
Leveraging Coprocessors as
Noise Engines
in Off-the-Shelf Microcontrollers

Balazs Udvarhelyi1,2 and François-Xavier Standaert1

1 : UCLouvain, ICTEAM, Crypto Group, Louvain-la-Neuve, Belgium
2 : STMicroelectronics, Diegem, Belgium

Agenda

5 Conclusions

2 Exploiting MCU peripherals

3 Noise engine impact evaluation

4 Attack description & results

2

1 Side-channel attacks in software

Side-channel attacks
And the problem of securing software implementations

Designer goals:
• Minimize the information extracted from the

leakages

In Software (MCUs):
• Limited & fixed inherent physical noise
• Additional countermeasures needed

Masking:
• Common countermeasure
• Amplifies present noise

Noise amplification
countermeasures

need noise to be effective!

Side-channel attacks

4

• Unprotected probability 𝑝𝑝 𝑥𝑥 𝑙𝑙 =

• Masked probability 𝑝𝑝 𝑥𝑥 𝑙𝑙 =

Computing on shares:
𝑥𝑥 = 𝑥𝑥0 ⊕ 𝑥𝑥1 ⊕ 𝑥𝑥2 ⊕ ... ⊕ 𝑥𝑥𝑛𝑛

Attack complexity:
𝑁𝑁 ≥

𝑐𝑐
MI 𝑋𝑋𝑖𝑖 , 𝐿𝐿 𝑛𝑛

Two conditions:

• Shares’ leakages are independent
• MI per share sufficiently low

Masking: The principle

8

CHES 2021 result: [BS21]

• In low end MCUs : Sufficient noise condition not met
• Slow increase of attack complexity w.r.t. # shares

Masking in software : The problem

10

Sufficient noise condition not met:
• Masking becomes useless (or at least very costly)

Masking in software: The problem

11

Exploiting MCU peripherals
How to generate noise

Ideal properties:
• Pseudorandom states
• Wide bus
• Same power source as CPU
• Continuous/long operation

→ Compatible peripherals are limited!

Our solution:
• AES-128 core

• 16 cycles i.e. 128bit architecture (i.e. ≈1
round per clock cycle)

• Input and output buffer using DMA
• Autonomous operation during a full

buffer of encryption
• Interrupt for reconfiguration of buffer
• Frequent re-keying of coprocessor

Noise engine characteristics

13

Execution scheme

Coprocessor
Buffer

CPU Memory Coprocessor

CPU code
space

Fill buffer with random data

Initialize coprocessor Initialize coprocessor

Encrypt bufferSecure software execution

N
oi

se
 g

en
er

at
ed

Re-keying of coprocessor Re-keying of coprocessor

Encrypt buffer

N
oi

se
 g

en
er

at
ed

Secure software execution

14

Tim
e

Autonomous
operation with DMA

Noise engine impact evaluation

Target:
• Masked bitslice AES of Goudarzi and Rivain [GR17]

• PINI gadgets from [CS20]
• Gadgets’ assembly code from [BC22]
• AES coprocessor based noise engine

Measurement process:
1. Reproduce measurements of [BS21] on ChipWhisperer CW308 with

STM32 F0 (without AES coprocessor)

2. Swap daughterboard to STM32 F4 (with AES coprocessor)

Impact Evaluation

16

Impact on raw leakage

17
Without noise generation

Impact on raw leakage

18
With noise generation

Signal to Noise Ratio:
• Inter over intra class variance
• Calculated on 16-bit variables (Avoid impact of algorithmic noise)
• All shares & intermediate states of AES Sbox

• Calculated for each sample as:

Information theoretic metrics

19

Impact on SNR

20
Without noise generation

Impact on SNR

21
With noise generation

Perceived Information (PI):

• Calculating Mutual Information (MI) is hard → Use bounds
• PI is a lower bound to the MI
• PI is multivariate
• Inversely proportional to attack complexity
• Easy to estimate by sampling the distribution:

Information theoretic metrics

22

Impact on PI

23

Leakage model :
• Regression based LDA [CDSU23]

→ Extension of Gaussian templates :
Efficient for long traces and large states

• 16-bit models
• ≈2000 POIs per model
• Reduced to 10 dimensions

Results :
• PI of the 8 input words of the Sbox
• Example for 2 shares

Impact on leakage traces:
• Leakage amplitude is higher
• Different operations are not distinguishable (XOR vs AND gadgets)
Impact on SNR:
• Clear reduction of SNR values
• No alteration of SNR curves’ shape
Impact on PI:
• Reduction of PI per share by a factor ≈2
• Same behaviour for datasets with 2+ shares

Impacts on IT metrics

24

Attack description & results

Baseline Template Attack (using RLDA model):
1. Profile each share of Sbox input words
2. Intermediate secret value : Recombine likelihoods on shares
3. Combine likelihoods of all traces

Attack description

26

• Several intermediate states can leak
• Profiling in the same template is not practical
• SASCA methodology:

• Profile variables separately
• Represent variables & relations in a factor graph
• Use message passing algorithm: Belief propagation

Soft Analytical Side-channel Attacks

27

Baseline Template Attack:
1. Profile each share of Sbox input words
2. Intermediate secret value : Recombine likelihoods on shares
3. Combine likelihoods of all traces
SASCA of [BS21]:
1. Repeat 1. & 2. of Baseline attack for each Sbox variable
2. Run BP algorithm on Sbox
3. Combine likelihoods of all traces
4. Evaluate both attacks with histogram based rank estimation [PSG16].

Attack description

28

Baseline attack results

29

≈ 2𝑛𝑛 improvement
in attack complexity

Results :
• Very limited improvements over baseline attack
• Difference between attacks is smaller for higher orders of masking

Discussion:

• Lower PI on shares than [BS21]
• STM32 F4 has smaller technology node (90nm vs 180nm)

• Propagation through factor graph is similar to masking
As masking is not effective without noise:
→ SASCA is more effective when leakage is high

SASCA results

30

• Algorithmic noise can be generated with MCU peripherals

• Impact grows with higher orders of masking → Potential reduction of # shares

• Limited time overheads

• Can be combined with other countermeasures (shuffling, random delays)

Conclusions

31

© STMicroelectronics - All rights reserved.
ST logo is a trademark or a registered trademark of STMicroelectronics International NV or its affiliates in the EU and/or other countries.
For additional information about ST trademarks, please refer to www.st.com/trademarks.
All other product or service names are the property of their respective owners.

Thank you!

http://www.st.com/trademarks

Bibliography
• BC22: Olivier Bronchain and Gaëtan Cassiers.

Bitslicing arithmetic/Boolean masking conversions for
fun and prot with application to lattice-based kems. IACR
Trans. Cryptogr. Hardw. Embed. Syst., 2022(4):553-588,
2022.

• BS21: Olivier Bronchain and François-Xavier
Standaert. Breaking masked implementations with many
shares on 32-bit software platforms or when the
security order does not matter. IACR Trans. Cryptogr.
Hardw. Embed. Syst., 2021(3):202-234, 2021.

• CDSU23:Gaëtan Cassiers, Henri Devillez, François-
Xavier Standaert, and Balazs Udvarhelyi. Efficient
regression-based linear discriminant analysis for
sidechannel security evaluations: Towards analytical
attacks against 32-bit implementations. IACR Trans.
Cryptogr. Hardw. Embed. Syst., 2023(3):270-293, 2023

• CS20: Gaëtan Cassiers and François-Xavier
Standaert. Trivially and efficiently composing masked
gadgets with probe isolating non-interference. IEEE
Trans. Inf. Forensics Secur., 15:2542-2555, 2020

• GR17: Dahmun Goudarzi and Matthieu Rivain. How
fast can higher-order masking be in software? In
EUROCRYPT (1), volume 10210 of Lecture Notes in
Computer Science, pages 567-597, 2017.

• PSG16: Romain Poussier, François-Xavier Standaert,
and Vincent Grosso. Simple key enumeration (and rank
estimation) using histograms: An integrated approach. In
CHES, volume 9813 of Lecture Notes in Computer
Science, pages 61-81. Springer, 2016

© STMicroelectronics - All rights reserved.
ST logo is a trademark or a registered trademark of STMicroelectronics International NV or its affiliates in the EU and/or other countries.
For additional information about ST trademarks, please refer to www.st.com/trademarks.
All other product or service names are the property of their respective owners.

http://www.st.com/trademarks

	Leveraging Coprocessors as Noise Engines�in Off-the-Shelf Microcontrollers
	Agenda
	Side-channel attacks�And the problem of securing software implementations
	Side-channel attacks
	Masking: The principle
	Masking in software : The problem
	Masking in software: The problem
	Exploiting MCU peripherals�How to generate noise
	Noise engine characteristics
	Execution scheme
	Noise engine impact evaluation
	Impact Evaluation
	Impact on raw leakage
	Impact on raw leakage
	Information theoretic metrics
	Impact on SNR
	Impact on SNR
	Information theoretic metrics
	Impact on PI
	Impacts on IT metrics
	Attack description & results
	Attack description
	Soft Analytical Side-channel Attacks
	Attack description
	Baseline attack results
	SASCA results
	Conclusions
	Slide Number 32
	Bibliography
	Slide Number 34

