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1 Section 1: Artificial Intelligence and Machine
Learning in Intelligent Products, Services, and
Systems (design)

1.1 1.1 Why should you care about Machine Learning?

1.1.1 AI is the new electricity

Andrew NG, a well known AI scientists and enterpreneur.

Some people even go as far as to say that: AI is the new electricity. This man in the figure is Andrew
NG. He is a scientist at Baidu and an entrepreneur. He is one of the people that have been massively
advocating for the fact that artificial intelligence is going to be everywhere.

One of the goals of this course is to somehow mediate between the reality and the perception that
many people bring out about AI and about what it can and cannot do.

I might not 100% agree with Andrew that AI is like electricity. But I do agree about the fact that it is
going to be in a lot of products, services, and systems that designers are designing and, even more in
the future, they will design

1.1.1.1 Where is artificial Intelligence?

• Autonomous vehicles

– from Roomba to Self-driving cars
– In stores, warehouses, production lines, streets, living rooms

1

https://www.andrewng.org/
https://www.andrewng.org/


2023-03-29 Machine Learning for Design

Examples of intelligent products indicated by students.

• More and more consumer products and appliances

– Thermostats, Security Cameras, Fridges

• Content production and consumption applications

– Social media, Amazon, Netflix etc.

• Chatbots
• In-store automation and smarter shopping
• Optimised supply chains
• Energy grid optimisation
• . . .

Most of the examples in the Figure 1.1 and in the list above are about digital products enhanched with
AI technology. At the end of the course, you will see that they are in other products as well. By the end
of the course, you will see that also physical products have this.

Here we provide a non-exhaustive list of applications or products where AI/ML plays a role, for example,
autonomous vehicles, the Roomba, to the self-driving. Some of you indicated the robot.

2 ML4D Lecture Notes [V0.61] Alessandro Bozzon
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Another example of intelligent product. Or maybe it does not exist. Would you be able to tell the
difference?

1.1.2 Definitions

Some of the terminology we will be using in this course

Now, let’s also make sure that we clarify what we mean by different terminology. We need to rationalize
and demystify what artificial intelligence is. And more specifically, what is Machine Learning?

What can it do? What can they not do? and how can you talk soberly about it without buying into the
hype and the whole marketing and advertisement-driven narrative?

Unfortunately, we live in the age of marketing and advertisements, so everything is somehow declining
regarding who can sell the most of it.

Alessandro Bozzon ML4D Lecture Notes [V0.61] 3
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1.1.2.1 Intelligence

Mental quality that consists of the abilities to learn from experience, adapt to new situations,
understand and handle abstract concepts, and use knowledge to manipulate one’s environment.[ˆ
Encyclopaedia Britannica]

Let us start with a definition of Intelligence. The problem, however, is that there seem to be almost as
many definitions of intelligence as there were experts asked to define it [ˆ R. J. Sternberg, quoted in
The Oxford Companion to the Mind. R. L. Gregory. Oxford University]. Here are three examples - The
ability to learn or understand or to deal with new or trying situations - The ability to apply knowledge
to manipulate one’s environment or to think abstractly as measured by objective criteria (such as
tests) - Mental quality that consists of the abilities to learn from experience, adapt to new situations,
understand and handle abstract concepts, and use knowledge to manipulate one’s environment

If you are interested in a relatively exhaustive collection of definitions you can find it in this technical
report published in 2007. The manuscript contains 71 definitions, drawn from literature in Psychology
and Artificial Intelligence.

Intelligence can be described as the ability to learn and understand, to translate knowledge and skills
from one situation to another.

1.1.2.2 Our definition of Intelligence

Intelligence measures an agent’s ability to achieve goals in a wide range of environments.

As we will discuss AI and ML from a technical perspective, we will adopt a definition that resounds
as very technical, given its emphasis on measurement – that is, the quantification of intelligence, to
allow for comparison – and the explicit mentioning of an agent – that is, anything that can perceive
its environment, take actions autonomously to achieve goals, and may improve its performance with
learning or may use knowledge.

1.1.2.3 Artificial Intelligence

Intelligence demonstrated by machines Computer programs that can emulate physical and/or
cognitive human capabilities

Multiple disciplines in computer science (e.g., robotics, machine learning, software engineering, data
science, computer vision, and natural language processing) are devoted to studying the properties
of intelligence by synthesizing it, that is, by recreating it artificially. Outside of computer science, the
interest in Artificial Intelligence has grown exponentially and now includes fields like Design, ethics,
sociology, and so on. However, most of the terminology and most of the narrative around Artificial
Intelligence has originated from computer science.

4 ML4D Lecture Notes [V0.61] Alessandro Bozzon
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When we talk about Artificial Intelligence, we talk about it as intelligence demonstrated by machines.
This is a broad definition because it allows us to include any human capability: even a calculator or a
traditional thermostat can be defined as intelligent. And, in a sense, they are. But we want to be more
specific.

When we talk about Artificial Intelligence, we talk about computer programs that can emulate some
physical or cognitive or human capabilities.

Physical capabilities relate to the physical sensing or manipulation of an environment. Sensing is
performed through devices (sensors) that detect events or environmental changes. Sensors can be
mechanical, chemical, or biological. Manipulations are typically achieved by controlling electronic,
mechanical, or magnetic actuators. Examples of actuators are engines, valves, and switches.

Thanks to these physical capabilities, it is possible for a machine to execute activities that require
some (complex) motor coordination, like opening a door, driving a car, playing football, or flying an
airplane or a drone. Such coordination is, however “directed” by cognitive capabilities like:

• perceiving the world, e.g. seeing, hearing, feeling, smelling, tasting. Perception is enabled by
sensing technology, but the interpretation of a physical signal requires cognitive abilities.

• learning, i.e. gaining knowledge from past experiences and interactions with the environment
• reasoning
• planning
• problem-solving
• creating

1.1.2.4 Strong vs. Weak AI

Another important terminological clarification is between Strong and Weak AI. It is an important
clarification because it is very common to read headlines like:

• Robot kills worker at Volkswagen plant in Germany
• Are you scared yet? Meet Norman, the psychopathic AI
• Facebook AI Creates Its Own Language In Creepy Preview Of Our Potential Future
• Sophia the robot was granted citizenship.

All these ridiculous headlines portray Artificial Intelligence as human-level or even super-human
intelligence.

1.1.2.4.1 Strong Artificial Intelligence

• AI that can do everything we humans can do, and possibly much more.
• Also called Artificial General Intelligence (AGI) or human-level intelligence. The AI we see in

movies
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• No AI program has been created yet that could be considered an AGI

Human-level intelligence is typically called Strong AI, which we see in the movies like “I, Robot,”
“Terminator,” or wherever there is an entity that seems to be able to exist with the same level of
cognitive reasoning capabilities as we do. It is the sort of Artificial Intelligence able to perform any
reasoning (inductive, deductive, abductive). An intelligence that can “connect the dots” between the
different experiences, perceptions, and activities, blending them to create a representation of the
world (and its actors) complete enough to act as an autonomous and independent agent, able to
(theoretically) perform any task.

It is important to realise that no one has ever created a computer program able to exhibit human-level
intelligence, and probably there will not be one any time soon.

Another term often used is super intelligence, which is AI systems that can do things better than
humans. While it is true that machines can execute some tasks better than humans (a 5 Euro calculator
can do computations better than the vast majority of human beings), that does not mean that such
machines are, overall, more intelligent than humans. It is a game of definitions, mostly fuelled by
marketing needs.

1.1.2.4.2 Weak Intelligence

• Also called Narrow AI.
• AI specialised in well-defined tasks.
• For example, speech recognition, chess-playing, autonomous driving

Current discussions around Artificial Intelligence and related technology are around what is called
weak AI or narrow AI, that is AI systems specialized in a specific task (e.g. recognizing cats in an image)
and probably terrible at different ones.

Note that even a specific task, like recognizing an object, requires some general intelligence capabilities
to be performed at a truly human level. As we will see later in the course, a computer vision system
(an AI system specialised in visual perception tasks) have difficulties in keeping equivalents levels
of performance across different contexts. For instance, when there are different lighting conditions
(e.g. dark scenes) or environments (e.g., indoor vs. Outdoor). AI systems require a lot of input (training)
to function. Humans can generalize their recognition activities also to variations of objects that they
have never seen before. Weak AI cannot. An AI trained to recognize green and red apples will never be
able to recognize pears.

Many of these issues will be addressed again throughout the course. Unfortunately, we’ve been through
5 to 10 years of brainwashing from corporate marketing and lazy news reporters, and it is important to
understand what the actual capabilities of AI systems are.

6 ML4D Lecture Notes [V0.61] Alessandro Bozzon



Machine Learning for Design 2023-03-29

1.1.2.5 Learning

• Any process by which a system improves performance from experience [ˆ Herbert Alexander
Simon]

• The ability to perform a task in a situation that has never been encountered before
• Learning = generalisation

Artificial Intelligence features a broad set of approaches to create machines exhibiting some form of
intelligence. Machine Learning, as we will see, focuses specifically on teaching computers how to learn
without the need to be programmed for specific tasks.

But what is learning? Learning can be seen as the process through which a system (or a person)
adapts so that a task or tasks drawn from the same set of tasks can be performed more efficiently
and effectively the next time. When we learn how to drive a bicycle, most of our attention, in the
beginning, is focused on how to use the handlebar and the pedals so that we can move forward (and
break) without falling. As we gain experience, our focus shifts toward cycling faster or longer, and we
acquire di ability to operate a bicycle.

Another way to define learning is the ability to generalize. That is the ability to perform a task in a
situation that has never been encountered before by extrapolating from the knowledge and experience
acquired by performing the same task in a different situation or task. We typically learn how to cycle
using the same bike in our backyard. As we gain experience, we can operate different bikes in different
environments (e.g., city bikes during the week and race bikes during the weekend). The experience we
gained learning how to bike will allow us, for instance, also to operate a moped or a motorbike. We
generalised our knowledge of how to ride a two-wheeler to other types of vehicles.

1.1.3 Can’t intelligence be programmed?

At this point, you might be wondering: what does all of this have to do with Artificial Intelligence and
computers? Thousand of people have been devoting decades of their lives to studying how to train
programming computers. Can’t intelligence be programmed?

1.1.3.1 Polany’s Paradox

“We can know more than we can tell. . . The skill of a driver cannot be replaced by a thorough
schooling in the theory of the motorcar” Michael Polanyi (1966)

But this brings about an interesting paradox that highlights one of the main issues with training AI.

Polanyi’s paradox can help us understand why it is not always easy to program machines to execute
tasks as we do.
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Take the game of chess, for instance. One of the reasons why computers have been able to beat
a reigning chess world champion (Gary Kasparov) as early as 1996 is our ability to mathematically
formalize the rules of chess. Given a very large amount of time, and abundant computational power,
we could simulate any game of chess ever played, or that will ever be played.

But take a different task, like driving a car, riding a bicycle, or writing a successful book. These are
examples of activities that we, human beings, learn how to perform without being able to fully verbalize
(or formalize) the rules or procedures behind them. We learn them through biological, cultural, social,
personal, and interpersonal processes. We often make decisions for reasons that we can’t tell, and
therefore we don’t know.

1.1.3.2 What is a cat?[ˆ Credits: Jonah Burlingame]

Let us give you a concrete example. Can you tell me what a cat is? What are the distinctive properties
of a cat?

• A cat has whiskers
• A cat is furry

You can start with some visual properties of cats. For instance, they have whiskers, and they are furry.
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• A cat has whiskers
• A cat is furry
• But so are lions!

But cats are not the only animals with such properties. Lions also have whiskers and fur.

• A cat has whiskers
• A cat is furry
• A cat is small

You could then operate by exclusion and add a new rule saying that cats are small.

• A cat has whiskers
• A cat is furry
• A cat is small
• But so are koalas

But many animals can you think of that fit this description? Quite a lot. The koala, for instance.

• A cat has whiskers
• A cat is furry
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• A cat is small
• A cat does not climb trees

You could add a new rule that says cats do not climb trees.

• A cat has whiskers
• A cat is furry
• A cat is small
• A cat does not climb trees
• well. . .

But sometimes they do. If you want to try to tease out all the possible properties that make a thing an
animal or a person, that would take forever.

1.1.4 Machine Learning

The field of study that gives computers the ability to learn without being explicitly programmed[ˆ
Arthur Samuel]. Machine learning is the science (and art) of programming computers so they can
learn from data

The form of cognitive “self-ignorance” illustrated in the previous example does not prevent us from
teaching all of these activities to other human beings. So, how can we program a machine with
something that resembles our intelligence if we can’t explain our intelligence?

Machine Learning is an approach to Artificial Intelligence that partially solves the problem by circum-
venting the issue of being able to state the rules of our cognitive abilities explicitly. Machine learning
allows computer systems to learn directly from examples, data, and experience. By enabling computers
to perform specific tasks intelligently, machine learning systems can carry out complex processes by
learning from data rather than following pre-programmed rules.

1.1.4.1 Programming vs. ML
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Programming Machine Learning

Rules to detect a cat: 1. Whiskers; 2. Furry; 3.
Small

Let me learn how a cat looks like from examples

Traditionally computers are programmed using explicit instructions that map pre-defined properties of
a given input to desired outcomes using ad-hoc algorithms. By executing the algorithm, the computer
program takes the input (e.g. an image) and, checking all the specified rules, decides if that image
represents a cat.

In Machine Learning, we let the machine learn how to recognize a cat through examples that the pro-
grammer gives: images with the corresponding correct classification. The computer executes a Machine
Learning algorithm (pre-existing), that, in turn, creates a model, i.e. a mathematical representation of
the properties of the given examples associated with a specific decision.

Note that in the case of traditional programming, the quality of the classification system is mostly
dominated by the programmer’s ability to identify and program relevant properties of the objects to
be analysed. In the case of Machine Learning, data plays a more central role: the more quality data an
ML learning algorithm has about cats, the less likely the system will be to commit an error identifying a
cat.

1.1.5 Functions of a Machine Learning System

What can a Machine Learning system be used for? Fundamentally, four functions

1. Descriptive
2. Predictive
3. Prescriptive
4. Generative

1.1.5.1 Descriptive
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Explain what happened

A machine learning algorithm is, at the very core, a pattern recognition machine. Its function is to learn
statistical associations (patterns) in the data. Therefore, Machine Learning can be used to analyze
historical data (that is, data about the past) to generate insights about specific questions. For instance,
a scientist could be interested in understanding if there is some relationship between air quality and
the amount of rainfall in a given region. Suppose the scientist has historical data about these two
specific aspects. In that case, she could feed the data to a machine-learning algorithm and explore, for
instance, if air quality decreases or increases when it rains.

Similarly, a retail company might be interested in understanding what makes a product attractive to a
particular type of client (e.g. industrial design students). Using historical purchase data combined with
demographic data, a machine-learning algorithm can help find patterns between specific classes of
products and buyers in a given demographic.

1.1.5.2 Predictive

Predict what will happen

Machine learning systems can also process current and historical data to make predictions about future
events. Predictive machine learning essentially involves interpolating past information to guess what
will happen next.

Take, for instance, the example of a weather forecast, that is, predicting what the weather will be like
tomorrow. A ML algorithm could be used to explore if, in a given area, there are correlations between
weather conditions across different hours, days, or weeks. If such a correlation exists, then data about
today’s weather can be used to predict tomorrow’s or next week’s weather.

1.1.5.3 Prescriptive

Suggest/recommend actions to take

By Prescriptive use of Machine Learning we mean the indication of the “best course of action to take”
based on insights derived from descriptive or predictive activities. Prescriptive systems are often called
“Decision Support Systems”, whose main goal is to aid individuals or organizations in decision-making
activities.

Recommender systems fall into this category. Applications like Amazon, Netflix, or Spotify use rec-
ommender systems to suggest to their users what to buy, watch, or listen to. Application supporting
healthy lifestyles (e.g., MyFitnessPal, Headspace, Fitness+) suggests actions (e.g., eating, meditating,
exercising) based on the current health status of their users.
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1.1.5.4 Generative

(Semi) autonomously create new data

Descriptive, Predictive and Prescriptive Machine Learning systems are often referred to as “Discrimina-
tive” as their goal is, broadly speaking, to discriminate between different data instances (e.g. to tell a
cat from a dog, a rainy day from a sunny one, a good movie for you from a bad one).

Generative Machine Learning systems, on the other hand, have as their main goal the creation of a new
data instances that are “likely to be realistic”. By realistic in this context, mean data instances similar to
the ones used to create the machine learning system, but not the same.

These models have become very popular in recent months, thanks to the advent of tools like Open AI
ChatGPT (to generate new text), Stable Diffusion (to generate new images) or Open AI Jukebox.

1.1.6 Neural Networks and Deep Learning

• Deep Learning is a Machine Learning approach based on neural networks (NN)
• NN are machine learning algorithms in which processing nodes (neurons) are organized into

layers
• Depth = number of layers
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Deep learning is a particular way of implementing machine learning based on neural networks. Neural
networks are mathematical constructs inspired by the way that the brain works.

The main idea behind neural networks is the presence of several neurons – very simple computational
units – connected through weighted edges and organised in layers. We will describe neural networks
later in the course.

Deep learning networks are neural networks with many layers and complex learning architectures.
Deep learning networks have very interesting learning properties that simple neural networks do not
have. But they are very complicated to create. Deep learning networks were created almost 30 years
ago, but we have now able to use them, thanks two 2 important technical advancements:

1. The availability of a large amount of digital data
2. The availability of high-performing computing architectures.

1.1.7 Computer Vision

• High-level understanding of digital images or videos
• Also generation (e.g Stable Diffusion)
• An enabler for technology such as smart doorbells, self-driving cars, etc.

An example of computer vision algorithm for object recognition.

Computer Vision is a sub-field of Artificial Intelligence and Machine Learning that focuses on extracting
high-level understanding from images or videos. Or, more recently, to generate realistic images and
videos.

As we will see later in the course, Computer Vision is a well-developed field that developed several
tasks, such as:

• Detect, recognise, and identify entities (e.g., objects, faces, people, animals)
• Modify visual content (e.g., image manipulation, image restoration)
• Categorise visual content (e.g., offensive images)
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• Generate new images and videos

1.1.8 Natural Language Processing

• High-level understanding of language spoken and written by humans
• Also generation (e.g. ChatGPT)
• An enabler for technology like Siri or Alexa

Natural Language Processing (NLP) is a sub-field of Artificial Intelligence and Machine Learning that
focuses on analysing natural language (written or spoken) to understand its content. Or, more recently,
to generate realistic text and voices.

As we will see later in the course, Natural Language Processing is also a well-developed field, that
developed several tasks such as:

• Recognize the language, understand it, and respond to it
• Categorise textual content (e.g. spam vs. Not-spam, offensive vs. Non-offensive)
• Translate between languages
• Generate new text

NLP is an enabler for popular personal assistants like Siri or Alexa, and it is at the core of recent systems
like ChatGPT. As we will see later in the course, NLP technology can greatly support your design process.
For instance, by automatically processing textual documents to, for instance, perform thematic analysis
on interview transcriptions.

1.1.9 The hard problems are easy, and the easy problems are hard

The main lesson of thirty-five years of AI research is that the hard problems are easy and the easy
problems are hard. The mental abilities of a four-year-old that we take for granted – recognizing
a face, lifting a pencil, walking across a room, answering a question – in fact solve some of the
hardest engineering problems ever conceived. . . As the new generation of intelligent devices
appears, it will be the stock analysts and petrochemical engineers and parole board members
who are in danger of being replaced by machines. The gardeners, receptionists, and cooks are
secure in their jobs for decades to come.

The paragraph above was written by the cognitive psychologist Steven Pinker in 1994 (The Language
Instinct) to describe how, contrary to popular belief, the tasks that are very difficult to imitate are
the ones that humans find the easiest, as they are performed unconsciously: vision, language, basic
motor skills. On the contrary, tasks that are very difficult for humans, such as complex mathematics or
playing chess, are very easy for computers.
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Despite impressive advancements in all AI and Machine Learning fields, Pinker’s observations remain
true.

1.2 1.2 So, why should you care about Machine Learning?

The most profound technologies are those that disappear. They weave themselves into the fabric
of everyday life until they are indistinguishable from it [ˆMark Weiser, The Computer for the
Twenty-First Century (Scientific American, 1991, pp. 66–75)].

In the first part of the lecture, we acknowledged that Artificial Intelligence and Machine Learning
technology are pervasive. Perhaps they are like electricity: always present, running our world, yet
invisible. And this thought always brings back to mind this quote from Mark Weiser, one of the founders
of the Internet of Things and pervasive computing fields, who said, “the most profound technologies
are those that disappear.”

But if this is true, why is Artificial Intelligence always in the news, and not always for good reasons?

Documentaries like “The Social Dilemma” warn us of the dangers of recommendation algorithms and
how they can polarise political and social discourse and have adverse psychological effects.

News items often remind us how some AI systems were connected to some injustice perpetrated by
public or private organisations. And the tendency is often to attribute responsibility to the technical
system. As if the system itself is at fault. When, in reality, someone has designed the technical system
in a given (social/economical/organisational / political) context.

1.2.1 Why do we need Designers to understand ML?

• Focus on purpose, not on outcomes.
• Asking “Why” questions
• Understanding and acknowledging diversity of stakeholders and values
• . . .
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So, why do we need designers? What is the role of designers in the context of AI-based PSSs? The
answer I give, is that we need these systems to be designed and not simply engineered.

I have always been more interested in what people can do with computers than in what computers
can do. This is what the field of Human-Computer Interaction is all about. And design plays a big role
in there.

Let me refer you to an interview I recently had.

“I grew up in a different time. I have experienced the transition from the analog to the digital world,
and we were there at the emergence of the digital society. I’ve been playing with web technology
from the beginning out of curiosity, and I have also witnessed the emergence of intelligent systems
in society. That has allowed me to see how these systems have changed people and how they have
changed society as a whole. Digital technologies possess enormous power. We cannot deny how they
can also be disruptive; how they can even cause harm. We must learn to control them.

When you hear the word ‘design’, it doesn’t mean aesthetics in this case, not as we use it for products
such as chairs and tables. AI systems do not operate in isolation. They are part of socio-technical
systems, organizations, and society. In this case, design is about the interplay between people, algo-
rithms, and data from people used to train those algorithms. Our job is to shape all of that. When we
think of engineering, we think of a straight line, from data to model to user, or from requirements to
software to user. In practice, this is not a straight line but a circle. The design evolves over time, as we
get a better understanding of people and a better understanding of technology; it keeps changing.”

To me, design is a technical discipline that, more than many others, focuses on purpose and not on
outcomes. Designers are the ones asking the why questions. And I believe, Designers are the ones that
are trained to be able to deal with complex multi-stakeholders situations.

1.2.1.1 Design for AI video and Podcast

• Video
• Podcast

I recommend you watch these two resources above. In addition to the ones indicated as suggested
reading/video.

1.2.2 What can designers do for Machine Learning?

Here you can see three important roles that designers can play.
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1.2.2.1 Humane AI+ technology

First, helping create AI/ML technology that is more humane and more attuned to the needs of society
and the planet. But this requires designers to be able to sit at the decision-making tables of companies
like Twitter, or Google, and steer to technology-informed arguments on the development paths of the
products created by such companies. Or public organizations.

1.2.2.2 Design tools for AI stakeholders

The picture comes from this thesis.

Designers can also play a big role in ideating and creating the next generation of tools that will help
democratising ML technology, but also that will allow ML developers to engineer solutions that will
have the properties that are really desired. The picture above is an example of scientific work conducted
by master and Ph.D. students of TUDelft, where design research techniques have been applied to
investigate how ML developers could debug the behavior of ML models. This is a booming field, with
plenty of opportunity.
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1.2.2.3 Design ML data

Another important role that designers can have is to invent and steer the data collection process for ML
models. Which data should be collected? How? From whom? What are the limitations of these data?
What do they represent? In this course, we are going to stress over and over the importance of data for
ML technology. But you would be surprised to know how these questions are seldom addressed by
engineers of ML systems. We will see later some examples of ML technology that fails. Let me reassure
you: 95% of the time, the root cause of these issues can be traced to some issue with the training
data.

1.2.3 What can designers do with Machine Learning?

As we saw in one of the first slides, the number of products having some form of ML technology is
increasing by the day. But ML can play an important role also beyond traditional consumer electron-
ics.
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1.2.3.1 Human Augmentation

D E C E M B E R  2 0 2 1  •  D E  I N G E N I E U R    3 7

een straat moeten oversteken. Ondertussen is de bril op 
de markt en groeit het bedrijf gestaag door. Het haalde 
dit jaar 1,5 miljoen euro in dur!apitaal op. De eerste 
exemplaren zijn eind 2020 geleverd, en sindsdien kreeg 
het bedrijf al honderden extra bestellingen binnen. 

Het bedrijf wil het product nu ook inzetten voor men-
sen met andere beperkingen. Kannan: ‘We weten dat de 
technologie ook werkt bij mensen met bijvoorbeeld dys-
lexie, of personen die niet kunnen lezen. Dat zijn wereld-
wijd een miljard personen die we met onze technologie 
kunnen helpen.’

Geheugenversterking
AI-wearables hebben nog andere toepassingen volgens 
Evangelos Niforatos, universitair docent mens-AI-inter-
actie aan de TU Del". Hij onderzoekt AI-ondersteunde 
systemen voor human augmentation. Hier gebruikt hij 
intelligente systemen, of ze nu op een computer of een 
wearable werken, om menselijke vaardigheden, zoals le-
ren of herinneringen ophalen, te versterken. Onderzoek 
dat ook medische implicaties hee". ‘Een smart glass kan 
bijvoorbeeld foto’s nemen of geluiden opnemen’, legt Nifo-
ratos uit. ‘Later kun je die herinnering opnieuw tonen op 
de smart glass, en zo versterk je het menselijke geheugen.’ 

Dat voorziet in een medische behoefte. Bepaalde 
personen, zoals alzheimerpatiënten, hebben geheugen-
versterking nodig. In theorie zou een smart glass bij-
voorbeeld de gezichten van familieleden van de patiënt 
kunnen opslaan, of zelfs activiteiten die ze samen deden. 
Elke keer wanneer zij langskomen, kan de bril tonen wie 
die persoon is, en wat ze samen deden. ‘Maar je kunt 
de technologie ook toepassen bij gezonde mensen, denk 
maar aan het verbeteren van onderwijs door studenten 
op gepaste momenten een stuk informatie te tonen.’

Niforatos werkte een paar jaar geleden aan deze toe-
passing bij de Canadese startup North, die in 2020 werd 

overgenomen door Google. Hij verwacht dan ook dat 
in de toekomst geheugenversterking deel gaat uitmaken 
van Google Glass. 

Maar geheugenversterking kent ook uitdagingen en 
risico’s. ‘Je moet informatie op het juiste moment tonen’, 
zegt Niforatos. ‘En gebruikers niet overladen met nutte-
loze herinneringen. Maar tegelijk moet je genoeg infor-
matie geven om hen vooruit te helpen. En dan is er de 
ethische vraag: wil je mensen ook slechte herinneringen 
tonen, en brengt dat gevaren met zich mee voor bijvoor-
beeld alzheimerpatiënten?’

Geen aliens
Ondanks de mogelijkheden voor medische toepassingen 
voor de smart glasses, blij" de vraag of deze apparaten een 
bredere doelgroep zullen vinden. ‘De grote techbedrijven 
hebben geleerd van hun fouten’, zegt Guido Groet, chief 
strategy o!cer van Luxexcel, optimistisch. Zijn bedrijf 
3D-print brillenglazen (zie kader). ‘Ook is de technologie 
verder vooruit gegaan, en het is inmiddels mogelijk om 
ze er te laten uitzien als een normale bril, deels dankzij 
onze technologie. Iedereen is tegenwoordig gewend aan 
smartphones, de tijd is rijp voor het volgende toestel.’

Er gebeurt al veel in de wereld van de smart glasses en 
lenzen, stelt Vega van Azalea Vision. ‘Maar het zal nog 
wel tien jaar duren voordat echte augmented reality-pro-
ducten, waarbij je beelden in de ogen van gebruikers 
projecteert, zullen doorbreken. Speci#eke toepassingen 
komen eerder al beschikbaar.’

Volgens Niforatos hangt het er helemaal vanaf hoe 
mensen hierop gaan reageren. Het moet sociaal accep-
tabel worden. ‘Je hebt een bril nodig waarvan gebruikers 
niet beschaamd zijn om hem op te zetten en naar buiten 
te gaan. Als de hardware klein genoeg is, dan zal het so-
ciaal acceptabel worden. Het is cruciaal dat mensen zich 
niet als aliens voelen.’   

Prototype van de bril 
van Evangelos Nifo-
ratos van de TU
Delft die beelden 
kan opnemen en 
laten zien om het 
moment weer te 
herinneren.
FOTO: TU DELFT

M I C R O - E L E K T R O N I C A
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De technologie achter smart 
glasses verandert in snel tem-
po. Zo worden brillen, inclusief 
de slimme versies ervan, 
steeds vaker ge-3D-print. Een 
techniek die het Nederlandse 
bedrĳ f Luxexcel verder uit-
ontwikkelde. ‘Het maken van 
brillenglazen is een extreem 
complex proces’, vertelt Guido 
Groet, chief strategy offi cer
van Luxexcel. 

‘In Azië zitten er fabrieken 
die grote blokken semi-
afgemaakte lenzen maken. 
Die worden vervolgens over 
de hele wereld verscheept. 

Brillenglas 3D-printen

Wanneer je naar de oogarts 
gaat en een voorschrift krĳ gt 
voor de benodigde sterkte, dan 
nemen de fabrikanten een ruwe 
lens en maken ze daar via een 
complex proces van meer dan 
dertig stappen een brillens van 
op maat. 3D-printen maakt dat 
erg simpel. Je print gewoon in 
één stap de lens.’

Het 3D-printproces past 
Luxexcel vandaag al toe voor 
brillen op voorschrift. Maar 
de laatste jaren is er ook veel 
interesse ontstaan om de 
complexe lenzen van smart 
glasses te 3D-printen. ‘In 2019 

werden we benaderd door een 
groot aantal bigtechbedrĳ ven. 
Allemaal wilden ze per van-
daag smart glasses maken’, 
zegt Groet. ‘Maar dat kent 
vele uitdagingen. Zo heeft de 
Microsoft Hololens meer weg 
van een helm dan een bril. Dit 
soort apparaten wordt al snel 
erg groot. Techbedrĳ ven zĳ n 
heel goed in software ont-
wikkelen, maar ze hebben er 
geen van kaas gegeten om het 
systeem ook comfortabel en 
draagbaar te maken. Door de 
brillenglazen te 3D-printen los 
je dat deels op.’

De 3D-printer 
van Luxexcel en 
de  3D-geprinte 

 brillenglazen. 
FOTO: LUXEXCEL

Op een treinstation kan een slechtziende via de app of bril de tekst op een bord laten 
voorlezen. FOTO: ENVISION

een bord richten, de bril zal dan automatisch voorlezen 
wat erop geschreven staat.

Dit kan voor problemen zorgen. Een AI-algoritme is 
namelijk nooit 100 procent accuraat in het herkennen 
van beelden, waardoor blinden en slechtzienden moge-
lijk in onveilige situaties kunnen belanden. ‘We blijven 
bewust weg uit gevaarlijke situaties’, zegt Karthik Kan-
nan, medeoprichter van Envision. ‘We zullen bijvoor-
beeld nooit gebruikers helpen met de weg oversteken. 
In theorie kan AI natuurlijk herkennen wanneer een 
verkeerslicht op groen staat, maar we snappen ook de 
beperkingen van AI. Daarom bieden we dat soort dien-
sten niet aan, een fout zou erg gevaarlijk zijn. We vertel-
len onze gebruikers ook constant om onze dienst niet te 
gebruiken in situaties die hen in gevaar kunnen brengen.’

De bril zal een blinde of slechtziende gebruiker dus 
helpen met het lezen van een menu in een restaurant 
of zelfs het vinden van een stoel in een kamer, maar zal 
niet zeggen waar een voetpad zich bevindt of wanneer ze 

The image on the left is from a colleague in the faculty, working on this. Dr. Evangelos Niforatos. The
one on the right are Envision Glasses, created by a IDE alumni.

1.2.3.2 ML for Fascination and Engagement

Frederik Ueberschär
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1.2.3.3 Interaction

Experiments with Google. 1612 and counting. . .

If you look around a little bit, you can find tons of examples of how we can play around with ma-
chine learning as a design material in and of itself to enable a new way of interacting you way of our
relationship between people and technology to support people.

And you can find the lock out there. We try to put some examples and additional material for the
course, but if you spend a little bit of time you will see you will find a lot.

1.2.4 What can Machine Learning do for designers?

1.2.4.1 Co-create
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1.2.4.2 Inspire

Dall-e

1.2.4.3 Scale up!

Thesis Document : Analysis of how parents perceive their baby, their behaviours towards their child, and
thus understand how overprotection develops throughout childhood more than 300 stories, manually
and NLP analysis

1.2.4.4 Scale up!
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How to help designers, experts, and societal stakeholders work together with AI, to prepare, realise and
evaluate design interventions? Goal: reduce design complexity for large-scale social interventions

D@S Lab

1.2.4.5 Understand design

Using big data . . . we experiment with artificial agency during complex system design processes We
are exploring the form and use of novel design methods to address systemic design problems to create
an AI Toolkit

Design Intelligence lab

1.2.5 Why Programming?

All design needs a medium. A designer in the age of computable technology also contends with
programming, which the designer wields as a tool and canvas. Ge Wang - Stanford

1.2.6 Debunking some myths
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1.2.6.1 Expectations

1.2.6.2 Reality

My new favorite thing - Bing’s new ChatGPT bot argues with a user, gaslights them about the current
year being 2022, says their phone might have a virus, and says “You have not been a good user”

Why? Because the person asked where Avatar 2 is showing nearby
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“48% of US consumers intend to buy at least one smart home device in 2018”a “23% of connected
security system owners said they deactivate their system completely when they have guests
over”

a Survey of 2000 US Consumers. Ooma

1.2.6.3 AI/ML can predict the future

• AI/ML are “statistical parrots”
• They are (very good) pattern recognition machine
• Garbage in - Garbage Out

1.2.6.4 AI/ML has agency
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• AI/ML are tools.
• People design and use them.
• And they change us!

1.2.6.5 AI/ML can magically transform a PSS overnight

• Magically: maybe
• Overnight: No

1.2.6.6 AI/ML can solve any problem

• AI/ML technologies are very flexible and powerful
• But they have very strict requirements
• And potentially harmful limitations
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2 Section 2: Fundamentals of Machine Learning

2.1 2.1 The Machine Learning Life-Cycle

The Cross-Industry Standard Process for Data Mining (CRISP-DM) methodology

There is no standardized methodology for designing Machine Learning systems, although several
companies have created several proposals in the past. For instance, this CRISP-DM methodology: Cross
Industry Standard Process for Data Mining is the closest you might get to a standardized process for
Machine Learning system development. It’s not exhaustive, and as we will see, it has some limitations,
but it’s complete enough, and I think we can use it as a reference moving forward. At least to understand
the different actors and the different activities.

There is a problem owner: Someone that is interested in designing this particular PSS that has a Machine
Learning-component. You also have diverse stakeholders: people that, in one way or another, have a
stake in, if not the design, at least in the output and the consequence of creating this particular Machine
Learning-driven solution.

Data engineers: people, mostly engineers, that deal with acquiring and managing the data that will be
used later in the ML process.

Data scientists: experts in statistics, data science, and machine learning.
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Model validators: those in charge of checking that the system performs as expected. They can be testers
operating before the PSS is put into production. Auditors, if their job is to check if the PSS complies
with specific regulations and policies. Or, sometimes, end users provide feedback on the product’s
performance (e.g. a thumbs-up/thumbs-down on a recommendation).

Operations engineers: are the ones in charge of making sure that the system runs continuously and
effectively. Sometimes they are also called ML OPs engineers.

Let us use as an example the recommender system of Amazon. Amazon is the Problem Owner for that
recommender system. It is a company interested in maximizing revenues using automated procedures
suggesting items consumers operating on the platform should buy. Of course, the stakeholders of
these systems are the users and companies selling products through Amazon. One could argue: Even
society as a whole, because the more gadgets we sell, the less sustainable and the more we’re going to
waste.

Within Amazon, there are Data Engineers that take care of managing all the data that is needed to run
these systems. For instance, the databases containing all the review data from people and products,
all the products’ details coming from the suppliers. The data scientist is the professional that creates
the Machine Learning system, the recommender system, in this particular case.

The validator checks that the performance indicators expected by the problem owner are met (e.g. per-
formance or revenue). The operations engineer looks at the system as such: The computers, the
network. That everything runs as quickly and as effectively as possible. But, as I mentioned before,
validators can also be users, giving feedback on the quality of the recommendations.

In a big company, all these people might be different, in small companies or startups, they are a single
person. But in a sense, those are the roles that are somehow involved.

2.1.1 CRISP-DM In our course
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We are not going to cover in detail all these steps. For instance, we will not cover the deployment and
monitoring step in this course. This is an advanced topic, and it’s really about systems engineering,
probably not interesting for you.

We will cover the problem specification and the evaluation of the system. We will study and look at
how we can specify what the system should do and how we will evaluate it.

Data understanding and modeling we will do throughout the course. Data preparation we will address
in module three.

2.1.2 Problem Specification

• What is the problem owner hoping to accomplish and why?
• Why am I (being asked to) solve it?
• Am I the right person to solve this problem?
• What are the (psychological, societal, and environmental) repercussions of building this

technology?
• Should this thing be built at all?
• What are the metrics of success?

This is where you, as designers, should be more comfortable. The process of understanding what the
problem owner hopes to accomplish and why. And, to get to the bottom of what exactly are the desires,
needs, and requirements of this particular solution that you’re asked to design and develop.

Of course, this also implies considering ethical issues: Should the system be developed? How are we
going to measure success? What impact will the system have, maybe, on the broader set of users or
society?

Those questions should be accounted for before creating the system, not after.

2.1.3 Data Understanding

Know your data! - Data need to be collected —> Datasets - What data is available? - What data
should be available but isn’t? - What population/system/process is your data representing? - And
what properties of such population/system/process are included (or excluded)? - What biases
(social, population, temporal) are present in your datasets?

Data understanding might seem like a purely technical task, but it is not, purely. Data is what makes or
breaks a Machine Learning system. So, it is essential to understand what data needs to be collected.
Whether this data is available or not. Even if there is data that should be available but is not there.
What part of the phenomenon being modeled can the data capture, and which is not? So that if biases
exist, they could be identified early.
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To give a concrete example, consider Social Media (e.g, Twitter) data. One might be tempted to say that
data collected through social media, being so abundant, are representative of very large, exhaustive,
and comprehensive populations. We know that not to be true. We know that different demographics,
and different people, operate on different social media, and we know that they do that in different
ways. Quantity does not mean comprehensiveness and diversity to the point that it suits a particular
problem. So being VERY inquisitive about the data is a very pragmatic first step for everyone that wants
to do something with Machine Learning.

2.1.4 Data Preparation

• Data integration

– Extracting, transforming, and loading (ETL) data from disparate relevant databases and
other data sources

– This step is most challenging when dealing with big data sources

• Data cleaning

– Filling missing values
– Transforming value types (e.g. binning)
– Dropping features that should not be considered

• Feature engineering

– Transform the data to derive new features

Data does not exist in a vacuum, and it is not created “perfect.” It is the result of complex socio-technical
processes that might lead your data to be “messy,” Incomplete, with errors of different types. Data
comes from multiple sources, so they must be aligned and integrated.

In the real world, the data work is 80% of the work, while the modeling work is only 20%. Data
understanding and preparation take (or should take) most of the time in the design and development
process for ML systems.

2.1.5 Modeling

• Select a training algorithm
• Use it to find patterns in the training dataset
• Generalize them to fit a statistical model
• Enhance the model to satisfy additional objectives and constraints captured in the problem

specification

– e.g., increase reliability, mitigate biases, generate explanations
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Once the problem is defined, and the data are prepared, then we can start to pick the right Machine
Learning model and the right training algorithm. This is [in theory] conceptually easy, but it is complex
in practice. And the reason is that there is no such thing as a best possible solution applied in all
possible conditions.

• No free-lunch theorem

– There is no one best machine learning algorithm for all problems and datasets

That is the so-called “no free lunch” theorem. There is no one best Machine Learning solution for all
problems and datasets. We have a portfolio, and a bunch of potential alternatives, each one is more or
less suited according to the class of problems you have and the type of data you have available.

The process of training a Machine Learning Model

The slide mentions four steps. The training and the enhancement are activities performed by data
scientists through algorithms, while the model is the final result.

The Machine Learning model is the computer program (in reality, it often looks more like a configuration
file) that is created using injecting the data and letting the system learn from this data. Model training
is the activity performed by a training algorithm (configured by the data scientist) to create that
Machine Learning model. For instance, given many examples of cats and dogs, the model training
step is concerned with finding the statistical correlation between the input data and the classes (cat
and dog) that we want to recognize. The model is the program that, based on the observed statistical
correlations, can distinguish a cat from a dog.

We are separating training and enhancement because, oftentimes, activities happen after the training of
a model to ensure that the model behaves according to expected behavior. For instance, to check (and
eventually fix) biased behaviours against specific type of data, or the people (e.g. a specific population
or minority) that this data represents.

2.1.6 Evaluation

• Testing and validation of the model

– Also against the problem specification requirements

• Performed on data not used for training

– Hold out dataset

We will address evaluation in a following section.
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Splitting Data for Evaluation

2.1.6.1 Model auditing/risk management

Evaluation is also a very important step because this is where one can check whether the system that
has been created is compliant with its initial expected properties. Evaluation is complex for several
reasons that we will explore later in the course.

These systems are stochastic, and they’re probabilistic. This means that, in practice, they will never
with 100% accuracy performance. A Machine Learning model trained to recognize cats versus dogs, is
bound to make wrong classifications, sometimes. There are many reasons a prediction can fail (mostly
due to the properties of the data).

ML systems never operate perfectly. Sometimes, they fail. But we use them because they are helpful,
not perfect. It is essential to know how to deal with those errors. This is an interesting interaction
design and design-interaction challenge.

But also an ethical one: if it is true that these systems are not perfect, when (if ever) shall we use them?
Are there situations where perhaps we should not use them at all? This is the core of the current,
ongoing efforts to regulate Artificial Intelligence in Europe. It’s an ongoing process built on a risk-based
approach in defining under which conditions and under which particular situations the risk of using
one of these systems is acceptable.

There are four classes: Unacceptable, high, limited and minimal risk. And each one of these risks is
associated with particular demand in terms of required checks and controls on the performance of the
system, the understanding of its potential limitations, and, of course, also compensatory actions.

To give some examples. The recommender system of Netflix will probably fall in the minimal risk appli-
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cation. In the worst-case scenario, if the system does not work well, a user receives a recommendation
for a movie they do not like: tough luck!

Risks are considered Limited when the malfunctioning of the system might have effects that have some
consequence, but they are not too problematic. For instance, a system that is designed to classify
whether content is inappropriate fails 5% of the time. There is some risk: people can be offended or
traumatized. But as long as these mistakes can be corrected in the future, it is fine. AI chatbots, spam
filters, and customer management sustems fall into this category.

High risk are those systems that “either pose a health and safety risk or pose a risk to people’s funda-
mental rights”. And here, the requirements are very strict. The legislation includes in this category:

• biometric identification and categorisation of natural persons
• management and operation of critical infrastructure
• education and vocational training
• employment, worker management and access to self-employment (e.g. recruitment systems)
• access to and enjoyment of essential public and private services and benefits
• law enforcement
• migration, asylum and border control management
• administration of justice and democratic processes

Note that the list of critical areas are still in discussion, and currently subject to variations. For instance,
the Parliament is currently considering placing conversational and art-generating AI tools such as
ChatGPT and DALL-E-2 in the high-risk category.

Unacceptable risks happen in those situations where under no circumstances should it not be allowed
for an A.I. system to operate. These include:

• “subliminal, manipulative, or exploitative techniques causing harm”
• “Real-time, remote, biometric identification systems used in public spaces for law enforcement”
• All forms of social scoring

Some people believe, for instance, that we should not be allowed to design a system for military
purposes. Of course, other people disagree.

2.1.7 Deployment and monitoring

• What data infrastructure will bring new data to the model?

– Will predictions be made in batch or one-by-one?
– How much latency is allowed?
– How will the user interact with the system?

* Is there a problem here?
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– Tools to monitor the model’s performance

* And ensure it is operating as expected

Deployment and monitoring is about the actual operation of the system. It is a phase that addresses
important needs, although not necessarily needs that a designer would care about too much. For
instance, latency, how quickly a system can respond to user interaction. A system like Google Search,
for instance, is engineered to answer queries in less than 100 milliseconds. If for whatever reason, the
intelligence behind Google is slower than that, it has been empirically demonstrated that the company
will lose business and they will lose money. So, it is their best interest not to delay the user experience.
MLOps Engineers are tasked to ensure that the system works as fast, as fluidly and as, well, as best as
possible. There are, of course, trade-offs. Not all systems can be, for instance, accurate and also be
fast. Take for instance a computer vision system installed on a car: if such a system is not powerful
enough, then recognising an object might be too slow, and so the car might exhibit a higher reaction
time and eventually bump into something or somebody. That is unacceptable. A solution would be to
put a more powerful system on the car (but more expensive); or let the system run faster but will less
accuracy.

2.2 2.2 Data. The raw material

Data, or the raw material of A.I. If you have read the suggested reading material for today’s lecture. “I,
pencil”, which is a lovely, short essay. You’ll know where this reference is coming from.

2.2.1 Data

Structured data: a common representation for data in Machine Learning
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In our collective imaginaries, data looks like a table. Or so-called structured data. And, most of the
time, that is the case. And, it turns out, it is a useful and generalisable abstract representation for ML
purposes.

A Dataset is a collection of records.

A record is a row in a table; in the context of ML, a record is called a sample, a data item, or an
instance. In the IOB-3-22 Data Course they were called Data points, with the following definition:
“units of information, usually collected through observations by people or machines. Data points can
be single facts or observations (e.g., the age of one individual child incorporated in the dataset, or the
temperature measured at one location at a given time), or multiple corresponding values (e.g. set of
environmental variables)”. This definition is, of course, compatible with ours.

A record is composed of attributes, the columns. In Machine Learning parlance, those are called
features. A feature is a property of the world modelled by the data; the property is captured, measured,
and represented for the prediction problem we have in mind.

Let us use the example in the slide. The goal is to create a system that can recognize the species of
a flower based on the geometrical properties (width and length) of their petals and sepals. Notice
how, in this case, someone decided that a flower, a creature, is represented by these attributes; other
attributes, like colour and shape, were not included. A record therefore represents a real-world flower;
the value of the features (feature values) are the ones of that flower.
Later we will see that features might take different representations according to the data type (e.g., an
image or a textual document).

There is a very specific column called label, or class, that contains the value that the system is expected
to be predicting – i.e., the prediction output. So, for instance, if you want to train a Machine Learning
system that can recognize flower species (given a set of sepal length, width, and petal length and
width), the label allows the algorithm to find a statistical correlation between feature values and the
flower type.

Note that a label might not always be present.

The dataset size is the number of records available in our dataset. Dataset sizes matter in Machine
Learning because, as discussed in previous lectures, ML methods are data-hungry: the more data you
have, the better (usually). Dimensionality is the number of features representing a particular entity.
Later we will encounter a concept called curse of dimensionality: the problem that too many features
represent a data item.

2.2.2 Types of Features / Label Values

• Categorical

– Named Data
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– Can take numerical values, but no mathematical meaning

• Numerical

– Measurements
– Take numerical values (discrete or continuous)

Data values can have different types. A type holds properties that allow doing some specific operation
with data values.

You must understand the difference between these data types. As we will see later, Machine Learning
systems, being statistical systems, prefer to deal with numerical values more than categorical ones. It
is a common practice, for instance, to translate categories into numbers and text into vectors. We will
see several examples of this in the next modules of the course.

It is also important to distinguish the notion of Data Types as you have encountered in the IOB-3-22
Data Course from Feature Type. Data types include: integer (any whole number, without a decimal
point, e.g., 7); float (any number with decimal point, e.g., 7.43) date (a particular year, month, and
day in time); time (a particular moment of day); text (any collection of letters rather than numerals or
other symbols, also referred to as ‘string’ or ‘character’); and boolean (a binary data type with only two
values: i.e. either TRUE or FALSE; Yes or No; 1 or 0).

It is very common to deal with categorical data. These data could be either textual or numerical, but
for which there is no mathematical meaning attached to it. Take, for instance Marital Status: there is
a close number of statuses. It is a string (e.g., “Married”, “Single”), it could also be represented as a
number (e.g., “0”, “1”), but no arithmetic operations can be performed (“Married” - “Single” = ?).

• Categorical Nominal**

– No order
– No direction
– e.g. marital status, gender, ethnicity

Marital status is a nominal categorical data type because there is no way to order values (Is “Married”
greater/better than “Single”?).

• Categorical Ordinal

– Order
– Direction
– e.g., letter grades (A,B,C,D), ratings (dislike, neutral, like)

Ordinal data are categorical data with an order and a direction. Think, for instance, of letter grades: A
B C D. We know that A is greater than B, and B is greater than C, so there is an order and a direction, but
still, you cannot do A minus B or C minus D. It doesn’t make any mathematical sense. Another example
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of Ordinal data are the classical Likert scales – e.g., Dislike, Neutral or Like. Dislike is worse than Like,
but Like - Dislike is not equal to *Neutral”.

All of those are categorical data, we use them all the time, and, from a statistical perspective, they come
with a lot of strings attached because there are things that you cannot do with this type of data that
you can do, instead, with the other type. We cannot dig deeply into this topic, but it will be extensively
addressed in the Design Analytics [IOB6-E8] elective course.

• Numerical Interval

– Difference between measurements
– No true zero or fixed beginning
– e.g., temperature (C or F), IQ, time, dates

Numerical data is used when measurements are involved, e.g., measuring someone’s height or weight.
Numerical values can be continuous (i.e., real numbers) or discrete (i.e., integers); and, of course, they
can be part of mathematical operations. Note that boolean values (0 and 1) are also numerical.

• Numerical Ratio

– Difference between measurements
– True zero exists
– e.g., temperature (K), age, height

Ratios are numerical values used to represent properties like age, height, weight, width: these are
properties for which there exists a true zero. Temperatures, for instance, but measured in Kelvin, where
there is a zero – the lowest possible temperature there is in the known universe. But that’s not the case,
for instance, with temperature in Celsius or Fahrenheit, where there isn’t a zero. The same goes for
dates and times. You can subtract them, for instance, one year minus the other, but there isn’t a scale
and a fixed point. We call them intervals.

2.2.3 Data Modalities

Regarding modalities, data can be split into two big families: structured and unstructured (or semi-
structured) data.

Structured data is data that comes in some predefined format: Tabular data, like the one that we saw
in the example before. This is data for which there exists a pre-existing organization: attributes are
explicitly defined.

Unstructured data does not have an intrinsic structure—for instance, images, music, and text. Of
course, images contain shapes and patterns, but there is no explicit way to describe such pictures
because, essentially, an image is a collection of pixels.
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A summary of the different types of data that could be processed through Machine Learning
techniques.

In the same way, you can think about text being a collection of words. Textual documents like papers,
newspapers, etc. indeed have some structure (e.g. introduction, conclusion). However, how the words
are organised in a text does not follow any specific structure – besides, perhaps, grammar rules.

2.2.4 Key Dimensions

Modality Quantity Quality Freshness Cost

Structured Number of
records

Errors Rate of collection Acquisition

Semi-structured Number of
features

Missing data Licensing

Bias Cleaning and
integrations

What properties make data “good” or “bad”? “Useful” or not “useful”?

Modality as discussed previously.

The quantity. The number of records, the dataset size. But also the number of features, as we will see
also later on in the course, the number of features available can either be a blessing or a curse: the
more features available, the more detailed description of a data item; but the more features, the more
the data items we need to have to train a good machine learning model.

The quality of the data is also very important because the data might contain mistakes. To believe that
the data is “correct” is, most of the time, wishful thinking, an illusion. In a dataset, data is often missing
due to collection errors or technical issues. And data is ==always== biased for multiple reasons: 1) the
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collection process, 2) the specific condition in which the data has been acquired, 3) the design choices
in the data acquisition process itself. You had an example before about social media data: biases can
creep on because there is an uneven distribution of people and topics. Remember: there is no such
thing as objective, neutral, and unbiased data, there is always a bias in the data.

Freshness means how often new data is generated. Some data sources, like census data, are updated
in the best cases every year and in the worst cases every decade. Freshness (or lack thereof) can be a
problem depending on the ML goals: some system requires fresh data (e.g., a news recommendation
system, a malfunction prediction system), while others don’t (e.g., a system recognising defective
items in a production line).

To track your heart rate and to predict whether you are going to have some heart issue, you might want
to sample your heart rate frequently. Higher sampling rates might not be needed.

Cost. Cost is also significant because cheap data is not necessarily good data. And there is a cost for
cleaning and integrating it, so that’s also a consideration.

2.2.5 Types of Data

2.2.5.1 Static Tabular Data

Structured data.

This type of data we have seen before.

2.2.5.2 Time Series

• tabular data with time feature
• For instance

– Sensor data, Stock market data
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• Label is usually associated with a set of records

– e.g. a continuous movement of the phone indicating an action

Time series data are structured, like tabular data, but have two fundamental differences. 1) One of
their features is a time-stamp: this is because the reality that time series represent has time as a critical
component. 2) Labels can be associated with sets (more than one) data items, because what needs
to be recognized spans multiple time stamps. For instance, recognizing the type of activity a person
performs (e.g., walking vs. Running) based on accelerometer data requires more than one data item.

Time series data are very interesting data, but we are not going to cover them in this course.

2.2.5.3 Images

• Visual content acquired through cameras, scanners, etc.
• Each pixel in an image is a feature

– But spatially and geometrically organised

* e.g., edges, corners

• Feature values are numerical values across channels

– e.g., R,G,B

• Dimensionality –> n x m

Images are nothing more than a set of pixels. And each pixel in an image is a feature having a value
(e.g. scale of grey, RGB, CMYK) that tells you something about that particular pixel. Now you can under-
stand why I mentioned the problem of the “curse of dimensionality” before: in an image, especially a
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high-resolution one, the number of features can be in the order of millions, making computation very
expensive.

There are ways to avoid the curse of dimensionality: for instance, in traditional computer vision, a
process called feature engineering was used to compute features (e.g. edges, corners, or shapes) from
images before training a machine learning system. We will discuss this issue more in the coming
module.

2.2.5.4 Textual documents

• Sequence of alphanumerical characters

– Short: e.g. tweets
– Long: e.g Web documents, interview transcripts

• Features are (set of) words

– Words are also syntactically and semantically organised

• Feature values are (set of) words occurences
• Dimensionality –> at least dictionary size

The issue of dimensionality also occurs with textual documents. A textual document is nothing more
than a sequence of words. Texts can be short (a Tweet) or long (a novel). They can be created in many
scenarios and applications: e.g. reviews on Amazon or interview transcripts.

As words have their meaning, it is very common to consider each word in the dictionary a feature that
can either be present (or not) in a document: we call this representation “bag(s) of words”. The value
of the feature is whether the word is present, or not, in a particular document.

There are also more complicated ways to represent documents, that will look at sequences of words,
i.e. words in their order.

2.2.6 Categorising Data Sources
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Purposefully
Collected Data Administrative Data Social Data Crowdsourcing

Survey Call records Web pages Distributed sensing

Census Financial transactions Social Media Implicit crowd work
(e.g. captcha)

Economic Indicators Travel Data Apps Micro-work platforms
(e.g Amazon
Mechanical Turk)

Ad-hoc sensing GPS Data Search Engines

Different data sources have different properties in the five dimensions mentioned above: modality,
quantity, quality, freshness, and cost.

Purposely collected data are collected specifically for a specific goal: Surveys, censuses, and scientific
experiments done with very expensive equipment. They are created using ad-hoc sensing infrastructure
specifically designed to collect the data for the prediction purpose that we have in mind. Most of the
time, this data comes in a structured way. They are very expensive to acquire, and they have very high
quality but might not have high freshness—for instance, census data. Data from sensors or sensing
infrastructure are high-frequency and high-quantity, but the cost is very high.

The following type of sources includes **re-purposes* data. That is, data that is not created for the
prediction purpose at hand but they are reused from other scenarios or application domains.

Typical examples are call records, which is data collected by network operator companies when your
phone downloads data, or when you are making a phone call. It is very common to perform prediction
tasks on this data: for instance, to predict the behavioral or consumption patterns of people. Another
example is financial transactions with a credit card. These are data that are not created to infer the
consumption properties of a person, they’re just created for the sake of keeping track of who spends
money where. Another example are travel data from the “OV chipcard”.

Mostly structured, very high quality, very quantitative, sometimes also very high freshness, but then
again, they’re very, very expensive. Either you need a very expensive infrastructure to acquire them or
they are privacy sensitive.

The data that we use the most are social data: Data from the web, from social media, from apps
and search engines, billions and billions and billions of documents, images and videos. Mostly, this
is unstructured: Images, audios, text. They are low-cost to access, but the quality is not necessarily
high.

Finally, there is crowdsourcing: distributing data collection and processing to people, implicitly or
explicitly. For instance, every time you solve one of those “CAPTCHA” for Google, you are performing
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a data labeling operation. People can also be paid for this on microwork platforms like Amazon
Mechanical Turk. In this case, all data properties are primarily mid-low because you need to pay
people, but these people are not your employees. For this reason, quality also varies greatly.

Purposefully
Collected Data Administrative Data Social Data Crowdsourcing

Modality: mostly
structured

Modality: mostly
structured

Modality: mostly
semi-structured

Modality: all

Quantity: low Quantity: high Quantity: low Quantity: mid-low

Quality: high Quality: high Quality: low Quality: mid

Freshness: low Freshness: high Freshness: high Freshness: mid

Cost: high Cost: high Cost: low Cost: mid-low

2.3 2.3 Categories of Machine Learning

2.3.1 How do machines learn?

How do machines Learn? We encountered this diagram earlier in the lecture. It is important to distin-
guish two elements here: Model Training is the activity through which a machine learning model is
created. This is an algorithm, typically available in a software library that allows you to create a ML
model. But, what is a model, exactly?

2.3.2 On Models

• A physical, mathematical, logical, or conceptual representation of a system, entity, phe-
nomenon, or process

• A simple(r) representation of reality helping us understand how something works or will
work.

– Not truthful, just a useful one

• The goal of models is to make a particular part or feature of the world more accessible to
understand, define, quantify, visualise, or simulate

Generally speaking, when we talk about models, we refer to physical, mathematical, logical, or con-
ceptual representations of a system, an entity, a phenomenon, or a process. For instance, the “model
of a product” is a representation of a product (e.g. a sketch, a schema, a low-resolution prototype) that
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is not as good, as complete, or as detailed, as the real product. Still, it is good enough to understand
how or how it could work. A model is not meant to be a truthful and accurate representation of reality.
It is meant to be a useful representation, that has the function of making a particular part or feature of
the world more accessible to understand, define, quantify, visualise, or simulate.

2.3.2.1 Examples of models

• Architecture plans
• Maps
• Music Sheet
• Mathematical laws of physics!
• Machine Learning (statistical) Models

Models are everywhere around us, even if we don’t realize it. A music sheet, for instance, is model:
it is a structured, visual representation of sequences of musical notes. It represents how a musician
should play a tune, and of how such then should sound. The representation (the notes) does not match
100% the final sound: that is the task and responsibility of the musician. A map is not a high-fidelity
representation of the world but is good enough for you to navigate in it. Architectural plans blueprints,
even the laws of physics, in a way, are simplified representations of reality that we create to more easily
understand, define, quantify, visualize, or simulate a particular part or a particular property of the
world.

Machine Learning models are statistical models that we know are created from data. The availability
of a mathematical representation can, however, give the wrong impression that machine learning
models are “models of the world”, as scientific models can be. So, let us spend some time discussing
differences.

2.3.2.2 Scientific Models

• GOAL: explain reality

– Created to make predictions about the outcomes of future experiments

* e.g., apples on the moon
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• Tested against the outcome
• If data from new experiments don’t agree, the model has to be modified/extended / refined

– Falsifiability

• Scientific models should be small and simple.
• They should generalize phenomena observed in new ways.

At school, we encounter the scientific method. Given a reality of interest, through observations and
measurements, a scientist tries to understand if mathematical laws could explain regularities in the
collected data. For these laws to be correct (that is, a good explanation of reality), they should allow
making predictions about the outcome of experiments performed in different contexts. If the prediction
holds, we deem the model, the physical law, true. If it doesn’t, we consider it falsified, and in need of
an update. Consider for instance the law of gravity. We know that the very simple formula [F = mĹa]
allows us to accurately predicts not only the movement of objects on earth, but also in space, or on
other planets.

2.3.2.3 Machine Learning Models

• GOAL: describe the data
• Designed to capture the variability in observational data by exploiting regularities/symme-

tries/redundancies
• A good ML model doesn’t need to explain reality, it just describe data
• They don’t need to be simple or transparent, or intelligible. Just accurate

– Black box

• ML models may be large and complex.
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• They should generalize to new data obtained in the same way as the training data

– Same application context and data acquisition process

Machine Learning is about representing the data, not about representing reality. More specifically,
ML approaches try to capture regularities in the variability in the data. An implied assumption when
working with ML models is that such data is somehow good enough to describe a reality of interest. So
it follows that by being able to describe data that describes reality, one could “describe” reality. This
is a logical inference with profound consequences and the major source of misunderstanding on the
actual capabilities and limitations of an ML model.

Machine Learning models are complex mathematical artefacts that are supposed to be very accurate
in capturing the data on which they are trained upon. Generalization for Machine Learning is not about
being able to make predictions about any possible data acquisition contexts, but just in the same
context as for the original training data.

Note that ML models can models pick up on spurious correlations: input-output associations that are
just a bi-product of data properties – think about The Neural Net Tank Urban Legend we discussed in
class.
These spurious correlations can lead to incorrect or over-simplified predictions that can again lead to
safety risks.

This is why the ==know your data== action described earlier is so important: Where is the data coming
from? What does (and doesn’t) it represent? How much can the same data be used to operate in another
domain or for another problem?

By having a vast amount of observations (data), in many different contexts and many different situations,
it would be possible (hypothetically) for a Machine Learning model to distill a simple, elegant law
of physics. But that would happen in a much more complex way than what could be achieved by
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reasoning and intellect.

Credits: Zoltan Szlavik. Benjamin Timmermans

2.3.3 Machine Learning Approaches

2.3.3.1 Supervised Learning

• Input: labeled data

– Data + expected prediction

• During training, labels are used to associate patterns with outputs
• Learns how to make input-output predictions

• Classification
• Regression
• Ranking
• Recommendation

Supervised learning is a type of machine learning that is trained over labeled data to create models
that can predict the labels of new data items.

Alessandro Bozzon ML4D Lecture Notes [V0.61] 47



2023-03-29 Machine Learning for Design

Supervised learning is one of the most common types of ML approach, used in many real-world
applications. To give a few examples:

• Predicting house prices based on the house’s size, number of rooms, and location
• Predicting tomorrow’s weather based on yesterday’s temperature, humidity, and environmental

factors
• Detecting spam and non-spam emails based on the words in the e-mail
• Recognizing faces/objects/animals in images based on their pixels
• Recommending videos or music to a user (e.g., on YouTube or Spotify)
• Diagnosing patients as sick or healthy

We can identify two main types of tasks that could be performed through supervised learning: Classi-
fication and Regression (see later).

Supervised learning models can also be used for two other tasks: - Recommendation: the machine
learning model learns how to predict set of categorical data. The output of a recommendation model
is a set (a collection) of data items. For instance, a set of videos to watch next. - Ranking: the machine
learning model learns how to predict list of categorical data. The output of a ranking model is a list
(an ordered set) of data items, ordered according to given criteria—for instance, the results from a
search engine.

2.3.3.1.1 Classification

• Learn to output a category label
• Binary

– e.g. Spam / not Spam, Cat / not cat

• Multi-class

– e.g. cat, dog, bird
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Classification: the machine learning model learns how to predict categorical data. The output of a
classification model is a category (e.g. spam / not spam; cat / dog; sick / healthy)

2.3.3.1.2 Regression

• Learn to output one or more numbers

– e.g., value of a share, number of stars in a review

Regression: the machine learning model learns how to predict numerical data. The output of a
regression model is a number (e.g. tomorrow’s temperature, the value of a stock, the cost of a home,
the expected days of recovery for a sick patient).

2.3.3.2 Unsupervised Learning

• Input: unlabeled data

– The machine learns structures (patterns) from the data without human guidance
– Clustering
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– Dimensionality Reduction (e.g. Large Language Models)
– Anomaly detection

Unsupervised learning is a type of machine learning that is trained over unlabeled data. The goal of
the model is to extract as much information as possible from the dataset.

To give a few examples:

• Customer/User segmentation, i.e. grouping people in different categories based on data repre-
senting their properties or behavior

• Detecting fraudulent behaviour in payment transactions
• Detecting defective mechanical parts
• Categorize documents (e.g. articles, interviews) based on the words in the documents
• Discover trends I customer behaviour.

We can identify three main types of tasks that could be performed through ubsupervised learning:
Clustering, Dimensionality Reduction, and Anomaly Detection.

Examples of clustering

2.3.3.2.1 Clustering Clustering algorithms group data into clusters based on similarity. The idea is
to create groups (clusters) of items that are more similar to each other than to those in other groups.

Similarity is calculated through a metric, a function determining how two data items are close to each
other in a given feature space. For example, customers could be grouped based on their demographics
(age and gender segmentation), buying habits (e.g. types of products they buy), or a combination of
different features. Documents could be grouped by the frequency of co-occurrence of certain words.
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Examples of dimensionality reduction

2.3.3.3 Dimensionality Reduction

Dimensionality reduction is a task aimed at simplifying data before applying other techniques (e.g. su-
pervised learning). Simplification here means reducing the number of features in a dataset by finding
the ones that are more discriminative, i.e. they can capture diversity in the data the most. Dimension-
ality reduction could also mean transforming the data: features could be “merged” so that as little
information as possible is lost while keeping the data as intact as possible.

Note that dimensionality reduction techniques are at the core of many (if not all) generative machine
learning techniques and tools you can find on the news daily. Given a dataset, generative learning
techniques are trained to generate new data points that look like (belong to the same distribution as)
samples from that original dataset. These algorithms learn regularities and variabilities in the data,
and apply dimensionality reduction techniques to reduce (simplify) the representation space of data
items. Later in the course, we will discuss examples of generative machine learning techniques and
explain - in simple terms - how a technology like ChatGPT works.

2.3.3.4 Semi-Supervised Learning

• Combination of supervised and unsupervised learning
• Few labeled data in the input are used to create noisy labeled data
• With more labeled data, the machine learns how to make input-output predictions

Semi-supervised learning is a machine learning technique that combines supervised and unsuper-
vised learning to deal with situations where acquiring abundant labeled data is too expensive.

Semi-supervised learning process
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Semi-supervised learning allows training a supervised model only having a limited amount of labeled
data. The idea is conceptually simple: using a few labeled items, a supervised ML model is trained. This
model will probably perform “sub-optimally”, but it will probably be able to capture some statistical
properties of the data. This lower-quality model is then used to analyze (e.g. classify) all the other data,
creating a so-called noisy label. All the data (the manually labeled one and the noisy labeled one) is
then fed to another supervised model. By expanding the set of labeled data, it should be possible to
learn additional properties (patterns) of the dataset, thus improving overall performance.

Note that, generally speaking, a semi-supervised learning model has a lower performance than a
comparable supervised learning one as, obviously, is more noise in the training data. Another dis-
advantaged is that biases potentially present in the original labeled set are also more likely to be
propagated. However, semi-supervised learning techniques are cheaper and allow quicker prototyping
and experimentation.

2.3.3.5 Transfer Learning

• Often called fine-tuning

– Reuse a model trained for one task is re-purposed (tuned) on a different but related
task

• Useful in tasks lacking abundant data

Transfer Learning

Transfer learning is a technique that allows one to take a model trained for a specific task and re-
purpose it for another one.

For instance, imagine somebody created a model to recognize cats, but the task is to create a model to
classify dogs. As, arguably, cats and dogs share several visual features (e.g. they all have ears, eyes, and
noses) the original model could be fine-tuned to recognised dogs. The process of fine-tuning implies
re-using some of the knowledge previously acquired in an existing model and its adaptation in the
new model through a process of partial retraining. Models created through transfer learning may be
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Transfer learning process

less accurate than models created through supervised learning. Transfer learning is commonly used
these days, especially in computer vision and natural language processing.

2.3.3.6 Reinforcement Learning

• Data about the environment and reward function as input
• The machine can perform actions influencing the environment
• The machine learns behaviours that result in greater reward

In reinforcement learning, the machine learning system is given no training data, but only information
about 1) the environment when the system operates, 2) a set of actions that the system can perform in
the real world, and 3) a reward function that expresses how the environment has rewards or punishes
the system to guide it to reach its goal (or a set of goals).

Reinforcement Learning

The training of such a system happens by allowing the system to “navigate” the environment while
finding a balance between exploration (i.e. test actions and their eventual reward/punishment) and
exploitation (i.e. use existing knowledge to achieve a given goal).

Reinforcement learning finds several interesting applications. For instance

• Games: for instance, the AlphaGO system is based on RL technology
• Robotics: reinforcement learning is used extensively in robotics to allow robots to learn from

their interaction with the environment
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• Self-driving cars: for instance, for path planning or to learn how to behave in particular environ-
ments.

• Chatbot interaction, for instance ChatGPT,

2.3.4 The importance of domain expertise

• ML makes some tasks automatic, but we still need our brains
• More in Section 3 and Section 4

• Defining the prediction task
• Define the evaluation metrics
• Designing features
• Designing inclusions and exclusion criteria for the data
• Annotating (hand-labelling) training (and testing) data
• Select the right model
• Error analysis

This last slide is simply a reminder about the importance of design activities for ML systems. While
the technical and engineering processes of creating a well-functioning ML system are very important,
essential work takes place before a model is even trained.

2.4 2.4 Machine Learning Models

2.4.1 Linear Regression

Let us start with the regression problem and take the simplest, although still very used linear regression
model.
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The idea is simple. We have data points in a multi-dimensional feature space and their associated label
value. The problem at hand is to determine a mathematical model (a function) that best captures the
relationship between these data points in that feature space. The goal is to be able to calculate the
label value of new data items accurately.

In the simple example here, the problem is to estimate the cost of a house (the label) based on its size
(the feature). So it is a simple 1-dimensional problem. And we can describe the data points as in the
figure. For each data point in blue, we know the house size and its corresponding value.

How can we estimate the value of a new house, represented here with the red data point? Visual esti-
mation is, of course, not possible in the real world, where the dataset size or the feature dimensionality
is much bigger.

The idea is to find a mathematical function, in the case of linear regression, a linear function (a straight
line) that best approximates (i.e. best models, best fits) the data in our possession. The linear function
is our model.

The linear function is mathematically expressed as in the slides. The function has only one variable
(Size), and the value to calculate is Cost. b and x are the function’s parameters: x* is the intercept (a
constant value, or bias), and b is the slope of the linear functions. In machine learning lingo, these
parameters are often called the model’s weights.
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Not that the bias is not attached to any feature, but its function is to tell us what the output would be in
a data point where all the features are precisely zero. In our 1-dimensional feature space, bias allows
you to “move the line up and down” on the y-axis, to fit the prediction with the data better. Without
bias b, the line would always go through the origin point (0,0), thus yielding a poorer fit.

We aim to find the value of x and b for which the function is a better fit for our data. How could we do
this?

To explain the method, we simplify the problem and focus on the case where we want to find the best
line that fits these three points.

Assuming we position the line as in the slide, the question is: which slope (value of the parameter b),
allows the linear function to fit the training data best? But how do we measure what best is?
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A common way to measure the quality of a function in fitting a given distribution is by measuring the
error made (on average) when using the data distribution. In the example, we do it by calculating the
distance (the error) between each point in the training set and the linear function.

Many different lines could fit the simple distribution in the slide. How do we find the best one? We
calculate the error for every possible slope of the linear function. A person would take a very long time,
but this is what computers are for: execute repetitive calculations quickly and tirelessly. To guide the
process, we need a cost function (sometimes called a loss function), a formula that allows calculating
“how good” a model works. Training a model means finding the parameter values that minimise the
cost function

In linear regression, we often use the so-called Mean Squared Error, the average of the squared
differences between the predicted value and the actual value of a data item. This is a quadratic
function that looks like a parabola curve.
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In our example, we find that the first slope is the one that better fits the training data.

What we have been doing here is, in a very simple way, training a model based on the available data.
The training process has the goal of finding the optimal parameters of the model. In our example, the
model has a single parameter b.

2.4.2 Training a Machine Learning Model

• Training the model

– Gradient Descent: an algorithm to find the minimum point of a function
– Hyper parameters: parameters of the Gradient Descent

* Learning Rate: speed of descent
* Epochs: max number of steps

To find the best parameter values, we use a very common approach called Gradient Descent. Gradient
descent is an algorithmic way to find a minimum point in a differentiable function. The gradient descent
approach does not require knowledge of the shape of that function but only of its partial derivatives.

The gradient descent algorithm has two parameters. The learning rate controls how much the value
of the parameters to be estimated changes at every step. The higher the value, the faster will be the
“descent.” But also, the higher could be the risk of “jumping” in less optimal points of the curve. The
lower the value, the more accurate yet slow the descent. The epochs that is the maximum number
of steps that the algorithm can take before stopping. We need to set a maximum number of epochs
because it is possible for the algorithm never to find THE optimal value and thus continuously oscillate
between close values.
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In this example animation, we visually show how the gradient descent algorithm operates.

The graph on the left shows a dataset, similar to the one in our example. Each blue dot is a data item.
The red line represents the linear function for a specific slope value. You can observe the line moving
upwards as the slope value increases.

The graph on the right has on the x axis the value of the parameter p to estimate (in our example, the
slope b), and on the y axis the value of the cost function calculated for a specific value of b. We saw in a
previous slide that the mean squared error is a quadratic function that looks like a parabola curve. In
the animation, we explore different values of the parameter left to right, from zero to higher numbers.
As we move from left to right, the value of the error function decreases, progressively approaching its
minimal value - that is, the value of p for which the error is minimal. That value, 18 in our animation, is
the desired one for our model.

From this animation, you can appreciate how the learning rate and epochs parameter allows control-
ling for the length and precision of this process. For instance, a high learning rate – that is, increasing
too much the p value, allows to explore the parameter values quicker, but it could have led to missing
the optimal value.

In the real world, where models have thousands, millions, or billions of parameters, there are several
optimisations for the gradient descent algorithm. For instance, the initial values of parameters are
either set at random or sampled from an existing data distribution. Likewise, values of learning rate and
epochs are determined dynamically, based on the value of the partial derivates of the error function.
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In the previous example, we explored a very simple regressions model; the data points were just a few,
so, the optimization could be done quickly.

Also, by selecting a linear function, we assumed that the data hold, to some extent, a linear relationship.
In many cases, such linear relationships might not hold so we can use more complex models. That is,
models with more parameters.

In the example here, we use a polynomial function. The function still has a single feature (size) but
several components. This allows for a non-linear model that is “closer” to the data points, thus reducing
the error. This is called polynomial regression.

As we will see later, there are even more complicated models.

In a model like the one in the slide, what does it mean for a parameter to equal 0? That the related
component does not contribute to the prediction – that is, the value of that particular component
does not relate to the output value. Similarly, if a component has a very high parameter value (negative
or positive), then such a component is very important in predicting the output value.

2.4.3 Classification

Let us now look at the classification problem.
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For example, let us take the problem of classifying whether a student will be accepted at a university
based on the results of a selection test (x-axis) and their high-school grades in mathematics (y-axis).

For this problem, we are provided with several data points. We have several students for whom we know
the values of these two variables (our feature space, in this case 2-dimensional) and their admission
result (yes/no, our binary class). For instance, in the slide, we have two students that were either
rejected or accepted based on the two values.

The dataset is, of course, bigger. Green dots are students that were previously accepted. The red dots are
students that were not accepted. As you can see, there isn’t a clear-cut separation in this 2-dimensional
feature space. Obviously, high-performing students (high math and test scores) were accepted, and
low-performing students were rejected. However, there are several students “in the middle” for which
the relationship between the value of the two features and the outcome (accepted/rejected) is unclear.
Some students with a high test grades were not accepted due to low math grades. And vice versa.

Let us assume that new students are coming. Given a new student applying at a university (math grade
6) and performing the admission test with a 7. Will the student be accepted?
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To answer the question, let’s look at the data. Most of the points seem to be separated by a line. Most
points over it are green, and most below it are red, with some exceptions. We will say that that line is
our model, so when a new student comes in, if they happen to be above the line, we predict they will
be admitted. Otherwise, they won’t.

We have already encountered this method, this is a Logistic Regression.

How do we find this line that cuts the data in 2?

As before, let me show you an example of how a computer can learn to do this automatically.

Let’s assume we draw a line trying to separate this bi-dimensional space in 2.

As with the previous linear regression, we want to measure how “good” this model is in fitting the data.
In this case, we measure the error slightly differently. This means we use a different cost function.

For instance, we can count how many points are classified incorrectly. In the example here, the number
of errors is 2.

62 ML4D Lecture Notes [V0.61] Alessandro Bozzon



Machine Learning for Design 2023-03-29

By trying different configurations for this function (that is, different slopes), we can find the one
that minimises the number of prediction errors. This can also be done with the gradient descent
algorithm.

In the slide, by moving the line a little bit, the number of errors decreases.

If we move it again, it becomes 0.
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Note that in reality, we would not use the number of errors as a cost function, but we use something
called Log-loss function.

Here the mathematical formulation becomes a big complex, so we will not indulge further. The intuition
beyond this measure is to give a high penalty to items that are misclassified with a high probability
(that is, they fall far away from the line), and to give a lower penalty to the ones that are misclassified
with low probability (so, they are closer to the line).

We created the example here to illustrate the problem of finding a decision boundary. However, the
example is weird, as we data items where students with a very low test score or math scores are still
accepted.

Let us then modify the data a little to make it a bit more realistic.
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Notice that with this data, it would be very difficult to define a decision boundary with a single line. We
would need something like a circle, a function that is much more difficult to estimate.

With can also try to train a model composed of multiple functions. For instance, two lines. As before,
we can use some gradient descent approach to find the best possible parameters for each of these
lines.

In this example, we are estimating multiple functions at the same time. Each function is estimated
separately, yet together, as they contribute to defining the decision boundary. And in practice, this is
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what a neural network does.

2.4.4 Neural Networks

Neural networks are one of the most popular (if not the most popular) machine learning models
currently used for both classification and regression.

Neural networks are meant to, in the very broad sense of the word, mimic how the human brain
operates.

The one in the picture is a deep neural network, of the ones that you might have heard of or that we
have discussed previously. They indeed look scary, but we can simply understand them.

We call them neural networks because their basic unit, the perceptron, vaguely resembles a neuron.

A neuron comprises three main parts: the soma, the dendrites, and the axon. In broad terms, the
neuron receives signals from other neurons through the dendrites, processes them in the soma, and
sends a signal through the axon to be received by other neurons.

A perceptron is designed to work similarly to a neutron: it receives numbers as inputs, applies a
mathematical operation to them and outputs a new number.
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In a perceptron, the mathematical operation is typically the weighted sum of the input values plus the
bias - a simple weighted linear combination of the input values.

In this way, we can represent linear functions in feature space of arbitrary size, including the mono-
dimensional one of our previous examples with linear regression. Intuitively, a perceptron with a single
input (and a bias) is precisely the equivalent of the regression function in our previous example.

The activation function takes the values of the weighted linear combination of the input and decides
how the perceptron will activate (or fire), that is, if it will output a value.
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Many activation functions could be used in a perceptron. We show two.

The step function returns a 1 if the output of the weighted linear combination is nonnegative and a 0 if
it is negative.

The sigmoid function works slightly differently, as it outputs a number between 0 and 1. The number
is close to 1 if the score is positive and close to zero if the score is negative. If the score is zero, then
the output is 0.5. Note that a single perceptron using a sigmoid function operates exactly as a linear
regression.

So, let’s go back to our classification example, where we have two linear functions dividing the two-
dimensional space.

We can split the problem of classifying the data items into two problems - each related to one of the
two functions.

Let’s say that one function – we call it Test Grade Classifier – partitions the decision space in one way,
while the other function – we call it Math Grade Classifier – partitions the decision space in the other.
Note that we are still using both features in each classification. Together, the two classifiers make the
Admission Classifier.
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The situation described in the previous slide can be modelled with the neural network in the picture. It
comprises three perceptrons: the Test Grade Perceptron and the Math Grade Perceptron, both used
as input for the Math* and Test** features. The Admission Perceptron uses the output of the Test
Grade Perceptron and the Math Grade Perceptron as input. The three perceptrons output a 0 or a
$1# value, as they use a step activation function.

Note how different activation functions produce different types of classification boundaries.

Here you can see how the use of a sigmoid function can change the boundaries of the classification
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space.

2.4.4.1 Fully connected Neural Network

• Hyperparameters

– Learning rate
– Number of epochs
– Architecture

* #layers, #nodes, activation functions

– Batch vs. mini-batch vs. stochastic gradient descent
– Regularization parameters:

* Dropout probability p

So far, we have seen examples of a small neural network. In real life, neural networks are much larger.
The nodes are arranged in layers, as illustrated in the slide.

The first layer is the input layer, the final layer is the output layer, and all the layers in between are
called the hidden layers. Perceptrons in the same layers are typically similar, i.e., they have the same
activation function.

The arrangement of nodes and layers is called the architecture of the neural network. The number of
layers (excluding the input layer) is called the depth of the neural network. The size of a layer is the
number of non-bias nodes in that layer. Note that neural networks are often drawn without the bias
nodes, but it is always assumed they are part of the architecture.

The network in the slide has every node in a layer connected to every (non-bias) node in the next
layer. Furthermore, no connections happen between nonconsecutive layers. This architecture is called

70 ML4D Lecture Notes [V0.61] Alessandro Bozzon



Machine Learning for Design 2023-03-29

fully connected feedforward. For some applications, we use different architectures where not all the
connections are there or where some nodes are connected between non-consecutive layers. We will
see some examples in the coming lectures.

Like most machine learning algorithms, the training of a neural network is configurable through hyper-
parameters. These hyperparameters determine how the training is performed. The first two we saw
before: how long we want the process to go (number of epochs) and at what speed (learning rate).
As neural networks are much more powerful models, their training (and performance) are subject to
much more fine-tuning. For instance, neural networks are not trained by examine **all the data* in the
dataset at once but just a subset at a time. How these subjects are composed (e.g. size, distribution
of data items in the feature space) is a hyper-parameter (Batch vs. mini-batch vs. stochastic gradient
descent). Neural networks are also prone to overfitting (a concept we will explore in another lecture) –
that is, they have poor generalisation capabilities and learn “too well” the training data distribution.
Regularisation techniques help by “distracting” the network by introducing noise. For instance, Dropout
is a training technique where a few perceptrons in the network are randomly “switched off” during
different training phases.

2.4.4.2 Classifying into multiple classes - Softmax function

• Return a probability for each class

– example C1= ADMITTED, C2 = NOT ADMITTED, C3 = NEW TEST
– p(C1) = 0.37, p(C2) = 0,21, p(C3) = 0,42

• We use the Softmax activation function for the output layer

Perceptrons return a single numerical value (discrete or continuous). They are, therefore, perfectly
suited for regression problems, but how can we make them work for classification problems? In that
case, instead of returning a 0 or a 1 (step function on the output layer), or a value between 0 and 1
(sigmoid function on the output layer), we would like to return a probability value for each class in the
classification problem. In the slide, for instance, we have slightly modified the classification problem
by having 3 classes: C1 that means admitted, C2 that means not admitted and C3 that represents
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a case when a new test is needed. When a new instance is processed, the network should return a
probability value (0 and 1) for each class.

To allow for this situation, we can change the activation function of the output layer into a Softmax
function. The softmax function is a function that turns a vector of K real values (where K is the number
of classes) into a vector of K real values that sum to 1. The input values can be positive, negative, zero,
or greater than one, but the softmax transforms them into values between 0 and 1, so they can be
interpreted as probabilities. If one of the inputs is small or negative, the softmax turns it into a small
probability, and if an input is large, it turns it into a large probability, but it will always remain between
0 and 1.

The important assumption is that the true class labels are independent. That is to say each sample
of data can only belong to one class. For example, a person cannot be admitted and not admitted
simultaneously. Its true label can only belong to one class.

Note that the sigmoid activation function is equivalent to the softmax function when we there are only
two classes. It is unnecessary to calculate the second vector component explicitly because when there
are two probabilities, they must sum to 1. So, if we are developing a two-class classifier with logistic
regression, we can use the sigmoid function.

If you want to experiment with neural networks, and have a better feeling of how they work, I strongly
recommend you try the Tensorflow Playground. There you can try different data distributions, classifi-
cation problems, activation functions, etc.

2.5 2.5 Models Development Lifecycle

You were earlier introduced to the CRISP-DM methodology: Cross Industry Standard Process for Data
Mining, a way to describe the process of Machine Learning system development. Three phases in that
process are of interest to us in this section:
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• In the modeling step, the actual machine learning model is trained. This step begins once the
problem to be solved is defined and the data is prepared.

• In the evaluations step, the development team checks how the developed model complies with
the expected performance requirements.

• In the deployment and monitoring step, the machine learning model is put “in production,”
facing real users. There, the model encounters “the real world”, dealing with data items never
experienced before during training and evaluation.

These three steps are independent but entirely connected. Therefore, we will look at them again,
describing them through a slightly different lens.

The diagram in the slide unpacks three CRISP-DM steps described before and highlights the data used
in each stage and the actions performed.

The data available beforehand are called historical data. This emphasizes how such data represent
and encode the past phenomena that the ML algorithm will try to predict.

In the modeling phase, developers use two disjoint (i.e., no data items in common) subsets of the
historical data: the training set and the validation set. As the name suggests, the training set is used to
train the machine-learning model - that is, given the chosen class of models (e.g. a neural network),
learn the model’s parameters that can achieve better prediction performance. Once the model is
trained, the validation set is used for validation purposes. This means, for instance, “tuning” the model
based on the performance of that different set of data. The tuning is needed for several reasons.

• The first is to look at the model’s performance against a different data set. As we will see in a later
lecture, machine learning models can become too good at learning a given data distribution
(this is called overfitting) at the cost of generalisation performance (showing good performance
with unseen data items). If there is a substantial difference in the model performance over the
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training and validation sets, then probably some early choices need to be reconsidered. For
instance, a deep neural network might be too complex a model for the problem.

• The second reason concerns selecting the best models and learning hyperparameters. As you
remember from the previous lecture, models can be configured – e.g., the number of layers in a
deep learning architecture, and the complexity of a linear regression model. Likewise, learning
algorithms like gradient descent have hyperparameters like the learning rate or the number of
training epochs. Tuning the model entails determining the optimum parameters for the model,
called hyperparameters, that give the best performance. The validation step is an iterative
process, that continues until the developer is satisfied with the achieved level of performance.

In the evaluation phase, the learned model is tested against another subset of historical data called
the test set. The test set is also disjoint from the training( and validation* sets.

The objective of the evaluation phase is to obtain an unbiased assessment of the model’s performance.
The lack of bias, in this case, comes from the fact that the test set is entirely unknown to the model,
thus mimicking the situation that could occur in the real world. In reality, the data in the test set are still
historical data, so they have probably been created in the same conditions as the training and validation
data. Therefore, the evaluation is not completely unbiased. The evaluation phase can (and should) also
include stakeholders and experts so that they can also evaluate the model’s performance before being
put into production. This additional testing is called user acceptance testing (UAT), and is supposed
to be the final stage in the development of any software system. Unsatisfactory performance requires
returning to the modeling phase or earlier to the data preparation or the problem specification
stages.

If the performance is satisfactory, the process moves to the deployment and monitoring phase. The
model is run against new data items produced by the system’s end users. If these data items are
sufficiently similar to the historical ones, then the model should perform well. It is possible, however,
that these new data items are different enough to yield unsatisfactory performance. This is almost
inevitable due to a phenomenon called concept drift.

Concept drift occurs when the properties or the distribution of the data fed to the deployed model
changes compared to the historical data. This could happen when the historical data did not contain
examples of a specific class. The (in)famous example of the Tesla Autopilot confusing the moon for a
traffic light is representative of this class of issues. Concept drift can also happen when classes exist
in the historical data, but the properties of items belonging to such classes change over time, thus
leading to increasingly worse performance. For example, consider a machine learning model trained
to classify news articles into categories like “politics,” “sport,” and “technology.” Suppose the model
is trained on news articles from the 20th century. In that case, its performance on current data will
probably be bad: terms like “smartphone” were perhaps not present back then, thus predicting the
“technology” category very hard.

To mitigate these issues, it is essential to continually update the training dataset and retrain the models
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accordingly. This is why any decently designed ML system should include a monitoring step, where
feedback from users or predictions are collected and analysed to provide new training data for the
system and then allow its improvement over time.

2.5.1 Dataset Splitting

2.5.1.1 Split your data

• Training set

– train

• Validation set

– fine-tune

• Test set

– evaluate

A quick discussion on the issue of dataset splitting. As explained in the previous section, training
and evaluating a machine learning model based on historical data requires splitting such data into a
training, validation, and test set. But how should this data be split?

From a numerical perspective, the idea is always to reserve more data for the training than for the eval-
uation phase. So, an 80-20 strategy (80% for training and validation, 20% for testing) is very common.
The proportion can vary slightly, also based on the abundance of the available data. Remember that
machine learning models need a lot of data for good training, so the more data available for training
the better.

But quantity is not the only issue. How data items are distributed is also important. Imagine a computer
vision dataset for object classification containing 10 categories of items. Intuitively, the 10 classes
should be present in the training, validation, and test sets, otherwise performance will be worse, for
instance, for those classes that received no training. However, this is not sufficient, as it is essential
to make sure that the number of items per class (their distribution) is proportionally similar. In the
example above, the training set should contain a similar percentage of each category of items as the
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test and validation sets. This will maximise the chances that the developed model reflects and is being
evaluated in real-world scenarios - at least insofar as the historical data contains a good reflection of
the world to be modeled.

2.5.1.2 Avoid leakages

• Data items

– in the validation or evaluation sets

• Features

– highly correlated to prediction
– not present in the production environment

Keeping a proportion of the data is insufficient, as there could be some subtle issues in how the data is
distributed across the three sets. A specific type of issue is the so-called data leakage, which is the
presence of data items in the training set leak into the validation or evaluation sets. If this happens,
then it would be like training the model to “cheat the test,” as training data are more likely to be
recognized by definition.

Data leakage can also happen when features in the training, validation, and test sets unintentionally
leak information that would otherwise not appear in deployment when the model performs predictions
on new data. A famous example of data leakage happened during the KDD Cup Challenge of 2008. The
goal was to create a machine-learning model based on X-ray images to detect whether a breast cancer
cell was benign or malignant. The model with higher performance used a feature called Patient ID,
the identifier generated by the hospital for the patient. It turned out that some of the hospitals that
provided the data used the patient ID as a way to indicate the severity of the patient’s condition when
they were admitted to the hospital, thus creating an association between the feature and the expected
result of the x-ray analysis of the patient when they were admitted to the hospital, which, therefore,
leaked information about the target variable.

76 ML4D Lecture Notes [V0.61] Alessandro Bozzon

https://www.kdd.org/kdd-cup/view/kdd-cup-2008
http://kdd.org/exploration_files/KDDCup08-P1.pdf


Machine Learning for Design 2023-03-29

2.5.1.3 Cross-validation

• Cycle training and validation data several times

– Useful when dataset is small

• Split the data into n portions

– Train the model n times using n − 1 portions for training
– Average results

How could data be spliced between the training set and the validation set? Simply partitioning the
data (e.g., 60% for training and 20% for validation) is an option. However, remember that at training
time, the goal is to achieve good performance and generalize as much as possible. So, the more data
items are explored for training and validation purposes the merrier.

Cross-validation is an approach where the historical data allocated for training and validation are
randomly partitioned into N sets of equal size, and the learning algorithm is also run N times. Each
time, one of the N sets is used as a validation set, and the model is trained on the remaining N − 1
sets. The score (error) of the model is evaluated by averaging the error across the N validation errors.
In the slides, we can see an example where the available historical data is split in 4 batches. In this way,
it is possible to create 4 training set up, each with a different validation set.

The advantage of cross-validation techniques is their conceptual simplicity, the disadvantage is the high
computational cost resulting from many repeated training trials. If the computational cost of training
a model is high, cross-validation could be expensive. Moreover, as the training dataset is reduced, it
is important to make sure that there is sufficient training data so that all relevant phenomena of the
problem exist in both the training data and the validation data.

Note that a similar approach can also be used for the creation of the test dataset.

2.6 2.6 Evaluating Machine Learning Models

2.6.1 How to Evaluate?
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• Metric

– How to measure errors?
– Both training and testing

• Training

– How to “help” the ML model to perform well?

• Validation

– How to pick the best ML model?

• Evaluation

– How to “help” the ML model to generalize?

How can the evaluation of Machine Learning systems be performed? And, most importantly, what is
evaluated?

We have seen in the previous slides the roles that the training and evaluation steps play in the engineer-
ing of an ML model. Evaluation during training is primarily devoted to creating a model that performs
best on the training data; or selecting the best model or configuration. During the evaluation step,
the additional goal is to assess if the model performs acceptably in the chosen application domain,
possibly by including end users or other stakeholders.

In both cases, what is needed is a way to measure the performance of a model mathematically.

2.6.2 Let errors guide you

• Errors are almost inevitable!
• How to measure errors?
• Select an evaluation procedure (a “metric”)

Machine learning systems are stochastic. This means that, in practice, they will always make some
mistakes. The goal is, of course, to minimize such mistakes, and this is what we try to get a machine
learning model to do: minimize mistakes. Or minimise the errors they make.

In Section XXX we described in simple terms what, in practice, the training of a machine learning model
is: find the best model’s parameter values that minimize a given prediction error (or prediction cost).

2.6.3 How to calculate

• These are the most common questions:

– How is the prediction wrong?
– How often is the prediction wrong?
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– What is the cost of wrong predictions?
– How does the cost vary by the wrong prediction type?
– How can costs be minimised?

How can a good metric (or error functions) be selected? The answer to this question requires a deep
and precise analysis of the cost associated with an error. Here by cost we do not only mean monetary
cost, although money can always be an issue. Cost can also be interpreted as the harm that could be
done to the people on the receiving side of a prediction. It is possible, for instance, that the wrong
classification of an offensive document brings discomfort to the user of an online video service. The
wrong classification of an chest scan can have far worse consequences.

2.6.3.1 Regression

How do we measure errors in regression problems?

2.6.3.1.1 Mean absolute error MAE = 1
N

∑N
J=1 |pj − vj |

Average of the difference between the expected value (vj) and the predicted value (pj)

In a previous lecture, we have already been introduced to the concept of error in regression: the
difference between the expected value vj and the predicted value pj .

Mean Absolute Error averages the error made by the model on every data point in the training set (if
the Mean Absolute Error guides the training), in the validation set (if it is used during validation), or
in the evaluation set. It is called the absolute error because it is calculated over the absolute value
of the difference: the difference can be positive (the model predicts a higher value) or negative (the
model predicts a lower value). To turn this difference into a number that is always positive, we take its
absolute value.

2.6.3.1.2 Mean square error MSE = 1
2N

∑N
J=1(pj − vj)2

• Average of the square of the difference between the training value (vj) and the expected value
(pj)

• Square is easier to use during the training process (derivative)
• More significant errors are more pronounced
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The Mean Square Error is very similar to the absolute error, but what is calculated is the square of the
difference between the predicted and expected values. The result will always be a positive number.
The square error is used more commonly in practice than the absolute error for two reasons: 1) the
square has a much nicer derivative than an absolute value, which is useful when using the gradient
descent algorithm for training; 2) it “amplifies” the value of large errors, making them more prominent
in the error function.

2.6.3.2 Classification

And what about classification?

2.6.3.2.1 Confusion Matrix Describes the complete performance of the model

In classification models, the classification can either be correct or not correct - it is impossible to be
“sort of” correct. Therefore, errors are described and calculated differently from regression.

Let us use the example of a binary classifier that works only on two classes. For instance, yes and no
(as in the slide), sick or not sick, cat or dog. In this case, errors can only be of two types:

• False Positive (FP): a data point with a negative label that the model classifies as positive. For
instance, a healthy person (not sick) who is incorrectly diagnosed as sick.

• False Negative (FN): a data point with a positive label that the model falsely classified as negative.
For instance, a sick person is incorrectly diagnosed as not sick.

Of course, we also have:

• True Positive (TP): data points with a positive label correctly classified as positive. For instance,
a healthy person classified as not sick.
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• True Negative (TN): data points with a negative label correctly classified as negative. For instance,
a sick person correctly diagnosed as sick.

A Confusion Matrix helps keep track of these four quantities. In binary classification models like the
one in our example, the confusion matrix has two rows (the predicted classes) and two columns (the
actual class). Cells contain the number of time the model produces True Positives, True Negatives,
False Positives, and False Negatives. In confusion, the correctly classified data items are counted
on the diagonal, and the incorrectly classified data items are counted off the diagonal. Note that
sometimes rows and columns can also be transposed, but the meaning of TP, TN, FP, FN remains the
same.

In classification settings with more classes, the confusion matrix is larger. Consider, for example, a
model classifying patients as sick, not sick, and unsure; then the confusion matrix is a three-by-three
matrix.

2.6.3.2.2 Type I and Type II errors In literature, it is also possible to find False Positives and False
Negatives respectively described as Type I and Type II errors.

2.6.3.2.3 Accuracy

• The percentage of times that a model is correct
• The model with the highest accuracy is not necessarily the best
• Some errors (e.g., False Negative) can be more costly than others

T P +T N
T P +T N+F P +F N

Accuracy is the simplest and the most common measure of classification models, and it calculates
the percentage of times a model is correct. Its value is calculated as the ratio between the number of
correctly predicted data points and the total number of data points.

Note that in this formulation, Accuracy treats each data points in the dataset equally: there is no data
point for which a mistake is worse than others. Also, accuracy does not consider if items belonging to a
specific class are more popular than items belonging to another class. In this situation, a model can
achieve a very high accuracy score because it performs well on the most popular class items. Take,
for instance, a problem where 99% of the data items are in one class (e.g. not sick) and only 1% are
in the other class (e.g., sick): a model that always predicts not sick will achieve a 99% accuracy, thus
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appearing to be very good, while in reality being very problematic for the 1% of the population that
needed the model to work.

2.6.3.2.4 Errors are not equal Also, accuracy treats errors as equally costly. In the example above,
making a mistake on the 1% of the population (that is, classifying them as not sick even if they are sick)
is a problem.

The images in this slide provide real-world examples of situations where classification errors made for
rare or unknown classes can have very dire consequences.

• Detecting the “Alexa” command?
• Pregnancy detection

– Cost of “false negatives”?
– Cost of “false positives”?

• Covid testing

– Cost of “false negatives”?
– Cost of “false positives”?

• Law enforcement?

Depending on your task, different errors have different costs. Consider the examples in the slide. What
are the costs associated with mistaking an Alexa command? The cost of a false negative is probably
meagre for the end user. In the worst case, the user must repeat the command or stop using Alexa
altogether. A false positive can be more tricky, as Alexa can start processing the input, thus believing
that an instruction must be executed. In a funny example, it is reported that during a broadcast, the TV
anchor Jim Patton said, “I love the little girl saying, ‘Alexa, order me a dollhouse.’ ” In households with
an Alexa device listening, Alexa mistook the statement as a request to order a dollhouse. Here the cost
of the mistake is not high, but several users had to rush to cancel orders placed on their devices, and
Amazon had to explain how something like that was possible in the first place.
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What about the cost of errors in the case of a pregnancy test? Here a false positive (or a *false negative)
will probably give a big scare or a big hope (depending on whether the people involved wanted or not
to conceive a child), but a second test or a proper visit to the doctor will probably remove any doubt.

In the case of a COVID test, things are a bit trickier. A false negative could give sick people the freedom
to circulate and further spread the virus. In March 2023 this was not such a big issue anymore, but in
March 2020 it was. A false positive, on the other hand, will probably force someone to stay at home (or
work from home) even if they feel perfectly ok.

One critical remark: no matter how good a metric can be, it can always be fooled. The decision on
what metric to use is a design choice, which should be driven by an understanding of the costs of
errors (false positive vs. false negative). Never assume that a model is good before evaluating it against
different metrics.

2.6.3.2.5 Balanced Accuracy The Balanced Accuracy is a way to measure accuracy by accounting
for the accuracy value of each class.

T P
T P +F N

+ T N
F P +T N

2

• Average of single class performance
• Good to use when the distribution of data items in classes is imbalanced

The formula of the Balanced Accuracy calculates the average of each class’s accuracy. Note that the
accuracy of a single class is equivalent to the recall for that class (we will see the formula for recall in a
couple of slides).

When the dataset is unbalanced, i.e., one or more classes have a significatively smaller number of data
items, the Accuracy value mainly depends on the algorithm’s performance with the most popular
classes. The Balanced Accuracy gives smaller classes the same influence on the formula then the more
popular ones, although their size is reduced in the number of data points. This means that Balanced
Accuracy is insensitive to an imbalanced class. This can be an advantage when interested in having
good prediction also for under-represented classes. But it can be a disadvantage if the goal is to have
good prediction on the entire dataset.

If dataset is quite balanced, i.e., the classes have a balanced number of data items, Accuracy and
Balanced Accuracy have similar values.

2.6.3.2.6 Balanced Accuracy Weighted The Balanced Accuracy Weighted extends the Balanced
Accuracy formula by multiplying each class’s accuracy by the class frequency (w) on the entire dataset.
In this way, larger classes have a weight proportional to their size.

T P
(T P +F N)∗w

+ T N
(F P +T N)∗(1−w)
2
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• Weighted average of single-class performance
• Weight depends on the popularity of a class.

Since class accuracy is weighted by the class frequency, Balanced Accuracy Weighted can be a very
good performance indicator with classification algorithms working on many classes.

2.6.3.2.7 Precision The Precision is the fraction of True Positive predictions divided by the total
number of positively predicted data items (True Positive plus False Positive).

T P
T P +F P

• Among the examples we classified as positive, how many did we correctly classify?

Precision is a metric that tests the correctness of the Positive data items that are correctly classified.
With Precision, we are interested in minimizing the number of False Positives the model predicts
because such mistakes can be costly. Consider the example of a pregnancy test. A test with too many
false positives will probably be undesirable because it would overflow the healthcare system with
people that did not need to be controlled during an actual pregnancy – not to mention the undesired
emotional effect for people that wanted a pregnancy bit did not have one, or for those that did not
want a pregnancy, and are now very upset about it. Not that very high precision can be achieved by a
system that rarely (or never) predicts a positive value - thus making, by definition, no mistakes. Yet,
that model will probably be useless.

2.6.3.2.8 Recall The Recall is the fraction of True Positive elements divided by the number of
positively classified units (True Positive plus False Negative).

T P
T P +F N

• Among the positive examples, how many did we correctly classify?

Recall is a metric that tests the proportion of all the Positive data items that were supposed to be
positively classified. Recall is a useful metric when in the considered applications False Negatives are
costly. Take the example of a COVID-19 test during the early phases of the pandemic. Arguably, the
most important thing was to find all the infected people worldwide, even if that meat misdiagnoses
some non-infected people. Note that a model that diagnoses every patient as sick can be very bad:
despite having zero False Negative patients, it can have too many False Positives.

2.6.3.2.9 F1 -Score Precision and Recall measure two performance properties that are both of
importance. It can be helpful to be able to combine them both. For example, we can be interested in
an ML model that does not misdiagnose sick patients but does not misdiagnose too many healthy (non
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sick) people – e.g., when the wrong diagnosis of a healthy person may involve unnecessary and painful
testing.

F1 = 2 ∗ 1
1
P

+ 1
R

• The harmonic mean between precision and recall
• What is the implicit assumption about the costs of errors?

The F1 score combines both recall and precision. If both precision and recall are high, then the F_1
score is also high. However, if one is low, then the F_1 score will also be low, thus indicating that one
of the two is not at the desired level. Note that the harmonic mean is not the same as the average,
although it is always smaller or equal to it. The reason for not using a simple average is that a simple
average would balance the excellent performance of one metric with the lousy performance of another.
For example, a system with 90% precision and a 10% recall will have a simple average of 50%, which
might be misleading. The harmonic mean (the F1 score) is 18%.

2.6.3.2.10 Sensitivity (true positive rate) In the medical field, Sensitivity is used to identify the
positively labeled data items, and it is the same as Recall.

T P
F N+T P

• Identification of the positively labeled data items
• Same as recall

2.6.3.2.11 Specificity (false positive rate) Specificity is another metric used in the medical field to
focus on negatively labeled data points. Note that Specificity is not the same as Precision because
the focus is on the negative data items.

T N
F P +T N

• Identification of the negatively labeled data items
• Not the same as precision

This table summarises how Sensitivity (Recall), Specificity, and Precision are calculated.
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2.6.3.3 Examples

2.6.3.3.1 Medical Test Model

• Recall and sensitivity

– How many were correctly diagnosed as sick among the sick people (positives)?

• Precision

– Among the people diagnosed as sick, how many were sick?

• Specificity

– Among the healthy people (negatives), how many were correctly diagnosed as healthy?

Let us discuss the three measures in the case of a medical test like in the COVID-19 example. As we
mentioned before, in this case, we are more concerned about correctly diagnosing sick people so we
would need a model with high sensitivity (or high recall).

2.6.3.3.2 Spam Detection Model

• Recall and sensitivity

– How many were correctly deleted among the spam emails (positives)?

• Precision

– Among the deleted emails, how many were spam?

• Specificity

– Among the good emails (negatives), how many were correctly sent to the inbox?

Let us consider another example: a model that classifies spam emails and deletes them from a mailbox.
With this model, the sensitivity (recall) is the proportion of spam messages (positive class) that were
correctly deleted among all the spam messages. The specificity is the proportion of good emails
(negative class) that were correctly sent to the inbox among all the good emails. In this case, the
application requires the model to have high specificity, as wrongly classifying mails as spam can be a
big issue.

2.6.3.3.3 Search Engine

• Constraint: high precision

– False positives are tolerable but should be minimised

• Among the available models, pick one with a higher recall

– Metric: Recall at Precision = x%
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In a final example, let us consider a search engine. In this case, the goal of the application is to retrieve
the best possible set of pages at the top of the search results page. For this application high precision
is important, although some mistakes can be tolerated. If there is the possibility of picking between
different models, the suggestion is to pick the one with similar precision and higher recall.

Note that dozens (if not hundreds) of metrics could be used to measure machine-learning models (for
instance, the Recall at Precision mentioned in the slide. In this course, we will only look at few, but
there will be many more that you can encounter in the follow-up courses in the master.

2.6.4 Metrics are designed in a multi-stakeholder context

• One team builds the mode

– Data scientists / ML engineers

• Many teams will make use of it

– e.g., product team, management team

Chasing a metric is, of course, a critical and delicate design task. A task that often requires a design
process involving several stakeholders.

Though a single team is often responsible for building a machine-learning model (the data science / or
ML team), many teams across an organization will have a stake in the model’s performance. Each team
will inevitably have its definition of *success** or failure, which could be at odds with one another.

For instance, imagine a model that should identify defective products from images. The data science
team wants to minimize standard accuracy metrics because it simplifies training. On the other hand,
the product management team is more interested in reducing the number of defective products that are
misclassified and sent to customers. Finally, the executive team might aim at minimizing the products
that are misclassified as defective because that will lead at a revenue decrease. Each one of these goals
has a different conceptualisation of success, and gives a different weight to errors. Balancing these
differing needs within an organization can present a challenge. When defining the goals of a model, it
is therefore important, as for many other design processes, to consider the needs of different teams
across an organization and how each team’s needs relate to the model.
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3 Section 3: Image Processing Methods

In the first lecture, we defined Computer Vision as the sub-field of Artificial Intelligence and Machine
Learning that focuses on 1) extracting high-level understanding from images or videos or 2) generating
realistic images and videos.

To understand why vision is a difficult task for computers to perform, let’s start with something relatively
obvious: the way we (humans) see is very different from the way computers “see.” When presented
with an image like the one in the slide, humans can process much information simultaneously. You
can look at the picture as a whole, and understand that it depicts an outdoor scene in a park, probably
New York City (this is Central Park), where people are Ice Skating, probably in winter. We do all of this
instantaneously, almost intuitively, relying both on our intuition and our knowledge.

But this is what a computer “sees”—just an extensive matrix of numerical information. Just numbers.
This difference in interpretation is what is commonly referred to as “Semantic Gap”. A semantic gap
“characterises the difference between two descriptions of an object by different . . . representations,
for instance, languages or symbols”.
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3.1 3.1 Images

• Each pixel in an image is a feature

– numerical

* 0 or 1 for Black and White
* Between 0 and 255 for greyscale
* 16M values for RGB

• Dimensionality -> n x m

Images are made of pixels and, in computer vision machine learning models, each pixel is an **input
feature*. Depending on the type of the image, each feature (pixel) can assume a different numerical
value.

Pixels in Black and White images have a value of either 0 (black) or 1 (white). Grayscale images have
a wider intensity range, so each pixel has a value ranging between 0 (black) and 255 (white). Color
Images have multiple color channels, represented using different color models (e.g., RGB, LAB, HSV).
For example, an image in the RGB model consists of red, green, and blue channels. Each pixel in a
channel has intensity values ranging from 0 and 255.

3.2 3.2 Computer Vision

• Building algorithms that can “understand” the content of images and use it for other appli-
cations

– It is a “Strong AI” problem

* signal-to-symbol conversion
* The semantic gap -A general-purpose vision system requires

– Flexible, robust visual representation

* Updated and maintained

– Reasoning
– Interfacing with attention, goals, and plans
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Computer vision is about automating and integrating various processes and representations used for
visual perception. And this is difficult, very difficult.

Vision requires many capabilities we often take for granted. For instance, the ability to extract intrinsic
images of “lightness,” “color,” and “range.” We perceive black as black in a complex scene even when
the lighting is such that some black patches reflect more light than some white patches. Similarly,
perceived colors are not related simply to the wavelengths of the reflected light; if they were, we would
consciously see colors changing with illumination.

But vision is not only about sensing, it is also about interpreting, i.e. processing the acquired informa-
tion to extract meaning from it. In the context of computer vision, the Semantic Gap can be defined as
“. . . the lack of coincidence between the information that one can extract from the visual data and the
interpretation that the same data have for a user in a given situation.”“1

The human brain solves this in multiple steps in different brain regions. Take, for instance, the ability
to recognise objects. This ability is acquired either biologically (e.g. recognizing faces), through devel-
opment (e.g. recognizing different types of vehicles), or through learning (e.g. recognizing a specific
type of plane).

Computer vision is intrinsically tricky because it requires “re-inventing” the most basic yet inaccessible
abilities of biological visual systems.

3.3 3.3 What specific tasks can we train a CV system to perform?

Due to all these complexities, it is not possible to implement a vision system that can emulate the
human one. What recent advances in machine learning allowed, however, is the ability to perform
specific vision tasks, in predefined contexts, with very good performance. We will now see several
examples.

1 Smeulders, A.W., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-based image retrieval at the end of the
early years. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 22, 1349–1380 (12 2000).
https://doi.org/10.1109/34.895972
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3.3.1 Object Recognition / Localisation

In an image, drawing a bounding box around a specific object is called object localization. Object
localization means recognizing the existence of one or more objects (of any type) in an image and
marking the location with a bounding box.

Object recognition (or object classification) is the ability to both locate and classify objects in an
image. Given an image, the object recognition tasks produce in output one or more multiple bounding
boxes. Each bounding box marks the objects’ location and class.

Current CV technology can recognize hundreds (or more) of objects at the same time. It is possible,
for instance, to use object recognition to count the number of people in a given area (e.g., for crowd
control purposes).

It is possible to do so also in real-time, in live video streams. The examples in the picture use a popular
CV technique called Yolo (see a recent implementation here.
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Face detection has been used for multiple years in cameras to take better pictures and focus on faces.
Smile detection can allow a camera to take pictures automatically when the subject is smiling.

3.3.2 Object Identification

Face identification is more difficult than face detection, as the goal is not to recognize any face, but to
identify the person having a specific face.

In the past, this task could have been performed only by security services and large organisations
(e.g. airports). Today, thanks to the availability of large collections of high-quality labeled data (e.g. your
personally curated photo albums on Google Images or Apple Photos, or Facebook), achieving extremely
good performance on very large populations is possible. For the same reason, face identification can
also be used for biometric identification.
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The identification task can also be performed on specific objects in the real world.
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Applications like Google Lens allow one to identify monuments, landmarks, books, plants, and other
object classes.

3.3.3 Image Segmentation

The image segmentation task is devoted to the partitioning of a digital image into multiple image
segments (sets of pixels), also known as image regions, each containing a defined object class. Image
segmentation is the assigning a label to every pixel in an image, aiming to simplify the representation
of an image into something more meaningful and easier to analyze.

Image segmentation is very important for all those CV applications where detecting an object’s contours
(boundaries) is essential. Imagine, for instance, self-driving cars. Or medical imaging applications
where the goal is to locate tumors, or measure tissue size/volume.

An example of use of image segmentation that I like is Project Sunroof. In that application, image
segmentation has been used to delineate roofs from satellite images to estimate solar exposure for PV
installations.
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3.3.4 Scene Recognition

Scene categorization is a task in which scenes from photographs are categorically classified. Unlike
object classification, which focuses on classifying prominent objects in the foreground, Scene recogni-
tion involves a different set of challenges from those posed by object recognition. Like objects, scenes
are composed of parts, but whereas objects have strong constraints on their parts distribution, scene
elements are governed by much weaker spatial constraints.

An example of dataset (and scene recognition algorithm) is the MIT Places dataset. The dataset contains
more than 10 million images comprising 400+ unique scene categories at a different level of semantic
resolution. For instance, there are the classes forest - broadleaf, forest path, forest road; garage indoor
and garage outdoor and so on.

You can try an example of scene recognition algorithm yourself, on HuggingFace.
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3.3.5 Human Activity Recognition

Human Activity Recognition is the problem of identifying events performed by humans given a video
input. It is formulated as a binary (or multiclass) classification problem of outputting activity class
labels. Activity Recognition is an important problem with many societal applications including smart
surveillance, video search/retrieval, intelligent robots, and other monitoring systems 2.

3.3.6 Pose Estimation

While activity recognition is commonly performed by wearable devices (by analysing accelerometer
and other data) in computer vision **pose estimation* is a common way to classify activities.

In Pose Estimation, the goal is to detect the position and orientation of a person. Usually, this is done
by predicting the location of specific key points like hands, head, elbows, and knees.

2 https://paperswithcode.com/task/activity-recognition
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This video, created in the context of the master thesis Ethical task tracking of operators in agile manu-
facturing shows an example of how pose estimation can be used to track the actions of workers in a
production plant, to support them with knowledge about their currently executed tasks,

3.3.6.1 Stereolabs ZED Camera

3D Object Detection Body tracking Positional tracking

This technology is commonly and readily available. The Stereolab ZED 2 camera offers an integrated
solution that could be easily deployed and adapted to specific application domains.
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The list of computer vision applications can be very long. I recommend you explore the examples in
this page, classified according to application domains.

3.4 3.4 How do humans see?

Vision is one of the ways humans perceive the world. At its most basic, visual perception is observing
patterns and objects through sight or visual input. Visual perception relates visual input to a previously
existing understanding of the world, as constructed through previous experience and learning. Over 50
percent of the processing in the human brain is dedicated to visual information. This fact alone should
give a good feeling of how difficult it is to replicate biological vision with a computer. Computer vision
has not been solved in 50 years and is still a tough problem.

3.4.1 Hubel and Wiesel, 1959

In 1962, Hubel & Wiesel[ˆ10 David H Hubel and Torsten N Wiesel. Receptive fields, binocular interaction
and functional architecture in the cat’s visual cortex. The Journal of Physiology, 160(1):106–154, 1962]
set up an experiment to study the optical system of a cat. They recorded neurons while showing bright
lines to a “wired” cat. They found that some specialized neurons fired only when the line was in a
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particular spot on the retina or if it had a specific orientation. If you open this video and turn up your
volume, you can listen to the neuronal activity of the cat’s visual cortex.

The experiments by Hubel and Wiesel are cornerstones of our understanding of how neurons along
the visual pathway extract increasingly complex information to construct an image. Their research
spearheaded a discipline devoted to understanding the human visual system’s workings. And in 1981,
they were awarded the Nobel Prize in Physiology and Medicine for their work.

3.4.2 Neural Pathways

Picture from https://nba.uth.tmc.edu/neuroscience/m/s2/chapter15.html

Vision systems are the same for humans, animals, insects, and most living organisms at the highest
level. A visual system is built of two fundamental components. A sensing device - your eyes, and an
interpreting device, your brain.

The eye captures the light coming through the iris and projects it to the retina. The retina contains
specialized light-sensitive receptors that convert the image into spatially distributed neural activity in
the first neurons of the visual pathway. Stimulus features (e.g., color, brightness contrast, movement)
are processed (in parallel) at all levels of the visual system and recomposed by the simultaneous
activation of large areas of the visual cortex, which resides at the back of your head. The visual cortex is
roughly organized as a hierarchical series of layers where the neurons in each layer communicate their
activations to neurons in the next layer. Through their experiments, Hubel and Wiesel discovered that
neurons in different layers act as detectors that respond to increasingly complex features appearing in
the visual scene: neurons at initial layers become active in response to edges; their activation feeds
into layers of neurons that respond to simple shapes made up of these edges, and so on.

Note that as the complexity of the recognized patterns grows, different brain regions (the interpret-
ing device) to get activated to associate meaning to the visual information and connect it to one’s
knowledge and understanding of the world.

This is a relatively simplified description of how the visual system works. An important note: in reality,
the visual system does not only have feed-forward pathways - i.e., flow of information from the eye to
the brain. There are also many more (ten times more) feed-backward connections - from the brain to
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the lower layers - whose role is not well understood by neuroscientists. The current hypothesis is that
our prior knowledge and expectations about the world, as stored in higher brain layers, can strongly
influence our perceptions. The sentence “seeing what we want to see” might have a literal meaning.

3.4.3 Neural Correlation of Objects & Scene Recognition

The slides’ pictures show how different brain areas get “activated” based on the visual stimuli shown -
for instance, a face, an object, or a scene.

Hubel and Wiesel’s discoveries inspired a Japanese engineer named Kunihiko Fukushima, who in the
1970s developed one of the earliest deep neural networks, dubbed the cognitron, and its successor,
the neocognitron.

3.5 3.5 Why is machine vision hard?

3.5.1 The deformable and truncated cat

What’s so hard about computer vision? Scientists (a long time ago) believed that vision would be an
easy problem to solve. There’s this famous AI memo from Seymour Papert, who, in 1966, proposed a
summer vision research project with interns to solve computer vision for a few months. He severely
underestimated the task at hand.

Consider the problem of getting a computer program to recognize cats in photographs.

Suppose the input is simply the pixels of the image. In that case, the program first has to figure out
which are “cat” pixels – that is, pixels that contain visual information about the cat – and which are
“non-cat” pixels, that is, pixels having information about the background, shadows, or other objects.
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However, cats are fascinating creatures, aren’t they? They look very different: they can have diverse
coloring, shapes, and sizes. This means the pixels associated with “cats” may vary greatly from image
to image. When taking a picture of them, cats can face in various directions; the lighting can vary
considerably between images; parts of the cat can be blocked by other objects (for example, fences
and people). Cats are deformable [ˆ11 The Truth About Cats and Dogs] Moreover, “cat pixels” might
look like “dog pixels” or other animals. Under some lighting conditions, a cloud in the sky might even
look very much like a cat.

All these representational variations make the problem of recognizing objects in computer vision
very difficult. The image in the slide comes from a now classic paper Strike (with) a Pose: Neural
Networks Are Easily Fooled by Strange Poses of Familiar Objects. As the title entails, the paper shows
how non-canonical poses of ordinary objects can easily fool a neural network.

3.5.2 Computer Vision Challenges

The following slides summarise and explain some of the main challenges computer vision systems
must address. Note that all of these challenges are present simultaneously. Solving one might not
necessarily help solve all the others.

3.5.2.1 Viewpoint Variation

• A single instance of an object can be oriented in many ways to the camera.

Let us take, as an example, the task of recognizing objects in an image. Depending on the viewpoint,
the 2D representation of a 3D object might dramatically change, despite this being the same object.
Depending on the viewpoint, the pixels change dramatically.
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3.5.2.2 Deformation

• Many objects of interest are not rigid bodies and can be deformed in extreme ways.

The same is true for deformation. Many objects (and animals, like cats) are not rigid. This means that
they can be deformed in ways that, when captured in a picture, will create collections of pixels that are
entirely unique.

3.5.2.3 Occlusion

• The objects of interest can be occluded. Sometimes only a tiny portion of an object (as few
pixels) could be visible.

Sometimes only a relatively small portion of an object can be visible. For instance, because it is cost
out of the image or because it is occluded by another object. In the picture, the cat is occluded by a
wall.

3.5.2.4 Illumination Condition

• The effects of illumination can be drastic on the pixel level.
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Look at the pictures in the slide, can you recognize what they show? The scene is the same but
illuminated by different lights. Depending on where the light is projected, our understanding of the
scene changes dramatically, as the organization of the pixels in the image. But it is precisely the same
scene, pictured under the same viewpoint. This is to show an intricate interplay between materials
and light that give rise to many different images despite showing precisely the same scene.

3.5.2.5 Scale variation

• Visual classes often exhibit variation in their size

– Size in the real world
– Size in the image

Variations of the size of the object to be recognized also matter. Objects of the same class in the real
world can have different sizes - there are small and big cats, various sizes of autos, etc. However, also
the size of an object in the image matters. Small things in images are captured by fewer pixels. This
means there is less visual information to use when recognizing them.
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3.5.2.6 Background clutter

• The objects of interest may blend into their environment, making them hard to identify.

The recognition of an object in an image can be made more difficult by “visual distractions,” that is,
the background or elements of the image, such as patterns, textures, colors, shapes, or other objects
that are visually similar to the object of interest or that overlap with it in some way.

3.5.2.7 Intra-class variation

• The classes of interest can often be relatively broad, such as chairs.
• There are many different types of these objects, each with their appearance.

Finally, a big challenge is a variation in the object itself. Despite having the same nature or functionality,
objects within the same class (e.g., cats, dogs, chairs, tables) might look very different. To distinguish a
cat from a dog, for instance, a computer vision system has to be able to solve the problem that despite
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many cats looking different, they are part of the same category. We call this the intra-class variation
(intra = within) problem.
Of course, there is also an issue with the sheer number of object categories that exist in the world –
it is estimated that there are between ten thousand to thirty thousand high-level object categories.
Of course, the number immediately increases when the categorization becomes more fine-grained.
ImageNet, a popular computer vision dataset, contains over 20,000 categories, with a typical category
consisting of several hundred images.

3.6 3.6 How Computer Vision models work?

Images are made of pixels, and, in computer vision machine learning models, the more straightforward
approach is to use the pixel values directly **input features*.

Here we need to take a small diversion and introduce the concept of similarity in a representation space;
and the manifold hypothesis, an essential assumption at the basis of machine learning research.

Similarity refers to the degree of resemblance or closeness between two objects or data points in a
given feature space. Intuitively, this could be described with the idea that “cat pictures” have similar
pixels distribution because cats look similar. We saw in the previous section that this might not be the
case; however, with enough pictures of diverse enough cats (in diverse enough lighting conditions, etc.),
a fundamental assumption in machine learning is that it is possible to create a “decision boundary”
that identifies cats in that feature space. Whether this assumption is realistic depends, of course, on
the amount, diversity, and quality of the available training data.

One of the characteristics of high dimensional data (e.g., images in a dataset) is that the number
of dimensions is comparable to, or larger than, the number of samples. The Manifold Hypothesis
states that real-world high-dimensional data lie on low-dimensional manifolds embedded within the
high-dimensional space. The hypothesis is based on the idea that high-dimensional data is often
redundant (i.e., not all the dimensions used to represent a data item contain helpful information), and
only a few underlying factors or features determine the structure and patterns in the data. Due to the
manifold hypothesis, many data sets that appear to initially require many variables to describe can
be described by a comparatively small number of variables. The Manifold Hypothesis explains why
machine learning techniques can find useful features and produce accurate predictions from datasets
that have a potentially large number of dimensions (variables). The fact that the actual data set of
interest lives on in a space of low dimension means that a given machine learning model only needs to
learn to focus on a few key features of the dataset to make decisions.

3.6.1 Course of dimensionality
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• High dimensionality

– A 1024×768 image has d = 786432!
– A tiny 32×32 image has d = 1024

• Decision boundaries in pixel space are extremely complex
• We will need “big” ML models with lots of parameters

– For example, linear regressors need d parameters

The number of pixels (hence, the number of features) can become too big for a machine-learning model.
Presume you have a 1MB image, where each pixel is represented by a single byte (0..255 value). At 1MB,
you have one million pixels. That would require an input vector of 1,000,000 elements. Assuming that
the input layer has 1024 nodes, there will be over a billion (1 million x 1024) weights to learn, just in the
input layer! This number increases drastically when we have tens or hundreds of layers. Even if, in the
news, you can read of ML models with 200 or 300 billion parameters, this is a number that cannot be
easily handled.

Therefore, the first step after preprocessing the image is to simplify the image by 1) reducing its color
complexity (e.g., transforming it into black and white); 2) resizing the image to make it smaller; 3)
extracting the vital information (features) and throwing away non-essential information. Each one of
these techniques can be applied in conjunction. Modern ML techniques based on deep learning only
require resizing the images, keeping color information, and not requiring feature extraction.

3.6.1.1 Downsampling
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Downsampling reduces the resolution of an image to make it more tractable from a computational per-
spective. It is common in CV applications to reduce images to 1024x1024 resolution or even 512x512.

Downsampling allows for faster learning and processing time, but it also comes at a disadvantage. By
reducing the image resolution too much, it is possible to lose the ability to distinguish what’s in the
image.

3.6.1.2 Flattening

In computer vision applications, we deal with images or video. A picture can be represented as a
2-dimensional matrix, a grid of pixels.

However, machine learning approaches typically deal with input data organized in arrays (sets or lists)
of features. For instance, the input layer of a Neural Network is an array of numerical values of size d.

Flattening is placing each row of the image matrix in sequential order into a vector. So the vector
starts with the first row of pixels, followed by the second row of pixels, and continues by ending with
the last row of pixels.

This simple transformation has a significant consequence: any spatial relationship between the pixels is
lost! This means that contiguous pixels in the array might not have the same contiguity in the original
image. As we will see, modern computer vision techniques can overcome this slight but essential
distortion introduced by a mere technical requirement.

Note that flattening is not always used as the first step in a machine-learning approach. As we will
see later, Convolutional Neural Networks allow for keeping the matrix format of an image and even
retaining color information. The feature flattening happens later in the network.

3.6.2 The “old days”: Feature Extraction and Engineering

• Feature

– A relevant piece of information about the content of an image
– e.g., edges, corners, blobs (regions), ridges

• A good feature

– Repeatable
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– Identifiable
– Can be easily tracked and compared
– Consistent across different scales, lighting conditions, and viewing angles
– Visible in noisy images or when only part of an object is visible
– Can distinguish objects from one another

A feature in machine learning is an individual measurable property or characteristic of an observed
phenomenon. Features are the input you feed to your machine learning model to output a prediction
or classification. Selecting good features that clearly distinguish your objects increases the predictive
power of machine learning algorithms.

In computer vision, a feature is a measurable piece of data in your image that is unique to that specific
object. A CV feature is a group of connected pixels with some common property. It may be a distinct
color or a particular shape, such as a line, edge, or image segment.

Features are helpful to “compress” information. The input image has too much extra information that is
unnecessary for classification. Therefore, the first step after preprocessing the image is simplifying it by
extracting the important information and throwing away nonessential information. By extracting, for
instance, important colors or image segments, complex and large image data can be transformed into
smaller sets of features. This makes classifying images based on their features simpler and faster.

A good feature is used to distinguish objects from one another. For example, if we consider a feature
like a wheel. Clearly, that feature is more likely to be associated with the class “motorcycle” than the
class “dog”. A wheel is a strong identifiable feature that clearly distinguishes between motorcycles and
dogs. However, the same feature will probably not be strong (identifiable) enough to distinguish a bike
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from a bicycle. For that purpose, more features are needed, like a mirror, license plate, or maybe a
pedal.

A good feature is also repeatable, i.e., it should be useful to represent a class of objects, not a single
one. For instance, the visual representation of a wheel should not be a single image’s exact copy of a
wheel. Still, it should be generic enough to represent many motorcycle wheels (see the image at the
bottom). So, it should look like a circular shape with some patterns that identify wheels in all images
in the training dataset.

Good features should also be easy to compute, to track and compare. If a feature is complex to calculate
or very brittle to compare, it will probably not be very useful to the machine learning model.

Finally, an idea feature is also consistent across different conditions (sales, lights, viewing angle) and
robust to noise and occlusions.

• Machine learning models are only as good as the features you provide

– To figure out which features you should use for a specific problem
– Rely on domain knowledge (or partner with domain experts)
– Experiment to create features that make machine learning algorithms work better

Before the era of deep neural networks, computer vision required spending a lot of time in manual
feature selection and engineering.

Feature engineering relates to manipulating and transforming data into a format that optimally repre-
sents the underlying problem that an ML algorithm tries to model and mitigates inherent complexities
and biases within the data.

In this process, the ML engineer relied on domain knowledge – potentially partnering up with domain
experts – to create features that make ML algorithms work better.

The features are in specific locations of the images, such as mountain peaks, building corners, doorways,
or interestingly shaped patches of snow. These kinds of localized features are often called keypoint
features (or even corners) and are often described by the appearance of patches of pixels surrounding
the point location. The features that can be matched based on their orientation and local appearance
(edge profiles) are called edges. They can also indicate object boundaries and occlusion events in the
image sequence.

These features are used as input to machine learning algorithms like (fully connected) neural networks
or random forests for classification, that is, to learn the correlation between such features and the
prediction class.
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3.6.2.1 Feature Extraction Techniques

In this course, it is impossible to cover the whole field of features engineering for computer vision -
there is literature going back thirty years. I will, however, describe some examples.

Histograms of oriented gradients (HOGs) is an example of a feature extraction technique commonly
used for object recognition tasks. HOG focuses on the object’s shape in the image by attempting to
quantify the gradient (or magnitude) and the orientation (or direction) of the edges of an object. HOG
calculates gradients and orientations in broken-down, localized regions of the image and calculates a
histogram of gradients and orientations to determine the final feature values.

Another technique is the Scale Invariant Feature Transform or SIFT. The SIFT descriptor is invariant
to translations, rotations, and scaling transformations. It is also robust to moderate perspective
transformations and illumination variations.

3.6.2.2 Performance

Credits: Ross Girshick (Facebook AI Research)

Feature engineering and “old” style feature extraction techniques have been the foundation of com-
puter vision for many years. And while advancements were consistent, they never reached a level of
performance that allowed for wide-scale applications.

Convolutional Neural Networks changed everything.
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3.7 3.7 Convolutional Neural Networks

• CNNs exploit image properties to reduce the number of model parameters drastically
• Feature maps

– Automatically extracted hierarchical
– Retain spatial association between pixels

• Local interactions

– all processing happens within tiny image windows
– within each layer, far-away pixels cannot influence nearby pixels

• Translation invariance

– a dog is a dog even if its image is shifted by a few pixels

Convolutional Neural Networks (CNN) drive today’s deep-learning revolution in computer vision and
other areas. CNNs were first proposed in the 1980s by the French computer scientist Yann LeCun,
inspired by Fukushima’s neocognitron. The design of CNN is based on several critical insights about
the brain’s visual system discovered by Hubel and Wiesel.

CNNs allow for eliminating Feature Engineering, as the network can be used for feature learning and
classification.

ConvNet consists of a sequence of layers of perceptrons. Perceptrons in each layer provide input to
perceptrons in the next layer. Like the neural network, when a ConvNet processes an image, each
perceptron takes on a particular activation value. This number is computed from the unit’s inputs and
their weights. Weights are randomly initiated and learned during network training. The difference
between a fully connected neural network and a CNN is the use convolutional layers instead of regular
fully connected layers for feature- learning.

A convolutional layer is the core building block of a convolutional neural network. Convolutional
layers act like a feature finder window that slides over the image pixel by pixel to extract meaningful
features that identify the objects in the image.

Layers are locally connected. This means that nodes in the layer are connected to only a small subset of
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the previous layers’ nodes - for instance, pixels in the input image. This way, filters are applied only on
close-by pixels without being influenced by far-away ones. This allows filters to focus more, preserve
local spatial relationships, and reduce the overall computational cost.

A feature map is the output of one filter applied to the previous layer. It is called a feature map because
it maps where a specific feature is found in the image. CNNs look for features such as straight lines,
edges, or even objects in the deeper layers. Whenever they spot these features, they report them to
the feature map.

CNNs allow for translation invariance for images fed through the network. This means the network can
recognize patterns (or shapes) that are shifted or slightly warped within images.

Notice that the image dimensions shrink after each layer, and the number of feature maps (the layer
depth) increases. Conceptually, you can think of this set of consecutive convolutional layers as the
neural network learning to represent more abstract features of the original image.

The output of the feature extraction step is then flattened to a vector of the learned features of the image.
Notice that the image dimensions shrink after each layer, and the number of feature maps (the layer
depth) increases until we have a long array of small features in the last layer of the feature-extraction
part. The flattened feature vector is fed to the fully connected layers (a traditional fully-connected
neural network) to classify the extracted features of the image.

3.7.1 Convolution & Feature Maps

Each convolutional layer contains one or more convolutional filters. The number of filters in each
convolutional layer determines the depth of the next layer because each filter produces its feature
map (convolved image).

In mathematics, convolution is the operation of two functions to produce a third modified function. In
the context of CNNs, the first function is the input image, and the second is the convolutional filter. In
the slides figure (left), the convolutional filter (also called a kernel) is the 3x3 matrix that, by sliding
over the input image, breaks the image into little chunks and processes those chunks individually to
assemble the modified image, a feature map (right).

Not that in CNNs, convolution matrixes are the weights. This means the network learns its values
during training.
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Try this: https://cs.stanford.edu/people/karpathy/convnetjs/demo/mnist.html

3.7.2 What CNNs learn?

Deep Visualization Toolbox

Watch this video.

3.7.2.1 Feature Visualisation

In the following slides and pictures, we will give an impression of what a CNN learns through its
convolutional layers.

For instance, the first layer of the CNN consists of edge-detecting units. This picture is taken from the
paper: Visualizing and Understanding Convolutional Network. Zeiler and Fergus, ECCV 2014.

The second layer can recognize more complex patterns and shapes.

While the third layer can now capture the visual representation of more “abstract” concepts, like faces
or wheels.
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3.7.2.2 Network Dissection

This image is taken from the Network Dissection dataset and related papers. It shows how specific
concepts are “learned” by different CNN architectures.

3.7.3 Translation Invariance

• But not rotation and scaling invariance!

Remember, CNN allows for translation invariance. They can recognize features (e.g., a wheel) even if it
appears in different positions of an image. They are, however, not rotation or scaling invariant. Objects
that are rotated or scaled w.r.t. their representation in the training data might not be recognized.

3.7.4 What about generalisation?
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As we often repeated, one of the main challenges in ML is to give the model the ability to generalize
beyond the training data. However, what could be done if a CNN (or any network architecture) does
not offer rotation or translation invariance?

The answer is in data augmentation techniques.

3.7.5 Data Augmentation

• Generate variations of the input data

– To improve generalisability (out-of-distribution inputs)
– Improve invariance (rotation, scaling, distortion)

Data augmentation means expanding the training dataset with modified versions of the current images.
Scaling, flipping, rotations, and other affine transformations are typically used to enlarge your dataset
and expose the neural network to various variations of the training images. Alternatively, color space
augmentations (photometric transformations), random cropping, or noise injection allow the network
to be more robust and makes it more likely that your model will recognize objects when they appear in
any form and shape.
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• Geometric

– Flipping, Cropping, Rotation, Translation,

• Noise Injection
• Color space transformation
• Mixing Images
• Random erasing
• Adversarial training
• GAN-based image generation

A good survey on state-of-the-art data augmentation techniques is: A survey on Image Data Augmenta-
tion for Deep Learning. Shorten, Journal of Big Data, 2019.

3.7.6 Robustness to input variation
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Let’s keep in mind that, despite all these attempts to extend the training datasets through data aug-
mentations, computer vision models like CNN are still very brittle to variations of objects (and their
representation) in images. The paper Strike (with) a Pose: Neural Networks Are Easily Fooled by Strange
Poses of Familiar Objects. Alcorn et al. 2019. describes this problem, although I encourage you to try
using a tool like Teachable Machine.

3.7.7 Transfer Learning

• Problem: training custom ML models requires huge datasets
• Transfer learning: take a model trained on the same data type for a similar task and apply

it to a specialised task using our custom data.

– Same data: same data modality. same types of images (e.g., professional pictures
vs. Social media pictures)

– Similar tasks: if you need a new object classification model, use a model pre-trained
for object classification

Transfer learning is one of the most important techniques that emerged from modern deep learning.
Building a vision system to solve a specific problem requires collecting and label a vast amount of data
to train your network. But what if this is not possible?

Transfer learning is the transfer of the knowledge (feature maps) that the network has acquired from
one task, where we have a large amount of data, to a new task where data is unavailable or available
only in small quantity. The idea behind transfer learning is to utilize the weights and layers from a
model trained in the same domain as your prediction task. Intuitively, all images must have shapes
and edges, so the early layers are usually transferable between domains.

In most deep learning models, the final (fully connected) layer contains the classification label or
output specific to a prediction task. With transfer learning, the last layers are removed to keep only
the learned features that could be effectively transferred across tasks. However, the transferability of
features depends on the similarity of the training and new datasets. This is especially true for later
layers: the deeper the network layers, the more image-specific the learned features. For instance,
imagine the task of recognizing objects in medieval paintings. An object recognition network trained
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on modern images (e.g., from Flick) would probably not be helpful, as bikes and cars (and their parts)
were perhaps unavailable in medieval times. However, the earlier layers of the network – the ones
recognising edges and shapes – are undoubtedly helpful, as any object shares the same geometry
set.

At training time, the preserved model’s trained weights are frozen, and the final layer (the fully con-
nected classification one) is replaced with a specialized prediction task output. The new network can
then be trained, and only the last weights (the ones of the classifier plus any other unfrozen layer) are
learned.

Transfer learning is also frequently applied in image object detection, image style transfer, image
generation, text classification, machine translation, and more. Transfer learning works because it
allows to utilization of models already trained on extremely large, labeled datasets.

3.8 3.8 Advanced Computer Vision Techniques

3.8.1 Generative Adversarial Networks

• Learn patterns from the training dataset and create new images that have a similar distribu-
tion of the training set

• Two deep neural networks that compete with each other

– The generator tries to convert random noise into observations that look as if they have
been sampled from the original dataset

– The discriminator tries to predict whether an observation comes from the original
dataset or is one of the generator’s forgeries

Generative adversarial network (GAN) is a class of deep learning models invented in 2014 by Ian Good-
fellow. This architecture is inspired by game theory. Two models, a generator and a discriminator,
are competing while making each other stronger simultaneously.
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GANs have shown remarkable results in many generative tasks to replicate real-world rich content
such as images, human language, and music. GANs can also be used in text-to-photo synthesis, image-
to-image translation, image super-resolution, and many other applications.

• The generator’s architecture looks like an inverted CNN that starts with a narrow input and
is upsampled a few times until it reaches the desired size

• The discriminator ’s model is a typical classification neural network that aims to classify
images generated by the generator as real or fake

The generator attempts to generate real-looking images, whereas the discriminator is a classifier
whose job is to separate authentic images from fake ones. The generator creates images using an
architecture that resembles a reversed CNN. Starting from a vector of random noise, it creates an
image. During the training process, the discriminator is provided with authentic images (from the
training set) and fake images generated by the generator. The two networks train together until the
discriminator can be “fooled” by the quality of the images created by the generator. The images that
are created in the end are pretty realistic-looking. Note that these images are new, never seen before,
and imaginary.
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3.8.2 Which face is real?

To give an example of how good GANs can be, try this online “game”. Can you recognize which face is
real?

3.8.3 Image super-resolution GAN

• A good technical summary

Image Super-Resolution refers to enhancing an image’s resolution from low resolution (LR) to high
(HR). Thanks to generative technology, using an existing image at the input and using the network to
generate new visually compatible pixels is possible. For instance, to enlarge it. Or to fix it.
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• ML-generated painting sold for $432,500
• The network trained on a dataset of 15,000 portraits painted between the fourteenth and twenti-

eth centuries
• Network “learned” the style and generated a new painting

GANs can also be used to learn the “style” of a specific set of paintings and to generate new ones in
that style. An image generated by a GAN has been sold for good money.

3.8.4 Neural Style Transfer

Neural style transfer transfers the style from one image to another. It consists of an optimization
technique used to take two images: 1) a content image and 2) a style reference image, such as an
artwork by a famous painter. Neural style transfer blends them, so the output image looks like the
content image but is “painted” in the style reference image style.
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3.8.5 Text-To-Image Generation

A text-to-image model is an example of a generative ML model where the input is a text prompt, and
the output is an image matching the text.

The ML systems learn (in a supervised way) from the text–image pairs how people describe images,
their content, and their styles, or, the other way around, how visual concepts/scenes are textually
described. These systems demonstrated exciting capabilities. Not only to create “realistic” artworks
in a particular style but also, for instance, to create new versions of animals and objects, combining
unrelated concepts in plausible ways.

Credits: https://github.com/CompVis/latent-diffusion

Design

This is an example of two images generated from the prompt A dream of a classroom full of interested XXX
students. Realistic, matte painting, HQ, 4k. In one image, we prompted design studentsand computer
science students in the other. Observing how the model has learned the association between visual
concepts and text in almost stereotypical ways is intriguing. Computer science students are depicted
with many screens, with a blue-ish illumination. Design students seem to have post-its on their desks
and work in a better-lighted room.

You can try to generate images using the Dreamstudio.ai tools. I recommend you look at the prompt
guide to understand how text prompts can be formulated and how they lead to different results.
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Computer Science

The architecture of latent diffusion model. (Image source: Rombach & Blattmann, et al. 2022

The previous examples are not generated through GANS, but through a different approach called
Diffusion Models

Standard Diffusion Models rely on Markov chains (a statistical model) and operate with two major
processes: the Forward Diffusion takes an image and gradually corrupts it by introducing noise until
it becomes utterly random noise. The Reverse Diffusion process Markov Chains recover the data by
gradually removing the predicted noise at each time step. The idea is that, in this way, the model
learns how to “fill the visual gaps”, thus generating images that are close to the ones given for training.
A Conditioning module lets the network associate visual properties with textual descriptions. The
conditioning module contains textual representations (e.g., captions or longer text) associated with
the images used for training. The image generation is conditioned to respond to a particular textual
prompt; therefore, when a user specifies a new prompt, the network generates an image “similar” to
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the ones associated with the text in the prompt.

If you are interested, this blog post describes the images used in the training of Stable Diffusion. These
are for instance, images related to “Frida Kahlo.”

You may wonder: how is it possible to train a model that, based on millions of images, can still create
realistic images? How can (visual) information not be lost in the process? The reason is simple: natural
images are not random. They have high regularity. A face follows a specific spatial relationship
between the eyes, nose, cheek, and mouth. In other words, the high dimensionality of images is
artifactual and the manifold hypothesis described in the previous lecture seems to hold, at least in the
case of image processing.

Diffusion Models have shown incredible performance in many generative tasks, such as image genera-
tion, image synthesis, image substitution, and super-resolution. They overcome several limitations
of GAN models, for instance, the ability to diversify their output more and not to “fixate” on some
specific properties of the training sets (mainly because they can best preserve the semantic structure
of the data). Diffusion Models are highly computationally demanding, and their training requires
huge memory and generates an enormous carbon footprint. For instance, the estimated emissions
generated by training a Stable Diffusion v1 are 11250kg CO2 equivalent (calculated using the Machine
Learning Impact calculator). This amount is the equivalent of 2.5 gasoline-powered passenger vehicles
driven for one year.

New methods have been proposed to make the process much faster, but they are still slower and more
computationally expensive than GANs.

3.8.6 Image-to-Image Generation

Video from: https://github.com/CompVis/latent-diffusion.

This video shows several examples of the application of diffusion models. For instance, the generation
of realistic images given as input a simple sketch. Or substituting parts of a picture (a technique called
“Inpainting”). Or super-resolution.
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3.8.7 Synthetic Video Generation

Generated from Synthesia.io

To conclude this quick overview of advanced computer vision capabilities, let me show you a video I
have created on the Synthesia.io. Combining several techniques makes it possible today to generate
realistic videos (like the one in the slide) simply by selecting an avatar, and providing some text to
speak. It is, of course, also possible to create an avatar of yourself or anyone. This capability opens an
excellent design space of possibilities.

These techniques yield considerable potential in the animation and movie industry. Classical tech-
niques require tedious 3D model creation and manual editing. Machine Learning could automate this
process and enable richer editing, or updating scenes without re-shooting them.

3.8.8 Deep Fakes

Very realistic Tom Cruise Deepfake

But these techniques also raise many concerns. Deepfakes (a term coined by combining Deep Learning
and fake) are a form of synthesized media that can be created to simulate the presence of a real
person in a media. You can imagine this technology’s risks in our current era of widespread online
misinformation and deep polarisation.
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4 Section 4: Text Processing Methods

In a previous lecture, we introduced Natural Language Processing (NLP), a sub-field of Artificial Intel-
ligence and Machine Learning that analyses natural language (written or spoken) to understand its
content. Or, more recently, to generate realistic text and voices.

NLP technology can play several roles in the context of design. NLP is an enabling technology for
products that base their interaction on natural language conversations—for example, popular personal
assistants like Siri or Alexa or conversational systems like ChatGPT. NLP technology can support the
design process, as it can help extract meaning from collections of textual documents and support its
analysis, for instance, by automatically facilitating the thematic analysis of interview transcriptions.

4.1 4.1 Why natural language processing?

4.1.1 Big Textual Data = Language at scale

• One of the largest reflections of the world, a man-made one
• Essential to better understand people, organisations, products, services, systems

– and their relationships!

• Language is a proxy for human behaviour and a strong signal of individual characteristics

– Language is always situated
– Language is also a political instrument

Language is an essential component of social interaction, and written text is, in a way, the material-
ization of language. Text reflects our world, as captured by words, stories, and books. Through text,
humans record their laws, report news and events, capture history, and express feelings and emotions.
Companies and governmental organizations use text to communicate their values and intentions,
through advertisements or public messages. Text is produced by people, and therefore an expression
of their context, culture, and politics. Even text generated by machines (e.g. ChatGPT) is, in reality, the
product of a process of selection of documents (for training), styles of response, and safety measures
that embed a specific view of the world.

Textual documents encode information about the world, which is why it has always been the object
of study and interpretation. Scholars of history analyze text to understand the past and give inter-
pretations to events for which little is left in our collective memory. Social scientists analyze text to
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study how groups of people interact, relate to each other, and understand and evolve their culture and
their world. Companies are interested in understanding how consumers respond to advertisement
campaigns, or how they appreciate (or criticize) their products and services. Governments analyze
text data to understand the views of citizens on proposed policies, or the consent (or dissent) of the
elected officials.

Despite the ability to print text on a large scale, analysing an extensive collection of textual docu-
ments was impossible in the past. Reading large collections of documents was (and still is) very
time-consuming and considered too daunting the task of manually organizing text into categories or
tracking the presence or evolution of concepts of interest.

The widespread availability of digital computing technologies, including personal computers (from
the 90s), mobile computers, and the Web (from the 2000s onwards), changed everything. Text has
been not only very easy to create and distribute; but thanks to the increasing computational power of
digital devices, the processing and analysis of extensive text collections have been democratized.

Despite all the recent advances in NLP technology, it is a mistake to believe that the qualitative methods
developed in the long tradition of the humanities and social sciences could be simply replaced. NLP
technology should be considered a tool to assist and augment reading, analysis, and interpretation
abilities.

4.1.1.1 Fora, social media

A quick list of common sources of textual content.

Web pages, fora, and social media. They are incredibly broad sources of content that, despite their
size, can suffer from issues of lack of diversity and bias. Size, it is important to remember, is never an
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intrinsic positive quality for a document collection - especially if there is homogeneity in the type of
content, and in the people that wrote it.

4.1.1.2 Product review

Online e-commerce Websites like Amazon, eBay, and Alibaba are incredibly rich sources of information
about products and services. Consumers spontaneously (most of the time) describe their experience
and opinion with these products, creating input that could be very useful for companies to interpret
the success (or failure) of particular commercial endeavors.

4.1.1.3 Books

• Digital, or digitised
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4.1.1.4 Interviews

4.1.2 Uses of NLP

• Answer questions using the Web
• Translate documents from one language to another
• Do library research; summarize
• Archive and allow access to cultural heritage
• Interact with intelligent devices
• Manage messages intelligently
• Help make informed decisions
• Follow directions given by any user
• Fix your spelling or grammar
• Grade exams
• Write poems or novels
• Listen and give advice
• Estimate public opinion
• Read everything and make predictions
• Interactively help people learn
• Help disabled people
• Help refugees/disaster victims
• Document or reinvigorate indigenous languages

The slides list examples of tasks that could be performed through NLP technology. The list is far from
complete, but it should give you an indication of how broad could be the application of NLP technology
in your work. As next text analysis methods emerge (e.g. large language models), it becomes cheaper
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and more accessible to use NLP methods both to design and in designs.

4.2 4.2 What is Natural Language Processing?

• Computer using natural language as input and/or output

• Natural: human communication, unlike e.g., programming languages
• Language: signs, meanings, and a code connecting signs with their meanings
• Processing: computational methods to allow computers to ‘understand’, or to generate

Natural Language Processing uses computational methods to understand and generate language
produced by humans to communicate with each other.

As for any computational methods, NLP approaches attempt to reduce the complexity of language so
that it can be captured mathematically and processed through computers.

Language is a complex, multifaceted communication system used by humans to convey thoughts, ideas,
emotions, and intentions. Language can take on various forms, including spoken, written, and non-
verbal communication (such as gestures or facial expressions). Language consists of a set of symbols
known as phonemes (in spoken language) and graphemes (in written language), which are combined
according to specific rules to create meaningful units called morphemes, words, phrases, and sen-
tences. These combinations form the basis of a language’s grammar, which governs the structure and
relationships between words and phrases, ensuring coherent and consistent communication.
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4.2.1 Beyond keyword matching

• Identify the structure and meaning of words, sentences, texts and conversations
• Deep understanding of broad language

One of the simplest text-based tools that (almost) everyone is accustomed to are search engines –
online, like Google, or on a computer, like Finder on a Mac. Search engines, in their original yet most
common versions, are keyword-matching systems: given a query composed of a sequence of words
(keywords), they find documents that contain such words and order them according to criteria such as
size, recency or relevance to the query.

Natural Language Processing (NLP) technology offers more sophisticated approaches to understanding
human language than simple keyword matching. Keyword matching falls short when dealing with the
complexity and nuance inherent in human language. NLP encompasses a range of techniques and
algorithms designed to tackle various linguistic challenges, enabling a deeper and more meaningful
understanding of language.

4.3 4.3 Why is NLP Hard?

• Human languages are messy, ambiguous, and ever-changing
• A string may have many possible interpretations at every level
• The correct resolution of the ambiguity will depend on the intended meaning, which is often

inferable from the context

Human language is not easy to tame. As individuals, we can sustain even complex communications
with colleagues, friends, and family. We understand the dialogs we hear in tv series and movies, and

132 ML4D Lecture Notes [V0.61] Alessandro Bozzon



Machine Learning for Design 2023-03-29

we (sort of) get what politicians tell us on TV. When we read a news item or a book, we comprehend
what the writer is trying to say, evoke, and let us believe. But we are complex creatures, and our ability
to communicate and understand language is both (to some extent) innate and acquired. We do not
actively “learn” our mother tongue, but we literally grow into it. Through experience and imitation,
we learn the association between words and visual, abstract, or emotional concepts. We possess a
knowledge of the world - and its language representation - that helps us resolve possible ambiguity.

When we learn a new language, we comprehend the intrinsic cognitive complexity of actively learning
a language. However, we can rely on the knowledge of our mother tongue to create associations and
analogies. We can associate the same meaning with different words (e.g., synonyms) or expressions
without noticing.

• There is tremendous diversity in human languages
• Languages express meaning in different ways
• Some languages express some meanings more readily/often

Language varies significantly across the world. Even if it appears that there exist some universal
properties of languages, the way a language evolves and is used across communities, cultures, and
countries is incredibly diverse.

Languages express meaning in different ways. We capture the culturally-related subtleties of language
as they are expressed through idioms and figures of speech. For instance, the Dutch expression “Dit
varkentje wassen” means “getting things done” or “taking care of a problem.” The idiomatic expression,
literally translated, has no straightforward equivalent meaning in Italian, where washing pigs is not
associated with having confidence in one’s ability to complete a task or deal with a challenge. But
language evolves, so maybe it will also be an Italian figure of speech.
Some languages express some meanings more readily or more often. Think about how in a language
like Italian, there are countless different names for pasta – spaghetti, linguine, fettuccine, penne,
rigatoni, lasagne, and farfalle, to name just a few. Each name captures different properties of the
pasta itself, properties on how it should be cooked (a specific type of sauce or filling), but also some
properties of the region and the tradition connected to such pasta.

• Knowledge Bottleneck
• About language
• About the world: Common sense and Reasoning

All the complexity explained above cannot be captured by hard-coding rules over the presence or
absence of keywords unless when working with a limited subset of a language and when addressing a
minimal domain. This is why natural language processing is often said to be a hard AI problem: to
process language at a human level, a computer system should be able to represent the world and
acquire world knowledge. Just like a human does.
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4.3.1 Ambiguity and Expressivity

Language is highly context-dependent, with the meaning of words and phrases often changing based
on the surrounding context. Ambiguity is a common challenge in natural language understanding, as
sentences can often be interpreted differently.

Christopher Robin is alive and well. He is the same person that you read about in the book,
Winnie the Pooh. As a boy, Chris lived in a pretty home called Cotchford Farm. When Chris was
three years old, his father wrote a poem about him. The poem was printed in a magazine for
others to read. Mr. Robin then wrote a book

• Who wrote Winnie the Pooh?
• Where did Chris live?

Take the example text in the slide, and try to answer the question: who wrote Winnie the Pooh?

The text provides the answer, but implicitly. The text mentions the name Christopher Robin, but it is
unclear if he is the person that wrote Winnie the Pooh, or by his father. We do not know if Mr. Robin
is Christopher Robin; it is possible that Christopher Robin made a book after his father wrote a poem
about him. To complicate things, Christopher Robin is also the name of a character in the Winnie the
Pooh books. A quick online search will reveal that Winnie the Pooh was created by Alan Alexander
Milne, the father of Christopher Robin Milne. Christopher Robin Milne is, coincidentally, also an author.

4.3.1.1 Lexical ambiguity

The presence of two or more possible meanings within a single word
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Lexical Ambiguity is the presence of two or more possible meanings within a single word. The context
in which a term is used determines the intended meaning. For example, the word lost in the comic can
mean losing sight of or losing due to death. Another example is the word bank, which could refer to a
financial institution, the side of a river, or, in Dutch, to a couch.

4.3.1.2 Syntactic ambiguity (Word sense ambiguity)

The presence of two or more possible meanings within a single sentence or sequence of words

The syntax of a language is the set of principles under which sequences of words are judged gram-
matically acceptable by fluent speakers. Syntactic ambiguity occurs when a sentence can be parsed
(interpreted) in multiple ways due to its grammatical structure. For instance, the sentence I saw her
duck can be interpreted as seeing a duck owned by a female person, seeing a female person lowering
her head or body, or cutting a duck with a saw. The sentence I saw the Grand Canyon flying to New York
is another example.

4.3.1.3 Attachment ambiguity

The policeman shot the thief with the gun

The slide shows an example of Attachment ambiguity, a type of syntactic ambiguity that emerge when
a word or phrase can be associated with more than one element in a sentence, leading to different
interpretations. This ambiguity arises because it is unclear how a specific part of a sentence should be
“attached” to the rest of the sentence in terms of its grammatical structure.

4.3.1.4 Pronoun Reference ambiguity

A Pronoun Reference Ambiguity (or Anaphoric Ambiguity) occurs when a sentence uses a pronoun to
refer to an antecedent (a person or a thing) in an ambiguous way. Like in the funny example in the
slide.
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Source: https://www.printwand.com/blog/8-catastrophic-examples-of-word-choice-mistakes

4.3.1.5 Semantic Ambiguity

Every fifteen minutes a woman in this country gives birth. Our job is to find this woman, and stop
her! Groucho Marx

Semantic Ambiguity occurs when an expression is semantically ambiguous when it can have multiple
meanings – that is, there are different ways of reading the sentence.

Some examples:

• “John and Mary are married.”: to each other? or separately?

– Compare “John and Mary got engaged last month. Now, John and Mary are married.”

• “John kissed his wife, and so did Sam.” Did Sam kiss John’s wife or his own?

Other examples of ambiguity include:

• Idiomatic Ambiguity: when a phrase or expression has a figurative meaning that differs from its
literal interpretation. For instance, break a leg.

• Pragmatic Ambiguity: when the intended meaning of a statement depends on the context, the
speaker’s intentions, or the listener’s background knowledge.

4.3.2 Sparsity

4.3.2.1 Zip’s Law
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“. . . given some document collection, the frequency of any word is inversely proportional to its
rank in the frequency table. . .”

Zipf’s Law is an empirical law formulated to describe the frequency distribution of words in natural
languages. The law has been empirically formulated by observing how in a document collection, the
most frequent word will occur approximately twice as often as the second most frequent word, which
occurs twice as often as the fourth most frequent word, etc. More formally, the law states that the
frequency of a word in a large corpus is inversely proportional to its rank in the frequency table.

Mathematically, Zipf’s Law can be expressed as:

f(r) = c/rz

where:

• f(r) is the frequency of a word with rank r
• c is a constant specific to the language or text
• r is the rank of the word in the frequency table
• z is an exponent, usually close to 1. When a is 0 the distribution is uniform. As z increases, so

does the skewness of the function.

Zipf’s Law holds for all languages )including non-natural ones like Esperanto) but it is yet to be un-
derstood why. Differences in languages are reflected by differences in c and z values. For instance,
empirical work found that for English z = 0.97ś0.06 and for Russian z = 0.89ś0.07, the difference being
8.3%. Two properties of these languages might explain the difference: Russian is a highly inflective
language (i.e., a language that changes the form or ending of some words according to factors such as
the genders, noun cases, verb conjugations, verb tenses, persons, moods, voices, aspects, numbers)
while English is analytical (i.e., a language that uses specific grammatical words, or particles, and word
orders rather than inflections). Second, it is well known that Russian lexical richness is greater than
English.
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The figure shows an example of word distribution from a document collection belonging to the Euro-
pean Parliament. It is immediately possible to observe which words have high frequency: the ones
that are very generic in the language (e.g., articles) and the ones that are very specific for a document
collection (e.g. nouns specific to the application domain).

Zipf’s Law is handy in NLP because it can guide the choice of features for various NLP tasks. For instance,
focusing on some of the most frequent words makes it possible to 1) capture the most important and
relevant information (the right column in the slide) while 2) filter out less significant words or noise
(the left column).

Zipf’s Law can also inform the development of language models, as it provides a basis to estimate
word probabilities. We will discuss language models in the following lecture.

4.3.3 Language Evolution

— | — |
LOL | Laugh out loud |
G2G | Got to go |
BFN | Bye for now |
B4N | Bye for now |
Idk | I don’t know |
FWIW | For what it’s worth |
LUWAMH | Love you with all my heart |

Finally, NLP is hard because language evolves. For instance, humans invent new terms (neologisms and
acronyms) daily. These new terms could be the result of an optimization process (e.g. LOL (Laugh out
loud) is said to have been invented in the 80s in the context of pre-Web digital chat rooms. Neologisms
are so common that linguists started curating collections to help track the evolution of the language.
For instance, the website Woordenboek van Nieuwe Woorden collects new words that appeared in the
standard Dutch Language. Have you ever wondered when the expression roast (ridiculing someone
for entertainment) entered the Dutch language? Look here. These terms become officially part of a
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language when included in dictionaries. For instance, LOL has been officially included in the Oxford
English Dictionary in 2011.

And humans change the way they communicate in even more fundamental ways. Think about using
emojis to indicate emotional state: emojis have their meaning, but they can also add meaning, clarity,
and credibility to text. Emojis can also be interpreted in different ways, depending on the cultural and
socio-economic background of the sender or the receiver. But also depends on the device in use (Emoji
characters vary slightly between platforms).

4.4 4.4 NLP Tasks

A product/service/system (or a designer) can use NLP techniques to process natural language text and
draw valuable information from it.

NLP techniques could be used for:

• Discovery, i.e., to create new conceptualizations or ways to organize the world, to support
making sense of it. The conceptualization helps simplify some of the highly complex elements of
the environment or situation you are exploring to focus your attention on one or a few specific
aspects. For example, imagine you are interested in studying online reviews. What aspects of
these reviews are essential for your analysis? For example, you could be interested in exploring:

– Topical content: What are the reviews about? The functionality of a product? Its aesthetics?
Ergonomics?

– Sentiment: Are users positive or negative about the product or one of its functionalities?
– Credibility and informativeness: Are the review written and informative for your purpose, Or

are they rant, probably created to mess with the reputation of a given vendor or product?
The text may contain some other relevant aspects you were unaware of, which might be
captured by a different concept not in your original conceptualization of the world.

• Measurement, i.e., the quantification of a given content in the data, to describe its prevalence
in the real world. Given a concept, how prevalent is it in the data? Measurement is the essential
ingredient for description as it provides valuable summaries of the data, which in turn may
help characterize the state of the world, inform theories, or provide evidence for the success (or
failure) of some design choices.

• Prediction, i.e., to make predictions about events in the future - or the effect of an intervention -
based on the discovered concepts and measures. For example, a designer could be interested in
estimating how a given framing of a problem (or solution) could affect users’ perception of (or
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engagement with) a product or a service. This is a predictive question because it uses today’s
information to help understand what will happen tomorrow.

Note that these three activities are not to be conceptualised in isolation. As you know, it is very common
(especially for designers) to discover new directions, theories, and measures as part of the design
process. While this refinement and evolution process is supported by qualitative insights, (textual)
data can also play an important role.

4.4.1 An example of NLP Process

The one in the figure [ˆ13 Bird, S., Klein, E., and Loper, E. (2009). Natural Language Processing with
Python. O’Reilly.] is an example of an NLP pipeline for a spoken dialog system, like the one you
interact with an Apple (Siri), Amazon (Alexa), or Microsoft (Cortana) product. We introduce it because
it summarises the many aspects of NLP that go into such products, touching both issues of natural
language understanding and generation.

Along the top of the diagram, moving from left to right is a “pipeline” (a sequence) of some language
understanding components. This pipeline processes speech input (e.g., “Siri, how is the weather going
to be in the coming hour?”) to produce a meaningful representation of the utterance (e.g., the request is
about the weather one hour from now). The reverse pipeline of components converts concepts back to
speech to generate language that answers the question (e.g., “It will be raining”). These components
make up the dynamic aspects of the system. At the bottom of the figure (and at the far right) are some
representative bodies of information: the repositories of language-related data that the system uses
in its work, but also remote systems, used to draw other data, or to invoke some remote business
function.

The pipeline addresses five fundamental steps of NLP:

• Phonology, i.e., how the basic language units of sound (phonemes) are organized in a language.
In an NLP pipeline, phonology may involve tasks such as speech recognition, text-to-speech
conversion, and text-to-speech conversion. We will not address them in this course.

• Morphology, i.e., how words are built up from smaller meaning-bearing units called morphemes.
Two broad classes of morphemes can be distinguished: stems - the central morpheme of the
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word, supplying the primary meaning; and affixes - adding “additional” meanings of various
kinds. For example, the word cats consists of the morpheme cat (stem) and of the morpheme -s
(affix).

• Syntax, i.e., how words are arranged together to form sentences. Syntax concerns how words
are combined and ordered to create grammatically correct and coherent sentences. The syntax
of a language (as described by its grammar) determines how specific types of words, like nouns,
verbs, and adjectives, are organized in sentences.

• Semantics, i.e., how words, phrases, and sentences convey meaning in various contexts
• Reasoning, i.e., drawing conclusions and making inferences based on the information available

in a text

4.4.2 Morphology

In an NLP pipeline, morphological analysis typically involves tasks such as tokenization, stemming,
and lemmatization. It is possible to extract word forms, inflections, and derivations by breaking down
words into their constituent morphemes. This can improve the efficiency (speed) and effectiveness
(quality) of text processing.

4.4.2.1 Tokenisation

• Separation of words (or of morphemes) in a sentence
• Issues

– Separators: punctuations
– Exceptions: „m.p.h“, „Ph.D“
– Expansions: „we’re“ = „we are“
– Multi-words expressions: “New York”, “doghouse”

One of the first (and most common) steps in NLP processing is converting text into a standard form
that is convenient for automatic processing - a task called Text Normalisation.
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Tokenization is about breaking up a document into discrete words having their meaning.

Tokenization is a language-specific problem, and each language poses unique challenges.

English words are often separated from each other by whitespace, but whitespace is not always suffi-
cient. For instance, words like New York, White House and rock ’n’ roll must be treated as a single word
despite containing spaces. Sometimes words must be separated: for instance I’m into the two words I
and am. In these cases, more sophisticated approaches are needed.

Using whitespace for tokenization is an approach that works for most languages. However, in languages
such as Chinese and Japanese, words are not separated by spaces; the reader infers words from the
context within the sentence. A word segmentation model is used to split the characters into their
constituent words for these languages.

4.4.2.2 Stop-word Removal

• Removal of high-frequency words, which carry less information

– E.g., determiners, prepositions

• English stop list is about 200-300 terms (e.g., been, a, about, otherwise, the, etc..)

When introducing Zip’s law, we discussed how some words in a document collection are bound to be
very frequent, depending on the language or the document collection itself. In NLP parlance, stop-
words are words used across documents that do not give much information about a specific NLP task.
In English, for instance, these are common words such as and, the, and that. These words account
for a significant fraction of the words, but they account for only a tiny fraction of the meaning. By
removing them, it is possible to reduce the size and complexity of the feature set that needs to be
handled computationally.

4.4.2.3 Lemmatisation
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• Technique using dictionaries and morphological analysis of words to return the base or
dictionary form of a word

– Example: Lemmatization of saw —> attempts to return see or saw depending on whether
the use of the token is a verb or a noun

Another part of text normalization is lemmatization, i.e. the task of determining that two words have
the same root, despite their surface differences. For example, family and families; or sang, sung, and
sings (different forms of the verb sing). They are distinct terms, but in some tasks, it may be effective to
map them all to a common form.

A lemma is the canonical form (such as one might find in a dictionary) of a set of words that are related
by inflection (i.e., modifications due to case, number, tense, etc.). Lemmatization is the process of
mapping words to their lemma. Sometimes identifying the lemma is relatively simple (e.g. family and
families) but it can also be quite complex (e.g. sing, sang, sung).

Lemmatization can be cumbersome because it often requires a dictionary lookup (to map sung to sing)
and, sometimes, syntactic analysis to identify the role played by the word in the sentence (e.g. saw as
a noun, or saw as the past tense of the verb see).

4.4.2.4 Stemming

• Heuristic process that chops off the ends of words in the hope of achieving the goal correctly
most of the time

• Stemming collapses derivationally related words
• Two basic types:

– Algorithmic: uses programs to determine related words
– Dictionary-based: uses lists of related words

A popular approximation to lemmatizing that also maps related forms together is stemming.
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Stemming uses simple algorithms (and sometimes dictionaries too) to discard the end of a word. In
the case of family, all the variants would be mapped to famili.

Stemming is often quite effective and substantially faster than lemmatization, but it produces words
that are not actual in the language. Also, it fails to deal with words with more complex forms. Stemming
can also sometimes reduce two words to a common stem with distinct meanings, such as secure and
securities.

4.4.3 Syntax

By understanding the syntactic structure of a sentence, NLP systems can decipher the relationships
between words and phrases, which is crucial for various NLP tasks and applications.

4.4.3.1 Part-of-speech Tagging

Tagging each word in a sentence with a corresponding part-of-speech (e.g. noun, verb, adverbs)

Source: https://cloud.google.com/natural-language#section-2

A part of speech (POS) is a category of words with similar grammatical properties. In English, for
example, nouns describe the names of objects, animals, people, and concepts, among many other
things. Verbs describe actions, states, and occurrences. A noun can be used as a subject, or as an
object of a verb. Adjectives describe properties (e.g. colour, age, visual quality) of nouns. Adverb
modify verbs by indicating time, place or manner of a given action. The English language also has other
classes of POS, including Pronouns (i.e., a shorthand for referring to an entity or event - e.g. she, I);
particles (i.e. preposition-like form used together with a verb - e.g. up, down, on, off ), Punctuation,
Numeral and so on.

Parts of speech tagging is the task of assigning a grammatical tag to each word within a document.
Words are tagged either by a rule-based algorithm or by a machine learning algorithm that classifies
each word based on a manually tagged training dataset.

POS tagging is an essential input to several other techniques and can be used to focus text processing
on properties of interest. For example, if one is primarily interested in sentiment content, it may be
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advantageous to remove all parts of speech except adjectives and adverbs, which are more likely to
convey cues about sentiment. POS tagging can also be used to identify phrases (or n-grams) that can
be included in feature sets or to visualize texts. For example, it can be used to identify noun phrases
(e.g. Health Care).

4.4.3.2 Language Analysis

• Idea: people’s language can provide insights into their psychological states (e.g. emotions,
thinking style)

• For instance

– Frequency of words associated with positive or negative emotions
– Use of pronouns as a proxy for confidence and character traits

It is a common intuition among scholars (but also laypeople) that how we use language (i.e., word
choices or figures of speech used; sentence structure; and register or tone) gives out subtle clues about
what the people uttering (or writing) they are like, psychologically speaking.

Language analysis explores how authors/writers/speakers convey meaning through specific language
analysis techniques.

Language analysis attempts to infer a person’s psychology by mapping out the content of what they
said: for example, charting a user’s trajectory by counting how often the concepts of excitement or
frustration are mentioned.

Psychologists conducted a lot of research into how “particles” of language like pronouns (I, you, we),
articles (the, a, an), and negations (no, not, never) could provide compelling insights into a multitude
of psychosocial phenomena. For instance, they can be reliable indicators of a person’s thoughts,
regardless of their discussion. In some ways, the psychological significance of a text could be discovered
by counting how often different meanings are conveyed. The word counting approach relies on
scanning texts and counting the frequency of words from predefined categories—categories that are
informed by psychological theory: emotional words (happy, upset, angry), agentic words (do, able, try),
thinking words (think, understand, guess), and so on. Word frequencies represent attentional habits
[ˆ15 Natural Language Analysis and the Psychology of Verbal Behavior: The Past, Present, and Future
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States of the Field. Ryan L. Boyd and H. Andrew Schwartz. Journal of Language and Social Psychology
2021, Vol. 40(1) 21–41].

The relative frequencies of each category are then interpreted as reflecting a person’s relative focus on
each domain. For example, people who use high rates of articles (the, a, an) and prepositions (next,
above) tend to focus on formal or concrete concepts and their inter-relations. People with higher social
status and confidence are more focused on the external social environment than themselves, using
more “you” and “royal we” words than “I” words. Types of words (e.g. pronouns) are markers of what
(or who) we pay attention to. “Emotion” words are not reflections of the experience of emotions; they
are merely diagnostic of one’s attention to affective states.

I recommend the book in the slide - Pennebaker, J. W. (2011). The secret life of pronouns: What our
words say about us.

The tool Linguistic Inquiry and Word Count, or LIWC (Pennebaker & Francis, 1999), allows these
types of analysis.

This is a list of all the categories supported by the LIWC-22 Language Dimensions. I recommend reading
through the manual, also to get a feeling of how reliable some of these measurements are.

Here I report four summary variables that are calculated in LIWC. The description of the variable and
the supporting literature is available here.
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• Analytic Thinking: the degree to which people use words that suggest formal, logical, and
hierarchical thinking patterns.

– low Analytical Thinking —> language that is more intuitive and personal

• Clout: the relative social status, confidence, or leadership that people display through their
writing or talking

• Authenticity: the degree to which a person is self-monitoring

– Low authenticity: prepared texts (i.e., speeches written ahead of time) and texts where
a person is being socially cautious

• Emotional tone: the higher the number, the more positive the tone. Numbers below 50
suggest a more negative emotional tone.

4.4.3.3 Sentiment Analysis

• The detection of attitudes, affectively colored beliefs, dispositions towards objects or persons”
• Main elements

– Holder (source)
– Target (aspect)
– Type of attitude
– Text containing the attitude

• Tasks

– Classification: Is the text’s attitude positive or negative?
– Regression: Rank the attitude of the text from 1 to 5
– Advanced: Detect the target, source, or complex attitude types

Sentiment analysis is a text analytic technique that automatically identifies and categorizes subjective
information within the text.

Specifically, we are interested in affective meaning, which analyzes the writer’s evaluations, opinions,
emotions, and speculations.

A common typology of affective states comes from Scherer (2000):

• Emotion: A relatively brief episode of response to the evaluation of an external or internal event
as being of significant significance (angry, sad, joyful, fearful, ashamed, proud, elated, desperate)

• Mood: Diffuse affect state, most pronounced as a change in subjective feeling, of low intensity
but relatively long duration, often without apparent cause. (cheerful, gloomy, irritable, listless,
depressed, buoyant)
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• Interpersonal stance: Affective stance taken toward another person in a specific interaction,
coloring the interpersonal exchange in that situation. (distant, cold, warm, supportive, contemp-
tuous, friendly)

• Attitude: Relatively enduring, affectively colored beliefs, preferences, and predispositions to-
wards objects or persons. (liking, loving, hating, valuing, desiring)

• Personality traits: Emotionally laden, stable personality dispositions and behavior tendencies,
typical for a person. (nervous, anxious, reckless, morose, hostile, jealous)

Sentiment Analysis is a technique used to quantify attitudes towards specific topics or entities that
are written in an unstructured way and, thus, hard to quantify otherwise.

One of the most basic tasks in sentiment analysis is the classification of polarity, i.e., to classify
whether the expressed opinion is positive, negative, or neutral. It is, of course, possible to use more
than three classes, e.g., strongly positive, positive, neutral, negative, or strongly negative, or to deal
with the problem as a regression problem.

Sentiment analysis can be applied to various textual resources such as surveys, reviews, and social
media posts.

These are examples of sentiment analysis evaluated against a standard text. The first two screenshots
come from a Google demonstrator, while the second is from an IBM one. You can notice how sentiment
is typically measured against a whole sentence. However, it is also possible (typically by combining
with POS tagging and NER) to associate a sentiment to a specific entity in the text
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4.4.3.4 Emotion Analysis

Plutchik wheel of emotion

While sentiment analysis is framed in terms of positive and negative categories, psychologists generally
regard emotion as more multifaceted. Detecting emotion has the potential to improve several language
processing tasks. For instance, they automatically detect emotions in reviews or customer responses
(anger, dissatisfaction, trust). Emotion can play a role in medical NLP tasks like helping diagnose
depression or suicidal intent. Detecting emotions expressed toward characters in novels might play a
role in understanding how different social groups were viewed by society at different times.

Perhaps the most well-known of this family of theories are the 6 emotions proposed by Ekman (1992)
- happiness, surprise, fear, sadness, anger, and contempt. He argues that these six basic emotions
are universal across human cultures. Another theory is the Plutchik (1980) wheel of emotion, consist-
ing of 8 basic emotions in four opposing pairs: joy–sadness, anger–fear, trust–disgust, and anticipa-
tion–surprise, and the emotions derived from them. These are called atomic theories because they
assume a limited number of basic emotions (6 or 8) from which others are generated.

Another class of emotion theories widely used in NLP considers emotion as a space in 2 or 3 dimensions
(Russell, 1980):

• valence: the pleasantness of the stimulus
• arousal: the intensity of emotion provoked by the stimulus
• dominance: the degree of control exerted by the stimulus

In this model, sentiment can be viewed as a special case of this second view of emotions as points in
space. In particular, the valence dimension, measuring how pleasant or unpleasant a word is, is often
used directly to measure sentiment.
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The slide shows an example of emotion recognition system from IBM. It detects anger, disgust, fear, joy,
or sadness that is conveyed in the content or by the context around target phrases.

4.4.4 Semantics

Semantic analysis determines the meaning of words, sentences, and documents beyond their lexical
organization. Semantic analysis includes lexical semantics, which is concerned with the individual
words’ meanings, extending to the relationships between individual words in sentences and across
sentences.

4.4.4.1 Named Entity Recognition

• Factual information and knowledge are usually expressed by named entities

– Who, Whom, Where, When, Which, . . .

• Identify words that refer to proper names of interest in a particular application

– E.g. people, companies, locations, dates, product names, prices, etc.

• Classify them to the corresponding classes (e.g. person, location)
• Assign a unique identifier from a database

Part of speech tagging allows inferring that words like Alessandro, Delft University of Technology, and
Zuid Holland are all proper nouns. From a semantic perspective, these proper nouns refer to different
kinds of entities: Alessandro is a Person, Delft University of Technology is an Organisation, and Zuid
Holland is a Location.

A named entity is, roughly speaking, anything that can be referred to with a proper name: a person,
a location, or an organization. Four entity tags are most common: PER (person), LOC (location),
ORG (organization), or GPE (geo-political entity). Other information related to dates, times (and other
temporal expressions), and even numerical expressions (e.g., prices) is also tagged as entities, although
they are not entities per se.

The task of named entity recognition (NER) is to tag a word (or multiple contiguous words) with the
entity type.
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Like part of speech tagging, modern named entity recognition systems tend to be built with machine
learning approaches. In some specialized contexts, these systems can be trained to tag additional
information, such as symptoms, drug names, or drug reactions.

Source: https://cloud.google.com/natural-language#section-2

This is an example of NER system in action.

4.4.4.2 Document Categorisation

• Assigning a label or category to an entire text or document
• Supervised learning
• For instance

– Spam vs. Not spam
– Language identification
– Authors attribution
– Assigning a library subject category or topic label

Many NLP tasks involve classification, i.e., assigning a label or category to an entire text or document.

The simplest version of document classification is binary classification tasks. For instance, the
classification emails as spam or not spam. Other tasks are multi-classes (or multi-label), e.g., language
identification, or categorization, i.e., deciding which categories a document belongs to (in a given
taxonomy). These are supervised machine-learning tasks similar to the ones we have encountered
before in the course.

Alessandro Bozzon ML4D Lecture Notes [V0.61] 151



2023-03-29 Machine Learning for Design

ML4D Course Description
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4.4.4.3 Topic Modeling

• A topic is the subject or theme of a discourse
• Topic modeling: group documents/text according to their (semantic) similarity
• An unsupervised machine learning approach

ML4D Course Description

Topic modeling is an NLP approach aimed at automatically discovering abstract topics that occur in a
collection of documents. Topic modelling is a typical unsupervised machine learning task.

Topic modeling operates under the assumption that if a document is about a particular topic, then
some words are more or less likely to appear in the document. As documents typically concern multiple
topics in different proportions, topic modeling techniques also use the relative proportion of words
in a document to estimate similarly distributed and co-present words. The topics produced by topic
modeling techniques are clusters of similar words.

These type of tasks are typically explorative: a researcher sets some number of topics, runs the topic
modeling algorithm, checks the nature of the topics outputted by reading the words and documents
identified as having high probabilities of belonging to each of the topics, and decides whether or not
those topics are substantively meaningful. If that is not the case, then the research can vary the number
of topics and iterate.

4.4.4.4 Word Sense Disambiguation

• Multiple words can be spelled the same way (homonymy)
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• The same word can also have different, related senses (polysemy)
• Disambiguation depends on context!

Word sense disambiguation (WSD) is the task of determining the correct meaning of a word with
multiple meanings, depending on its context. WSD algorithms use contextual information, such as
surrounding words or phrases, to identify the most appropriate sense of an ambiguous word.

The slide shows an example of a WSD tool.

4.4.4.5 Automated Summarisation

• Condensing a piece of text to a shorter version while preserving key informational elements
and the meaning of content

• A challenging task!

https://textsummarization.net/
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4.4.4.6 Machine Translation (popular languages)

Machine translation is the process of translating given text from one language to another language.
The language the input text is written in is called the source language, whereas the one for the output
is called the target language. One challenge in MT is the tradeoff between fluency and adequacy. The
translation must be fluent, meaning the output must sound natural in the target language. Translation
also needs to be adequate, meaning that the output has to reflect the meaning expressed by the
input as closely as possible. These two are often in conflict, especially when the source and the target
languages are not very similar (e.g., English and Chinese). A translation can be a precise, verbatim
mapping of the input, but the result will likely not sound natural in the target language. On the other
hand, it is possible to create an output that sounds natural in the target language but does not reflect
the precise meaning. Good human translators creatively address this tradeoff.

4.4.4.7 Machine Translation (languages with fewer resources)

Current translation systems are built on top of ML techniques provided with examples of sentences
in both the source and target language. However, such examples are not always readily available,
especially for less popular languages or languages with abundant resources.
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4.4.4.8 Natural Language Instructions / Dialog systems

Dialog systems allow humans to interact with computers through natural language conversation,
textual or vocal. The field of dialog systems has a long history. One of the earliest dialog systems, ELIZA,
was developed in 1966.

The two main types of dialog systems are task-oriented and chatbots.

• Task-oriented dialog systems are used to achieve specific goals. For example, commanding a
car entertainment system and interacting with an Alexa-like devise to obtain some information.
As described in the previous slides, task-oriented dialog systems are usually built around an
NLP pipeline. These types of dialog systems are not designed to support long and complex
conversations, as the goal is typically to execute a given task in the shortest possible time. Most
interactions with Alexa (or Siri) only include 1 or 2 exchanges.

• Chatbots dialog systems are designed to have conversations that might not have a specific goal
but are more extended and interactive. Handwritten rules usually manage conversations in
traditional chatbots (e.g., when the human says this, say that).

For both types of dialog systems, recent advances in neural networks (and generative models) allow for
richer, longer, and task-specific conversation. However, it will still take some time (perhaps a couple of
years) to see these advanced conversation systems operate in consumer products, as their operation is
computationally (and energy) intensive.

4.4.4.9 Natural Language Generation

156 ML4D Lecture Notes [V0.61] Alessandro Bozzon



Machine Learning for Design 2023-03-29

Natural Language Generation is the process of generating natural language text from something else.
Generative models like ChatGPT are examples of end-to-end NLG systems. However, remember that
language can also be generated according to pre-defined patterns and templates.

4.4.5 State of the Art in NLP - as of 2022

Credits: Nava Tintarev

I kept this slide - and I will probably keep it in the future - as a memento of how the progress in the
field of NLP is accelerating at an incredible pace. Many of the tasks listed here were still considered
difficult (or hard) in 2022 but are now becoming less and less challenging due to the emergence of
large language models like GPT-3 and GPT-4.

4.5 4.5 Features in Natural Language Processing

In previous sections we discussed how feature selection is an essential pre-condition for successful
ML models. We have seen how features could be canonically represented using a table, where rows
are documents and columns are numerical features. We have discussed how in computer vision pixels
can (and are) used as features, as each pixel contains one or more numerical values. But what about
textual documents? What constitutes a feature in Natural Language Processing?

• A sequence of alphanumerical characters

– Short: e.g. tweets
– Long: e.g Web documents, interview transcripts

• Features are (set of) words

– Words are also syntactically and semantically organised

• Feature values are (sets of) words occurrences
• Dimensionality —> at least dictionary size

Textual documents can be represented in multiple ways. One approach, common in the so-called sym-
bolic approaches, is to treat words as symbols organized in a so-called syntax tree. Another approach
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called bag-of-words or n-gram, common in machine-learning systems, is to represent text as sparse
structured data by counting in documents the occurrence of individual words, pairs of words, triplets
of words, etc.

For example, consider the funny amazon review from the left. It is possible to conceptualize a document
collection as a big table where rows are documents, and features (columns) are terms in the collection
vocabulary; that is, every single word is a potential feature for a document. The presence or absence of
a term in a document is represented by a 0 or 1 value. This representation is also called term-document
matrix.

4.5.1 Main types of NLP Tasks

• Label (classify) a region of text

– e.g. part-of-speech tagging, sentiment classification, or named-entity recognition

• Link two or more regions of text

– e.g. coreference

* are two mentions of a real-world thing (e.g. a person, place) in fact referencing the
same real-world thing?

• Fill in missing information (missing words) based on context

As we already discussed in the previous lecture, NLP tasks seek to do one of three things:

• label a region of text: this is the case for tasks such as part-of-speech tagging, sentiment classifi-
cation, or named-entity recognition;

• link two or more regions of text: this is common in coreference tasks, where the goal is to assess
whether to named entities in a document refer to the same real-world entity (e.g., same person,
place, or some other named entity) -fill in missing information (missing words): this is the case
for generative models (e.g., GPT) trained on the task of **predicting the most likely next word*
based on context.

In the following, we will learn what Language Models are, how they work, and how they can be used.

4.6 4.6 Language Models
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Language: vocabulary and its usage in a specific context captured by textual data

Let us further explore how language could be represented in machine learning systems. An important
disclaimer: from now on, by language we mean the vocabulary (collection of words) and its usage in a
specific context captured by textual documents. This is to distinguish our interpretation of the word
language from the commonly used interpretation - to refer, for instance, to the Dutch language.

4.6.1 What is a language model==*?

• A collection of statistics learned over a particular language
• Almost always empirically derived from a text corpora

“Language Model”: two words that have become very popular recently due to the success of generative
models like GPT. But what is a language model? Technically, a language model is a statistical model
that gives a value (probability) to the likelihood for a piece of text to appear in a sentence.

Consider you are given the following sentence: “My weekend in Lax has been ruined by bad *___.” What
words are most likely to come next? There could be many reasons for a fantastic winter sports weekend
to be ruined: rude people, traffic issues, or bad food. Of course, words like food* and people can appear
in this content, but we can agree that the most likely word to appear in the sentence is “weather.”

We just estimated the probability of occurrence for several words in this English sentence. We compared
these words based on our personal experience with language and life. We tapped into our repository of
memories and experiences to calculate the statistical probability of several words and picked the most
likely one.

This is, in essence, the nature of a language model: a collection of statistics learned (mostly empirically
- i.e., through observations) on a text corpora. By being empirically derived, language models are not
necessarily able to “generalize” their beliefs beyond the observed text collection. A language model
trained on a collection of English novels might not have statistics for Italian words. Likewise, it would
assign higher probabilities to sequences of words (sentences) that “make more sense,” that are more
grammatical in English.

4.6.2 What are language models used for?
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• Measure how important (or descriptive) a word is in a given document collection e.g., find
the set of words that best describe multiple clusters (see Assignment 2)

• Predict how likely a sequence of words is to occur in a given context e.g., find the words
that are more likely to occur next

What is the utility of keeping statistics about the likelihood of a word appearing in the given context? It
turns out this is an essential feature in many applications of NLP. For instance:

• To measure the importance of words in a document collection
• To predict the likelihood of a sequence of words appearing. This is useful in many applications,

such as:

– machine translation, converting a text from a source to a target language.
– speech recognition, converting from an audio signal to text - the presence of noise makes

it very useful to know which word is most likely next.
– Text summarization, converting a long text into a short one.
– Text generation, creating new text from an initial input.

4.6.3 What is the issue with word representation?

A previous slide showed how textual content could be represented in feature space using a simple
term-document matrix. That is a representation that is very useful in several contexts. But let us know
explore more in details the issue with the representation of words.

• Words are discrete symbols

– Machine-learning algorithms cannot process symbolic information as it is
– We need to transform the text into numbers

• But we also need a way to express relationships between words!
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The first and arguably most important common denominator across all NLP tasks is how we represent
words as input to any of our models. To perform well on most NLP tasks, two requirements must be
satisfied:

• Words (discrete symbols) must be represented in a way a computer can process – typically
numbers. Neural networks are pure mathematical computation models that can only deal with
numbers. They can’t do symbolic operations such as concatenating two strings and conjugating
a verb to past tense unless they are all represented by numbers and arithmetic operations.

• There must be some notion of similarity and difference between words to allow comparison
and, possibly, some other form of calculation.

4.6.3.1 A simple representation approach

• Assign an incremental number to each word

– cat = 1

• dog = 2

• pizza = 3

• Problem: there is no notion of similarity

– Is a cat as semantically close (similar) to a dog as a dog is to a pizza
– Also, no arithmetic operations

* Does it make sense to calculate dog − cat to establish similarity?

A possible approach to numerically represent all words in a vocabulary is to assign an incremental
number to individual terms, as in the slide. While numbers now represent words, it does not mean that
it is possible to perform arithmetic operations on them. These numbers are discrete and arbitrary (for
instance, numbers can be assigned incrementally based on the alphabetical order of words). Clearly, it
makes no sense to infer that “cat” is equally similar to “dog” (difference between 1 and 2), as “dog” is
to “pizza” (difference between 2 and 3).

4.6.4 Word Embeddings

• Embed (represent) words in a numerical n-dimensional space
• Essential for using machine learning approaches to solve NLP tasks

– They bridge the symbolic (discrete) world of words with the numerical (continuous)
world of machine learning models
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What if words were to be represented on a numerical scale? Not a simple discrete list of numbers
(integers) but a potentially n-dimensional space of continuous values. An array (a vector) of float
numbers.

A word embedding is a continuous vector representation of a word. Word embeddings are a way
to represent each word with arrays of arbitrary size filled with nonzero float numbers. The name
embedding derives from each discrete word being “embedded” in a continuous vector space.

Of course, a question immediately arises: how large should this vector be?

4.6.4.1 Approach 1

• Assign numbers to words, and put semantically related words close to each other

• We can now express that dog is more related to cat than to pizza

• But is pizza more related to dog than to cat?

The slide shows a 1-dimensional vector. It is now possible to represent that “cat” and “dog” are more
similar to each other than to “pizza.” Still, “pizza” is slightly closer to “dog” than it is to “cat,” a fact that
does not register with our intuition. What if you wanted to place “pizza” somewhere that is equally far
from “cat” and “dog?” A single dimension is not possible, so perhaps we need more.

4.6.4.2 Approach 2

• Assign multiple numbers (a vector) to words
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cat = [4, 2]

dog = [3, 3]

pizza = [1, 1]

• We can calculate distance (and similarity)

– e.g. Euclidean, or Cosine (angles)

• But what is the meaning of an axis?

In this representation, we achieve that goal. Using a 2-dimensional space and these specific values, we
reach the purpose of positioning “cat” and “dog” close to each other but also equally distant to “pizza.”
This is better, but other questions immediately arise. For instance, how many axes should there be?
And how to calculate the numerical value of each word? An arbitrary assignment of numbers to terms
doesn’t capture any relationships among words.

4.6.5 One-Hot Encoding

• Each word in the vocabulary is represented by a one-bit position in a HUGE (sparse) vector

– Vector dimension = size of the dictionary

* There are an estimated 13 million tokens for the English language
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cat = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, . . . , 0]

dog = [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, . . . , 0]

pizza = [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, . . . , 0]

A simple method exists to “embed” words into a multidimensional space: creating one dimension for
each word in the vocabulary. This is called a one-hot encoding: each vector has only one 1 at the
position corresponding to the word’s index. These vectors are still word embeddings not very useful
in representing the semantic relationship between words. Still, they are used as input to a machine
learning algorithm, at least when no other embedding representation is available.

• Problems with one-hot encoding:

– The size of the vector can be huge

* Do you Remember Zip’s law?
* Easy to reach 106 words
* But we can use stemming, lemmatisation, etc

• Still, no notion of similarity or words relationship

– Each word is an independent, discrete entity

There are some other issues associated with one-hot encoding:

• All words are equally distant from each other, which means that each word is treated as an
independent and discrete entities

• The vocabulary size can be enormous. Even after applying techniques such as stop-word removal
and stemming, the size of these vectors could be computationally prohibitive.

Despite its simplicity, one-hot encoding is a popular approach to represent discrete symbols (like
words) numerically.
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4.6.6 Independent and identically distributed words assumption

• The simplest language models assume that each word in a text appears independently of
the others

– The text is modeled as generated by a sequence of independent events

• The probability of a word can be estimated as the number of times a word appears in a text
corpus

• But high probability does not mean important (or descriptive)

We need to make an essential yet technical clarification. When working with statistical approaches,
including machine learning ones, we often operate according to the so-called Independent and identi-
cally distributed (IID) assumption. In NLP, the IID assumption assumes that each word (or sentence,
depending on your prediction unit) is independent of the others and is drawn from the same under-
lying probability distribution. In practice, this means that the occurrence of one word or sentence
in a document does not depend on the occurrence of any other term or sentence in that document;
moreover, the assumption implies that all words (or sentences) are equally likely to be generated from
the underlying probability distribution.

The IID assumption is used to “ease the math,” that is, to simplify the mathematical analysis of the
learning algorithms and to use some statistical tools (e.g., some classes of ML models) that rely on
such assumptions for their use. This assumption, clearly, does not hold in all real-world scenarios. For
instance, in language, there are dependencies between words or sentences due to the context in which
they are used: the word “the” always appears before the word “beer” because there is a grammatical
dependency (in the English language) between articles and nouns. Given that the assumption does not
hold in the real world, while being a mathematical pre-condition for several machine learning models,
it should be no surprise that learning algorithms may perform poorly on new data.

4.6.7 Vector Representation of Words

• How to measure the importance of words?

The “term-document” matrix representation is also a very useful one. In a term-document matrix, each
column represents a word in the vocabulary, and each word represents a document from some collec-
tion of documents. This is a representation used, for instance, in keyword-based search engines.
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With this representation, it is possible to create a representation space (or vector space) where each
document (row) is represented as a vector in the multi-dimensional space defined by the terms in the
dictionary. Using this representation, it is possible to calculate the distance (or similarity of documents
through measures like cosine similarity. This allows, for instance, to identify similar documents (at
least, according to the terms they contain). This is an approach common in clustering methods.

This vector semantics can also be used to represent the meaning of words. We do this by creating a
vector for each word (column). In this way, it is possible to calculate the similarity of words based on
the documents they tend to occur in.

In the following slides, we will describe how to improve the simple binary representation of words in
documents by exploring ways to quantify their importance.

4.6.7.1 Term frequency tf

• Raw frequency tf(t, d) = ft,d

• Log normalisation tf(t, d) = log(1 + ft,d)
• Normalised Frequency tf(t, d) = 0.5 + 0.5ft,d

fmax(d)

• Measuring the importance of a word t to a document d

• The more frequent the word, the more important it is to describe the document

Term Frequency is the simplest way to measure the importance of a word in a document. Several
variations can be used:

• Raw frequency: the number of times the term appears in the document. In this formula, t is the
term (word) for which we are calculating the TF, d is the document containing the term, and ft,d

is the frequency of the term t in the document d.
• Log normalization: this formula applies logarithmic normalization to the raw frequency of a

term in a document. In this formula, t, d, and ft,d are defined as in the raw frequency formula. Log
normalization is used - and useful - to avoid prevalent terms from having excessive importance
in the language model.

• Normalised frequency: This formula normalizes the raw frequency of a term in a document by
dividing it by the maximum raw frequency of any term in the document, and then adding a small
constant to avoid zero values. In this formula, t, d, and ft,d are defined as in the raw frequency
formula, and fmax(d) is the maximum raw frequency of any term in the document d.

4.6.7.2 Inverse document frequency IDF

TF calculates the importance of a word in a document. IDF, on the other hand, measures the importance
of a word in the document collection.
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IDF(t, D) = log N
|d∈D:t∈d|

• Measuring the importance of a word t to a document collection D

• Rare terms are more important than common terms

In this formula, t represents the term for which we are calculating the IDF, D represents the set of
documents in the corpus, N is the total number of documents in the corpus, and |d ∈ D : t ∈ d| is the
number of documents in which the term t appears. The logarithm is typically taken with base 2.

By importance we mean discriminative (or descriptive) power, that is, how much the word is helpful to
discriminate a document in the collection. For example: if all documents in a collection contain the
word design, but only a few selected documents contain the word machine, then machine is more
discriminative in the document collection that design.

4.6.7.3 TF − IDF

tfIDF(t, d, D) = tft,d × IDFt,D

• Scaling a word’s importance (in a document) based on both its frequency and its importance
in the collection

TF − IDF allows weighting the importance of a word in a document by its overall importance in the
collection.

4.6.8 N-gram language models

An n-gram is a sequence of n words. A 2-gram - bigram - is a two-word sequence. For instance “stop
here”, “read this”, “stand up”, “New York”. A 3-gram - trigram - is a three-word sequence. For instance,
“stop hear immediately” or “stand up there”. Language models based on n-grams are much simpler
than the most recent ones based on deep learning architectures. Yet, they are important to understand
the fundamental concepts of language modeling.

• Calculate the conditional probabilities among adjacent words
• Given the word w, what is the probability of the next word w + 1

– e.g., given eat, eat on vs. eat British

• bi-grams –> 2 words, 3-grams –> 3 words
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Through n-gram models, it is possible to estimate the probability of the last word of an n-gram given
the previous words (or history). Suppose we have the sequence of words “I am looking forward to
eat” and we want to know the probability that the next word is “mexican”. One way to estimate the
likelihood of the term following eat is through relative frequency counts: given a document collection,
count the number of times a word follows the sentence “I am looking forward to eat”. However, the
problem with this approach is that no matter how large the collection is, it is impossible to make
good estimations. This is because language is creative; new sentences are constantly created, and it is
impossible to count the frequencies of sentences with slight variations.

The intuition of the n-gram model is that instead of computing the probability of a word given its entire
history, we can approximate the history by just the last few words. For instance, the figure in the slide
shows an example where the history is the single word eat - these are bigrams, where we compute
the conditional probability of a word given that its predecessor is eat. Imagine also collecting similar
conditional probabilities for the words “to”, “forward”, “looking”, “am” and “I”: by multiplying the
different probabilities, we could get an approximation of the likelihood of the whole sentence.

While the example in the slide shows bigrams, it is possible to generalize to trigrams, or larger bigrams
that look at more words in the past.

4.6.8.1 Properties of N-grams-based Language Model

• More accurate

– The probabilities depend on the considered context

• The model accuracy increases with N

– The syntactic/semantic contexts are better modeled

• Grammatical rules

– e.g., an adjective is likely to be followed by a noun

• Semantic restrictions

– e.g., Eat a pear vs. Eat a crowbar

• Cultural restrictions

– e.g., Eat a cat
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N-gram models are more accurate than models where words are treated as statistically independent
because they can capture some of the context in which words appear. And, as you can imagine, the
larger the n, the better the model could capture some linguistic properties.

N-gram models are known to be good at capturing syntactic linguistic phenomena, like grammar rules,
and some semantic dependencies captured through sheer likelihood.

4.6.8.2 Limits of N-grams-based Language Model

• Conditional probabilities are difficult to estimate

– For dictionary contains D terms there are DN N-grams (30K words, 900M bi-grams)

* the corpus should be billions of documents big for a good estimation

• They do not generalize to unseen words sequences

N-gram models have been popular for a long time, but they suffer from several practical limitations.

The most obvious one is related to vocabulary size. The larger the vocabulary, the larger the size of
the text collection needed to properly estimate the conditional probabilities, especially for the rarest
n-grams. Also, n-gram models have issues with unseen (or new) words as, by definition, they are not
part of their probability estimation.

The choice of the size of n is also important, as it can be too small or too big. In practice, using trigram
models is common, or even 4-gram and 5-gram when there is sufficient training data.

Neural networks have largely supplanted N-gram language models. We will see that approaches based
on neural networks do not make the n-gram assumption of restricted context. They can incorporate
arbitrarily distant contextual information while remaining computationally and statistically tractable.

4.6.9 Representing words by their contexts

• Distributional semantics: A word’s meaning is given by the words that frequently appear
close-by

• When a word w appears in a text, its context is the set of words that appear nearby (within a
fixed-size window)

• The contexts in which a word appears tell us much about its meaning

Another way to approach the problem of language representation is to consider words based on their
context. A recurring theme in natural language processing is the complexity of the mapping from words
to meaning. In the previous approaches, this mapping has been mostly based on words (or sequences
of words) as a basic unit of analysis.
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“You shall know a word by the company it keeps” The distributional hypothesis, John Firth (1957)

An alternative approach is based on the idea that a word’s meaning can be defined by its distribution in
language use. That is, the meaning of a word can be defined in terms of other words it tends to occur
with, the words that tend to occur with those words, and so on. Or, differently described, words that
appear in similar contexts have similar meanings. For instance, “laugh” tends to occur in the same
context as “humour”. “Wine” tends to occur in the same context as “beer”.

This idea is known more formally in linguistics as distributional semantics. The underlying hypothesis
of distributional semantics is that “the degree of semantic similarity between two linguistic expressions
A and B is a function of the similarity of the linguistic contexts in which A and B can appear.

• What other words fit into these contexts?

• Contexts

– 1 A bottle of ==___== is on the table
– 2 Everybody likes ==___==

– 3 Don’t have ==___== before you drive
– 4 We make ==___== out of corn

To give you an example, based on a similar one describe in [ˆ1 Lin, D. (1998). Automatic retrieval and
clustering of similar words.] Have you ever heard the word tezgüino? I never did, at least before reading
the paper above and some textbooks mentioning the example. Let’s assume that an NLP system is in
your same situation: encountering a word that has never been seen before. How to infer the meaning
of this word?

Imagine that you have collected some statistics, and observed that the word tezgüino is used in the
context listed in the slide (e.g. A bottle of **___** is on the table). What other words have been used in
similar contexts? Each row in the table in the slide shows if they appear (1) or do not appear (0) in such
contexts (the columns). Each row, in practice, is a vector representation of the term, it summarises its
contextual properties. Note that the table in the slide is very similar to the “term-document” matrix we
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encountered before; a significant difference, however, is that we now use contexts and not documents
as dimensions associated with words. These vectors describe the distributional properties of each
word.

What other words appear in a similar context? Wine is very similar to tezgüino, “motor oil” and “tortillas”
are fairly similar to tezgüino, “loud” and “choices” are completely different. This tells us that, probably,
tezgüino is a beverage, perhaps an alcoholic one.

The distributional hypothesis has been extremely successful, and it is on the basis of modern NLP
approaches based on deep learning techniques. It allows leveraging large amounts of unlabeled data
to learn about rare words that do not appear in labeled training data. Also, they have a striking ability
to capture lexical semantic relationships such as analogies.

4.6.9.1 Distributional Word Embeddings

cat = [0.7, 0.5, 0.1]

dog = [0.8, 0.3, 0.1]

pizza = [0.1, 0.2, 0.8]

• Define dimensions that allow expressing a context

– The vector for any particular word captures how strongly it is associated with each
context

• For instance, in a 3 -dimensional space, the axis could have the semantic meaning
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– x -axis represents some concept of “animal-ness”
– z -axis corresponds to “food-ness”

The distributional hypothesis says word meaning relates to the “contexts” in which the word appears.
The idea here is that once all the words in the vocabulary are appropriately placed in the contextual
space, the meaning of a word can be represented by its location in this space. Take the example in the
slide - our old “pizza example”. Assuming we now want a three-dimensional context space, what is the
meaning of each axis? How to define what a context is?

In the example of the previous slide, we used a few complete sentences. In practice, there are too many
sentences - a problem we have encountered already with n-gram models.

4.6.9.2 Distributional Word Embeddings

• Defining the axes is difficult

– How many?

* A lot less than the size of the dictionary (dense vectors)
* But at least ~100-dimensional, to be effective
* GPT-2 has 768, ChatGPT 12,288

• How to assign values associated with the vectors?

– Tens of millions of numbers to tweak

To make things more complicated, how many axes should there be?

The basic idea is to create vectors (word embeddings) that are dense; that is, they do not have a lot of
0 values in them, as opposed to sparse vectors as the ones we encountered when we discussed the
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“term-document” matrix. It turns out that dense vectors are much better in NLP tasks, although we do
not understand why yet - probably, language has some form of regularity that we cannot understand
yet.

Empirical evidence shows that in a typical large corpus, the size of these vectors should be at least of 100
elements. Note that representing words as 100-dimensional dense vectors would require our machine
learning models to learn far fewer weights than if we represented words as 50,000-dimensional vectors.
A smaller parameter space also helps avoid overfitting and lack of generalization. Still, even with
100 dimensions, there can be tens of millions of weights to estimate - a process needed to associate
numerical values to each word in the dictionary.

The field of NLP has been progressing at incredible speed lately. Modern language models like GPT-3
or GPT-4 have scaled up to thousands of dimensions while controlling a massive learning process. One
of the reasons they can perform better than previous models - and perform incredibly in various tasks-
is that they can capture these distributional semantics much better.

Here’s an example of how single words (here, common nouns) might be distributed in the dense
representation space of a system like GPT-3. Here the multi-dimensional space has been projected into
a 2-dimensional one. We can observe how “semantically similar words” are placed nearby.

This example and the following have been taken from this blog post.
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In this example, using a different projection, it is possible to observe how words tend to cluster also
based on their part of speech. Clearly, some words can have a different role in a sentence (as a verb or
as a noun).

Interestingly, also sentences seem to organise coherently in the feature space. This is probably due
to big language models like GPT-3 (or GPT-4) to capture extensive contexts (sequences of very long
words).

An important observation: these language models are trained on document collections that might
contain different biases.

4.6.10 How to calculate Distributional Word Embeddings?
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• With machine learning models
• Advanced topic

– Wait for Advanced Machine Learning for Design :)

One last issue needs to be explored: how are these dense vectors, these contexts, identified? How are
the values in these vectors calculated? This is a relatively advanced topic that requires much more
time than we have available in this course.

4.6.10.1 Ok, just a sneak peak

• SKIPGRAM: Predict the probability of context words from a centre word
• Input: one-hot vector of the centre word

– the size of the vocabulary

• Output: one-hot vector of the output words

– the probability that the output word is selected to be in the context window

• Embeddings: lower-dimensional representation of context of co-occurence

Skipgram is an example of an algorithm that calculates static embeddings, fixed embedding for each
word in the vocabulary. More recent approaches (like BERT) learn dynamic contextual embeddings, in
which the vector for each word is different in different contexts.

The intuition of behind the skipgram algorithm is that instead of counting how often each word w occurs
near another one, we train a classifier on a prediction task where for each word in the vocabulary we
classify if it is likely (or not) to appear close w—the learned classifier weights as the word embeddings.
Given a specific word in the middle of a sentence (the input word), the network predicts the probability
for every word in the vocabulary of being the “nearby word”. The fascinating idea here is that, instead of
using labeled data, the text is used to supervise the classifier’s training. That is called self-supervision
in machine learning lingo.
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// http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/

The learning algorithm for skipgram embeddings takes a corpus of text as input and a chosen vocabulary
size N. Words are represented as one-note encoding vectors having the size of the vocabulary. The
network output (of the same size) is a single vector of the same size as the input. The network is trained
by the word pairs (at a different distance) found in the training documents. The network learns statistics
from the number of times each pairing shows up. For every word in the language, their network is then
able to calculate the probability that a randomly selected nearby word is that vocabulary word. If two
different words have very similar “contexts” (that is, what words are likely to appear around them),
then the model needs to output very similar results for these two words.

4.7 4.7 Using Word Embeddings

4.7.1 How can embeddings be used with NLP Models?

• Word embeddings are trained from a corpus

– And then they can be reused!

• 3 scenarios
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Before the advent of deep learning and of large language model, NLP models were re-trained on each
task, specifically for the type of task that they were trained for. For example, a model trained for
sentiment analysis would use a dataset annotated with the desired output (e.g., negative, neutral, and
positive labels). The trained model would have bee used exclusively for sentiment analysis and not, for
instance, for part-of-speech (POS) tagging, no matter how good the model was. Obviously, this is due
to the task-specificity of the training dataset. However, there could have been some commonalities
to be exploited. For instance adjectives (POS) like “beautiful” would have also use in the context of
sentiment analysis: the language is the same, just its type of analysis is different.

This is where word embeddings can become useful. As they are used to represent words, while
capturing the semantic relationship between words by exploiting similar contexts, it is possible to
use them as input for multiple machine learning models - we called them downstream tasks. Word
embeddings can be pretrained, that is, learned independently of the downstream tasks. In this way, the
model can focus on learning higher-level concepts that cannot be captured by word embeddings (e.g.,
phrases, syntax, and semantics), and on the task-specific patterns learned from the given annotated
data.

There are three ways embedding can be used.

4.7.2 Retraining

• Train word embeddings and your model at the same time using the train set for the task

In the simplest scenario, the word embeddings are initially “empty”, and trained together with the
downstream task. This means that the activity of calculating the embeddings and the downstream
models occur at the same time. This scenario can occur when there is no existing pre-trained model
available, but some training dataset exists. So, in this way, it is possible to create embeddings that
could be later reused.
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4.7.2.1 Fine-Tuning

• Initialise the model using the pre-trained word embeddings

– e.g., train on Wikipedia, or large Web corpora

• Keep the embedding fixed while training the model for the task

– Another example of transfer learning

This second scenario is the classic transfer learning scenario. You might remember from previous
lectures that transfer learning is technique in which the performance of a machine learning model are
improved by used data and/or models trained in a different tasks.

Transfer learning always consists of two or more steps:

• pre-training: a machine learning model is first trained for one task
• fine-tuning: the same model is used for both tasks. This is the Scenario 2 discussed in this slide.

Alternatively, we have
• adaptation: the same model is adjusted and used in another task.

In literature about ML, you might also encounter the term domain adaptation. This is a technique,
close to transfer learning, where the idea is to train a machine learning model in one domain (e.g.,
news) and adapt it to another domain (e.g., sport). Domain adaptation is typically performed with
models that operate on the same task (e.g., text classification).

4.7.2.2 Adaptation

• The embeddings are adapted while the downstream model is trained, the train set for the
task

– Same as Scenario 2, but the embeddings are now more close to the words distribution
in your training set

As discussed above, in this scenario the training of the embedding does not start from skratch. The
weights are adjusted (adapted) based on the properties of the language in the new training set. This
adaptation work is usually pretty fast, as the assumption is that most of the properties of the original
language hold also for the one in the training set.

4.7.3 Evaluating Word Embeddings

4.7.3.1 How to evaluate word vectors?
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• Intrinsic: evaluation on a specific/intermediate subtask (e.g. analogy)

– Fast to compute

* It helps to understand that system
* Not clear if helpful unless correlation to the actual task is established

• Extrinsic: evaluation of a real task

– It can take a long time to compute the accuracy
– Unclear if the subsystem is the problem or if it is an interaction with other subsystems

We know that word embedding are useful. Bot how do we know if they are good? How can we assess
the quality of a word embedding?

Basically in two ways.

Intrinsically, by testing if the representations they create align with our (as designers) intuitions about
word meaning. The idea is to use a similarity function (e.g. Cosine Similarity) to evaluate if words that
are related in the evaluation space are also close in the embedding space. When doing this evaluation,
the size of the context window (that is, how many words around the specific words are considered to
define the context of use of the word) matter. Shorter context windows tend to lead to representations
that are a bit more syntactic, since the information is coming from immediately nearby words. The
most similar words to a target word w tend to be semantically similar words with the same parts
of speech. Longer context windows groups together words that tend to be topically related but not
similar.

Extrinsically, by evaluating if the use of the embeddings improve the performance of the downstream
tasks. So, using error functions as a proxy for embedding quality. This is experimentally possible, as
the learning task and the dataset do not change.

4.7.3.2 Intrinsic evaluation

• Word vector analogies

1 $a:b = c:?$

1 $man:woman=king:?$
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A interesting semantic property of embeddings is their ability to capture relational meanings. A
classical way intrinsically evaluate embeddings is by using the so-called parallelogram model to solve
simple analogy problems of the form a is to b as c is to what?. In such a context, given a problem like
man : woman :: king :?, i.e., man is to woman as king is to ?, a system should find the word queen.

• Find a word such that the vector is closest (cosine similarity) to vec[man] − vec[woman] +
vec[king]

– Correct if the word found is queen

• Can be applied to test for syntactic analogy as well

– Quick : quickly = slow : slowly

Being words represented by vectors in a vector space, it is possible to apply some vector operation
(e.g. subtraction or sum) to move around the vector space and check for the words that are occupying the
targeted destination space. Note that such a space might be occupied by words that are morphological
variants of the original one - for instance, queens in the example, or words that just happen to be in
that space due to statistical artefacts.

Note that this relational properties work also for syntactic analogies.

An important disclaimer: such an approach to navigate an embedding space is too simple to mimic
higher level cognitive capabilities of humans, as analogies are formed in more complex ways.

As well as gender relations. Association between people and the role they occupy in companies.
Entities having some relevant relations between each other, e.g. countries and their capitals. And
morphological relations between words (e.g. superlatives and comparatives).
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4.7.3.2.1 There are problems, of course

• By exploring the semantic space, you can also find analogies like

– Thirsty is to drink as tired is to drunk

– Fish is to water as bird is to hydrant

Embeddings can also be a very useful tool. For instance, scholars used it to study how meaning
changes over time, by computing multiple embedding spaces, each from texts written in a particular
time period.

Biases in word vectors might leak through to produce unexpected, hard-to-predict biases

While learning word meaning, embeddings can also learn (and reproduce) from the text implicit biases
and stereotypes.

• man is to woman as computer programmer is to ==______==
• woman is to man as computer programmer is to ==______==
• man is to genius as woman is to ==______==
• woman is to genius as man is to ==______==

Look for example at the four analogies in the slide. What are the right words to complete the analo-
gies?

• man is to woman as computer programmer is to ==homemaker==
• woman is to man as computer programmer is to ==mechanical engineer==
• man is to genius as woman is to ==muse==
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• woman is to genius as man is to ==geniuses==

The answers in this slide are evocative of how these embeddings could capture such biases. Several
scholars discovered similar examples, highlighting how this way of capturing meaning could result
in several types of harms, when the system is used in real-word application. For instance allocation
harm when a system allocates resources unfairly to different groups. Or representational harm*,
which is harm caused by deafening or ignoring social groups.

In turns out that embeddings do not only just reflect biases in the original text, they amplify it: for
instance, gendered terms become more gendered in embedding spaces, and biases are more exagger-
ated.

A lot of work has been going into trying to correct these biases, but a lot of work still needs to be done.
Of course, one approach would be in better curating the data that is fed to learn embeddings, but
this could be an impossible task given the size of the datasets. Other debiasing approaches work by
transferring the embedding space ands removing some type of stereotypes, but empirical evidence
shows that such bias is never fully eliminated.

4.8 4.8 Large Language Models

TO DO
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