
Leveraging Coprocessors as 
Noise Engines
in Off-the-Shelf Microcontrollers

Balazs Udvarhelyi1,2 and François-Xavier Standaert1

1 : UCLouvain, ICTEAM, Crypto Group, Louvain-la-Neuve, Belgium
2 : STMicroelectronics, Diegem, Belgium



Agenda

5 Conclusions

2 Exploiting MCU peripherals

3 Noise engine impact evaluation

4 Attack description & results

2

1 Side-channel attacks in software



Side-channel attacks
And the problem of securing software implementations



Designer goals:
• Minimize the information extracted from the 

leakages

In Software (MCUs):
• Limited & fixed inherent physical noise
• Additional countermeasures needed

Masking:
• Common countermeasure
• Amplifies present noise

Noise amplification 
countermeasures 

need noise to be effective!

Side-channel attacks
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• Unprotected probability 𝑝𝑝 𝑥𝑥 𝑙𝑙 =

• Masked probability 𝑝𝑝 𝑥𝑥 𝑙𝑙 =

Computing on shares:
𝑥𝑥 = 𝑥𝑥0 ⊕ 𝑥𝑥1 ⊕ 𝑥𝑥2 ⊕ ... ⊕ 𝑥𝑥𝑛𝑛

Attack complexity:
𝑁𝑁 ≥

𝑐𝑐
MI 𝑋𝑋𝑖𝑖 , 𝐿𝐿 𝑛𝑛

Two conditions:

• Shares’ leakages are independent
• MI per share sufficiently low

Masking: The principle
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CHES 2021 result: [BS21]

• In low end MCUs : Sufficient noise condition not met
• Slow increase of attack complexity w.r.t. # shares

Masking in software : The problem
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Sufficient noise condition not met:
• Masking becomes useless (or at least very costly)

Masking in software: The problem
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Exploiting MCU peripherals
How to generate noise



Ideal properties:
• Pseudorandom states
• Wide bus
• Same power source as CPU
• Continuous/long operation

→ Compatible peripherals are limited!

Our solution:
• AES-128 core

• 16 cycles i.e. 128bit architecture (i.e. ≈1 
round per clock cycle)

• Input and output buffer using DMA
• Autonomous operation during a full 

buffer of encryption
• Interrupt for reconfiguration of buffer
• Frequent re-keying of coprocessor

Noise engine characteristics
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Execution scheme
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Noise engine impact evaluation



Target:
• Masked bitslice AES of Goudarzi and Rivain [GR17]

• PINI gadgets from [CS20]
• Gadgets’ assembly code from [BC22]
• AES coprocessor based noise engine

Measurement process:
1. Reproduce measurements of [BS21] on ChipWhisperer CW308 with 

STM32 F0 (without AES coprocessor)

2. Swap daughterboard to STM32 F4 (with AES coprocessor)

Impact Evaluation 
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Impact on raw leakage
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Without noise generation



Impact on raw leakage
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With noise generation



Signal to Noise Ratio:
• Inter over intra class variance
• Calculated on 16-bit variables (Avoid impact of algorithmic noise)
• All shares & intermediate states of AES Sbox

• Calculated for each sample as: 

Information theoretic metrics
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Impact on SNR
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Without noise generation



Impact on SNR
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With noise generation



Perceived Information (PI):

• Calculating Mutual Information (MI) is hard → Use bounds
• PI is a lower bound to the MI
• PI is multivariate
• Inversely proportional to attack complexity
• Easy to estimate by sampling the distribution: 

Information theoretic metrics
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Impact on PI
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Leakage model : 
• Regression based LDA [CDSU23]

→ Extension of Gaussian templates : 
Efficient for long traces and large states

• 16-bit models
• ≈2000 POIs per model
• Reduced to 10 dimensions

Results : 
• PI of the 8 input words of the Sbox
• Example for 2 shares



Impact on leakage traces:
• Leakage amplitude is higher
• Different operations are not distinguishable (XOR vs AND gadgets)
Impact on SNR:
• Clear reduction of SNR values
• No alteration of SNR curves’ shape
Impact on PI:
• Reduction of PI per share by a factor ≈2
• Same behaviour for datasets with 2+ shares 

Impacts on IT metrics
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Attack description & results



Baseline Template Attack (using RLDA model):
1. Profile each share of Sbox input words
2. Intermediate secret value : Recombine likelihoods on shares
3. Combine likelihoods of all traces

Attack description
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• Several intermediate states can leak
• Profiling in the same template is not practical
• SASCA methodology:

• Profile variables separately
• Represent variables & relations in a factor graph 
• Use message passing algorithm: Belief propagation

Soft Analytical Side-channel Attacks
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Baseline Template Attack:
1. Profile each share of Sbox input words
2. Intermediate secret value : Recombine likelihoods on shares
3. Combine likelihoods of all traces
SASCA of [BS21]:
1. Repeat 1. & 2. of Baseline attack for each Sbox variable
2. Run BP algorithm on Sbox 
3. Combine likelihoods of all traces
4. Evaluate both attacks with histogram based rank estimation [PSG16].

Attack description
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Baseline attack results
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≈ 2𝑛𝑛 improvement
in attack complexity



Results : 
• Very limited improvements over baseline attack
• Difference between attacks is smaller for higher orders of masking

Discussion:

• Lower PI on shares than [BS21] 
• STM32 F4 has smaller technology node (90nm vs 180nm)

• Propagation through factor graph is similar to masking  
As masking is not effective without noise:
→ SASCA is more effective when leakage is high

SASCA results
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• Algorithmic noise can be generated with MCU peripherals

• Impact grows with higher orders of masking → Potential reduction of # shares

• Limited time overheads

• Can be combined with other countermeasures (shuffling, random delays)

Conclusions
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