
Luís Cruz
L.Cruz@tudelft.nl

ML Pipelines & Code Quality
Release Engineering for Machine Learning Applications 
(REMLA, CS4295)

Sebastian Proksch
S.Proksch@tudelft.nl

REMLA 2022

mailto:l.cruz@tudelft.nl
mailto:S.Proksch@tudelft.nl

Outline

• AI lifecycle

• Pipeline Management

• ML version control

• Code smells in ML

• Code smells for ML

• ML Project boilerplate

2

3

AI lifecycle

• CRISP-DM (2000)

• Microsoft TDSP (2017)

• Amershi et al. (2019)

• Haakman et al. (2021)

• …

Business
Understanding

Data
Understanding

Data
Preparation

Modeling

Evaluation

Deployment
Data

Model
Requirements

Data
Collection

Data
Cleaning

Data
Labeling

Feature
Engineering

Model
Training

Model
Evaluation

Model
Deployment

Model
Monitoring

Business
Understanding

Modeling
Data

Acquisition &
Understanding

Deployment

Scoring,
Performance

monitoring, etc.

Data Source

Wrangling,
Exploration &

Cleaning
End

Start

Feature
Engineering

Model
Evaluation

Model
Store

Web
Services

Intelligent
Applications

Customer
Acceptance

Pipeline

Environment

Model
Training

Business
Understanding

Data
Collection

Data
Preparation

Modeling

Deployment Data

Model
Monitoring

Go

No-Go

Evaluation

Risk Assessment

Documentation

Data
Understanding

4

Haakman et al. (2021) – AI Lifecycle Models Need To Be Revised

https://arxiv.org/pdf/2010.02716.pdf

Business
Understanding

Data
Collection

Data
Preparation

Modeling

Deployment Data

Model
Monitoring

Go

No-Go

Evaluation

Risk Assessment

Documentation

Data
Understanding

⚠ 80% of the workload

5

Feasibility checkpoint 
How does it impact
your development

processes?

https://arxiv.org/pdf/2010.02716.pdf

ML Artefacts

• Code

• Data

• Model

Business
Understanding

Data
Collection

Data
Preparation

Modeling

Deployment Data

Model
Monitoring

Go

No-Go

Evaluation

Risk Assessment

Documentation

Data
Understanding

• Code

• Exploratory Data Analysis
Reports (e.g., Jupiter
notebooks)

• Data

• Clean Data

• Feature Engineered

• Model

• Performance Report

• Docs

• Container

6

7

Data
Preparation

Model
Training

Model
Validation

Example of a basic modular pipeline

getdata.py

1

Remote data source data_raw.csv

process_data.py

2

data_processed.csv

train.py

3 model.pickle

metrics.json

by_region.png

8

• Each stage tends to require their own code to process the
data.

• How to avoid running the whole processing pipeline
every time you change something?

• Imagine that you are assynchronously working with other 3
ML engineers/ Data scientists.

• How to guide collaborators to re-run the right scripts
whenever something is changed?

9

The traditional way of automating the build
pipeline is through Makefile, Maven, Gradle, etc.

There are solutions for Machine Learning as
well.

10

Makefile for Machine Learning

Suggested Read: “Make My Day…ta Science Easier” by David Stevens. URL: https://edu.nl/eaxag

Makefile Example: https://edu.nl/a78xy

Makefile

.PHONY: clean data lint requirements
...

Install Python Dependencies
requirements: test_environment
 $(PYTHON_INTERPRETER) -m pip install -U pip setuptools wheel
 $(PYTHON_INTERPRETER) -m pip install -r requirements.txt

Make Dataset
data: requirements
 $(PYTHON_INTERPRETER) src/data/make_dataset.py data/raw data/processed

Delete all compiled Python files
clean:
 find . -type f -name "*.py[co]" -delete
 find . -type d -name "__pycache__" -delete

Lint using flake8
lint:
 flake8 src

...

11

https://edu.nl/eaxag
https://edu.nl/a78xy

DVC

• Open-source tool.

• Automate pipelines.

• Remote storage setup.

• Version control for data, models (and other intermediate artefacts).

• Experiment management.

• Website: https://dvc.org

12

https://dvc.org

dvc.yml

stages:
 get_data:
 cmd: python get_data.py
 deps:
 - get_data.py
 outs:
 - data_raw.csv
 process:
 cmd: python process_data.py
 deps:
 - process_data.py
 - data_raw.csv
 outs:
 - data_processed.csv
 train:
 cmd: python train.py
 deps:
 - train.py
 - data_processed.csv
 outs:
 - by_region.png
 - model.pickle
 metrics:
 - metrics.json:
 cache: false

Example of a pipeline

getdata.py

1

Remote data source data_raw.csv

process_data.py

2

data_processed.csv

process_train.py

3 model.pickle

metrics.json

by_region.png

1

2

3

13

Data Version Control
(and other artefacts)

Local Project

Remote Project

Remote Storage (S3, Google Drive)

- Dataset Jan 2021
- Dataset Mar 2021
- Dataset Mar 2021 extra
- Model v0.0.1
- Model DT
- Model v0.0.2

Remote Git (Gitlab, Github)

- Codebase
- Reports

v0.0.3

14

data code

Jan 2021 V0.0.1

Mar 2021

Apr 2021

V0.0.2

V0.0.3

model/reports

V0.0.1

V0.0.2

v0.0.3

15

data code

Jan 2021 V0.0.1

Mar 2021

Apr 2021

V0.0.2

V0.0.3

model/reports

V0.0.1?

V0.0.2?

v0.0.3?

16

v0.0.1

v0.0.2

Data Version Control
(and other artefacts)

Local Project
Remote Project

Remote Storage (S3, Google Drive)

- Datasets
- Models

Remote Git (Gitlab, Github)
- Reports
- Codebase
- Dataset hash
- Model hash

v0.0.3

17

data code

Jan 2021 V0.0.1

Mar 2021

Apr 2021

V0.0.2

V0.0.3

model/reports

V0.0.1?

V0.0.2?

v0.0.3?

18

data code

Jan 2021 V0.0.1

Mar 2021

Apr 2021

V0.0.2

V0.0.3

model

* 8f6a318 V0.01 Jan 2021

* 0d9c225 v0.02 Jan 2021

* acd3231 v0.03 Jan 2021

* fe177af V0.01 Mar 2021

* 706db09 v0.02 Mar 2021

* 76933a6 v0.03 Mar 2021

* e9abfcd V0.01 Apr 2021

* 17a56d1 v0.02 Apr 2021

* 7bada48 v0.03 Apr 2021

19

more in the next class…

20

Code quality in ML projects

• Pair-programming

• Manual code review

• Guidelines/Checklists

• …

• Static analysis

21

Code smells in ML projects

• What is a code smell?

• Any code pattern that may indicate a deeper problem in the project.

• We already have a long list of code smells for software projects.

• Can you name a few tools that help you detect code smells?

• For python: pylint, flake8, Bandit, etc.

• How do traditional code smells fit the realm of ML projects?

22

Code smells in ML

https://arxiv.org/abs/2103.04146 23

https://arxiv.org/abs/2103.04146

'DWDVHW

���0/�SURMHFWV
������S\�ILOHV
��������OLQHV�RI
3\WKRQ�FRGH

,QVWDOOHG
3URMHFWV

����*L%
LQFO��*LW�KLVWRU\
��YLUWXDOHQYV

6HWWLQJ�XS�WKH�FRGHEDVHV

JLW�FORQH

SLS�LQVWDOO
LQVWDOO�GHSHQGHQFLHV�
IURP�UHTXLUHPHQWV�W[W�

RU�VHWXS�S\

6WDWLF�$QDO\VLV

5XQ�3\OLQW
RQ�HYHU\�SURMHFW�

GHIDXOW�FRQILJXUDWLRQ�
3\OLQW������

5HVXOWV

3\OLQW�PHVVDJHV
SHU�FDWHJRU\

7RS����FRGH�VPHOOV
LQ�0/�FRGH

&ROOHFW�	�&RXQW
PHVVDJHV

3URMHFW�6HOHFWLRQ

6HOHFWLRQ
*XLGHOLQHV

6ITVSHYGIH4ETIVW�SVK

$ % &

24

Results

• Naming conventions do not apply for ML cases, due to its resemblance with
mathematical notation.

• Code duplication is a common issue in ML applications

• There are several flaws when specifying dependencies. Many projects did not
even have any written config.

• Pylint poses several incompatibilities with ML-specific libraries. Too many
false positives.

• Bottom line: you configure your linter so that it fits your project/conventions.

25

Pandas snipet

import pandas as pd
df = pd.DataFrame([-1])
df.abs()
print(df)

—————————————————————————————
> 0
 0 -1

26

Numpy snipet

import numpy as np
zhats = [2, 3, 1, 0]
np.clip(zhats, -1, 1)

1+ months to be fixed here:

https://github.com/bamos/dcgan-completion.tensorflow/commits/e8b930501dffe01db423b6ca1c65d3ac54f27223/model.py

Also a problem with other libraries.

27

https://github.com/bamos/dcgan-completion.tensorflow/commits/e8b930501dffe01db423b6ca1c65d3ac54f27223/model.py

Code smells infor ML

How did we create code smells?

&ROOHFW�&RGH�6PHOOV

3DSHU�0LQLQJ

*UH\�/LWHUDWXUH�0LQLQJ

5HXVLQJ�([LVWLQJ�%XJ
'DWDVHWV

&RPSOHPHQWDU\�6WDFN
2YHUIORZ�0LQLQJ

9DOLGDWLRQ &RGH�6PHOO�&DWDORJ*LW+XE�0LQLQJ

6WDFN�2YHUIORZ�0LQLQJ

&KHFN�/LEUDU\
'RFXPHQWDWLRQV

29

Code Smells for ML

• In the end, we collected 22 ML-specific code smells.

• Available online: https://hynn01.github.io/ml-smells/

30

https://hynn01.github.io/ml-smells/

A few examples of code smells

31

32

33

34

A few notes about smells

• Code smells can indicate issues, but not all of them have the same severity
level.

• By definition, smells are not always a problem. They are just a warning that
developers need to reflect and take action if needed.

• Some code smells can be automated.

35

dslinter – Code Smells for ML
https://github.com/SERG-Delft/dslinter

Give us a ⭐

Contributions are
welcome!

https://github.com/SERG-Delft/dslinter

pip install dslinter
pylint —load-plugins=dslinter mysource.py

37

Structuring an ML project

• ML projects are very experimental.

• What’s the overhead of setting up dvc, removing all code smells, etc. for code
that does not lead to anything?

• An ML project needs to allow both exploratory and production code to co-
exist in the same repo.

• (Still an open question)

• Cookiecutter may help.

38

Cookiecutter

• Proposes a standard structure
for ML projects.

• It is only a suggestion. Users
can create their own
boilerplate.

• Organisations should strive to
create a standard project
structure that fits their
infrastructure/values.

├── LICENSE
├── Makefile
├── README.md
├── data
│ ├── external
│ ├── interim
│ ├── processed
│ └── raw
├── docs
├── models
├── notebooks
├── references
├── reports
│ └── figures
├── requirements.txt
├── setup.py
├── src
│ ├── __init__.py
│ ├── data
│ │ └── make_dataset.py
│ ├── features
│ │ └── build_features.py
│ ├── models
│ │ ├── predict_model.py
│ │ └── train_model.py
│ └── visualization
│ └── visualize.py
└── tox.ini39

How today’s lecture should impact your final project

• You should extract different stages to different python files

• You should have a structure that enables experimentation and production
code

• Your pipeline should be managed by DVC (next class)

• Pylint + DSlinter should be properly configured and part of your continuous
integration pipeline

40

Next lecture

• DVC tutorial

41

