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Introduction



Textbook Example: Default Data

e default = whether default on his or her credit card payment
e default € {Yes, No} is binary
e Features: balance, income, student, ...
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Regression Function

e Encode the dummy target variable

y 0 default = No,
1 default = Yes.

The input vector X = (balance, income, student)’

Regression function

u(x)=E[Y|X=x]=1-P(Y=1X=x)4+0-P(Y =0|X =x)
—P(Y = 1|X = x)

Regression algorithms estimate the posterior probability.

Shall we use linear regression?
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Why Not Linear Regression

Least squares Ridge + 10 fold CV
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e Fitted values are probabilities = not binary

e How to interpret negative estimates as probabilities?
e Yes if predicted probability > 0.57

e ... then all predictions = 07
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Zero-One Loss for Classification

e Binary target Y € {0, 1}, features X € RP, Z = (Y, XT)T
e Classifier or prediction rule g : RP — {0, 1}

e Consider the zero-one loss
lo-1(g(X),Y) =

and the risk function
R(g) =E[lo-1(g(X), V)] =P(Y #g(X)), g€,

and G is a set of candidate classifiers.
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The Bayes Classifier

e Tute Q1: The Bayes classifier minimizes the expected
zero-one loss and it is given by

g(x) = argmax P(Y = k|X = x).
ke{0,1}

In other words (ignoring the decision boundary),

NI= N[

e The decision boundary
{XGRP:]P)(Y:1’X:X):P(Y:O|sz):%}
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Discriminant Analysis



Gaussian Models

Assume that X|Y = k ~ N (uk, X) for k =0, 1.
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CUVA ISLR Figure 4.4 (left): lllustration with p = 1 feature



Gaussian Models: More lllustration

Assume that X|Y = k ~ N (uk, X) for k =0, 1.

ISLR Figure 4.5 : Two multivariate Gaussian density functions are shown,
with p = 2. Left: The two predictors are uncorrelated. Right: The two

variables have a correlation of 0.7.
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Bayes’ Theorem

The conditional density function of X given Y = k is Gaussian:

) 1 T
fk(X)_(\/%)p\/me p< 2( :uk) Zk ( Mk))

By law of iterated expectations, the unconditional density function
is given by

fx(x) = fo(x) - mo + A(x) - m1, m =P(Y = k).

Using the definition of conditional probability/density,

fy x(k,x) fi (x)k
fx(x)  fo(x)mo + A(x)m1

P(Y = k|X = x) =

This is known as the Bayes’ theorem.
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From Bayes’ Theorem to Bayes’ Classifier

Recall that

fy)((k,X) . fk(X)7rk

PY = kiX =x) = =2 5= = S

The denominator is fx(x) common for all classes k € {0,1}.

The Bayes classifier

g(x) =argmax {fi(x)mx}
ke{0,1}

=argmax {log fi(x) + log 7k} .
ke{0,1}
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Quadratic Discriminant Analysis

Plugging in the Gaussian density function,
log fi(x) + log 7k

1 B 1
=— (= ) T Zp 7t (= ) — 5 log (det(Z«)) + log 7k _g log(2),

3k(x)

The Bayes classifier g(x) = argmax Jx(x)
ke{0,1}

e 0x(x) is a quadratic discriminant function on x
e The parameters g, L and m, are unknown in practice.

e In practice, QDA estimates the parameters i, X, and 7, by
using maximum likelihood method: the resulting classifier is
called the Naive Bayes classifier.
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Go to www.menti.com and use the code 6815 0114

i Mentimeter

Shall we use QDA in high dimensions?

0 0 0

Yes, it works in both low and high dimensions No, the maximum likelihood method fails in high Ihave noidea
dimensions




Linear Discriminant Analysis

QUVA

Suppose that X4 = X for all classes k € {0,1}, that is,
X|Y =k ~ N (s, )

We can then use linear discriminant functions

:xTak + by,

ak =X Yk, b = =3l Ty + log i
Again, in practice, LDA estimates the parameters px, = and

7, by the maximum likelihood method.
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QDA and LDA: Simulated Example

ISLR Figure 3.8
Green=QDA
(Estimate)
Purple=Bayes
(True)
Black=LDA
(Estimate)

Is QDA always better than LDA?
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QDA VS LDA: Bias-Variance Tradeoff

e Different estimators of the covariance matrices.

e Even when X4 are not equal over all classes: one may
interpret LDA as a regularized version of QDA.

e The LDA estimators fo = fl -5 may suffer from modelling
bias as the ¥y and ¥; cannot converge to different limits

e ... but with a smaller estimation variance by using the data
over all classes.

e If X, are close to each other, LDA can outperform QDA.
e If X, are very different, QDA often performs better.

e In high dimensions, one may even use diagonal LDA that
estimate Yo = X1 = diag(X) that removes the off-diagonal
elements of ¥: beyond our course.
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Logistic Regression




Regression Function and Bayes Classifier

The regression function
u(x) =E[Y|X =x] =P(Y =1|X = x)

fully characterizes the Bayes classifier

[0

—

x

N—r

I
NI= N[=

e In principle, substituting the regression function p(x) with
some estimator ?(x) yields an estimator of the Bayes classifier

e However, as discussed in the introduction, the linear
regression techniques do not exploit the fact that the true

regression function represents probabilities.
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Logit Transformation

The log-odds or logit

_ (P(Y=1X=x)
h(x) = log (p(y =0|X =X)>

=log (1 ?(pty::l’i;i)xﬁ = o8 <1ﬁ(;()x)>

is a logit transformation of the regression function
p(x) =P(Y =1|1X = x).

The transformation is invertible:

__exp(h(x))
p(x) = T+ exp(h(x)) © (0,1)

Now, replacing h(x) with any real-valued estimator h(x) yields an

o~

estimator f(x) € (0,1) that represents a probability.
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From LDA to Logistic Regression

Suppose that X|Y = k ~ N (ux, X), ke€{0,1}

Tute 4, Q4: The Bayes' theorem implies that the logit
h(x) =61(x) — do(x)
=by +xTa1 — by — x"ag = fo+ x" 3,
is a linear function.

e Logistic regression fits Sy and 8 by maximizing the likelihood
function numerically:

L(Bo, B1) = H F0q) [T @—=7()

iyi= iy;=0
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Logistic Regression: Remarks

e In general, LR does not require the Gaussian assumption. It
only requires that the log-odds function is linear in features.

e For example, one may easily incorporate a dummy feature
variable.

e We may add model complexity to the log-likelihood function
for feature selection or/and shrinkage purpose in high

dimensions: beyond our course.
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Imbalanced Data




Posterior Probabilities Using LDA/QDA

For QDA and LDA:

log(fx(x)mk) = c(x) + Ik (x)

= fr(x)mk = exp(c(x)) - exp(dk(x)) = C(x) exp(dx(x)),
where ¢(x) € R and C(x) € (0,00) do not depend on k.

The Bayes's theorem gives that

Mexp (k(x
P(Y = k| X =
(Y = X) E({Iexp (0o (x +§(<(Iexp (01(x

e Replacing dx(x) with the (maximum likelihood) estimators
(ﬂ(x) yields the estimated posterior probabilities.
e The Bayes classifier checks whether
51(x) > do(x) & P(Y =1]X =x)> 0.5
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Shall We Always Use The Bayes Classifier?

e The estimated probabilities based on logistic regression
exp (o + xTH)

1+exp <Bo + XTB)

P(Y =1|X =x) =

e Again, the Bayes classifier checks whether
P(Y =1/X =x)>05

e This is due to the relation between regression function and
Bayes classifier.
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Confusion Matrix: Accuracy Paradox

e Split default data into a training set and test set
e 4990 training data, 5010 test data

Test observations
Predicted No  Yes Total
No | 4830 128 4958

Yes 9 43 52
Total | 4839 171 5010

False positive rate: 9/4839 = 0.19%
False negative rate: 128/171 = 74.8%!
Overall error: (9 + 128)/5010 = 2.73%
Accuracy 1 — (9 + 128)/5010 = 97.27%
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Threshold Method: Textbook Example

Error Rate
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ISLR Figure 4.7

e Predict Y =1 when @(Y = 1|X = x) > c for a different
choice of threshold ¢
e blue = False negative, =False positive

@UvVA e black=overall error 22



	Introduction
	Discriminant Analysis
	Logistic Regression
	Imbalanced Data

