Breaking Rainbow takes a weekend on a Laptop

Ward Beullens IBM Research Europe Crypto 2022

Breaking Rainbow takes a weekend on a Laptop A (biased) overview of MQ Signatures

Ward Beullens IBM Research Europe Crypto 2022

Overview

Oil & vinegar

Rainbow

MAYO

Multivariate Trapdoors

Public key is multivariate quadratic map $P = (p_1(x), ..., p_m(x)) \colon \mathbb{F}_q^n \to \mathbb{F}_q^m$

$$\begin{cases} p_1(x) = 2 x_1^2 + x_1 x_2 + 6 x_1 x_3 + x_3^2 \mod 7 \\ p_2(x) = 5 x_1^2 + 2 x_1 x_2 + x_2^2 + 6 x_2 x_3 \mod 7 \\ p_3(x) = 4 x_1^2 + x_1 x_2 + 3 x_2^2 + 4 x_2 x_3 \mod 7 \end{cases}$$

P is supposed to look random **Sampling preimages for** *P* is hard.

But, there is hidden structure in P which allows to solve P(x) = y for x.

Trapdoor signatures

Public key: $P = (p_1(x), ..., p_m(x)) : \mathbb{F}_q^n \to \mathbb{F}_q^m$ Secret key: trapdoor information

Signature for message m: x s.t. P(x) = H(m)

How to trapdoor a MQ map?

Oil & Vinegar Trapdoor as presented in [Beu21]

Public key is a quadratic map: $P = (p_1(x), ..., p_m(x))$: $\mathbb{F}_q^n \to \mathbb{F}_q^m$ Trapdoor is a subspaces $O \subset \mathbb{F}_q^n$ of dimension m on which P vanishes.

Definition of differential:

Let $P: \mathbb{F}_q^n \to \mathbb{F}_q^m$, then we define it's differential at x as: $D_x: \mathbb{F}_q^n \to \mathbb{F}_q^m: y \mapsto P(x+y) - P(x) - P(y)$

This is bi-linear in *x* and *y*:

$$D_{x+x'}(y) = D_x(y) + D_{x'}(y)$$
$$D_x(y+y') = D_x(y) + D_x(y')$$

Using the trapdoor *O*

Given $P: \mathbb{F}_q^n \to \mathbb{F}_q^m$, $O, y \in \mathbb{F}_q^m$. We want to find x s.t. P(x) = y.

- 1. Pick $v \in \mathbb{F}_q^n$ uniformly at random.
- 2. Solve for $o \in O$ s.t. P(v + o) = y.

$$P(v + o) = P(v) + P(o) + D_v(o) = y$$

Is a linear system of m equations in m variables.

If no solution, retry with different v.

Example parameters (NIST SL 1)

2 constraints:

- Finding oil space O should be hard
- It should be hard to solve P(x) = H(M) without O

Attacks: $O(q^{n-2m})$ [KS1998] $O(2^{cn})$

# Variables	160	112
# Equations	64	44
Finite Field	GF(16)	GF(256)
Pk size	66 KB	43 KB
Signature size	96 B	128 B

Oil & vinegar

Overview

Rainbow

MAYO

History of Rainbow

- **1997** Oil & Vinegar [Patarin]
- 2005 Rainbow [Ding, Schmidt]
- **2008** First wave of cryptanalysis dries up [κs98, всо5, вдо6, русссо8,...]
- 2017 NIST PQC

2021

2022

- ²⁰⁻²¹ Improved MinRank attacks, RBS [BBCGPSTV20,BBBGNRT20,BBCPSV21, PS20,NIWDR20]
 - **2021** Rainbow is one of signature finalists.
 - New description of Rainbow, new attacks [Beu21]
 - Practical break [Beu22]

Example parameters (NIST SL 1)

	Oil & Vinegar GF(16)	Oil & Vinegar GF(256)	Rainbow
# Variables	160	112	100
# Equations	64	44	64
Finite Field	GF(16)	GF(256)	GF(16)
Pk size	66 KB	43 KB	58 KB
Signature size	96 B	128 B	66 B

Rainbow Trapdoor as presented in [Beu21]

Public key is a quadratic map: P(x): $\mathbb{F}_q^n \to \mathbb{F}_q^m$

Trapdoor consists of subspaces $O_2 \subset O_1 \subset \mathbb{F}_q^n$ and subspaces $W \subset \mathbb{F}_q^m$ s.t.

The structure of a Rainbow public key

For every x we get a linear map $D_x : \mathbb{F}_q^n \to \mathbb{F}_q^m$ that sends O_2 to W. We want to find O_2 . (This reduces to a MinRank problem [Beu21])

Main observation: D_x is more likely to have a kernel vector in O_2 .

Average number of non-zero kernel vectors in O_2 is $\frac{|O_2|-1}{|W|} \approx 1$

The probability of a non-zero kernel vector in O_2 is $\approx 1/(q-1)$

New Attack:

- 1. Guess $x \in \mathbb{F}_q^n$, hope that $\ker(D_x) \cap O_2$ is non-trivial 2. Solve $\begin{cases} D_x o = 0 \\ P(o) = 0 \end{cases}$
- 3. If no solutions, return to 1.

R2SL1: Attempting to solving the system takes 3 hours 32 minutes using standard techniques. (Wiedemann-XL)

Repeat q - 1 = 15 times \longrightarrow 53 hours (one weekend)

Finishing the attack

We have a single vector o in O_2 . How to find the full sk key (O_1, O_2, W) ? 1) $\forall x : D_x(o) \in W$, so we learn all of W2) Solve for all o' s.t. $D_x(o') \in W$ for all x, reveals all of O_2

Finishing the attack

We have a single vector o in O_2 . How to find the full sk key (O_1, O_2, W) ?

- 1) $\forall x : D_x(o) \in W$, so we learn all of W
- 2) Solve for all o' s.t. $D_x(o') \in W$ for all x, reveals all of O_2

3) Take quotient by O_2 and W. Break the remaining Oil & Vinegar key with existing attacks (e.g. Kipnis-Shamir)

New Rainbow parameters (Old SL 3 is now SL 1)

	Oil & Vinegar GF(16)	Oil & Vinegar GF(256)	Rainbow (updated params)
# Variables	160	112	148
# Equations	64	44	80
Finite Field	GF(16)	GF(256)	GF(256)
Pk size	66 KB	43 KB	258 KB
Signature size	96 B	128 B	164 B

Rainbow is no longer better than Oil & Vinegar!

Use Oil & Vinegar instead. (NIST)

Oil & vinegar

Overview

Rainbow

MAYO

MAYO Trapdoor \mathbb{F}_q^n Р 0 Р

 \mathbb{F}_q^m

.0

Making *O* smaller has 2 benefits:

• We can use smaller n (key recovery attack: $O(q^{n-2o})$)

MAYO Trapdoor

Making *O* smaller has 2 benefits:

- We can use smaller n (key recovery attack: $O(q^{n-2o})$)
- Public key becomes smaller: $O(o^2m)$ instead of $O(m^3)$

MAYO Trapdoor

But, if dim(0) < m the signing algorithm fails:

 $P(v + o) = P(v) + D_v(o) = t \in \mathbb{F}_q^m$: *m* equations, dim(0) variables.

A little oil can go a long way

Given an oil and vinegar map $P \colon \mathbb{F}_q^n \to \mathbb{F}_q^m$ that vanishes on an oil space that is too small, we try to "whip up" a larger map $P^*: \mathbb{F}_a^{kn} \to \mathbb{F}_a^m$, that vanishes on a sufficiently large oil space.

Whipping Oil-and-Vinegar: Attempt 1

Let
$$P^*(x_1, ..., x_k) = P(x_1) + P(x_2) + \dots + P(x_k)$$
.

Then P^* : $\mathbb{F}_q^{kn} \to \mathbb{F}_q^m$ vanishes on a large oil space $O^k = \{ (o_1, \dots, o_k) \mid o_1, \dots, o_k \in O \}$

So, if dim $(O^k) = ko \ge m$, then we can sample preimages for P^* .

However, P^* has extra oil spaces e.g. { $(x, ix, 0, ..., 0) | x \in \mathbb{F}_q^n$ }

$$P(x) + P(ix) = P(x) - P(x) = 0$$

Whipping Oil-and-Vinegar: Attempt 2

Choose *m*-by-*m* matrices E_i and set: $P^*(x_1, ..., x_k) = E_1 P(x_1) + E_2 P(x_2) + \dots + E_k P(x_k)$

Then there is a negligible chance of there being any extra oil spaces.

But, P^* is the sum of k functions with independent inputs, so finding a preimage = solving a k-sum problem.

Wagner's K-tree alg has complexity $q^{m/(1+\lceil \log_2 k \rceil)}$

Whipping Oil-and-Vinegar: Attempt 3

Choose matrices $E_{i,j}$ for all $0 \le i \le j \le k$ and set $P^*(x_1, ..., x_k) = \sum_i E_{ii}P(x_i) + \sum_{i < j} E_{ij}D_{x_i}(x_j)$

Any two variables x_i, x_j interact in the $E_{ij}D_{x_i}(x_j)$ term, so the K-Tree attack does not apply.

Security Analysis

Assume that:

- 1) Oil-and-Vinegar maps *P* are indistinguishable from random MQ empty maps.
- 2) Whipping up a random map P, results in a (multi-target) preimage resistant MQ map P^* .

Then the MAYO signature scheme is EUF-CMA secure. (for appropriately chosen parameters)

In particular, we proved that signatures do not leak information about the secret key.

MAYO parameters

	Oil & Vinegar GF(16)	Oil & Vinegar GF(256)	$\begin{array}{l} MAYO \\ o = 19 \end{array}$	$\begin{array}{l} MAYO \\ o = 5 \end{array}$
# Variables	160	112	79 x 4	66 x 16
# Equations	64	44	66	69
Finite Field	GF(16)	GF(256)	GF(16)	GF(16)
Pk size	66 KB	43 KB	6.3 KB	533 B
Signature size	96 B	128 B	174 B	544 B

Size of *O* gives a trade-off between signature size and pk size.

Logo credit: Sofía Celi

Ask not what MAYO can do for you, but what you can do for MAYO!

Please reach out to <u>contactapgmayo.org</u> if you want to help with:

- Design
- Cryptanalysis
- Implementations
- Security Proofs

- Side-channel security
- Saucy puns
- •

"90's" version: MAYO'nAES

Questions?