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Introduction



Textbook Example: Default Data

� default = whether default on his or her credit card payment

� default ∈ {Yes, No} is binary

� Features: balance, income, student, . . .
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Regression Function

� Encode the dummy target variable

Y =

0 default = No,

1 default = Yes.

� The input vector X = (balance, income, student)T

� Regression function

µ(x) = E [Y |X = x ] =1 · P (Y = 1|X = x) + 0 · P (Y = 0|X = x)

=P (Y = 1|X = x)

� Regression algorithms estimate the posterior probability.

� Shall we use linear regression?

@UvA 3



Why Not Linear Regression

� Fitted values are probabilities = not binary

� How to interpret negative estimates as probabilities?

� Yes if predicted probability > 0.5?

� . . . then all predictions = 0?
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Zero-One Loss for Classification

� Binary target Y ∈ {0, 1}, features X ∈ Rp, Z = (Y ,XT )T

� Classifier or prediction rule g : Rp → {0, 1}
� Consider the zero-one loss

ℓ0−1(g(X ),Y ) =

0 g(X ) = Y

1 g(X ) ̸= Y
,

and the risk function

R(g) = E [ℓ0−1(g(X ),Y )] = P (Y ̸= g(X )) , g ∈ G,

and G is a set of candidate classifiers.
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The Bayes Classifier

� Tute Q1: The Bayes classifier minimizes the expected

zero-one loss and it is given by

g(x) = argmax
k∈{0,1}

P (Y = k |X = x).

In other words (ignoring the decision boundary),

g(x) =

1 P (Y = 1|X = x) > 1
2

0 P (Y = 1|X = x) < 1
2

� The decision boundary

{x ∈ Rp : P (Y = 1|X = x) = P (Y = 0|X = x) = 1
2}
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Discriminant Analysis



Gaussian Models

Assume that X |Y = k ∼ N (µk ,Σk) for k = 0, 1.
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Gaussian Models: More Illustration

Assume that X |Y = k ∼ N (µk ,Σk) for k = 0, 1.

x1x1

x 2x 2

ISLR Figure 4.5 : Two multivariate Gaussian density functions are shown,

with p = 2. Left: The two predictors are uncorrelated. Right: The two

variables have a correlation of 0.7.
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Bayes’ Theorem

The conditional density function of X given Y = k is Gaussian:

fk(x) =
1

(
√
2π)p

√
det(Σk)

exp

(
−1

2
(x − µk)

TΣ−1
k (x − µk)

)
By law of iterated expectations, the unconditional density function

is given by

fX (x) = f0(x) · π0 + f1(x) · π1, πk = P(Y = k).

Using the definition of conditional probability/density,

P (Y = k|X = x) =
fY ,X (k , x)

fX (x)
=

fk(x)πk
f0(x)π0 + f1(x)π1

.

This is known as the Bayes’ theorem.

@UvA 9



From Bayes’ Theorem to Bayes’ Classifier

Recall that

P (Y = k |X = x) =
fY ,X (k , x)

fX (x)
=

fk(x)πk
fX (x)

.

The denominator is fX (x) common for all classes k ∈ {0, 1}.

The Bayes classifier

g(x) =argmax
k∈{0,1}

{fk(x)πk}

=argmax
k∈{0,1}

{log fk(x) + log πk} .
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Quadratic Discriminant Analysis

Plugging in the Gaussian density function,

log fk(x) + log πk

= −1

2
(x − µk)

T Σk
−1 (x − µk)−

1

2
log (det(Σk)) + log πk︸ ︷︷ ︸

δk (x)

−p

2
log(2π),

The Bayes classifier g(x) = argmax
k∈{0,1}

δk(x)

� δk(x) is a quadratic discriminant function on x

� The parameters µk , Σk and πk are unknown in practice.

� In practice, QDA estimates the parameters µk , Σk and πk by

using maximum likelihood method: the resulting classifier is

called the Naive Bayes classifier.
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Linear Discriminant Analysis

� Suppose that Σk = Σ for all classes k ∈ {0, 1}, that is,

X |Y = k ∼ N (µk ,Σ)

� We can then use linear discriminant functions

δk(x)

=

�
�
�
�
�
�Z

Z
Z
Z
Z
Z

−1

2
xTΣ−1x︸ ︷︷ ︸
common

+ xTΣ−1µk −
1

2
µk

TΣ−1µk

��
���

��H
HHH

HHH

−1

2
log det(Σ)︸ ︷︷ ︸
common

+ log πk

=xTak + bk ,

� ak = Σ−1µk , bk = −1
2µ

T
k Σ

−1µk + log πk

� Again, in practice, LDA estimates the parameters µk , Σ and

πk by the maximum likelihood method.
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QDA and LDA: Simulated Example
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Is QDA always better than LDA?
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QDA VS LDA: Bias-Variance Tradeoff

� Different estimators of the covariance matrices.

� Even when Σk are not equal over all classes: one may

interpret LDA as a regularized version of QDA.

� The LDA estimators Σ̂0 = Σ̂1 = Σ̂ may suffer from modelling

bias as the Σ̂0 and Σ̂1 cannot converge to different limits

� . . . but with a smaller estimation variance by using the data

over all classes.

� If Σk are close to each other, LDA can outperform QDA.

� If Σk are very different, QDA often performs better.

� In high dimensions, one may even use diagonal LDA that

estimate Σ̂0 = Σ̂1 = diag(Σ̂) that removes the off-diagonal

elements of Σ̂: beyond our course.

@UvA 14



Logistic Regression



Regression Function and Bayes Classifier

The regression function

µ(x) = E[Y |X = x ] = P(Y = 1|X = x)

fully characterizes the Bayes classifier

g(x) =

0 µ(x) < 1
2

1 µ(x) > 1
2 .

� In principle, substituting the regression function µ(x) with

some estimator f̂ (x) yields an estimator of the Bayes classifier

� However, as discussed in the introduction, the linear

regression techniques do not exploit the fact that the true

regression function represents probabilities.
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Logit Transformation

The log-odds or logit

h(x) ≡ log

(
P (Y = 1|X = x)

P (Y = 0|X = x)

)
= log

(
P (Y = 1|X = x)

1− P(Y = 1|X = x)

)
= log

(
µ(x)

1− µ(x)

)
is a logit transformation of the regression function

µ(x) = P(Y = 1|X = x).

The transformation is invertible:

µ(x) =
exp(h(x))

1 + exp(h(x))
∈ (0, 1)

Now, replacing h(x) with any real-valued estimator ĥ(x) yields an

estimator f̂ (x) ∈ (0, 1) that represents a probability.
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From LDA to Logistic Regression

Suppose that X |Y = k ∼ N (µk ,Σ) , k ∈ {0, 1}

Tute 4, Q4: The Bayes’ theorem implies that the logit

h(x) =δ1(x)− δ0(x)

=b1 + xTa1 − b0 − xTa0 ≡ β0 + xTβ,

is a linear function.

� Logistic regression fits β0 and β by maximizing the likelihood

function numerically:

L (β0, β1) =
∏

i :yi=1

f (xi )
∏

i :yi=0

(1− f (xi ))
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Logistic Regression: Remarks

� In general, LR does not require the Gaussian assumption. It

only requires that the log-odds function is linear in features.

� For example, one may easily incorporate a dummy feature

variable.

� We may add model complexity to the log-likelihood function

for feature selection or/and shrinkage purpose in high

dimensions: beyond our course.
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Imbalanced Data



Posterior Probabilities Using LDA/QDA

For QDA and LDA:

log(fk(x)πk) = c(x) + δk(x)

⇒ fk(x)πk = exp(c(x)) · exp(δk(x)) ≡ C (x) exp(δk(x)),

where c(x) ∈ R and C (x) ∈ (0,∞) do not depend on k .

The Bayes’s theorem gives that

P(Y = k |X = x) = ���HHHC (x) exp(δk(x))

���H
HHC (x) exp(δ0(x)) +���HHHC (x) exp(δ1(x))

� Replacing δk(x) with the (maximum likelihood) estimators

δ̂k(x) yields the estimated posterior probabilities.

� The Bayes classifier checks whether

δ̂1(x) > δ̂0(x) ⇔ P̂ (Y = 1|X = x) > 0.5
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Shall We Always Use The Bayes Classifier?

� The estimated probabilities based on logistic regression

P̂ (Y = 1|X = x) =
exp

(
β̂0 + xT β̂

)
1 + exp

(
β̂0 + xT β̂

)
� Again, the Bayes classifier checks whether

P̂ (Y = 1|X = x) > 0.5

� This is due to the relation between regression function and

Bayes classifier.
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Confusion Matrix: Accuracy Paradox

� Split default data into a training set and test set

� 4990 training data, 5010 test data

Test observations

Predicted No Yes Total

No 4830 128 4958

Yes 9 43 52

Total 4839 171 5010

� False positive rate: 9/4839 = 0.19%

� False negative rate: 128/171 = 74.8%!

� Overall error: (9 + 128)/5010 = 2.73%

� Accuracy 1− (9 + 128)/5010 = 97.27%
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Threshold Method: Textbook Example
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ISLR Figure 4.7

� Predict Ŷ = 1 when P̂ (Y = 1|X = x) > c for a different

choice of threshold c

� blue = False negative, orange=False positive

� black=overall error@UvA 22
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