Quantum Cryptography Beyond QKD

CHRISTIAN SCHAFFNER

INSTITUTE FOR LOGIC, LANGUAGE AND COMPUTATION (ILLC) UNIVERSITY OF AMSTERDAM

CENTRUM WISKUNDE & INFORMATICA

Quantum Cryptography Beyond QKD

Basics of Quantum Information			
	2.1	State Space	
	2.2	Unitary Evolution and Circuits	
	2.3	Measurement	survey article with
	2.4	Quantum No-Cloning	Survey article with
	2.5	Quantum Entanglement and Nonlocality	Anne Broadbent
	2.6	Physical Representations	Affile broaubent
3	Qua	antum Cryptographic Constructions	aimed at classical cryptographers
	3.1	Conjugate Coding	
	3.2	Quantum Key Distribution	
	3.3	Bit Commitment implies Oblivious Transfer	
		3.3.1 Oblivious Transfer (OT) and Bit Commitment (BC)	
		3.3.2 Quantum Protocol for Oblivious Transfer	
	3.4	Limited-Quantum-Storage Models	
	3.5	Delegated Quantum Computation	
	3.6	Quantum Protocols for Coin Flipping and Cheat-Sensitive Primitives	
	3.7	Device-Independent Cryptography	
	_		
Ł		antum Cryptographic Limitations and Challenges	
	4.1	Impossibility of Quantum Bit Commitment	
	4.2	Impossibility of Secure Two-Party Computation using Quantum Communication	
	4.3	Zero-Knowledge Against Quantum Adversaries — "Quantum Rewinding"	
	4.4	Superposition Access to Oracles — Quantum Security Notions	http://arxiv.org/abs/1510.06120
	4.5	Position-Based Quantum Cryptography	
			In Designs, Codes and Cryptography 2016

QCrypt Conference Series

- Started in 2011 by Christandl and Wehner
- Steadily growing since then: approx. 100 submissions, 30 accepted as contributions, 330 participants in Cambridge 2017. This year: Shanghai, China
- It is the goal of the conference to represent the previous year's best results on quantum cryptography, and to support the building of a research community
- Trying to keep a healthy balance between theory and experiment
- Half the program consists of 4 tutorials of 90 minutes, 6-8 invited talks
- present some statistical observations about the last 4 editions

Overview

MindMap

- experiments
- Selection of open questions

Fork me on github!

Q key distribution (QKD)

Quantum Mechanics

with prob. ½ yields 0

operations:

No-Cloning Theorem

Proof: copying is a non-linear operation

- Offers an quantum solution to the key-exchange problem which does not rely on computational assumptions (such as factoring, discrete logarithms, security of AES, SHA-3 etc.)
- Caveat: classical communication has to be authenticated to prevent man-in-the-middle attacks

- Quantum states are unknown to Eve, she cannot copy them.
- Honest players can test whether Eve interfered.

Quantum Hacking

Quantis"

- Three-party scenario: two honest players versus one dishonest eavesdropper
- Quantum Advantage: Information-theoretic security is provably impossible with only classical communication (Shannon's theorem about perfect security)

Q key distribution (QKD)

Conjugate Coding & Q Money

[Wiesner 68]

also known as quantum coding or quantum multiplexing

- Originally proposed for securing quantum banknotes (private-key quantum money)
- Adaptive attack if money is returned after successful verification
- Publicly verifiable quantum money is still a topic of active research, e.g. very recent preprint by Zhandry17

Computational Security of Quantum Encryption

GORJAN ALAGIC, COPENHAGEN
ANNE BROADBENT, OTTAWA
BILL FEFFERMAN, MARYLAND
TOMMASO GAGLIARDONI, DARMSTADT
MICHAEL ST JULES, OTTAWA

http://arxiv.org/abs/1602.01441 at ICITS 2016

CHRISTIAN SCHAFFNER, AMSTERDAM

Computational Security of Quantum Encryption

Secure Encryption

Secret key sk

Information-Theoretic Security

Theorem: Secret key has to be as large as the message.

Highly impractical, e.g. for encrypting a video stream...

Computational Security

Threat model:

- Eve sees ciphertexts (eavesdropper)
- Eve knows plaintext/ciphertext pairs
- Eve chooses plaintexts to be encrypted
- Eve can decrypt ciphertexts

Security guarantee:

c does not reveal sk

c does not reveal the whole *m*

c does not reveal any bit of m

c does not reveal "anything" about m

Semantic Security

plaintext message m

Secret key *sk*

DEFINITION 3.12 A private-key encryption scheme (Enc, Dec) is semantically secure in the presence of an eavesdropper if for every PPT algorithm \mathcal{A} there exists a PPT algorithm \mathcal{A}' such that for any PPT algorithm Samp and polynomial-time computable functions f and h, the following is negligible:

$$\left| \Pr[\mathcal{A}(1^n, \mathsf{Enc}_k(m), h(m)) = f(m)] - \Pr[\mathcal{A}'(1^n, |m|, h(m)) = f(m)] \right|,$$

where the first probability is taken over uniform $k \in \{0,1\}^n$, m output by $\mathsf{Samp}(1^n)$, the randomness of \mathcal{A} , and the randomness of Enc , and the second probability is taken over m output by $\mathsf{Samp}(1^n)$ and the randomness of \mathcal{A}' .

Secret key sk

Classical Semantic Security

Definition (SEM): $\forall \mathcal{A} \exists \mathcal{S} : \forall (\mathcal{M}, h, f)$ $\Pr[\mathcal{A}(Enc_k(m), h(m)) = f(m)] \approx \Pr[\mathcal{S}(|m|, h(m)) = f(m)]$

Classical Indistinguishability

Definition (IND): $\forall \mathcal{A}$: $\Pr[\mathcal{A} \text{ wins } PrivK^{eav}] \leq \frac{1}{2} + negl(n)$

Theorem: SEM ⇔ IND

Our Contributions

- 1. Formal definition of Quantum Semantic Security
- 2. Equivalence to Quantum Indistinguishability
- 3. Extension to CPA and CCA1 scenarios
- 4. Construction of IND-CCA1 Quantum Secret-Key Encryption from One-Way Functions
- 5. Construction of Quantum Public-Key Encryption from One-Way Trapdoor Permutations

Quantum Semantic Security

Definition (QSEM): $\forall \mathcal{A} \exists \mathcal{S} \forall (\mathcal{M}, \mathcal{D}) :$ $\Pr[\mathcal{D}(REAL) = 1] \approx \Pr[\mathcal{D}(IDEAL) = 1]$

Quantum Indistinguishability

Definition (QIND): $\forall \mathcal{A}$: $\Pr[\mathcal{A} \text{ wins } QPrivK^{eav}] \leq \frac{1}{2} + negl(n)$

Theorem: QSEM ⇔ QIND

Chosen-Plaintext Attacks (CPA)

Definition (QIND-CPA): $\forall \mathcal{A}$: $\Pr[\mathcal{A} \text{ wins } QPrivK^{cpa}] \leq \frac{1}{2} + negl(n)$

Theorem: QSEM-CPA ⇔ QIND-CPA

Fact: CPA security requires randomized encryption

Chosen-Ciphertext Attacks (CCA1)

Definition (QIND-CCA1): $\forall \mathcal{A}$: $\Pr[\mathcal{A} \text{ wins } QPrivK^{cca}] \leq \frac{1}{2} + negl(n)$

Theorem: QSEM-CCA1 ⇔ QIND-CCA1

Fact: QSEM-CCA1 $\stackrel{\neq}{\Rightarrow}$ QIND-CPA $\stackrel{\neq}{\Rightarrow}$ QIND,

stronger adversaries yield stronger encryption schemes

Our Contributions

- √ Formal definition of Quantum Semantic Security
- ✓ Equivalence to Quantum Indistinguishability
- ✓ Extension to CPA and CCA1 scenarios
- 4. Construction of IND-CCA1 Quantum Secret-Key Encryption from One-Way Functions
- 5. Construction of Quantum Public-Key Encryption from One-Way Trapdoor Permutations

Quantum Secret-Key Encryption

Goal: build CCA1-secure quantum secret-key encryption

Ingredients:

quantum one-time pad (QOTP)

Not even CPA secure, scheme is not randomized!

Quantum Secret-Key Encryption

Goal: build CCA1-secure quantum secret-key encryption

Ingredients:

quantum one-time pad (QOTP)

quantum-secure one-way function (OWF)

 $f: x \mapsto y$ easy to compute, but hard to invert even for quantum adversaries, e.g. lattice-problems, ...

Theorem: One-Way Function ⇒ Pseudo-Random Function

 $\{f_k: x \mapsto y\}_k$ is indistinguishable from random function if key k is unknown

Quantum Secret-Key Encryption

Goal: build CCA1-secure quantum secret-key encryption

Ingredients:

quantum one-time pad (QOTP)

quantum-secure one-way function (OWF) \Longrightarrow PRF

Intuition of CCA1 security

- 1. Replace pseudo-random function with totally random function
- Encryption queries result in polynomially many ciphertexts with different randomness:
- 3. With overwhelming probability the randomness of the challenge ciphertext will be different from previous r's.

Our Contributions

- ✓ Formal definition of Quantum Semantic Security
- ✓ Equivalence to Quantum Indistinguishability
- ✓ Extension to CPA and CCA1 scenarios
- ✓ Construction of IND-CCA1 Quantum Secret-Key Encryption from One-Way Functions
- 5. Construction of Quantum Public-Key Encryption from One-Way Trapdoor Permutations

MindMap

- experiments
- Selection of open questions

Fork me on github!

Tools

```
Bell inequalities
             classical crypto cut & choose
             conjugate coding
             continuous variables (CV)
                         infinite version
                         finite version
             de Finetti
                         exponential version
                         various other ones
             Fourier analysis Delta-Biased Extractors
                           information vs disturbance trade-off
            no-cloning
                                  bounds on required entanglement
             non-local games / power of entangled multi-provers
                                  parallel repetition
                                           fidelity
             port-based teleportation
                                           entanglement recycling
                            Watrous
            Q rewinding Unruh
                                  average-case
             query complexity
Tools )
                                  quantum query solvability
             random-access codes
                                       hypercontractive inequality
                                         lower bounds
                                                     Two-Universal Hashing
            randomness extraction
                                                     Delta-Biased, L2 norm
                                         Extractors
                                                     random-access codes
                                                     classical constructions
                   solvers
            SDP (
                   duality
                   hierarchies
                                   operational interpretation
                                   smooth version calculus
            smooth entropies
                                   calculus
                                   splitting with quantum side information
                                       permutation-branching programs
            teleportation gadgets
                                       garden-hose complexity
                                       secret sharing
                                      discrete variables
             uncertainty relations
                                      continuous variables
             unitary t-designs
                                  operations
```

Open Query-Complexity Question

- Let $f: \{0,1\}^n \to \{0,1\}^n$ be a random function
- **Goal:** Given quantum oracle access to f, output a "chain of values" x, f(x), f(f(x))

- Question: Prove hardness with a single quantum query
- More interesting: Prove hardness with polynomially many non-adaptive quantum queries
- Classical hardness: straightforward
- Partial result: iterated hashing analyzed by Unruh in context of <u>revocable</u> <u>quantum timed-released encryption</u>

Quantum Query Solvability

- Notion introduced by Mark Zhandry at QuICS workshop 2015: https://www.youtube.com/watch?v=kaS7OFAm-6M
- Often, quantum query-complexity bounds are given in the form: " $\Theta(g(N))$ queries are required to solve a problem with success probability 2/3 (in the worst case)"
- For crypto, it would be way more useful to have: "Given q quantum queries, the maximal success probability is $\Theta(g(q,N))$, in the average case"
- Example: Given a function $F: [N] \to \{0,1\}$, find x such that F(x) = 1.
- Q query-complexity answer: $\Theta(N^{1/2})$ by (optimality of) Grover search
- But is the success probability $\Theta(q/N^{1/2})$, $\Theta(q^2/N)$, or $\Theta(q^4/N^2)$?
- Matters for efficiency when choosing crypto parameters in order to get tiny security errors

Tools

```
Bell inequalities
             classical crypto cut & choose
             conjugate coding
             continuous variables (CV)
                         infinite version
                         finite version
             de Finetti
                         exponential version
                         various other ones
             Fourier analysis Delta-Biased Extractors
                           information vs disturbance trade-off
            no-cloning
                                  bounds on required entanglement
             non-local games / power of entangled multi-provers
                                  parallel repetition
                                           fidelity
             port-based teleportation
                                           entanglement recycling
                            Watrous
            Q rewinding Unruh
                                  average-case
             query complexity
Tools )
                                  quantum query solvability
             random-access codes
                                       hypercontractive inequality
                                         lower bounds
                                                     Two-Universal Hashing
            randomness extraction
                                                     Delta-Biased, L2 norm
                                         Extractors
                                                     random-access codes
                                                     classical constructions
                   solvers
            SDP (
                   duality
                   hierarchies
                                   operational interpretation
                                   smooth version calculus
            smooth entropies
                                   calculus
                                   splitting with quantum side information
                                       permutation-branching programs
            teleportation gadgets
                                       garden-hose complexity
                                       secret sharing
                                      discrete variables
             uncertainty relations
                                      continuous variables
             unitary t-designs
                                  operations
```

Post-Quantum Cryptography

- Also known as: quantum-safe or quantumresistant cryptography
- Classical (i.e. conventional) cryptography secure against quantum attackers

post-quantum classical crypto

 NIST "competition": 82 submissions (23 signature, 59 encryption schemes or keyencapsulation mechanisms (KEM))

Observations from QCrypts 2014-17

- Rough classification of contributed, invited and tutorial talks
- QKD is the most developed branch of Q crypto, closest to implementation
- When looking at experimental talks: mostly QKD and (closely) related topics
- Tools and post-quantum crypto are consistently of interest
- 2-party crypto was en vogue in 2014/15, not anymore in 2016/17
- Taken over by delegated computation and authentication, started in 2016
- 2016/17: DI has made a comeback
- Long tail: lots of other topics

secure computation (2- or multi-party)

Secure Two-Party Cryptography

- Information-theoretic security
- No computational restrictions

Bit Commitment

Oblivious Transfer

2-Party Function Evaluation

Multi-Party Computation (with dishonest majority)

Security for honest Bob

Coin Flipping (CF)

- Strong CF: No dishonest player can bias the outcome
- Classically: a cheater can always obtain his desired outcome with prob 1
- Quantum: [Kitaev 03] lower bounds the bias by $\frac{1}{\sqrt{2}} \frac{1}{2} \approx 0.2$ [Chailloux Kerenidis 09] give optimal quantum protocol for strong CF with this bias

- Weak CF ("who has to do the dishes?"): Alice wants heads, Bob wants tails
- [Mochon 07] uses Kitaev's formalism of point games to give a quantum protocol for weak CF with arbitrarily small bias $\varepsilon>0$
- [Aharonov Chailloux Ganz Kerenidis Magnin 14] reduce the proof complexity from 80 to 50 pages... explicit protocol?

- Quantum: believed to be possible in the early 90s
- shown impossible by [Mayers 97, LoChau 97] by a beautiful argument (purification and Uhlmann's theorem)
- [Chailloux Kerenidis 11] show that in any quantum BC protocol, one player can cheat with prob 0.739. They also give an optimal protocol achieving this bound. Crypto application?

Bit Commitment ⇒ Strong Coin Flipping

a

a ≠ b

Oblivious Transfer (OT)

1-out-of-2 Oblivious Transfer:

$$S_0 \longrightarrow C$$
 $S_1 \longrightarrow C$
 S_c

Rabin OT: (secure erasure)

$$s \longrightarrow \boxed{\mathsf{ROT}} \longrightarrow s / \bot$$

Example One: A means for transmitting two messages either but not both of which may be received.

- Dishonest Alice does not learn choice bit
- Dishonest Bob can only learn one of the two messages
- These OT variants are information-theoretically equivalent (homework! 69)
- OT is symmetric [Wolf Wullschleger at EuroCrypt 2006, only 10 pages long]
- 1-2 OT \Rightarrow BC:

Quantum Protocol for Oblivious Transfer $s_1 \rightarrow s_2 \rightarrow s_3$

Correctness ✓

Quantum Protocol for Oblivious Transfer $s_1 \rightarrow s_2 \rightarrow s_3$

Security for honest Bob 🗸

 I_0, I_1 f_0, f_1 $t_0 = s_0 \oplus k_0$ $t_1 = s_1 \oplus k_1$

[Wiesner 61, Bennett Brassard Crepeau Skubiszewska 91]

Quantum Protocol for Oblivious Transfer

 $s_0 = t_0 \oplus f_0(01)$ $s_1 = t_1 \oplus f_1(110)$

[Wiesner 61, Bennett Brassard Crepeau Skubiszewska 91]

Security for honest Bob ✓

Security for honest Alice X

Limited Quantum Storage

store all qbits

$$k_0 = f_0(01)$$

$$k_1 = f_1(110)$$

$$I_0, I_1$$

$$f_0$$
, f_1

$$t_0 = s_0 \oplus k_0$$
$$t_1 = s_1 \oplus k_1$$

$$I_c = \{3,4,5\}, I_{1-c} = \{1,2\}$$

$$k_1 = f_1(110)$$

$$s_1 = t_1 \oplus f_1(110)$$

Summary of Quantum Two-Party Crypto

- Information-theoretic security
- No computational restrictions

secure computation (2- or multi-party)

Delegated Q Computation

delegated computation

measurement-based blind Q computation circuit model with verification Q comp on authenticated data strong purity-testing codes weak with verification Q fully homomorphic encryption continuous variables virtual black-box of classical functions Q obfuscation of quantum functionalities indistinguishability obfuscation Q one-time programs two entangled provers verification of Q computations basic Q operations by verifier single prover, fully classical verifier

Delegated Computation

- QCloud Inc. promises to perform a BQP computation for you.
- How can you securely delegate your quantum computation to an untrusted quantum prover while maintaining privacy and/or integrity?
- Various parameters:
 - 1. Quantum capabilities of verifier: state preparation, measurements, q operations
 - 2. Type of security: blindness (server does not learn input), integrity (client is sure the correct computation has been carried out)
 - 3. Amount of interaction: single round (fully homomorphic encryption) or multiple rounds
 - 4. Number of servers: single-server, unbounded / computationally bounded or multiple entangled but non-communicating servers

Classical Verification of Q Computation

- QCloud Inc. promises you to perform a BQP computation
- How can a purely classical verifier be convinced that this computation actually was performed?

Partial solutions:

- 1. Using interactive protocols with quantum communication between prover and verifier, this task can be accomplished, using a certain minimum quantum ability of the verifier. [Fitzsimons Kashefi 17, Broadbent 17, AlagicDulekSpeelmanSchaffner17]
- 2. Using two entangled, but non-communicating provers, verification can be accomplished using rigidity results [ReichardtUngerVazirani12]. Recently made way more practical by [ColadangeloGriloJefferyVidick17]
- Indications that information-theoretical blind computation is impossible [<u>AaronsonCojocaruGheorghiuKashefi17</u>]

Delegated Q Computation

delegated computation

measurement-based blind Q computation circuit model with verification Q comp on authenticated data strong purity-testing codes weak with verification Q fully homomorphic encryption continuous variables virtual black-box of classical functions Q obfuscation of quantum functionalities indistinguishability obfuscation Q one-time programs two entangled provers verification of Q computations basic Q operations by verifier single prover, fully classical verifier

Black-Box Obfuscation

Idea: an obfuscator is an algorithm which rewrites programs, such that

- 1. efficiency is preserved;
- 2. input-output functionality is preserved;
- 3. output programs are hard to understand: "If something is efficiently learnable from reading the code, then it is also efficiently learnable purely from input-output behavior."

"black-box obfuscation"

Classical Obfuscation

Idea: an obfuscator is an algorithm which rewrites programs, such that

- 1. efficiency is preserved;
- 2. input-output functionality is preserved;
- 3. output programs are hard to understand: "If something is efficiently learnable from reading the code, then it is also efficiently learnable purely from input-output behavior."

"black-box obfuscation"

Formal:

A black-box obfuscator O is an algorithm which maps circuits C to circuits O(C) such that:

- 1. efficiency-preserving: $|\mathcal{O}(C)| \leq \text{poly}(|C|)$
- 2. functionality-preserving: $f_{\mathcal{O}(C)} = f_C$
- 3. virtual black-box: for every poly-time A there exists a poly-time S such that

$$|\Pr[\mathcal{A}(\mathcal{O}(C)) = 1] - \Pr[\mathcal{S}^{f_C}(\bar{1}) = 1]| \le \operatorname{negl}(|C|).$$

learn something by reading circuit

learn same thing from input-output

Classical Obfuscation

Why care? Lots of applications:

- 1. Protecting IP: obfuscate before publishing (already done, but ad-hoc);
- 2. Secure patching: revealing what is being patched exposes unpatched machines;
- **3. Public-key crypto:** private-key encryption → public-key encryption:

$$k_{\text{decrypt}} := k$$
 $k_{\text{encrypt}} := \mathcal{O}(\text{Enc}_k)$.

- 4. One-way functions: choose delta-function circuit, make obfuscator's coins part of input;
- 5. **FHE:** encryption \rightarrow fully-homomorphic encryption:

$$k_{\mathrm{eval}} := \mathcal{O}(\mathrm{Enc}_k \circ U \circ \mathrm{Dec}_k)$$
 universal circuit

"top of the crypto scheme hierarchy"

Bad news: classical black-box obfuscation is impossible [Barak et al '01].

Other definitions? "Computational indistinguishability" (first schemes proposed in 2013);

Quantum Obfuscation

A quantum obfuscator O is a (quantum) algorithm which rewrites quantum circuits, and is:

- 1. efficiency-preserving: $|\mathcal{O}(C)| \leq \text{poly}(|C|)$
- 2. functionality-preserving: $\|U_C U_{\mathcal{O}(C)}\| \leq \operatorname{negl}(|C|)$ quantum polynomial-time algorithm
- 3. virtual black-box: for every QPT A there exists a QPT S such that

$$|\Pr[\mathcal{A}(\mathcal{O}(C)) = 1] - \Pr[\mathcal{S}^{U_C}(\bar{1}) = 1]| \le \operatorname{negl}(|C|).$$

Obfuscation	Input	Output	Adversary	Possibility?
Black-box	Quantum circuit	Quantum circuit	QPT	Impossible
Black-box	Quantum circuit	Quantum state (reusable)	QPT	Impossible
Black-box	Quantum circuit	Quantum state (uncloneable)	QPT	Open
Statistical I.O	Quantum circuit	Quantum state	QPT	Impossible
Computational I.O	Quantum circuit	Quantum state	QPT	Open

- 1. construct a black-box quantum obfuscator (that outputs states that cannot be reused);
- 2. construct a computational indistinguishability quantum obfuscator (that outputs circuits);

Delegated Q Computation

delegated computation

measurement-based blind Q computation circuit model with verification Q comp on authenticated data strong purity-testing codes weak with verification Q fully homomorphic encryption continuous variables virtual black-box of classical functions Q obfuscation of quantum functionalities indistinguishability obfuscation Q one-time programs two entangled provers verification of Q computations basic Q operations by verifier single prover, fully classical verifier

More Fun Stuff

bomb testing

leakage resilience

impossibility

limited entanglement

robustness

position-based cryptography

Q digital signatures

universal Q functionalities

Q keys

quantum read-out

physical unclonable functions (PUF)

signature tokens

revocable timed-release encryption

Fun Stuff

Pseudorandom Operations

Pseudorandom Permutation from Function

Decryption Ciphertext R_{n+1}

 R_0

Plaintext

- Feistel network
- If F is a (pseudo)random function, the 3-round Feistel function H_3 is a pseudo-random permutation.
- Question: Show that 4-random Feistel H_4 is a quantum-secure pseudo-random permutation

$$|\Pr[A^{|H_4>,|H_4^{-1}>}(1^n)=1] - \Pr[A^{|rnd>,|rnd^{-1}>}(1^n)=1]| < negl(n)$$

- Partial result: Quantum attack based Simon's algorithm can distinguish 3-round Feistel
 H₃ from random function.
- Quantum pseudo-random unitaries?

Pseudorandom Operations

 Thanks to all friends and colleagues that contributed to quantum cryptography and to this presentation.

Questions

