ML Pipelines & Code Quality

Release Engineering for Machine Learning Applications
(REMLA, CS4295)

. Luis Cruz
a L.Cruz@tudelft.nl

@ Sebastian Proksch

> % S.Proksch@tudelft.nl

REMLA 2022

mailto:l.cruz@tudelft.nl
mailto:S.Proksch@tudelft.nl

Outline

* Al lifecycle

* Pipeline Management
* ML version control

» Code smells in ML

* Code smells for ML

ML Project bollerplate

Al lifecycle

* CRISP-DM (2000

* Microsoft TDSP (2017
 Amershi et al. (2019

« Haakman et al. (2021

Business

Data

Deployment

Understanding |« Understanding
Data
- Preparation
fp v
Data
Modeling

Evaluation

Feature
Engineering
M(.)d.el Modeling <
Training
Model
Evaluation

Model
Store

W‘?b Intelligent
Applications

Services

e

Business
Understanding

Data

™

Deployment

v

P Acquisition &
Understanding

Customer
Acceptance

Scoring,
Performance
monitoring, etc.

>

Data Source

Pipeline

Environment

Wrangling,
Exploration &
Cleaning

>

? Model Y Data <§/ Data v Data Feature %Model 7//*7 Model & Model é%l\/lodel
Requirements Collection Cleaning Labeling Engineering Training Evaluation Deployment \Ylelglite]qlgle!

Business

Data

Understanding | Collection
AR
Model Data
Monitoring Understand|ng
No-Go
e
Go
Deployment Data
Data
T Preparation
EVaIuation }
Risk Assessment Modeling
\ Documentation

A 80% of the workload

Business Data
Understanding Collection

Data
Understanding

Model

Monitoring

Feasibility checkpoint
How does it impact
your development

processes?

Deployment Data

Preparation

Modeling

Risk Assessment

Documentation

Haakman et al. (2021) — Al Lifecycle Models Need To Be Revised
https://arxiv.org/pdf/2010.02716.pdf

https://arxiv.org/pdf/2010.02716.pdf

ML Artefacts

e Code

» Exploratory Data Analysis
Reports (e.qg., Jupiter

Business e Data
Understanding Collection

e Code : notebooks)
Model DElEl
Monitoring Understanding e Data
 Data No-Go
— Y, » Clean Data
Deployment Data :
=~ |\/|Od6| - e Feature Englneered
Preparation

e Model

Risk Assessment I Modeling
Documentation

* Performance Report

e Docs
e Container
A
s B
=]=]=
BB

A
A
A

: =

import pandas as pd
from sklearn.linear_model import LogisticRegression
...

df = pd.read_csv("data_processed.csv")

Get features ready to model!
y = df.pop(“cons_general").to_numpy()

yly < 4] = 0 Data
yl[y >= 4] =1

Preparation
X = df

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,
random_state=SEED)

Train model
clf = make_pipeline(

preprocessing, Model

LogisticRegression()

\ Training
clf.fwt(X_train, y_train)

Verify model
vhat = clf.predict(X_test)

Model
acc = np.mean(yhat = y_test) : :
tn, fp, tn, tp = confuston_matrwx(y_test, yhat).ravel() Validation

specificity = tn / (tn + fp)
7

Example of a basic modular pipeline

/ process_data.

%

Remote data source data_raw.csv

Each stage tends to require their own code to process the
data.

* How to avoid running the whole processing pipeline
every time you change something?

Imagine that you are assynchronously working with other 3
ML engineers/ Data scientists.

 How to guide collaborators to re-run the right scripts
whenever something is changed?

—

pipeline is through Makefile, Maven, Gradle, etc.

There are solutions for Machine Learningas Il
well. 4

nE
Maven W Gradle T 'lI

o
<
\

|

¢ . X
gy i :
The traditional way of automating the build - l

Makefile for Machine Learning

-~
® Makefile
.PHONY: clean data lint requirements
##
Install Python Dependencies
requlrements: test environment
S (PYTHON INTERPRETER) -m pip install -U pip setuptools wheel
S (PYTHON INTERPRETER) -m pip install -r requirements.txt
Make Dataset
data: requirements
S (PYTHON INTERPRETER) src/data/make dataset.py data/raw data/processed
Delete all compiled Python files
clean:
find . -type £ —-name "*.pylco]" -delete
find . -type d —-name " pycache " -delete
Lint using flakeS8
lint:
flake8 src
##
_

Suggested Read: “Make My Day...ta Science Easier” by David Stevens. URL: https://edu.nl/eaxag
Makefile Example: https://edu.nl/a78xy

11

https://edu.nl/eaxag
https://edu.nl/a78xy

DVC

 Open-source tool.

 Automate pipelines.

» Remote storage setup.

* \ersion control for data, models (and other intermediate artefacts).
 Experiment management.

 Website: https://dvc.org

12

https://dvc.org

Example of a pipeline

e / model.pickle

e,

process_train.py

/ process_data.py k

data_processed.csv

/ getdata.py

Remote data source

metrics.json

A

by_region.png

/i

%

data_raw.csv

dvc.yml

stages:

get data:
cmd: python get data.py
deps:
- get data.py
outs:
- data raw.csv

e process:

cmd: python process data.py
deps:

- process data.py

- data raw.csv

outs:
- data processed.csv
train:

cmd: python train.py
deps:

- train.py

- data processed.csv
outs:

- by region.png
- model .pickle

metrics:
- metrics.json:
cache: false

Data Version Control

(and other artefacts)

Remote Project

Remote Storage (S3, Google Drive)

Local Project
Dataset Jan 2021
Dataset Mar 2021
Dataset Mar 2021 extra
Model v0.0.1

Model DT

Model v0.0.2

Remote Git (Gitlab, Github)

- Codebase
- Reports

14

data

Jan 2021
Mar 2021

Apr 2021

—

code

V0.0.1
V0.0.2

V0.0.3

git

15

€8

model/reports

V0.0.1
V0.0.2

v0.0.3

data code
Jan 2021 V0.0.1
Mar 2021 V0.0.2
Apr 2021 V0.0.3

—

git

16

€8

model/reports

V0.0.17?
V0.0.27

v0.0.37

Data Version Control

(and other artefacts)

Remote Project v0.0.3
Local Project

Remote Storage (S3, Google Drive)

- Datasets
- Models

[

Remote Git (Gitlab, Github)
- Reports

- Codebase

- Dataset hash

- Model hash

17

data code
Jan 2021 V0.0.1
Mar 2021 V0.0.2
Apr 2021 V0.0.3

—

git

18

€8

model/reports

V0.0.17?
V0.0.27

v0.0.37

data

Jan 2021

Mar 2021

Apr 2021

8f6a318
0d9c225
acd3231
fel77af
706db09
76933a6
e9abfcd
17a56d1
/bada4d8

model

git

Vo.
V0.
V0.
Vo.
V0.
V0.
Vo.
V0.
V0.

01
02
03
01
02
03
01
02
03

19

Jan
Jan
Jan
Mar
Mar
Mar
Apr
Apr
Apr

2021
2021
2021
2021
2021
2021
2021
2021
2021

code

V0.0.1

V0.0.2

V0.0.3

more In the next class...

Code quality in ML projects

e Pair-programming
 Manual code review

e Guidelines/Checklists

o Static analysis

Code smells in ML projects

e What is a code smell?

* Any code pattern that may indicate a deeper problem in the project.
 We already have a long list of code smells for software projects.
 Can you name a few tools that help you detect code smells”?

* For python: pylint, flake8, Bandit, etc.

« How do traditional code smells fit the realm of ML projects?

22

https://arxiv.org/abs/2103.04146

Code smells in ML

The Prevalence of Code Smells in Machine
Learning projects

Bart van Oort!+2, Luis Cruz?, Mauricio Aniche?, Arie van Deursen

2

Delft University of Technology
LAl for Fintech Research, ING
2 Delft, Netherlands

bart.van.oort@ing.com, {l.cruz, m.f.aniche, arie.vandeursen } @tudelft.nl

Abstract—Artificial Intelligence (AI) and Machine Learning
(ML) are pervasive in the current computer science landscape.
Yet, there still exists a lack of software engineering experience
and best practices in this field. One such best practice, static code
analysis, can be used to find code smells, i.e., (potential) defects
in the source code, refactoring opportunities, and violations of
common coding standards. Our research set out to discover the
most prevalent code smells in ML projects. We gathered a dataset
of 74 open-source ML projects, installed their dependencies and
ran Pylint on them. This resulted in a top 20 of all detected
code smells. per categorv. Manual analvsis of these smells

which we amalgamate into ‘code smells’ for the rest of this
paper. Research has shown that the attributes of quality most
affected by code smells are maintainability, understandability
and complexity, and that early detection of code smells reduces
the cost of maintenance [7].

With a focus on the maintainability and reproducibility of
ML projects, the goal of our research is therefore to apply
static code analysis to applications of ML, in an attempt to
uncover the frequency of code smells in these projects and

https://arxiv.org/abs/2103.04146

Project Selection Setting up the codebases Static A?nalysis
: s =] N Projects g

Run Pylint

Selection 74 ML projocts St cton 1316 onavery et Pyint messages
Guidelines 3156 .py files incl. Git history default configuration,

511.018 lines of + virtualenvs Pylint 2.6.0 Top 20 code smells
Python code in ML code

kaggle

Papel’S Wlth COde install dependencies CO”eCt & Count

from requirements.txt

or setup.py messages

plp 1install

@ ReproducedPapers.org

24

Results

 Naming conventions do not apply for ML cases, due to its resemblance with
mathematical notation.

 Code duplication is a common issue in ML applications

* There are several flaws when specifying dependencies. Many projects did not
even have any written config.

* Pylint poses several incompatibilities with ML-specific libraries. Too many
false positives.

 Bottom line: you configure your linter so that it fits your project/conventions.

25

A Pandas snipet

import pandas as pd
df = pd.DataFrame([-1])

df .abs ()

print (df)

Also a problem with other libraries.

Numpy snhipet

import numpy as np
ZhatS — [2, 3, 1/ O]
np.clip(zhats, -1, 1)

1+ months to be fixed here:
https://qgithub.com/bamos/dcgan-completion.tensorflow/commits/e8b930501dffe01db423b6calc65d3ac541f27223/model.py

27

https://github.com/bamos/dcgan-completion.tensorflow/commits/e8b930501dffe01db423b6ca1c65d3ac54f27223/model.py

Code smells infor ML

Code Smells for Machine Learning Applications

Haiyin Zhang Luis Cruz Arie van Deursen
haiyin.zhang@ing.com L.Cruz@tudelft.nl Arie.vanDeursen@tudelft.nl
Al for Fintech Research, ING Delft University of Technology Delft University of Technology
Amsterdam, Netherlands Delft, Netherlands Delft, Netherlands

ABSTRACT that practitioners are eager to learn more about engineering best

The popularity of machine learning has wildly expanded in recent practices for their machine learning applications [5].

years. Machine learning techniques have been heatedly studied Ther. e has Peen “ '1°t of interest in various machine learning sys-
in academia and applied in the industry to create business value. tem artifacts, including models and data. Researchers make efforts

However, there is a lack of guidelines for code quality in machine to improve machine learning model quality [10] and data quality [7].

learning applications. In particular, code smells have rarely been However, the quality assurance of machine learning code has not
—r . - : , : been highligchted [12]. Recent work studied the code quality for

How did we create code smells?

_

Paper Mining

-

\-

Grey Literature Mining

~

J

-

7Y

Reusing Existing Bug
Datasets

~

GitHub Mining

—

-

-

Complementary Stack
Overflow Mining

\

Stack Overflow Mining

J

Check Library
Documentations

Validation

>»

-

_

Code Smell Catalog

~

J

Code Smells for ML

* |n the end, we collected 22 ML-specific code smells.

* Avalilable online: https://hynn01.qgithub.io/ml-smells/

eo0e M - < Z hynn0%.github.io E@® @ @M +

Code Smells for Machine Learning Applications & Code Smells Tags Search

7 The popularity of machine learning has wildly expzanded in recent years. Machine learning technigues have been heatedly studied in academia and applied in the
incustry to create business value. However, there is a lack of guidelines for cade quality in machine learning applications. In particular, code smells have rarely been
studiad in this domzin. Although machine learning coce is usually integrated as a small part of an overarching system, it usually plays an imporiant role in its core
functionality. Hence ensuring code quality is quintessential tc avoid issues in the long run.

~ Qur paper praposes and idantifies a list of 22 machine learning-specific code smells collected from various sources, including papers, grey literature, GitHub
commits, and Stack Overflow posts. We pinpoint each smell with a description of its context, potential issues in the long run, and proposed solutions. In addition, we
link them to their respective pipeline stage and the evidence fram both academic and grey literature. The code smell catalog helps data scientists and devalopers
produce and maintain high-quality machine learning application code.

& Here are the 22 machine learning-specific ccde smells described in our paper.

Unnecessary lteration

Avoid unnecessary iteraticns. Use vectonzed solutions insteed of loops.

https://hynn01.github.io/ml-smells/

A few examples of code smells

[~ < @ hynnO1.github.ic @ © @ O +

Code Smells for Machine Learning Applications & Code Smells Tags Search

Home » Posts » Code Smells

Dataframe Conversion APl Misused

Description

Context

In Pandas, df.to_numpy() and df.values() bothcanturna DataFrame toa NumPy array.

Problem

As noted in a Stack Overflow post, df.values() has an inconsistency problem. With .values() itis unclear whether the returned value would be
the actual array, some transformation of it, or one of the Pandas custom arrays. However, the .values() API has not been not deprecated yet.
Although the library developers note it as a warning in the documentation, it does not log a warning or error when compiling the code if we use

value() .

Solution

When converting DataFrame to NumPy array, it is better touse df.to_numpy() than df.values() .

Type
AP|-Specific

Display a menu =xjsting Stage

(] v < @ hynn01.github.io @ ©

Code Smells for Machine Learning Applications & Code Smells Tags Search

Home » Posts » Code Smells

Hyperparameter not Explicitly Set

Description

Context

Hyperparameters are usually set before the actual learning process begins and control the learning process. These parameters directly influence the
behavior of the training algorithm and therefore have a significant impact on the model’s performance.

Problem

The default parameters of learning algorithm APIs may not be optimal for a given data or problem, and may lead to local optima. In addition, while the
default parameters of a machine learning library may be adequate for some time, these default parameters may change in new versions of the library.
Furthermore, not setting the hyperparameters explicitly is inconvenient for replicating the model in a different programming language.

Solution

Hyperparameters should be set explicitly and tuned for improving the result's quality and reproducibility.

Type

Generic

Display a menu =wistinga Stage

Scikit-Learn
from sklearn.cluster import KMeans

kmeans = KMeans()

kmeans = KMeans(n_clusters=8, random_state=0)
0Or, ideally:

kmeans = KMeans(n_clusters=8,
init="k-means++', n_init=10,

max_iter=300, tol=0.0001,
precompute_distances='auto’,

verbose=0, random_state=0,

copy_x=True, n_jobs=1,

algorithm='auto"')

+ + + + + + + + +

PyTorch

import torch

import numpy as np

from kmeans_pytorch import kmeans

data

data_size, dims, num_clusters = 1000, 2, 3
X = np.random.randn(data_size, dims) / 6

x = torch. from_numpy(x)

kmeans
— cluster ids X, cluster centers = kmeans(X=x, num clusters=num clusters)
cluster_ids_x, cluster_centers = kmeans/(

X=x, num_clusters=num_clusters, distance='euclidean', device=torch.device('cpu')
) 34

+ o+

A few notes about smells

 Code smells can indicate issues, but not all of them have the same severity
level.

* By definition, smells are not always a problem. They are just a warning that
developers need to reflect and take action if needed.

e Some code smells can be automated.

35

inter — Code Smells for ML

https://github.com/SERG-Delft/dslinter

o L) v < github.com @& o & h +
O Search or jump to... Pull requests Issues Marketplace Explore g + ~ (§)-

H SERG-Delft / dslinter Pubiic ¢z EditPins + (Watch 2 ~ % Fork § Starred 4

¢> Code (%) Issues 1 {9 Pullrequests () Actions [Projects () Security |~ Insights 8 Settings

¥ main ~ ¥ S5branches © 4 tags Go to file Add file ~ About €3

“dslinter” is a pylint plugin for linting
data science and machine learning code.
We plan to support the following Python
v libraries: TensorFlow, PyTorch, Scikit-
dS|InteI’ Learn, Pandas, NumPy and SciPy.

Give usa W | |
: : € build dslinter |passing downloads |418/montk & se.ewi.tudelft.nlfdslinter/
Contributions are

welcomel!

README.md Vd

lint python engineering

machine-learning ai best-practices

dslinter Is a PyLint plugin for linting data science and machine learning code. It aims to

https://github.com/SERG-Delft/dslinter

pip 1install dslinter
pylint —Lload-plugins=dslinter mysource.py

Structuring an ML project

ML projects are very experimental.

 What'’s the overhead of setting up dvc, removing all code smells, etc. for code
that does not lead to anything?

 An ML project needs to allow both exploratory and production code to co-
exist in the same repo.

e (Still an open question)

» Cookiecutter may help.

38

—— LICENSE
—— Makefile
- —— README. md
Cookiecutter dats
—— external
—— 1nterim
—— processed
— [FadWw
—— docs
* Proposes a standard structure — models
for ML projects. — notebooks
—— references
_ _ — reports
* |tis only a suggestion. Users L figures
can create their own — g:ga;rgye”ts-txt
boilerplate. erc
—— _ 1nit___.py
* Organisations should strive to — dal_ta o datacet
: make_dataset.py
create a standgrd prqject | features
structure that fits their L — build_features.py
infrastructure/values. — Models
—— predict_model.py
—— train_model. py
—— visualization
L visualize.py
39 tox.1ini

How today’s lecture should impact your final project

* You should extract different stages to different python files

* You should have a structure that enables experimentation and production
code

* Your pipeline should be managed by DVC (next class)

* Pylint + DSlinter should be properly configured and part of your continuous
iIntegration pipeline

40

Next lecture

e DVC tutorial

