Quantum Cryptography Beyond QKD

CHRISTIAN SCHAFFNER

INSTITUTE FOR LOGIC, LANGUAGE AND COMPUTATION (ILLC) UNIVERSITY OF AMSTERDAM

CWI
 CENTRUM WISKUNDE \& INFORMATICA

Quantum Cryptography Beyond QKD

2 Basics of Quantum Information
2.1 State Space
2.2 Unitary Evolution and Circuits
2.3 Measurement
2.4 Quantum No-Cloning
2.5 Quantum Entanglement and Nonlocality
2.6 Physical Representations- survey article withAnne Broadbent

- aimed at classical cryptographers
3 Quantum Cryptographic Constructions
3.1 Conjugate Coding
3.2 Quantum Key Distribution
3.3 Bit Commitment implies Oblivious Transfer
3.3.1 Oblivious Transfer (OT) and Bit Commitment (..... (BC)
3.3.2 Quantum Protocol for Oblivious Transfer
3.4 Limited-Quantum-Storage Models
3.5 Delegated Quantum Computation
3.6 Quantum Protocols for Coin Flipping and Cheat-Sensitive Primitives
3.7 Device-Independent Cryptography
4 Quantum Cryptographic Limitations and Challenges
4.1 Impossibility of Quantum Bit Commitment
4.2 Impossibility of Secure Two-Party Computation using Quantum Communication
4.3 Zero-Knowledge Against Quantum Adversaries - "Quantum Rewinding"
4.4 Superposition Access to Oracles - Quantum Security Notions
http://arxiv.org/abs/1510.06120
In Designs, Codes and Cryptography 2016

QCrypt Conference Series

- Started in 2011 by Christandl and Wehner
- Steadily growing since then: approx. 100 submissions, 30 accepted as contributions, 330 participants in Cambridge 2017. This year: Shanghai, China
- It is the goal of the conference to represent the previous year's best results on quantum cryptography, and to support the building of a research community
- Trying to keep a healthy balance between theory and experiment
- Half the program consists of 4 tutorials of 90 minutes, 6-8 invited talks
- present some statistical observations about the last 4 editions

Overview

[thanks to Serge Fehr, Stacey Jeffery, Chris Majenz, Florian Speelman, Ronald de Wolf]

MindMap

- experiments
- Selection of open questions

- Fork me on github!

[https://github.com/cschaffner/QCryptoMindmap]

Quantum Key Distribution (QKD)

Quantum Mechanics

Measurements: with prob. 1 yields 1

Quantum operations:

$0 / 1$ with prob. $1 / 2$ yields 1

No-Cloning Theorem

Proof: copying is a non-linear operation

Quantum Key Distribution (QKD)

Eve

- Offers an quantum solution to the key-exchange problem which does not rely on computational assumptions (such as factoring, discrete logarithms, security of AES, SHA-3 etc.)
- Caveat: classical communication has to be authenticated to prevent man-in-the-middle attacks

Quantum Key Distribution (QKD)

Quantum Key Distribution (QKD)

Quantum Key Distribution (QKD)

Quantum Hacking

e.g. by the group of Vadim Makarov (University of Waterloo, Canada)

Quantum Key Distribution (QKD)

Eve

$$
k=01011011
$$

- Three-party scenario: two honest players versus one dishonest eavesdropper
- Quantum Advantage: Information-theoretic security is provably impossible with only classical communication (Shannon's theorem about perfect security)

Quantum Key Distribution (QKD)

Conjugate Coding \& Q Money

also known as quantum coding or quantum multiplexing

- Originally proposed for securing quantum banknotes (private-key quantum money)
- Adaptive attack if money is returned after successful verification
- Publicly verifiable quantum money is still a topic of active research, e.g. very recent preprint by Zhandry17

[Molina Vidick Watrous 13, Brodutch Nagaj Sattath Unruh 14]

Computational Security of Quantum Encryption

GORJAN ALAGIC, COPENHAGEN
ANNE BROADBENT, OTTAWA
BILL FEFFERMAN, MARYLAND
TOMMASO GAGLIARDONI, DARMSTADT
MICHAEL ST JULES, OTTAWA

http://arxiv.org/abs/1602.01441

CHRISTIAN SCHAFFNER, AMSTERDAM

CWI
() uSoft

Computational Security of Quantum Encryption

Q indistinguishability
Q chosen-plaintext attacks security notions for encryption Q chosen-ciphertext attacks

Secure Encryption

One-Time Pad:
Classical: $c=E n c_{s k}(\eta):=m \oplus S K, \operatorname{Dec}(c):=c \oplus s k$ Quantum:
[Miller 1882, Vernam 1919, Ambainis Mosca Tapp de Wolf 00, Boykin Roychowdhury 03]

Information-Theoretic Security

[Shannon 48, Dodis 12, Ambainis Mosca Tapp de Wolf 00, Boykin Roychowdhury 03]

Computational Security

$$
m=\operatorname{Dec} c_{s k}(c)
$$

Threat model:
"Eve sees ciphertexts (eavesdropper)
"Eve knows plaintext/ciphertext pairs
"Eve chooses plaintexts to be encrypted
"Eve can decrypt ciphertexts

Security guarantee:
c does not reveal $s k$
c does not reveal the whole m
c does not reveal any bit of m
c does not reveal "anything" about m

Semantic Security

plaintext message m

Alice

Secret key sk

$$
m=D e c_{s k}(c)
$$

Secret key sk

DEFINITION 3.12 A private-key encryption scheme (Enc, Dec) is semantically secure in the presence of an eavesdropper if for every PPT algorithm \mathcal{A} there exists a PPT algorithm \mathcal{A}^{\prime} such that for any PPT algorithm Samp and polynomial-time computable functions f and h, the following is negligible:

$$
\left|\operatorname{Pr}\left[\mathcal{A}\left(1^{n}, \operatorname{Enc}_{k}(m), h(m)\right)=f(m)\right]-\operatorname{Pr}\left[\mathcal{A}^{\prime}\left(1^{n},|m|, h(m)\right)=f(m)\right]\right|,
$$

where the first probability is taken over uniform $k \in\{0,1\}^{n}$, m output by $\operatorname{Samp}\left(1^{n}\right)$, the randomness of \mathcal{A}, and the randomness of Enc, and the second probability is taken over m output by $\operatorname{Samp}\left(1^{n}\right)$ and the randomness of \mathcal{A}^{\prime}.

Classical Semantic Security

Definition (SEM): $\forall \mathcal{A} \exists \mathcal{S}: \forall(\mathcal{M}, h, f)$

$$
\operatorname{Pr}\left[\mathcal{A}\left(E n c_{k}(m), h(m)\right)=f(m)\right] \approx \operatorname{Pr}[\mathcal{S}(|m|, h(m))=f(m)]
$$

Classical Indistinguishability

PrivK ${ }^{\text {eav }}$

Definition (IND): $\forall \mathcal{A}: \operatorname{Pr}\left[\mathcal{A}\right.$ wins $\left.\operatorname{Priv} K^{\text {eav }}\right] \leq \frac{1}{2}+\operatorname{negl}(n)$
Theorem: SEM \Leftrightarrow IND

Our Contributions

1. Formal definition of Quantum Semantic Security
2. Equivalence to Quantum Indistinguishability
3. Extension to CPA and CCA1 scenarios
4. Construction of IND-CCA1 Quantum Secret-Key Encryption from One-Way Functions
5. Construction of Quantum Public-Key Encryption from One-Way Trapdoor Permutations

Quantum Semantic Security

Definition (QSEM): $\forall \mathcal{A} \exists \mathcal{S} \forall(\mathcal{M}, \mathcal{D})$:

$$
\operatorname{Pr}[\mathcal{D}(\operatorname{REAL})=1] \approx \operatorname{Pr}[\mathcal{D}(\operatorname{IDEAL})=1]
$$

Quantum Indistinguishability

QPrivK ${ }^{\text {eav }}$

Challenger

$b \leftarrow\{0,1\}$
$\rho_{C}=\left\{\begin{array}{l}E n c_{s k}(|0\rangle) \text { if } \mathrm{b}=0 \\ E n c_{s k}\left(\rho_{M}\right) \text { if } \mathrm{b}=1\end{array} \xrightarrow{\rho_{C}}\right.$
\mathcal{A} wins iff $b=b^{\prime} \stackrel{b^{\prime}}{ }$

Definition (QIND): $\forall \mathcal{A}: \operatorname{Pr}\left[\mathcal{A}\right.$ wins $\left.Q \operatorname{Priv} K^{e a v}\right] \leq \frac{1}{2}+\operatorname{negl}(n)$
Theorem: QSEM \Leftrightarrow QIND

Chosen-Plaintext Attacks (CPA)

Definition (QIND-CPA): $\forall \mathcal{A}: \operatorname{Pr}\left[\mathcal{A}\right.$ wins $\left.Q P r i v K^{c p a}\right] \leq \frac{1}{2}+\operatorname{negl}(n)$
Theorem: QSEM-CPA \Leftrightarrow QIND-CPA
Fact: CPA security requires randomized encryption

Chosen-Ciphertext Attacks (CCA1)

Definition (QIND-CCA1): $\forall \mathcal{A}: \operatorname{Pr}\left[\mathcal{A}\right.$ wins $\left.Q P r i v K^{c c a}\right] \leq \frac{1}{2}+\operatorname{negl}(n)$ Theorem: QSEM-CCA1 \Leftrightarrow QIND-CCA1
Fact: QSEM-CCA1 $\stackrel{\neq}{\Rightarrow}$ QIND-CPA $\stackrel{\neq}{\Rightarrow}$ QIND,
stronger adversaries yield stronger encryption schemes

Our Contributions

\checkmark Formal definition of Quantum Semantic Security
\checkmark Equivalence to Quantum Indistinguishability
\checkmark Extension to CPA and CCA1 scenarios
4. Construction of IND-CCA1 Quantum Secret-Key Encryption from One-Way Functions
5. Construction of Quantum Public-Key Encryption from One-Way Trapdoor Permutations

Quantum Secret-Key Encryption

Goal: build CCA1-secure quantum secret-key encryption
Ingredients:
quantum one-time pad (QOTP)

Not even CPA secure, scheme is not randomized!

Quantum Secret-Key Encryption

Goal: build CCA1-secure quantum secret-key encryption
Ingredients:
quantum one-time pad (QOTP)
quantum-secure one-way function (OWF)

Theorem: One-Way Function \Rightarrow Pseudo-Random Function

$\left\{f_{k}: x \mapsto y\right\}_{k}$ is indistinguishable from random function if key k is unknown

Quantum Secret-Key Encryption

Goal: build CCA1-secure quantum secret-key encryption Ingredients:
quantum one-time pad (QOTP) quantum-secure one-way function (OWF) \Rightarrow PRF

Classical version: [Goldreich Goldwasser Micali 85]

Intuition of CCA1 security

1. Replace pseudo-random function with totally random function
2. Encryption queries result in polynomially many ciphertexts with different randomness:
3. With overwhelming probability the randomness of the challenge ciphertext will be different from previous r's.

Our Contributions

\checkmark Formal definition of Quantum Semantic Security
\checkmark Equivalence to Quantum Indistinguishability
\checkmark Extension to CPA and CCA1 scenarios
\checkmark Construction of IND-CCA1 Quantum Secret-Key Encryption from One-Way Functions
5. Construction of Quantum Public-Key Encryption from One-Way Trapdoor Permutations

MindMap

- experiments
- Selection of open questions

- Fork me on github!

[https://github.com/cschaffner/QCryptoMindmap]

Tools

Bell inequalities

\section*{classical crypto cut \& choose
 conjugate coding continuous variables (CV)
 de Finetti | infinite version |
| :--- |
| finite version
 exponential version
 various other ones |}

Fourier analysis Delta-Biased Extractors

no-cloning information vs disturbance trade-off
bounds on required entanglement
non-local games power of entangled multi-provers parallel repetition
port-based teleportation $\begin{array}{r}\text { fidelity } \\ \text { entangl }\end{array}$
Q rewinding Uatrous

m-access codes	hypercontractive inequality	
randomness extraction	lower bound	
		Two-Universal Hashing
		Delta-Biased, L2 norm
		random-access codes

solvers

SDP duality
hierarchies
operational interpretation
smooth entropies
smooth version calculus
calculus
splitting with quantum side information permutation-branching programs
teleportation gadgets garden-hose complexity
secret sharing
discrete variables
uncertainty relations
unitary t-designs states $\begin{aligned} & \text { operations }\end{aligned}$

Open Query-Complexity Question

- Let $f:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ be a random function
- Goal: Given quantum oracle access to f, output a "chain of values" $x, f(x), f(f(x))$
- Observation: easy to do with 2 classical queries
- Question: Prove hardness with a single quantum query

- More interesting: Prove hardness with polynomially many non-adaptive quantum queries
- Classical hardness: straightforward
- Partial result: iterated hashing analyzed by Unruh in context of revocable quantum timed-released encryption

Quantum Query Solvability

- Notion introduced by Mark Zhandry at QuICS workshop 2015: https://www.youtube.com/watch?v=kaS7OFAm-6M
- Often, quantum query-complexity bounds are given in the form:
" $\Theta(g(N))$ queries are required to solve a problem with success probability 2/3 (in the worst case)"
- For crypto, it would be way more useful to have:
"Given q quantum queries, the maximal success probability is $\Theta(g(q, N))$, in the average case"
- Example: Given a function $F:[N] \rightarrow\{0,1\}$, find x such that $F(x)=1$.
- Q query-complexity answer: $\Theta\left(N^{1 / 2}\right)$ by (optimality of) Grover search
- But is the success probability $\Theta\left(q / N^{1 / 2}\right), \Theta\left(q^{2} / N\right)$, or $\Theta\left(q^{4} / N^{2}\right)$?
- Matters for efficiency when choosing crypto parameters in order to get tiny security errors

Tools

Bell inequalities

\section*{classical crypto cut \& choose
 conjugate coding continuous variables (CV)
 de Finetti | infinite version |
| :--- |
| finite version
 exponential version
 various other ones |}

Fourier analysis Delta-Biased Extractors

no-cloning information vs disturbance trade-off
bounds on required entanglement
non-local games power of entangled multi-provers parallel repetition
port-based teleportation $\begin{array}{r}\text { fidelity } \\ \text { entangl }\end{array}$
Q rewinding Uatrous

m-access codes	hypercontractive inequality	
randomness extraction	lower bound	
		Two-Universal Hashing
		Delta-Biased, L2 norm
		random-access codes

solvers

SDP duality
hierarchies
operational interpretation
smooth entropies
smooth version calculus
calculus
splitting with quantum side information permutation-branching programs
teleportation gadgets garden-hose complexity
secret sharing
discrete variables
uncertainty relations
unitary t-designs states $\begin{aligned} & \text { operations }\end{aligned}$

Post-Quantum Cryptography

- Also known as: quantum-safe or quantumresistant cryptography
- Classical (i.e. conventional) cryptography secure against quantum attackers

- NIST "competition": 82 submissions (23 signature, 59 encryption schemes or keyencapsulation mechanisms (KEM))
[https://csrc.nist.gov/Projects/Post-Quantum-Cryptography]

Observations from QCrypts 2014-17

- Rough classification of contributed, invited and tutorial talks
- QKD is the most developed branch of Q crypto, closest to implementation
- When looking at experimental talks: mostly QKD and (closely) related
 topics
- Tools and post-quantum crypto are consistently of interest
- 2-party crypto was en vogue in 2014/15, not anymore in 2016/17
- Taken over by delegated computation and authentication, started in 2016
- 2016/17: DI has made a comeback
- Long tail: lots of other topics
impossibility results

tight memory bounds
more advanced protocols bounded quantum-storage
implementation
individual-storage attacks
general attacks
more advanced storage models
noisy quantum-storage
implementations

multi-round with Q side commitment	
zero-knowledge bulti-prover	relativistic crypto
composability summoning states	

in the bounded-quantum-storage model
Q protocols in classical environment composability frameworks abstract cryptography

bit commitment (BC)	
impossibility \quad string commitments	
oblivious transfer (OT)	
$\frac{\text { secure identification }}{\text { zero-knowledge }}$	protocols
multi-party computation	

Secure Two-Party Cryptography

- Information-theoretic security
- No computational restrictions
- Coin-Flipping

$\Uparrow \psi$

- Bit Commitment

- Oblivious Transfer

$$
\begin{array}{cl}
\text { olivious Transfer } & s_{0} \rightarrow \text { OT } \longleftarrow c \\
\Uparrow \Vdash s_{c}
\end{array}
$$

- 2-Party Function Evaluation

- Multi-Party Computation (with dishonest majority)

Correctness (both honest)

Security for honest Alice

Security for honest Bob

Coin Flipping (CF)

- Strong CF: No dishonest player can bias the outcome
- Classically: a cheater can always obtain his desired outcome with prob 1
- Quantum: [Kitaev 03] lower bounds the bias by $\frac{1}{\sqrt{2}}-\frac{1}{2} \approx 0.2$ [Chailloux Kerenidis 09] give optimal quantum protocol for strong CF with this bias
- Weak CF ("who has to do the dishes?"): Alice wants heads, Bob wants tails
- [Mochon 07] uses Kitaev's formalism of point games to give a quantum protocol for weak CF with arbitrarily small bias $\varepsilon>0$
- [Aharonov Chailloux Ganz Kerenidis Magnin 14] reduce the proof complexity from 80 to 50 pages... explicit protocol?

Bit Commitment (BC)

- Hiding: even dishonest Bob does not learn a
- Binding: dishonest Alice cannot change her mind
- Quantum: believed to be possible in the early 90s
- shown impossible by [Mayers 97, LoChau 97] by a beautiful argument (purification and Uhlmann's theorem)
- [Chailloux Kerenidis 11] show that in any quantum BC protocol, one player can cheat with prob 0.739 . They also give an optimal protocol achieving this bound. Crypto application?
[Brassard Crepeau Jozsa Langlois: A quantum BC scheme provably unbreakable by both parties, FOCS 93]

Bit Commitment \Rightarrow Strong Coin Flipping

$$
\begin{aligned}
& a=0 \text { or } \\
& a=1
\end{aligned}
$$a

$$
a=b
$$

Oblivious Transfer (OT)

- 1-out-of-2 Oblivious Transfer:
- Rabin OT:
(secure erasure) $s \rightarrow$ ROT $\rightarrow s / \perp$
- Dishonest Alice does not learn choice bit
- Dishonest Bob can only learn one of the two messages
- These OT variants are information-theoretically equivalent (homework! ©)
- OT is symmetric [Wolf Wullschleger at EuroCrypt 2006, only 10 pages long]
- 1-2 OT $\Rightarrow \mathrm{BC}$:

a, r_{1}, r_{2}, \ldots

Quantum Protocol for Oblivious Transfer $s_{0} \longrightarrow$ OT $\longleftrightarrow c$ $s_{1} \longrightarrow$

Correctness \checkmark

$$
\begin{gathered}
\xrightarrow[f_{0}, f_{1}]{\substack{I_{0}, I_{1}}} \quad I_{c}=\{3,4,5\}, I_{1-c}=\{1,2\} \\
t_{0}=s_{0} \bigoplus k_{0} \\
\mathrm{t}_{1}=s_{1} \oplus k_{1}
\end{gathered}
$$

[Wiesner 61, Bennett Brassard Crepeau Skubiszewska 91]

Quantum Protocol for Oblivious Transfer $\underset{\substack{s_{i} \\ s_{i}}}{\substack{\text { OT}}} \underbrace{c}_{s_{c}}$

[Wiesner 61, Bennett Brassard Crepeau Skubiszewska 91]

[Bennett Brassard Crepeau Skubiszewska 91, Damgaard Fehr Lunemann Salvail Schaffner 09, Unruh 10]

Limited Quantum Storage

$$
s_{s_{1}}^{s_{1}} \text { or }=c_{s_{c}}
$$

Summary of Quantum Two-Party Crypto

- Information-theoretic security
- No computational restrictions

- Coin-Flipping
\Uparrow
- Bit Commitment
π サ \downarrow

- Oblivious Transter

- 2-Party Function Evaluation $\begin{aligned} & x \\ & f(x, y) \rightleftarrows \mathcal{F} \leftrightarrows y(x, y)\end{aligned}$
impossibility results

tight memory bounds
more advanced protocols bounded quantum-storage
implementation
individual-storage attacks
general attacks
more advanced storage models
noisy quantum-storage
implementations

multi-round with Q side commitment	
zero-knowledge bulti-prover	relativistic crypto
composability summoning states	

in the bounded-quantum-storage model
Q protocols in classical environment composability frameworks abstract cryptography

bit commitment (BC)	
impossibility \quad string commitments	
oblivious transfer (OT)	
$\frac{\text { secure identification }}{\text { zero-knowledge }}$	protocols
multi-party computation	

Delegated Q Computation

	two entangled provers
verification of Q computations	basic Q operations by verifier
	single prover, fully classical verifier

Delegated Computation

- QCloud Inc. promises to perform a BQP computation for you.

- How can you securely delegate your quantum computation to an untrusted quantum prover while maintaining privacy and/or integrity?
- Various parameters:

1. Quantum capabilities of verifier: state preparation, measurements, q operations
2. Type of security: blindness (server does not learn input), integrity (client is sure the correct computation has been carried out)
3. Amount of interaction: single round (fully homomorphic encryption) or multiple rounds
4. Number of servers: single-server, unbounded / computationally bounded or multiple entangled but non-communicating servers

Classical Verification of Q Computation

- QCloud Inc. promises you to perform a BQP computation
- How can a purely classical verifier be convinced that this computation actually was performed?

- Partial solutions:

1. Using interactive protocols with quantum communication between prover and verifier, this task can be accomplished, using a certain minimum quantum ability of the verifier. [Fitzsimons Kashefi 17, Broadbent 17, AlagicDulekSpeelmanSchaffner17]
2. Using two entangled, but non-communicating provers, verification can be accomplished using rigidity results [ReichardtUngerVazirani12]. Recently made way more practical by [ColadangeloGriloJefferyVidick17]

- Indications that information-theoretical blind computation is impossible [AaronsonCojocaruGheorghiuKashefi17]

Delegated Q Computation

	two entangled provers
verification of Q computations	basic Q operations by verifier
	single prover, fully classical verifier

Black-Box Obfuscation

Idea: an obfuscator is an algorithm which rewrites programs, such that

1. efficiency is preserved;
2. input-output functionality is preserved;
3. output programs are hard to understand: "If something is efficiently learnable from reading the code, then it is also efficiently learnable purely from input-output behavior."
"black-box obfuscation"

[Alagic Fefferman 16, slide by Gorjan Alagic, thanks a lot!]

Classical Obfuscation

Idea: an obfuscator is an algorithm which rewrites programs, such that

1. efficiency is preserved;
2. input-output functionality is preserved;
3. output programs are hard to understand: "If something is efficiently learnable from reading the code, then it is also efficiently learnable purely from input-output behavior."

Formal:

"black-box obfuscation"

A black-box obfuscator O is an algorithm which maps circuits C to circuits $O(C)$ such that:

1. efficiency-preserving: $|\mathcal{O}(C)| \leq \operatorname{poly}(|C|)$
2. functionality-preserving: $f_{\mathcal{O}(C)}=f_{C}$
3. virtual black-box: for every poly-time A there exists a poly-time S such that

$$
\left|\operatorname{Pr}[\mathcal{A}(\mathcal{O}(C))=1]-\operatorname{Pr}\left[\mathcal{S}^{f_{C}}(\overline{1})=1\right]\right| \leq \operatorname{negl}(|C|)
$$

Classical Obfuscation

Why care? Lots of applications:

1. Protecting IP: obfuscate before publishing (already done, but ad-hoc);
2. Secure patching: revealing what is being patched exposes unpatched machines;
3. Public-key crypto: private-key encryption \rightarrow public-key encryption:

$$
k_{\text {decrypt }}:=k \quad k_{\text {encrypt }}:=\mathcal{O}\left(\operatorname{Enc}_{k}\right) .
$$

4. One-way functions: choose delta-function circuit, make obfuscator's coins part of input;
5. FHE: encryption \rightarrow fully-homomorphic encryption:

$$
k_{\text {eval }}:=\mathcal{O}\left(\mathrm{Enc}_{k} \circ U \circ \mathrm{Dec}_{k}\right)
$$

"top of the crypto scheme hierarchy"

Bad news: classical black-box obfuscation is impossible [Barak et al '01].

Other definitions? "Computational indistinguishability" (first schemes proposed in 2013);
[Alagic Fefferman 16, slide by Gorjan Alagic, thanks a lot!]

Quantum Obfuscation

A quantum obfuscator O is a (quantum) algorithm which rewrites quantum circuits, and is:

1. efficiency-preserving: $|\mathcal{O}(C)| \leq \operatorname{poly}(|C|)$
2. functionality-preserving: $\left\|U_{C}-U_{\mathcal{O}(C)}\right\| \leq \operatorname{negl}(|C|) \quad$ quantum polynomial-time algorithm
3. virtual black-box: for every QPT A there exists a QPT S such that

$$
\left|\operatorname{Pr}[\mathcal{A}(\mathcal{O}(C))=1]-\operatorname{Pr}\left[\mathcal{S}^{U_{C}}(\overline{1})=1\right]\right| \leq \operatorname{negl}(|C|) .
$$

| Obfuscation | Input | Output | Adversary | Possibility? |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Black-box | Quantum circuit | Quantum circuit | QPT | Impossible |
| Black-box | Quantum circuit | Quantum state (reusable) | QPT | Impossible |
| Black-box | Quantum circuit | Quantum state (uncloneable) | QPT | Open |
| Statistical I.O | Quantum circuit | Quantum state | QPT | Impossible |
| Computational I.O | Quantum circuit | Quantum state | QPT | Open |

1. construct a black-box quantum obfuscator (that outputs states that cannot be reused);
2. construct a computational indistinguishability quantum obfuscator (that outputs circuits);
[Alagic Fefferman 16, slide by Gorjan Alagic, thanks a lot!]

Delegated Q Computation

	two entangled provers
verification of Q computations	basic Q operations by verifier
	single prover, fully classical verifier

More Fun Stuff

Pseudorandom Operations

[https://csrc.nist.gov/Projects/Post-Quantum-Cryptography]

Pseudorandom Permutation from Function

Encryption
Plaintext

Ciphertext

Decryption
Ciphertext

:

- Feistel network
- If F is a (pseudo)random function, the 3-round Feistel function H_{3} is a pseudo-random permutation.
- Question: Show that 4-random Feistel H_{4} is a quantum-secure pseudo-random permutation
For any QPT A, we want
$\left|\operatorname{Pr}\left[A^{\left|H_{4}>,\right| H_{4}^{-1}>}\left(1^{n}\right)=1\right]-\operatorname{Pr}\left[A^{|r n d>,| r n d^{-1}>}\left(1^{n}\right)=1\right]\right|<\operatorname{negl}(n)$
- Partial result: Quantum attack based Simon's algorithm can distinguish 3-round Feistel H_{3} from random function.
- Quantum pseudo-random unitaries?

Pseudorandom Operations

[https://csrc.nist.gov/Projects/Post-Quantum-Cryptography]

Thank you!

- Thanks to all friends and colleagues that contributed to quantum cryptography and to this presentation.

MARYLAND

