

Statistical Learning

Lecture 6: Tree-based Methods

Yi He

Janurary 25, 2023

Plan for Today

1. Introduction

2. Regression/Classification Tree

3. CART Algorithm

4. Bagging and Random Forest

@UvA 1

Introduction

Binary Tree

root

left child

leaf leaf

right child

leaf right child

leaf leaf

� root = top node

� terminal node (leaf): node with

no child

� interior node: have left and right

children

� depth of a node = length of path

from the node to the root

� height of a tree = maximum depth

� Stump if height=1

@UvA 2

Decision Tree: Example

Years<4.5

? Hits<117.5

? ?

ISLR Figure 8.1: Hitter data for

male baseball players, years=

the number of years that he has

played in the major leagues,

Hits= number of hits that he

made in the previous year.

� root/interior node =

condition for a single feature

� TRUE: go left

� FALSE: go right

� Partition the data into

regions at the terminal

nodes

� Forecast/Estimate at the

terminal nodes

@UvA 3

Regression/Classification Tree

Partitioning the Feature Space

Tree-based model for regression function

f (x) =
M∑

m=1

cm1 [x ∈ Rm] =


c1 x ∈ R1,
...

cM x ∈ RM

For every observation that falls into the region leaf Rm, our

prediction is constant cm.

� Looks like local regression, but the ‘neighbors’ Rm do not

depend on x .

� Looks like step regression, by using regions Rm instead of

intervals for multivariate features

� . . . but we will fit regions Rm to the data: next part

@UvA 4

Partitioning the Feature Space: Illustration

Years<4.5

R1 Hits<117.5

R2 R3

ISLR Figure 8.2

Years
H

it
s

1

117.5

238

1 4.5 24

R1

R3

R2

More exercises in Tute.

@UvA 5

Fitting a Tree Model

� Target yi and features xi ∈ X , i = 1, . . . , n.

� Suppose that the partition {Rm : m = 1, . . . ,M} are given:

Rm ∩ Rl = ∅, m ̸= l , ∪M
m=1 Rm = X .

Later on we will estimate them as well. For now we take them

as known.

� We fit the parameters {cm} ≡ {cm : m = 1, . . . ,M}. The
mean square error function

{ĉm} =argmin
{cm} �

��C
CC

1

n

n∑
i=1

(
yi −

M∑
m=1

cm1 [x ∈ Rm]

)2

.

@UvA 6

Decompose the sum of squared errors

n∑
i=1

(
yi −

M∑
m=1

cm1 [x ∈ Rm]

)2

=
M∑

m=1

 ∑
i :xi∈Rm

(yi − cm)
2

 ≡
M∑

m=1

Lm(cm)

For each m, minimizing the univariate error function

Lm(c) =
∑

i :xi∈Rm

(yi − c)2 ,

yields that (see Tute1,Q2a):

ĉm =
1

|{i : xi ∈ Rm}|
∑

i :xi∈Rm

yi ,

the sample mean of the response values for the training

observations in the terminal node m. Here |I| means the number

of elements in index set I.
@UvA 7

Hitter Data Set: Prediction

Years<4.5

5.11 Hits<117.5

6.00 6.74

ISLR Figure 8.2

Years

H
it
s

1

117.5

238

1 4.5 24

R1

R3

R2

@UvA 8

Regression Versus Classification Trees

� For classification problem with binary target Y ∈ {0, 1} and

features X ∈ X
� Recall from Lecture 4: the regression function is the posterior

probability

µ(x) = E[Y |X = x] = P(Y = 1|X = x).

and with µ(x) we can construct the Bayes classifier.

� We can use the similar prediction method for regression and

classification problems when the partition {Rm} is given.

� However, we shall use different methods to construct the

subregions Rm for regression and classification problems: next

part.

@UvA 9

Tree versus Linear models

� Linear model h(x) = β0 + xTβ

� Tree model h(x) =
∑M

m=1 c̃m1 (x ∈ Rm)

−2 −1 0 1 2

−
2

−
1

0
1

2

X1

X
2

−2 −1 0 1 2

−
2

−
1

0
1

2

X1

X
2

−2 −1 0 1 2

−
2

−
1

0
1

2

X1

X
2

−2 −1 0 1 2

−
2

−
1

0
1

2

X1

X
2

ISLR Figure 8.7: Two-class Classification Problem

@UvA 10

CART Algorithm

Splitting the Data Set

For each candidate feature Xj and splitting threshold α

Xj < α

Index Subset I1 Index Subset I2

� Denote I ⊂ {1, . . . , n} as the index set before the split.

� I1 = {i ∈ I : xij < α}, I2 = {i ∈ I : xij ≥ α}
� In sample, we often choose α such that {i ∈ I : xij = α} = ∅
to avoid boundary issues and thus I2 = {i ∈ I : xij > α}.

� Accordingly we split the target values Y = {yi : i ∈ I} into

two subsets Y1 = {yi : i ∈ I1} and Y2 = {yi : i ∈ I2}.

@UvA 11

Impurity Function

� We wish the target values to be ‘pure’ within each subset of

target values Y1 = {yi : i ∈ I1} and Y2 = {yi : i ∈ I2}.
� We find the best split that minimizes the impurity criterion

|I1|
|I|

· ℓ(Y1) +
|I2|
|I|

· ℓ(Y2)

where ℓ(Ym) measures the impurity of each subset Ym.

� For regression trees, we measure impurity through sample

variance:

ℓ(Ym) =
1

|Im|
∑
i∈Im

(yi − ȳm)
2, ȳm =

1

|Im|
∑
i∈Im

yi

� For two-class classification problem:

ℓ(Ym) = ψ(pm1, pm0), pmk =
1

|Im|
∑
i∈Im

1[yi = k], k = 0, 1,

where ψ is an impurity function to be specified.@UvA 12

Regression Tree

� The impurity criterion

|I1|
|I|

· ℓ(Y1) +
|I2|
|I|

· ℓ(Y2)

=
|I1|
|I|

· 1

|I1|
∑
i∈I1

(yi − ȳ1)
2 +

|I2|
|I|

1

|I2|
∑
i∈I2

(yi − ȳ2)
2

� It is equivalent to minimize the sum of squared errors∑
i∈I1

(yi − ȳ1)
2 +

∑
i∈I2

(yi − ȳ2)
2,

where ȳ1 and ȳ2 are the subset average target values (i.e. the

least-squares estimator for this candidate split).

� Choose the feature Xj and threshold α that minimizes sum of

squared errors.

@UvA 13

Classification Tree

The impurity function

ℓ(Ym) = ψ(pm1, pm0), pmk =
1

|Im|
∑
i∈Im

1[yi = k], k = 0, 1,

needs to satisfy the following properties

� ψ
(
1
2 ,

1
2

)
≥ ψ (p, 1− p): lower is better

� ψ (0, 1) = ψ (1, 0) = 0: the ideal separation

� ψ(p, 1− p) increases in p on [0, 1/2] and decreases in [1/2, 1]

@UvA 14

Impurity Functions

� Gini function

ψ(p, 1− p) = p(1− p) + (1− p)p = 2p(1− p),

� Entropy

ψ(p, 1− p) = −p log p − (1− p) log(1− p).

(a) Gini ψ(p, 1− p) (b) Entropy ψ(p, 1− p)

@UvA 15

Growing a Tree

� Recursive binary splitting: repeat the splitting processes at

each node until a stopping criterion is reached

� for instance, may continue until no region contains more than

5 observations.

� or until the a maximum depth value is reached,. . .

� Without a stopping criterion, CART algorithm tends to isolate

all observations!

The stopping rule is crucial for bias variance tradeoff.

� Stopping early: ↓ variance, ↑ bias

� Stopping late: ↑ variance, ↓ bias

@UvA 16

Bagging and Random Forest

Aggregating Decision Trees

� Tree is unstable: a small change in the data can cause a large

change in the final estimate.

� Unstable estimator suffers in large predictive variances

� Aggregate many decision trees to smooth the estimated

regression function and reduce estimation variance

� Regression: average the target estimates over tree

� Classification: average the posterior probabilities estimates

over trees

� But. . . how to generate many trees, from one data set?

@UvA 17

Bagging

� Bagging = Bootstrap aggregating

� Resample n∗ data points randomly with replacement from the

training database

S = {yi , xi : i = 1, . . . , n}

� Repeat B times to extract the bootstrapped training sets

S∗b =
{
y∗bi , x∗bi : i = 1, . . . n∗

}
, b = 1, . . . ,B

� Aggregate the estimates

f̂bag(x) =
1

B

B∑
b=1

f̂ ∗b(x)

where f̂ ∗b(x) is the estimate using the bootstrapped training

set S∗b

� Bagging uses n∗ = n.
@UvA 18

Subagging

� Subagging = subsample aggregating

� Subsample aggregating: resample n∗ < n times without

replacement for each bootstrap data set

� Subagging could have substantial computational advantages

since the original predictor is only evaluated many times for n∗

instead of n data points

� Fraction subagging uses n∗ = [nα], α ∈ (0, 1)

� Small order subagging: n∗/n ≈ 0 but sufficiently large n∗.

� For small order subagging, re-sampling with replacement often

works similarly as that without replacement

@UvA 19

Real-life Example: Ozone Data Set

� n = 330 maximum daily

ozone in the Los Angeles

area

� p = 8 meteorological

predictor variables

� B = 25 trees

Figure 10 in Bühlmann and Yu (2002,

AoS): MSE over 50 training-test-set

random divisions
@UvA 20

Correlations Between Trees

� Boostrapping does not generate new data!

� Aggregation smooths the estimated regression function and

improves stability, but does not contain more information

beyond your original training set.

� I won’t accept the following explanations from the textbook in

exam as the trees are not independent:

� Since the bootstrapped training sets S∗b all depend on the

same random sample S , the tree estimators

f̂ ∗b(x) = f̂ ∗b(x ;S) are correlated.

� If the correlation is too high, law of large numbers is not

working well and aggregation makes little improvements.

@UvA 21

Random Forest

� A random sample of m predictors is chosen from the full set

of p predictors for each split

� . . . to decorrelate the tree estimators f̂ ∗b

� In bagging we use all predictors with m = p

� For classification you may take m ≈ √
p:

0 100 200 300 400 500

0
.2

0
.3

0
.4

0
.5

Number of Trees

T
e
s
t
C

la
s
s
if
ic

a
ti
o
n
 E

rr
o
r

m=p

m=p/2

m= p

ISLR Figure 8.10:The trees are less correlated for random forest@UvA 22

	Introduction
	Regression/Classification Tree
	CART Algorithm
	Bagging and Random Forest

