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Introduction



Our Team

Dr. Yi He

Associate Professor (QE)

Rutger

Niels & Floris

� I give all the lectures and am the chief examiner. Bring your

mobile phone to the class and join live polling.

� Tutorials are by Rutger Poldermans and myself.

� Computer labs by Niels Marijnen and Floris Holstege.
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Textbook: ISLR (1st Edition)

� Authors’ PDF link on

Canvas

� Chapters 1–8

� Textbook exercises in

tutorials

� Applied exercises in labs
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Schedule and Assessment

Date Topics Assignments

9 Jan Bias-Variance Tradeoff A1 available

11 Jan High-Dimensional Linear Regression

16 Jan Shrinkage and Dimension Reduction

18 Jan Classification A2 available, A1 due

23 Jan Nonlinear Models

25 Jan Tree-based Methods

30 Jan Course Review A2 due

3 Feb Exam Check Rooster

� Group computer assignments: 20%+20%=40%

� Written exam (theory), 2 hours: 60%

� Sign up for an assignment group (max 3 students) voluntarily

until 11 Jan on Canvas. Otherwise we assign you to open

groups randomly on 12 Jan.@UvA 4



Advertising Dataset

� Sales of a particular product

� Advertising budgets for three different media

� TV, Radio, Newspaper

� Adjusting advertising budgets may (indirectly) increase sales
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ISLR Figure 2.1: Linear regressions show upward slopes
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How to Predict Sales?

� Y = Sales is a response or target

� TV, Radio, Newspaper are features or predictors

� X = (TV, Radio, Newspaper)T

� Our prediction is a function of features:

Ŝales = f (TV, Radio, Newspaper) ,

where f is some prediction rule.

� What prediction rule shall we use?
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Regression Function



Squared Loss Function

� Independent test observation Y ,X of the training sample.

� Given any candidate prediction rule f ∈ F , the squared loss is

given by

ℓ(f (X ),Y ) = (Y − f (X ))2 .

� The population risk (= expected loss)

R(f ) ≡ E [ℓ(f (X ),Y )] = E
[
(Y − f (X ))2

]
, f ∈ F ,

which depends on the joint distribution of Y ,X .

� I will minimize the usage of brackets:

R(f ) = E
[
(Y − f (X ))2

]
= E (Y − f (X ))2

Same for other formulas: I won’t repeat this announcement.
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The Ideal Predictor

� Recall the quadratic risk function

R(f ) ≡ E (Y − f (X ))2

� Tute Q2: the ideal prediction function minimizing R(f ) is

given by

µ(x) = E [Y |X = x ] .

This is called the regression function.

� The regression function is unknown in practice.
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Prediction Model

� The regression function µ(x) represents the systematic

information that X provides about Y

� Without loss of generality, we can always construct

ϵ = Y − µ(X ),

and the following regression model

Y = µ(X ) + ϵ

where ϵ captures measurement errors and other discrepancies.

� Statistical learning aims to estimate the fixed but unknown

function µ(x) from a set of data.

� State-of-art statistical learning methods usually means the

machine learning methods with theoretical guarantee.
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Empirical Risk Minimization



Empirical Risk Function

� A random sample S = {yi , xi : i = 1, . . . , n} from some

population distribution, satisfying the prediction model

yi = µ(xi ) + εi .

� The empirical risk for a candidate prediction rule f ∈ F :

Rn(f ) =
1

n

n∑
i=1

ℓ(f (xi ), yi ) =
1

n

n∑
i=1

(yi − f (xi ))
2

which is an estimator of the population risk function

R(f ) ≡ E (Y − f (X ))2 .

� Shall we use the global empirical risk minimizer

f̂ = argmin
f ∈F

Rn(f )?
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Overfitting

� One may wish that approximation error of the risk function

sup
f ∈F

|Rn(f )− R(f )| to be small.

� In machine learning, we are generally interested in flexible

models where F is large.

� More flexible model uses larger F , enlarges the approximation

error and increases the variance of f̂ in general.

� If F is very large, even the uniform convergence may fail as

the variance of Rn(f ) becomes too large ⇒ the variance of f̂

is too large.
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Simulation Example

� Income = µ (Years of Education, Seniority) + ϵ

� True model shown below
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ISLR Figure 2.3
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Simulation Example: Continued

� When F is large enough, we can fit the training data perfectly!

� That is, yi = f̂ (xi ) for all i = 1, . . . , n.

� Training MSE=0: better than the ideal predictor?
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Regularization Bias

� Restrict to a smaller domain H ⊂ F such that the law of large

numbers still holds (or at least approximately so).

� The regularized estimator

f̂ = argmin
f ∈H

Rn(f )

� The oracle estimator

foracle = argmin
f ∈H

R(f )

� This may cause a bias foracle − fideal if H is too small:

bias-variance tradeoff.
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Bias-Variance Tradeoff



Reducible VS Irreducible Errors

� Consider an estimator f̂ (x), possibly regularized, of the true

regression function µ(x) depending only on the training

sample

� Consider independent test observation Y ,X from the same

prediction model

Y = µ(X ) + ϵ, E[ϵ|X ] = 0.

� Tute Q6: the prediction error

E(Y − f̂ (X ))2 =E(µ(X ) + ϵ− f̂ (X ))2

=E(µ(X )− f̂ (X ) + ϵ)2

=E(µ(X )− f̂ (X ))2︸ ︷︷ ︸
reducible

+Eϵ2

� Irreducible component Eϵ2 = Var(ϵ) does not depend on f̂ .
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Bias-Variance Tradeoff

By law of iterated expectations,

E(µ(X )− f̂ (X ))2 = EL(X ),

where L(x) denotes the reducible error at a given point x such that

L(x) ≡ E(µ(x)− f̂ (x))2.

Tute Q3: we can decompose that

L(x) = (µ(x)− Ef̂ (x))2︸ ︷︷ ︸
bias2

+Var(f̂ (x)).

� To improve the overall efficiency, we may consider biased

estimators (often due to regularization) to reduce the

estimation variance.
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Cross Validation



Hyperparameter Optimization

Recall the regularized estimator

f̂ = argmin
f ∈H

Rn(f ), H ⊂ F

Suppose the subspace H = H(θ) ⊂ F depends on some

hyperparameters (tuning parameters) θ to be specified. Denote the

corresponding estimator by

f̂θ = argmin
f ∈H(θ)

Rn(f ).

How to tune the hyperparameters?
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Validation Set Approach

Divide the total sample of size n, possibly randomly, into

1. training set of size nt

2. validation set of size no = n − nt

 !"!#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!$!

%!!""!! #!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!& !

ISLR Figure 5.1

� Training and validation sets are exclusive.

� Fit the estimator f̂θ to the training set, evaluate its empirical

risk on the validation set.
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k–fold Cross Validation

� Divide the database into k (almost) equal-sized parts.

� Partition is often random.

� Leave out part i as validation set, fit the model to the other

k − 1 parts combined as training set. The mean squared error

on the validation set is denoted by MSEi (θ).

� k-fold CV estimate

CV(k)(θ) =
1

k

k∑
i=1

MSEi (θ)

 !"!#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!$!
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ISLR Figure 5.5, 5-fold CV@UvA 19



Bias-Variance Tradeoff

� k = n yields Leave-one-out CV: validation set size no = 1.

� Usually k = 5 or k = 10 in practice.

Large k (LOOCV):

� MSEi are highly correlated, even for independent data

� . . . Law of large numbers may fail !

� Computationally intensive

Small k (e.g., k = 5 and k = 10):

� Each training set only k−1
k as big as the original one, and

typically leads to overestimation.

� Less correlated estimates from each fold

� Smaller variance than LOOCV
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