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The Early 1990s

Flourishing of 2D Quantum
Gravity: Continuum Path
Integral, Matrix Models,
Topological Recursion
Relations, 2D Black Holes

Herman and | were very
close!

Jadwin 324 and 326
Also, Hibben and Magie




* | could not help overhearing many hours of
conversations between Erik, Herman and
Robbert emanating from Jadwin 324, but |
understood nothing.




ICTP Spring School 1991

* Herman was an organizer and very good host

e Lectures on large N matrix
models and Liouville gravity.

* |IRK, hep-th/9108019

‘E‘.} —r—_ "‘.—.'I".':—_ = .E_

STRING THEORY AND
QUANTUM GRAVITY '91

Proceedings of (ke Trbrtie Soring Scaaal E Warkihop
ICTP, Triexte. Ilndy Rgril 15 =36, 1901

Fiid by

J. Hargy

R, langa

K. 5 Marain

5. Rardjbar-Dapeni
M, ¥erfinds

W Ber bt Pl



Singlet Sector Simplification

 The SU(N) invariant sector of the Hermitian
matrix quantum mechanics is described by the
free fermions. Brezin, Itzykson, Parisi and Zuber

* This is the secret of the exact solvability of the
model.

 The non-singlet sectors are related to the BKT
vortices or, alternatively, long strings. cross, Irk;

Maldacena



The c=1 Matrix Reloaded

* A dozen years later, in 2003, the Hermitian matrix
guantum mechanics was given a new
interpretation as describing N unstable DO-
branes. . McGreevy, H. Verlinde; Polyakov

* Linear dilaton holography: String theory in two
dimensions is dual to the large N matrix quantum
mechanics on ZZ DO-branes.

* A new hat for the c=1 matrix model. The double-
scaled, double-well matrix quantum mechanics is
dual to the type OB NSR string theory in 2D,

which has worldsheet fermions. Takayanagi, Toumbas;
Douglas, IRK, Kutasov, Maldacena, Martinec, Seiberg



O(N) x O(N) Matrix Model

* Theory of real matrices ¢p* with distinguishable
indices, i.e. in the bi-fundamental

representation of O(N)_xO(N), symmetry.
* The interaction is at least quartic: g tr ¢o'¢p¢’

* Propagators are represented by colored double
ines, and the interaction vertex is

* |[n d=0 or 1 special limits describe two-
dimensional quantum gravity.




From Bi- to Tri-Fundamentals

* For a 3-tensor with distinguishable indices the
propagator has index structure

<¢abc¢a’b’c’> _ 5aa’5bb’é‘ca’
* |t may be represented graphically by 3 colored
wires & b

* Tetrahedral interaction with abiC
O(N)_xO(N) xO(N). symmetry

Carrozza, Tanasa; IK, Tarnopolsky a §
2
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* Leading correction to the propagator has 3

index loops A

2l

* Requiring that this “melon” insertion is of
order 1 means that \ = ¢gN?/? must be held

fixed in the large N limit.
* Melonic graphs obtained by iterating

A
N




O(N)3 Tensor QM

* Quantum Mechanics of N3 Majorana fermions
IRK, Tarnopolsky

, Calb ~aa’ bbb’ cec!
{?:i.;_,abcf '?;'.Jﬂ b'c } — 5o bb §ee

H = Q,U abe ) Lab’c ",(;ija"bc",g{}a."b’c 7\r4
4 16

* Has O(N)_xO(N)xO(N)_.symmetry under
W — MY MY Mg 0™ My, My, My € O(N)
 The SO(N) symmetry charges are

(2[11.(1’ _ ['?__-"f-‘abc_ tja"bc] . (ng" _ ['?__-"flabc_ .wab"c] . {ggc" _ 5[_5‘;-‘&.5(‘.. . ,abc’
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O(N)3 vs. SYK Model

Using composite indices I = (abrck)

1
H :Eflllzlshllf yRy gt

The couplings take values 0,+1
1 b1l = Ouyay Ouzay Obybs Obyby Ocy s Ocyes — Ouyas Ouzay Obybs Obyby Ocycy Ocyca + 22 terms
e The number of distinct terms is

Z 111121314 = ZNQ)(N —1)*(N+2)
{fk}

Much smaller than in SYK model with ~Ngyx = N?

1 3 3
SV IV =DV =2)(V - 3)



Gauged Model

* To eliminate large degeneracies, gauge the
symmetry. witten

* Focus on the states invariant under SO(N)3.

 Their number can be found by gauging the

free theOry IRK, Milekhin, Popov, Tarnopolsky
M/2

H#singlet states = / d)\;;f-‘;;’ H 2 cos(Aq/2)

a=1

. v — i\ v+ i\
dAso(n) = | | sin ( - - : j) sin ( - > : j) dry...dz,

i< - -




* No singlets for odd N due to a QM anomaly.
* The number grows very rapidly for even N

# singlet states
2
36
595354780

T
N/
/

Table 1: Number of singlet states in the O(N)? model

. N3 3N?
Hsinglet states ~ exp (7 log 2 — 5

log N + O(NQ))

* Large N dynamics in the singlet sector is similar
to SYK. Same melonic Dyson-Schwinger egns.

 The large low-temperature entropy suggests
tiny gaps for singlet excitations ~ "



Singlet Energies for N=4

8L

degeneracy
IN fo)

M
e

otl . 1 N O B 1 i

-150 -100 -50 0 o0 100 150

* For N=6 there will be over 595 million states
packed into energy interval <1932. So, the
g4dpsS should be tlny Pakrouski, IRK, Popov, Tarnopolsky



Spectra of Energy Eigenstates

* Generalize the Majorana tensor model to have
O(Ny1) x O(Ny) x O(N3g) symmetry

J r

e The traceless Hamiltonian is

(q RN OV I S N A Y. ( A T s - o
H _ i_ujabct.‘ab o E,-,a be _Uja b'e ﬁ:\‘lj\Q:\SL\l o i\'g 4+ :\3}
{E—',abr:_ .E:Fa."b"c”} _ O‘aa" 556"60.{'.’

* The Hilbert space has dimension 2/"1"2"3/2

* The eigenstates of H form irreducible
representations of the symmetry.



Energy Bounds

The bound on the singlet ground state energy
IRK, Milekhin, Popov, Tarnopolsky

(- T N T ¢
|E| S Ebm:.nd. — l—g:\g(:\ + 2)

In the melonic limit, this correctly scales as N3.

The gap to the lowest non-singlet state scales
as 1/N.

For unequal ranks the bound is

] < %ﬂﬁ NaN3(N1NoNs + N7 + Ny + Nj — 4)1/7



A Fermionic Matrix Model

* For N;=2 the bound simplifies to
( T T T -
1Bl Ny= < é\H No(N1 + Ny)

e Saturated by the ground state.
* This is a fermionic matrix model with symmetry

O(Ny) x O(Ng) x U(1)

- 1 | | .

Fab — \/E
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e The traceless Hamiltonian is
( — — — — ( N N _ _
H = Ej(f '\abWab/ Va'bWa'ty — WabWa'bWal' U 1&’!}”) T :{:\1:\2(:\2 — :\1j
.

Describes qubits on N; x N, lattice with non-
local couplings.

 May be expressed in terms of quadratic

Casimirs

( U 2 i i | R i
_% (4(5‘3{ (2‘30 Ni) + (2‘3() (N2) + T(22 + (:\2 o :\lj(g . 1:\1‘\2(:\1 4 ‘\2j)
Ny .

SU(N;) x SU(N,) is not a symmetry here but
an enveloping algebra. Some states have
enhanced symmetry: they are SU(N) invariant.



Complete Spectrum

* The singlets “scar” the energy distribution.
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Figure 1: Spectrum of the O(4)? x O(2) model. There are four singlet states, and the stars
mark their energies.



Towards Hubbard Model

* Can also think of the first index as labeling the
lattice site, and the second as labeling spin.
When N,=2, there are two spin states, up and
down. The model is beginning to resemble a
non-local Hubbard model, but need to add
quadratic hopping terms. pakrouski, Pallegar, Popov, IRK

* Imaginary hopping terms are SO(N) generators
IA(I) — "Z(('Zn(‘/” o (‘;r(r(';"”) g :T.‘ J/

* Adding them to H keeps singlets as eigenstates
but mixes up the non-singlets.



* A simple transformation leads to a model with
a real nearest neighbor hopping parameter:

Hon = Y. (el Gzt hic)
(ij)o

* This transformation is possible on a bi-partite
lattice



SO(N) Singlets as Scars

* For the eigenstates that are SO(N) singlets, the
energy is independent of the hopping
Pa rameter {. pakrouski, Pallegar, Popov, IRK

* This is the kind of simplification characteristic
of the Quantum Many-Body Scars, that have
been an active area in Condensed Matter
Physics and Quantum Information.

e Scars form an “integrable subsector” in a
Hamiltonian that is in general not integrable.



Group Theoretic Approach to Scars

* There are Hamiltonians that are not symmetric
under a Lie group G, yet some of their
eigenstates are invariant. These are the
guantum many-body scars!

* A class of such Hamiltonians is

H = Ho+>,0;Tf

* Includes local lattice systems like the tJU model

HYY = Z (tcl-tacjg + h.c.) + JZ 5_‘;- : §j+ UZ Nty — Q)

(ij)o (ij) e



Pseudospin

* An example is provided by C.N. Yang’s eta-
pairing states in the Hubbard model.

* The pseudospin group SU(2)
by 1 _ZC;TCN_ Z% Cjor€

}0(7

N
= ('77+)T; = 5(@ SN) Q= z; n,

, 1S generated

Ny = CITC@T s Nil = C’j 1G> T = Tt + Ny

* |t commutes with the rotation group and with
the O(N) that acts on the lattice index.



Eta-pairing states

 There are N+1 SO(N) invariant states that form
a multiplet of pseudospin N/2
iy = )"

Nl!n!
(N—n)!

0) n=0,...,N

* They are the highly excited, equally spaced
states that play the role of scars in the
Hubbard model and its deformations. moudgalya et

al.; Mark, Motrunich; Pakrouski et al.



Histogram of the Energy Levels

* A typical distribution for the tJU model
deformed by OT terms
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Low Entanglement

* The scar states are distinguished by their low
entanglement entropy when the system is
divided into two parts:

o =2 N W B~ O,

-40 -20 0 20



Non-Hermitian Hamiltonians

 The group theoretic approach to scars
continues to work when non-Hermitian terms

are added to the Hamiltonians, e.g. the tJU
model.

 The energies of scars continue to be real
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Comments

The scar states, which are invariant under the
large Lie group acting on the lattice sites, are
decoupled from all the non-singlet states.
Only the latter thermalize.

This decoupling survives the OT perturbations
and may approximately survive some other
perturbations.

The Group theoretic approach to scars applies
to non-Hermitian Hamiltonians.

Scar states in QFT? In AdS/CFT?



*Happy Birthday, Erik
and Herman!

*Gelukkige verjaardag!
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