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A B S T R A C T

Pancreatic ductal adenocarcinoma (PDAC) is a highly chemoresistant malignancy. This chemoresistant pheno-
type has been historically associated with genetic factors. Major biomedical research efforts were concentrated
that resulted in the identification of subtypes characterized by specific genetic lesions and gene expression
signatures that suggest important biological differences. However, to date, these distinct differences could not be
exploited for therapeutic interventions. Apart from these genetic factors, desmoplasia and tumor micro-
environment have been recognized as key contributors to PDAC chemoresistance. However, while several
strategies targeting tumor-stroma have been explored including drugs against members of the Hedgehog family,
they failed to meet the expectations in the clinical setting. These unsatisfactory clinical results suggest that, an
important link between genetics and the influence of tumor microenvironment on PDAC chemoresistance re-
mains to be elucidated. In this respect, mechanobiology is an emerging multidisciplinary field that encompasses
cell and developmental biology as well as biophysics and bioengineering. Herein we provide a comprehensive
overview of the key players in pancreatic cancer chemoresistance from the perspective of mechanobiology, and
discuss novel experimental avenues such as elastic micropillar arrays that could provide fresh insights for the
development of mechanobiology-targeted therapeutic approaches (know as mechanopharmacology) to over-
come anticancer drug resistance in pancreatic cancer.

1. Introduction

Pancreatic ductal adenocarcinoma (PDAC) is a devastating malig-
nant disease, exhibiting one of the poorest prognoses of all solid tumors.
With a 5-year survival of ∼7%, PDAC is the 4th leading cause of
cancer-death and is projected to be the second most lethal cancer by
2030 (Rahib et al., 2014; Siegel et al., 2017). This dismal trend is due to
the rising incidence and poor outcome caused by lack of biomarkers for
early screening/diagnosis, as well as poor efficacy of current treatments
(Kleeff et al., 2016). The very aggressive nature and the early metastatic
behavior of PDAC, frequently impede the potentially curative surgical
resection. Even in the absence of metastasis, other pathological condi-
tions, e.g. local infiltration of major retroperitoneal vessels, potentially
exclude pancreatic resection (Paulson et al., 2013). Chemotherapy is

therefore a crucial component in the treatment of unresectable (meta-
static or locally-advanced) PDAC patients. However, the two most
successful combination chemotherapeutic protocols [i.e. FOLFIRINOX
(a combination of 5-fluorouracil (5-FU), leucovorin, irinotecan and
oxaliplatin) and gemcitabine/nab-paclitaxel, resulted in modest sur-
vival benefits (<1year) which are unfortunately nullified by the sig-
nificant untoward toxicity and a compromised quality of life for most
PDAC patients (Conroy et al., 2011; Von Hoff et al., 2013). Despite
concentrated efforts to extensively map the mutational landscape of
PDAC, including the identification of specific subtypes (Bailey et al.,
2016), and to better understand the molecular events underlying the
initiation and progression of PDAC (Neesse et al., 2015), the molecular
basis underlying the poor chemotherapeutic response remains elusive.

Over the past decade, the hypovascular and desmoplastic tumor
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microenvironment in PDAC has been recognized as the key determinant
promoting both carcinogenesis and tumor progression as well as a
leading mediator of chemoresistance. Hence, novel targeting strategies
of various cellular/non-cellular stromal components and pathways
were considered a promising approach to enhance the therapeutic ef-
ficacy (Neesse et al., 2015). However, none of these genuine efforts
conducted in rigorous clinical phase II and III trials, met the clinical
expectations and failed to lead to approved PDAC therapies (Bramhall
et al., 2001; Bramhall et al., 2002; Moore et al., 2003). Additionally,
recent experimental evidence has shown that tumor-associated fibro-
blasts may suppress, rather than promote, tumor growth. This highly
controversial and open debate regarding whether or not the tumor
stroma of PDAC is a ‘friend or a foe’, reinforces the need to critically re-
evaluate the complexity of tumor-stroma interactions (Gore and Korc,
2014).

In the present review, we introduce the current knowledge re-
garding PDAC chemoresistance and the unsuccessful (pre)-clinical at-
tempts to enhance the response to chemotherapeutics used in the
clinical routine. From a mechanobiology perspective, elucidating the
bidirectional interplay between drug action/resistance and mechanics,
under the context of the highly genomically unstable landscape of
PDAC, could represent the key to improve the yet unsatisfactory
therapies targeting the hallmarks of PDAC including desmoplasia, in-
flammation, and immune suppression. Mechanobiology is an emerging
multidisciplinary field which encompasses cell and developmental
biology, bioengineering and biophysics; specifically, mechanobiology
studies the impact of physical forces and the mechanical properties of
the extracellular matrix (ECM) on cell behavior, cell/tissue morpho-
genesis and diseases that are highly regulated by pathological processes
such as cancer (Jansen et al., 2015). We here adopted the term ‘me-
chanopharmacology’ that has been recently introduced by Krishnan and
colleagues to define a new and wider conceptual field, that aims at
investigating the impact of cell and tissue mechanics on pharmacolo-
gical responsiveness, and its application to mechanistic investigations
and drug screening (Krishnan et al., 2016). It is our strong belief that
mechanopharmacology could be successful at the discovery of novel
drug targets and antitumor agents to combat PDAC, in addition to ex-
plaining the basis for the modest survival benefits of existing therapies.
Lastly, we provide examples of powerful mechanobiology tools that, in
combination with high resolution light microscopy, pave the way to
study with unprecedented detail, how cells apply forces, alter their
microenvironment (‘inside-out signaling’) and, vice versa, how cells
probe the mechanical properties of their microenvironment and trans-
late this information together with the information obtained from other
signals such as growth factors into a concerted response (‘outside-in
coupling’).

2. Chemoresistance of PDAC

The prominent chemoresistant nature of PDAC appears to be mul-
tifactorial. In fact, various studies with different tumors of distinct cell
lineage have shown that anticancer drug resistance is multifactorial
(Shibue and Weinberg, 2017; Gonen and Assaraf, 2016; Zhitomirsky
and Assaraf, 2016; Li et al., 2017; Wijdeven et al., 2016). The proposed
molecular mechanisms responsible for this multidrug resistance, range
from tumor cell-intrinsic mechanisms such as activation of anti-apop-
totic signaling pathways, to extrinsic mechanisms including unique
properties of the tumor microenvironment modulating drug uptake and
activating escape pathways.

First and foremost, PDAC patients frequently display hypovascu-
larity that, in conjunction to the extensive desmoplastic reaction,
hampers effective drug delivery to tumor cells (Chu et al., 2007; Neesse
et al., 2014). This physical barrier and related pathways will be the
main focus of the following sections in the present review. PDAC cells
often have dysregulated cellular transporters that can compromise or
abolish the uptake of chemotherapeutic agents by these tumor cells.

The most studied biomarker for drug activity/resistance in PDAC is the
human equilibrative nucleoside transporter 1 (hENT1) which is the
primary transporter that facilitates bidirectional transport of pyr-
imidine nucleosides and their analogues including gemcitabine, into
cancer cells (Spratlin et al., 2004). Several clinical reports have in-
dicated that the mRNA and protein levels of hENT1 is a predictive
biomarker for PDAC patients treated with gemcitabine (Nordh et al.,
2014). Specifically, the retrospective analysis of the phase III trials
RTOG-9704 and ESPAC-1/3 showed that the overall survival (OS) was
significantly longer in patients treated with gemcitabine with high-
hENT1 expression. Notably, these OS benefits were not found in pa-
tients treated with 5-FU (Farrell et al., 2009; Greenhalf et al., 2014),
implying a more predictive value than a prognostic role. However, the
first biomarker-stratified trial (LEAP) with prospective analysis of (low)
hENT1 expression comparing CO-1.01 with gemcitabine failed to vali-
date this correlation in metastatic PDAC (Poplin et al., 2013).

Notably, a recent study showed that modulation of hENT1 expres-
sion levels altered the stiffness of PDAC and hENT1 knockdown induced
epithelial to mesenchymal transition (EMT) in PDAC cells (Lee et al.,
2014). However, several previous studies showed the key role of the
EMT phenotype in acquired resistance of PDAC cells to gemcitabine
(Shah et al., 2007; Wang et al., 2014). This is typically characterized by
growth of pseudopodia, spindle-like shape, decreased E-cadherin ex-
pression and increased vimentin levels (i.e. increased cell stiffness and
protection against compressive loads (Mendez et al., 2014)) in asso-
ciation with upregulation of Notch-2 (Arumugam et al., 2009; Wang
et al., 2009).

In September 2013, the US Food and Drug Administration (FDA)
approved the nanoparticle albumin-bound paclitaxel (nab-paclitaxel),
in combination with gemcitabine, for first-line treatment of patients
with metastatic PDAC. The higher tumor accumulation of nab-pacli-
taxel was hypothesized to be promoted by the presence of albumin-
binding proteins, such as the secreted protein acidic and rich in cysteine
(SPARC), which is overexpressed in stromal fibroblasts and down-
regulated in tumor cells (Desai et al., 2009). In a phase I–II study, low
SPARC expression correlated with significantly shorter survival; how-
ever, in the following phase III MPACT trial, SPARC failed both as a
predictive biomarker and as a potential selection criterion for drug
treatment with nab-paclitaxel (Hidalgo et al., 2015).

Analogously to the above gemcitabine-based regimens, the lack of
predictive biomarkers is also a major clinical problem for FOLFIRINOX
or FOLFIRINOX-modified treatments. A recent study showed that high
levels of the enzyme carboxyl esterase-2 (CES2), which bioactivates the
prodrug irinotecan to SN-38, was associated with longer OS and pro-
gression-free survival (PFS) in resectable and borderline-resectable
patients treated with FOLFIRINOX in the neoadjuvant setting (Capello
et al., 2015). However, these results, limited by the small number of
patients (N = 22), and the expression data of resectable patients, might
not be comparable to the data obtained with patients suffering from
metastatic PDAC. Notably, a recent study on the mitogen-activated
protein (MAP) kinase MAP4K5 showed that low expression levels of this
protein correlated with the loss of E-cadherin and reduced CES2 ex-
pression in tissue specimens of 105 PDAC patients (Wang et al., 2016).
This study suggests an important role for MAP4K5 in EMT, as well as in
resistance to chemotherapy.

Several anti-apoptotic mechanisms can also decrease the efficacy of
chemotherapeutic regimens (Neesse et al., 2013; Zhang et al., 2014).
Recent studies showed that the Yes-associated protein (YAP) promotes
cell survival by inhibiting pro-apoptotic signaling (Zhang et al., 2014).
YAP overexpression in PDAC fostered tumor progression through the
activation of the AKT cascade, which can counteract the effect of
gemcitabine. These results suggested that YAP can act as a biomarker
for predicting gemcitabine treatment response. Remarkably, YAP/TAZ
have also been shown to act as sensors of the rigidity of the ECM by
becoming activated on stiff substrates (15–40 kPa), thereby regulating
mechanotransduction (Dupont et al., 2011).
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2.1. Tumor microenvironment

PDAC exhibits a strong stromal reaction with only a minority of the
tumor volume consisting of cancer cells (∼10%). The heterogeneous
tumor microenvironment (TME) is comprised of cellular and acellular
stromal components, such as activated fibroblasts, myofibroblasts,
pancreatic stellate cells (PSCs), immune cells, blood vessels, ECM, as
well as soluble growth factors such as transforming growth factor-β
(TGF-β), fibroblast growth factor (FGF), vascular endothelial growth
factor (VEGF) and connective tissue growth factor (CTGF/CCN2)
(Neesse et al., 2015). The TME is highly dynamic and continuously
changing in composition, especially during the progression from pre-
neoplastic lesions to invasive PDAC. The molecular mechanisms un-
derlying the cross-talk between the TME and PDAC cells are extremely
complex due to the heterogeneous nature of the PDAC stroma (Feig
et al., 2012). Fibroblasts play a crucial role during the entire course of
tumor development (Feig et al., 2012). They are transformed into
cancer-associated fibroblasts (CAFs) through various growth factors and
cytokines secreted by cancer cells. They are characterized by α-smooth
muscle actin (α-SMA) expression, enhanced synthesis of collagens, ECM
proteins and growth factors including TGF-β, EGF, PDGF (Feig et al.,
2012).

A major source of PDAC CAFs is PSCs, which are resident me-
senchymal cells of the pancreas that store lipid droplets and express
fibroblast-activation protein α (FAP) (Apte et al., 2013). Activated PSCs
are responsible for eliciting the stromal reaction in PDAC. During
pancreatic injury, PSCs are activated, assume a myofibroblast-like
phenotype and synthesize excessive amounts of ECM proteins, mostly
collagen and fibronectin (FN), leading to fibrosis. They modulate the 3D
collagen alignment to promote the migration of PDAC cells (Drifka
et al., 2016) and interact with endothelial cells to stimulate angiogen-
esis (Apte and Wilson, 2012; Xu et al., 2014). Activated PSCs also ex-
press NADPH oxidase, a source of reactive oxygen species (ROS), which
induces EMT and actin polymerization. Notably, a recent study iden-
tified two subtypes of PSC-derived CAFs, which may address the con-
flicting reports that have emerged in the field regarding CAF functions
(Öhlund et al., 2017). CAFs with elevated expression of αSMA were
indeed located immediately adjacent to neoplastic cells in mouse and
human PDAC tissue, whereas co-cultures revealed a distinct sub-
population, located more distantly from neoplastic cells, which lacked
elevated αSMA expression and instead, secreted IL-6 and inflammatory
mediators. Therefore, the traditional view of the stroma as a uniformly
pro-tumorigenic niche calls for reconsideration, as certain CAF sub-
populations might have pro-tumorigenic features, whereas others might
act as anti-tumorigenic factors, with possible implications for the de-
velopment of therapeutic interventions.

Cumulative evidence support the key role of CAFs and myofibro-
blasts not only in shaping the soluble and solid stromal TME of PDAC,
but also in the control of local immune suppression, thus promoting
tumor progression (Watt and Kocher, 2013). FAP-expressing fibroblasts
lead to immune suppression by CXCL12, the chemokine that signals via
CXCR4. Depletion of FAP-positive CAFs permits immune control in
various preclinical models of PDAC (Feig et al., 2013). These data
further demonstrate that the immune-suppressive environment of PDAC
is controlled by CAFs, which are therefore responsible for the failure of
T-cell checkpoint antagonists.

2.1.1. Targeting stromal components
The dense and stiff ECM in PDAC compresses blood vessels, leading

to reduced perfusion that ultimately impedes the delivery of che-
motherapeutic drugs to tumor cells. Hence, this physical barrier highly
contributes to the multidrug resistance phenotype to current che-
motherapies.

The first preclinical study in genetically engineered mouse models
(GEMMs) of PDAC that introduced the stromal depletion concept was
conducted by Olive and colleagues (Olive et al., 2009). The authors

demonstrated that pharmacological inhibition of the pro-stromal sonic
hedgehog (Shh) signaling cascade by the Smoothened inhibitor sar-
idegib (also known as IPI-926) led to a significant reduction of tumor
stroma and increased perfusion and mean vessel density. Paralleled by
these alterations, intratumoral gemcitabine delivery was elevated (i.e.
increased by 60%) and therapeutic response and median survival in-
creased significantly. Unfortunately, while inhibition of Shh can reduce
the stromal component in PDAC, it might also promote a more vascu-
larized and aggressive tumor, as demonstrated in a GEMM. These ex-
perimental evidence might explain the unsatisfactory results obtained
with IPI-926, which has been studied in phase I and phase II trials.
These trials were prematurely terminated because of the detrimental
toxic side effect of the combination of IPI-926 and gemcitabine (Ko
et al., 2016). Therefore, alternative strategies to target the stromal re-
sponse in PDAC are critically needed.

Subsequent preclinical investigations introduced alternative ap-
proaches to successfully relieve vessel compression and improve drug
delivery. For instance, hyaluronan (HA) is highly overexpressed in
tumor cells and stromal cells and accumulates in PDAC (Kultti et al.,
2014; Tammi et al., 2008). As a megadalton glycosaminoglycan, HA
retains water due to its high colloid osmotic pressure and provides
elasticity to connective tissue in healthy organs. An HA-rich, relatively
immobile gel-fluid phase, induced vascular collapse and hypo-perfusion
as a primary physical barrier increasing treatment resistance in PDAC
(DuFort et al., 2016). In line with previous findings with a prostate
cancer xenograft model (Thompson et al., 2010), preclinical trials were
conducted in which degradation of HA was achieved by hyaluronidase
PEGPH20 in pancreatic GEMM tumors (Jacobetz et al., 2012;
Provenzano et al., 2012). A randomized phase II study of PEGPH20 plus
nab-paclitaxel/gemcitabine in patients with untreated metastatic PDAC
showed a statistically significant longer PFS, compared to nab-pacli-
taxel/gemcitabine (Hingorani et al., 2017). The largest improvement
was observed in patients with high HA levels, as determined using a
novel quantitative assay (VENTANA HA RxDx, Ventana Medical Sys-
tems, Inc.). Moreover, since unexpected, elevated risk of blood clots
associated with PEGPH20 resulted in a temporary halt of this trial in
2014, the trial evaluated the use of enoxaparin (an anticoagulant that
binds to antithrombin), which equalized the risk for thromboembolic
events in the two arms. These data support HA as a potential predictive
biomarker for patient selection of hyaluronidase PEGPH20, currently
investigated in the ongoing global Phase III HALO-301 study (Clin-
icalTrials.gov: NCT02715804) with PFS and OS as co-primary end-
points.

Other investigators have shown that the angiotensin II receptor
antagonist losartan decreases stromal collagen and secretion of HA in
PDAC (Chauhan et al., 2013). Moreover, losartan treatment was ac-
companied by reduction of profibrotic signals such as TGF-β1, and C-
CN2/CTGF (Chauhan et al., 2013). The authors concluded that angio-
tensin receptor blockers (ARBs) reduce solid stress in tumors, resulting
in increased vascular perfusion, oxygen flow and drug delivery. A
currently ongoing phase II trial with FOLFIRINOX and losartan in pa-
tients with PDAC will determine whether or not this class of anti-hy-
pertensive drugs may serve as an inexpensive therapeutic strategy to
sensitize PDAC to first-line chemotherapy (NCT01821729).

Activation of the focal adhesion kinase (FAK) pathway is essential
for promoting the desmoplastic TME of PDAC, and FAK inhibitors have
demonstrated reasonable anti-tumor activity (Kanteti et al., 2016).
Moreover, FAK plays a key role in regulating mechanical properties of
cells required for cellular adhesion and motility (Mierke, 2013). The
recent work by Jiang and colleagues has shown that FAK inhibition
increases immune surveillance by overcoming the fibrotic and im-
munosuppressive PDAC TME and enhances tumor response to im-
munotherapy (Jiang et al., 2016). These results prompted a rapid
clinical translation, resulting in a currently ongoing phase I clinical trial
to test the anti-tumor efficacy of the FAK inhibitor defactinib in com-
bination with pembrolizumab (anti-PD-1) and gemcitabine in advanced
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PDAC (NCT02546531). Another interesting approach to target FAK in
PDAC, which combined the FAK inhibitor VS-4718 with gemcitabine
and nab-paclitaxel (phase I, NCT02651727), was recently terminated
by Verastem Inc., to de-prioritize VS-4718 development.

A seminal study by the Weaver group investigated the interplay
between tumor genotype and fibrotic phenotype in PDAC progression
(Laklai et al., 2016). Their findings implicated epithelial tension and
matricellular fibrosis in the aggressiveness of mutant SMAD4 pancreatic
tumors (disrupting TGF-β signaling) and highlighted STAT3, a tran-
scription factor that regulates expression of pro-inflammatory genes,
and functions as a key driver of this phenotype. This signaling arm acts
via mechanoresponsive pathways in a feed-forward loop to amplify
cellular responses that promote PDAC progression. The clinical re-
levance of these findings is supported by data from PDAC samples in-
dicating that patients with shorter survival have elevated p-STAT3, p-
MLC2, nuclear YAP levels and increased collagen bundling, which were
also observed in patients with SMAD4 mutations. These remarkable
findings should prompt further studies on the interactions between
PDAC genotypes and mechanical properties of these tumors, as well as
new therapeutic strategies targeting both tumor and stromal cells to
reduce the tumor-promoting influence of the microenvironment.

Regarding alterations in TGF-β-signaling, all-trans retinoic acid
(ATRA) hinders the capacity of PSCs to mechanically activate TGF-β
(Sarper et al., 2016), thus preventing the fibrotic TME by PSC activa-
tion. Administration of ATRA in combination with gemcitabine in
PDAC GEMMS resulted in a significant improvement of drug response
(Guerra and Barbacid, 2013). Interestingly, ATRA reduced fibrosis and

hypoxia, while enhancing tumor necrosis, and increased perfusion in
PDAC (Carapuça et al., 2016). The ongoing phase I–II study STAR_PAC
is repurposing ATRA as a stromal targeting agent along with gemcita-
bine and nab-paclitaxel for PDAC (Kocher et al., 2016).

More recently, Vennin and colleagues used intravital imaging to
assess how transient priming of primary and secondary sites via Rho-
associated protein kinase (ROCK) inhibition (i.e. inhibition of cellular
tension/contractility) improves chemotherapy efficacy and retards the
onset of metastasis in PDAC (Vennin et al., 2017). This study also de-
monstrated a graded response to priming in stratified patient-derived
tumors, indicating that fine-tuned tissue manipulation before che-
motherapy may offer opportunities in both primary and metastatic
targeting of PDAC. A future phase I clinical trial will determine the
safety of a transient priming regimen with the Rho kinase inhibitor
Fasudil, prior to treatment with Gem/Abraxane in PDAC patients.

2.2. Integrin-dependent chemoresistance in PDAC

The fibrotic tissue present in PDAC tumors is characterized by an
upregulated expression of the ECM to which both tumor and stroma
(mostly activated PSCs) contribute (Feig et al., 2012). The PDAC ECM is
composed mainly of collagens (type I and type IV) and fibronectin (FN),
in addition to other molecules such as thrombospondin, periostin, te-
nascin C, vitronectin, versican, and biglycan (Feig et al., 2012).

Experimental evidence of reduced sensitivity to chemotherapeutic
treatment when PDAC cells were attached to collagen (type I and type
IV) and FN introduced the significant role of these ECM molecules in

Fig. 1. Therapeutic targeting of stromal components, integrins and signaling pathways to overcome PDAC chemoresistance. The tumor microenvironment (TME) is composed of
collagens, fibronectin, hyaluronan, an abundance of cancer-associated fibroblasts (CAFs), pancreatic stellate cells (PSCs), extracellular matrix (ECM) and other components. Integrin
receptors have an affinity for collagen and fibronectin (FN). FN regulates cell proliferation through FAK-dependent recruitment of SH2-binding proteins such as Src and Grb2, which
directly activate the Ras pathway. FN-mediated activation of FAK also produces pro-survival effect in cancer cells by activation of the PI3K/AKT/mTOR pathway. It results in upregulation
of Bcl-2 through inhibition of Bad and blocked cytochrome c release from mitochondria leading to decreased apoptosis. Another pathway which drives cell growth and inhibits apoptosis
involves Rho, together with Rho kinase ROCK in the regulation of yes-associated protein (YAP)/Tafazzin (TAZ) transcription activators by promoting the accumulation of these tran-
scription activators in the nucleus. The specific therapeutic agents are listed in the boxes.
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drug resistance and tumor progression (Miyamoto et al., 2004).
Integrin receptors are transmembrane glycoproteins that are the

major adhesion receptors for the ECM, consisting of one α and one β
subunit. Both α1β1 and α2β1 bind type IV and type I collagens, though
α1β1 has a higher affinity for type IV collagen and α2β1 for type I
collagen. Whereas, both α5β1 and αvβ3 bind to FN, and both αvβ3 and
αvβ5 bind to vitronectin. Integrin receptors known to bind to collagen
(α2β1 and α1β1), to FN (α5β1 and αvβ3) and vitronectin (αvβ3 and
αvβ5) are highly expressed by PDAC cells (Grzesiak and Bouvet, 2006).
Notably, the malignant phenotype of PDAC cell lines was mediated by
the α2β1 integrin-mediated adhesion to type I collagen (Grzesiak and
Bouvet, 2006).

In addition to the physiological barrier that the ECM imposes, it also
induces activation of intracellular signaling pathways important for
growth and survival of cancer cells (Fig. 1). The pro-survival effect that
FN has on cancer cells is primarily mediated by an FAK-dependent
activation of the PI3K/AKT/mTOR pathway (Chen and Guan, 1994;
Han et al., 2006). Activation of this pathway results in upregulation of
Bcl-2 through inhibition of Bad, ultimately blocking cytochrome c re-
lease from mitochondria, which results in repression of apoptosis
(Czabotar et al., 2014; Li et al., 1997). Immunohistochemical studies
revealed that PDAC patients with the highest phospho-Akt levels had
significantly shorter OS and PFS (Massihnia et al., 2017). Consistently,
in PDAC cells characterized by high phospho-Akt expression, the
combination of Akt inhibitors with gemcitabine increased apoptosis,
associated with induction of caspase-3/6/8/9, PARP and BAD, and in-
hibition of Bcl-2 and NF-kB (Massihnia et al., 2017). Hence, these re-
markable findings support the analysis of phospho-Akt expression as
both a prognostic and a predictive biomarker, for the rational devel-
opment of new combination therapies that target the Akt pathway in
order to overcome gemcitabine-resistance. Furthermore, FN-mediated
activation of FAK also triggers cell proliferation through the recruit-
ment of SH2-binding proteins such as Src and Grb2, which directly
activate the Ras pathway (Schlaepfer et al., 1994), as also reported,
within an extensive description of the FN signaling in PDAC, by To-
palovski and Brekken (Topalovski and Brekken, 2016). FN (and to a
lesser extent collagen) also promotes PDAC cell survival through a
modest increase in ROS. Mia PaCa-2, Panc-1, and Capan-1 tumor cells
cultured on FN, stimulated NADPH-oxidase and 5-lipoxygenase-de-
pendent ROS production (Edderkaoui et al., 2005). Consequently, these
cells showed increased survival, which was reversed when ROS pro-
duction was inhibited by treatment with antioxidants.

Moreover, α2β1 integrin protected PDAC cells from 5-FU-induced
apoptosis by upregulating the anti-apoptotic Bcl-2 family member Mcl-
1 (Armstrong et al., 2004). Apart from directly regulating apoptotic
signaling, α2β1 integrin promoted the resistance of PDAC cells to
gemcitabine by increasing MT-MMP-1-mediated ERK phosphorylation
and increased expression of the chromatin remodeling protein high
mobility group A2 and of histone acetyl-transferases (Dangi-Garimella
et al., 2011; Dangi-Garimella et al., 2013).

2.2.1. Targeting integrins
Abundant collagen deposition is a hallmark of the desmoplastic

reaction in both primary and metastatic lesions of PDAC (Whatcott
et al., 2015). Through integrin signaling, deposited collagen increases
tumor cell proliferation, survival and chemoresistance, possibly con-
tributing to further establishment of metastatic lesions. These biological
properties of integrins as well as their ability to crosstalk with growth
factor receptors has rendered them attractive druggable targets, and
several preclinical studies showed that integrin antagonists inhibit
tumor growth by affecting both tumor cells and tumor-associated host
cells (Desgrosellier and Cheresh, 2010). However, further clinical stu-
dies will have to elucidate how effective these agents are as cancer
therapeutics.

Cilengitide (EMD 121974) is a low-molecular weight cyclic peptide
inhibitor of ανβ3 and ανβ5. These integrins are surface receptors which

are not expressed in normal tissues but are upregulated on the surface
of endothelial cells in blood vessels undergoing angiogenesis (Brooks
et al., 1994). Remarkably, both ανβ3 and ανβ5 are expressed on PDAC
cells (Grzesiak and Bouvet, 2006). In pre-clinical studies, cilengitide
inhibited tumor-mediated angiogenesis and the growth of human tumor
xenografts (Brooks et al., 1994; MacDonald et al., 2001). In vitro studies
have also shown that cilengitide not only inhibits angiogenesis but also
displays direct cytotoxic activity in ανβ3- and ανβ5-expressing tumor
cell lines (Taga et al., 2002). However, a phase II trial showed that, in
comparison to gemcitabine, the combination of cilengitide and gemci-
tabine had no significant benefits for patients with advanced un-
resectable PDAC (Friess et al., 2006). This failure might be attributed
both to the very short half-life of this compound in vivo as well as to the
relative minor role of metastasis formation (Giovannetti et al., 2017),
which is considered the main target of this drug, in patients who have
already advanced/metastatic PDAC.

Volociximab is an anti-α5β1 integrin monoclonal antibody that
displayed inhibition of tumor growth in various animal tumor models
(Ng et al., 2010). Phase I clinical trials showed that volociximab was
well tolerated by patients and entered phase II clinical trials for the
treatment of metastatic PDAC (Evans et al., 2008). Despite the pro-
mising preliminary effects of volociximab, particularly when paired
with standard chemotherapy such as gemcitabine, the overall results
have been modest.

E7820 is an aromatic sulfonamide that inhibits integrin α2 mRNA
expression. In pre-clinical studies, treatment with E7820 inhibited
tumor growth and tumor-induced angiogenesis in mouse xenografts
derived from different solid tumors, with complete suppression of
growth of human PDAC models (Semba et al., 2004). An ongoing phase
I trial demonstrated that the tolerability of E7820 was acceptable and
no significant safety concerns were identified, warranting further de-
velopment of this drug in gastrointestinal malignancies (NC-
T01773421) (Mita et al., 2011).

The safety and tolerability of integrin inhibitors with diverse mo-
lecular structures have been largely confirmed by several studies.
However, the clinical trials with cilengitide, voloxicimab and E7820
reported only prolonged stable disease as best tumor response without
survival benefits compared to single agent approaches for the treatment
of PDAC. These disappointing clinical results clearly emphasize the
need to identify how key PDAC tumors and ECM factors might influence
the susceptibility to these inhibitors. This is particularly true since in-
tegrins recognize specific motifs in the ECM. Importantly, integrins
form the mechanical coupling between the ECM and the cytoskeletal
machinery, and are therefore key in both rigidity sensing of the ECM by
the cell, and the application of traction forces on the microenvironment.
However, the ECM mesh size, nanotopography, the thickness and me-
chanics of the constituent fibers influence cell behavior in complex
ways (Jansen et al., 2015). A key challenge for future research is
therefore to design physiologically relevant assays that can unravel
these effects.

3. Tools to investigate PDAC mechanopharmacology

Mechanopharmacology requires the combination of tools and con-
cepts established in biophysics, engineering and biology. Over the past
two decades, the advances in high-resolution microscopy and in me-
chanobiology tools paved the way to investigate with unprecedented
resolution capacity, the role of mechanics in health and disease
(Eisenstein, 2017). We will present below representative powerful
techniques that are capable of monitoring how cells apply forces, alter
their environment (‘inside-out signaling’) and, vice versa, how cells
probe the mechanical properties of their microenvironment and trans-
duce this information together with information from other signals such
as growth factors into a concerted response (‘outside-in coupling’).
Comprehensive reports have been published by Chen and colleagues
(Eyckmans et al., 2011; Polacheck and Chen, 2016). However, Fig. 2
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exemplifies the most important tools, with specific application to pre-
clinical models of PDAC.

3.1. Traction force microscopy on elastic substrates

In 1980, Harris and colleagues were the first to demonstrate de-
formations generated by fibroblasts on soft silicone rubber substrates
(Harris et al., 1980). Further developments over the last 30 years led to
the development of traction force microscopy (TFM) technique that
allows to extract the traction forces generated by cells with improved

resolution, accuracy, and reproducibility by combining high-resolution
optical imaging and extensive computational analyses (Plotnikov et al.,
2014). TFM is a method to map and determine traction forces exerted
by adherent cells on continuous, linearly elastic, usually two-dimen-
sional hydrogels (e.g. polyacrylamide) with fluorescent tracer particles
embedded within the gel (Fig. 2a). The hydrogel stiffness is tuned by
adjusting the acrylamide monomer and cross-linker content in poly-
acrylamide gels (Denisin and Pruitt, 2016). The substrate is deformed
by the cells and the displacement is measured by tracking the tracer
particles. The resulting gel displacements can be converted into traction

Fig. 2. Experimental tools in mechanobiology to study chemoresistance in PDAC. a–b. Traction force microscopy and elastic micropillar arrays are tools to investigate the inside-out
signaling by measuring force generation by adherent cells on 2D substrates of controlled stiffness. c–f. Micropipette aspiration, atomic force microscopy, optical stretcher and RT-
deformability allow us to study the viscoelastic properties of cells and tissues. g. The cell stretcher device (uniaxial, top or equi-biaxial, bottom) permits to elucidate the outside-in
signaling by active application of mechanical stress with tunable amplitude and frequency. All tools are combined with high- (super-) resolution microscopy techniques to increase the
temporal and spatial resolution.
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forces by using the material constitutive relations and solving the
elastic problem subject to the appropriate boundary condition (Style
et al., 2014; Sabass et al., 2008; Trepat et al., 2009). The covalent cross-
linking of the substrate with specific ECM proteins (e.g. fibronectin)
allows to selectively activate distinct classes of adhesion receptors. The
introduction of high density of two color fluorescent microspheres al-
lowed to measure traction forces within individual focal adhesions
(with up to 50 markers per focal adhesion) on polyacrylamide gels
down to 1 μm resolution (Sabass et al., 2008; Plotnikov Sergey et al.,
2017). More recently, the combination of stimulated emission depletion
(STED) microscopy and TFM permitted to detect forces at the nanoscale
(Colin-York et al., 2016). Notably, other groups are expanding the
technique to three dimensions in order to quantify the cell-generated
forces in highly nonlinear 3D biopolymer (e.g. collagen gels, fibril gels
and Matrigel) networks (Steinwachs et al., 2016).

3.2. Elastic micropillar arrays

Elastic micropillars are powerful tools to quantify the forces that
adhering cells exert on their substrates (‘inside-out signaling’) (Fig. 2b).
One widely used design, developed by the bioengineer Christopher
Chen and his colleagues (Tan et al., 2003), consists of an ordered (e.g.
hexagonal patterned) array of evenly spaced and flexible pillars made
of poly dimethyl-siloxane (PDMS). A precise control of the physical
properties of the environment is achieved by tuning the pillar geometry
(e.g. diameter, spacing, length). The arrays can be produced using re-
plica-molding from a silicon wafer into which the negative of the
structure (i.e. the pattern of micrometer-wide holes of varying depth) is
etched by e.g. deep reactive-ion etching. The tops of the micropillars
are coated with the ECM molecule of interest, for instance FN, using
micro-contact printing, whereas the rest of the array is coated with anti-
adsorption materials. This ensures that once plated, cells solely adhere
to the pillar tops. Fluorescent labeling of ECM molecules (for example,
in a ratio of 1:5 to unlabeled components), allows localization of the
pillar-centroids by high-resolution (i.e. high-NA objective) fluorescence
microscopy, down to ∼30 nm resolution at an imaging rate of 100
images/sec (van Hoorn et al., 2014). The force-deflection relation of
pillars is well approximated by Hooke’s law and can be precisely cali-
brated when combining finite element methods and electron micro-
scopy measurements of the micropillars. Distinct pillar lengths corre-
spond to distinct spring-constants together with the precision to which
deflections of ∼30 nm can be resolved, corresponding to a force ac-
curacy of ∼500 pN (van Hoorn et al., 2014). Remarkably, elastic mi-
cropillars can be combined with super-resolution methods (van Hoorn
et al., 2014) to investigate the events that produce cellular forces at the
single molecule level.

3.3. Rheometry on individual cells

The rheological properties of cells and tissues are sensitive in-
dicators of physiological and pathological changes (Guo et al., 2014;
Rigato et al., 2017). Micropipette aspiration is regarded as a pioneering
technique for single cell elasticity measurement (yielding values of the
Young’s modulus ranging from 100 Pa to 500 Pa) by the observation of
cell deformation upon pressure suction (Fig. 2c) (Hochmuth, 2016). A
conventional micropipette aspiration system generally consists of a
glass capillary micropipette for the suction and simultaneous optical
access to observe the cell deformation. Despite its simplicity, micro-
pipette aspiration has been applied to a variety of experimental systems
that span different length scales to study cell mechanics, nanoscale
molecular mechanisms in single cells, bleb growth, and nucleus dy-
namics.

Atomic force microscopy (AFM) is a powerful method to study
biophysical properties in a broad length scale, commonly used in
combination with high-resolution microscopes for simultaneous ima-
ging of the processes occurring in the sample (Haase and Pelling, 2015;

Sen et al., 2016). The surface under investigation is mechanically in-
dented by a cantilever with a very sharp tip (∼10 nm), whose deflec-
tions (with respect to the equilibrium position) are detected by a pho-
todiode (Fig. 2d). The use of spherical tips allows AFM to measure the
elasticity of living cells yielding values of the Young’s modulus ranging
from 100 Pa to 100 kPa, avoiding artifacts introduced by extraneous
cantilever-cell contact (Harris and Charras, 2011).

In 2001, Guck and colleagues developed the optical stretcher (OS), a
laser tool to manipulate single cells (Fig. 2e) (Guck et al., 2001). The
basic principle is that the surface forces acting on a dielectric object
placed between two opposed, non-focused laser beams, lead to a
stretching of the object along the axis of the beams. The method had the
sensitivity necessary to distinguish even between different individual
cytoskeletal phenotypes in fibroblasts. More recently, Guck and col-
leagues developed a new method, real-time deformability cytometry
(RT-DC), to probe cell stiffness at high throughput ( > 100 cells/sec) by
exposing cells to a shear flow in a microfluidic channel, allowing for
mechanical phenotyping based on single-cell deformability (Fig. 2f)
(Otto et al., 2015; Mietke et al., 2015). RT-DC is capable of distin-
guishing between specific cell-cycle phases, track stem cell differ-
entiation into distinct lineages and identify cell populations in whole
blood by their mechanical fingerprints.

3.4. Support-based cell stretcher

The cell stretcher is a device to investigate the ability of adherent
cells to sense and respond to mechanical stimuli (‘outside-in coupling’).
The uniaxial system can be based on a variable stroke cam-lever-tappet
mechanism, which allows the delivery of cyclic stimuli with tunable
frequency (up to 10 Hz), duration and displacement (deformation be-
tween 1% and 20%) (Fig. 2g, top) (Balcioglu et al., 2015; Kamble et al.,
2016; Seriani et al., 2016). The cells are plated on an ad hoc PDMS
membrane, coated with ECM molecules (e.g. FN), which is then loaded
on the clamps of the cell-stretcher. As for the micropillar arrays, the cell
stretcher device can be optically accessed and the response of cells to
cyclic stimuli (e.g. cytoskeleton reorganization, pathways activation) is
monitored by high-resolution imaging (Balcioglu et al., 2015). Other
designs allow equi-biaxial stretching through the cell substrate de-
formation by applying vacuum underneath the flexible-bottomed well
(Fig. 2g, bottom) (Hung and Williams, 1994).

3.5. Mechanical and physical aspects of multi-cellular 3D systems

It is now well accepted that organotypic 3D systems greatly serve as
therapy test platforms to predict clinical efficacies (Friedrich et al.,
2009). Therefore, a physical characterization of multi-cellular 3D sys-
tems is also required to be successful in the mechanopharmacology
approach (Gilbert and Weaver, 2017). In the last decade, several tools
have been developed to apply and measure mechanical stresses beyond
the single cell scale (Warren et al., 2016; Eyckmans and Chen, 2017;
Shao et al., 2015). Guevorkian and colleagues estimated the surface
tension, viscosity, and elastic modulus of spherical cellular aggregates
(spheroids), using a micropipette aspiration-based technique
(Guevorkian et al., 2010). Novel methods for molding spheroids, de-
forming them and measuring elastic properties through magnetic na-
noparticles have been recently designed to study the effect of an applied
mechanical stress (Mazuel et al., 2015; Montel et al., 2011). On the
contrary, biocompatible, magnetically responsive ferrofluid micro-
droplets have been introduced as local mechanical actuators to measure
cell-generated mechanical stresses in vitro and in vivo (Lucio et al., 2015;
Serwane et al., 2017).

4. Concluding remarks

In past two decades, concentrated efforts to elucidate the genetic
and molecular mechanisms underlying PDAC initiation and progression
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modestly contributed to the reduction of the tumor burden in this lethal
disease. The yet unsatisfactory results of available treatments targeting
the stromal cellular/non-cellular components, stem from the com-
plexity of intrinsic and acquired chemoresistance modalities in PDAC,
fostered by the mutational landscape and genomic instability as well as
the mechanical tumor-stroma interaction. The mechanopharmacology
approach, aiming at unraveling the bidirectional interplay between
drug action/resistance and mechanics, should be successful at identi-
fying new drugs and drug targets towards the eradication of PDAC, as
well as predictive/prognostic biomarkers that are yet representing a
clinical unmet problem. Furthermore, mechanopharmacology should
provide a better understanding of the failures of current treatments, e.g.
by clarifying the importance and contribution of each integrin to PDAC
chemoresistance.
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