias-Variance Tradeoff




Reducible VS Irreducible Errors

QUVA

Consider an estimator F(x) possibly regularized, of the true
regression function p(x) depending only on the training
sample

Consider independent test observation Y, X from the same
prediction model

Y =u(X)+e ElX]=0.

Tute Q6: the prediction error

~

E(Y — F(X))? =E(u(X) + € — £(X))?
—E(u(X) = F(X) +¢)?
—E(u(X) — F(X))2 +E€
reducible

Irreducible component Ee? = Var(¢) does not depend on F.

ii5)



Bias-Variance Tradeoff

By law of iterated expectations,
E(u(X) - f(X))? = EL(X),
where L(x) denotes the reducible error at a given point x such that

L(x) = E(u(x) - F(x))*.

Tute Q3: we can decompose that

~ ~

L(x) = (u(x) — EF(x))? +Var(F(x)).

bias?

e To improve the overall efficiency, we may consider biased
estimators (often due to regularization) to reduce the
estimation variance.
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Cross Validation




Hyperparameter Optimization

Recall the regularized estimator

f = argmin Ry(f), HCF
feH

Suppose the subspace H = #H(0) C F depends on some
hyperparameters (tuning parameters) 6 to be specified. Denote the
corresponding estimator by

fy = argmin Ra(f).
feH(0)

How to tune the hyperparameters?
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Validation Set Approach

Divide the total sample of size n, possibly randomly, into

1. training set of size n;
2. validation set of size no = n— n;

[123 n

!

722 13 91

ISLR Figure 5.1

e Training and validation sets are exclusive.
e Fit the estimator ?9 to the training set, evaluate its empirical
risk on the validation set.
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k—fold Cross Validation

e Divide the database into k (almost) equal-sized parts.

e Partition is often random.

e Leave out part / as validation set, fit the model to the other
k — 1 parts combined as training set. The mean squared error
on the validation set is denoted by MSE;(9).

e k-fold CV estimate

k
1
Vi (0) = 4 > MSE;(0)
i=1

[123 n]

11765 47
11765 47
11765 a7
11765 a7

11765 a7

e ISLR Figure 5.5, 5-fold CV 19



Bias-Variance Tradeoff

e k = nyields Leave-one-out CV: validation set size n, = 1.

e Usually k =5 or k =10 in practice.
Large k (LOOCV):

e MSE; are highly correlated, even for independent data
e ... Law of large numbers may fail !

e Computationally intensive
Small k (e.g., k =5 and k = 10):

e Each training set only % as big as the original one, and
typically leads to overestimation.

e Less correlated estimates from each fold

e Smaller variance than LOOCV
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