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Outline

• AI lifecycle


• Pipeline Management


• ML version control


• Code smells in ML


• Code smells for ML


• ML Project boilerplate
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AI lifecycle

• CRISP-DM (2000)


• Microsoft TDSP (2017)


• Amershi et al. (2019)


• Haakman et al. (2021)


• …
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Haakman et al. (2021) – AI Lifecycle Models Need To Be Revised

https://arxiv.org/pdf/2010.02716.pdf
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⚠ 80% of the workload
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Feasibility checkpoint 
How does it impact 
your development 

processes?

https://arxiv.org/pdf/2010.02716.pdf


ML Artefacts

• Code


• Data


• Model
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• Code


• Exploratory Data Analysis 
Reports (e.g., Jupiter 
notebooks)


• Data


• Clean Data


• Feature Engineered


• Model


• Performance Report


• Docs


• Container
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Example of a basic modular pipeline

getdata.py

1

Remote data source data_raw.csv

process_data.py

2

data_processed.csv

train.py

3 model.pickle

metrics.json

by_region.png
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• Each stage tends to require their own code to process the 
data.


• How to avoid  running the whole processing pipeline 
every time you change something?


• Imagine that you are assynchronously working with other 3 
ML engineers/ Data scientists.


• How to guide collaborators to re-run the right scripts 
whenever something is changed?
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The traditional way of automating the build 
pipeline is through Makefile, Maven, Gradle, etc. 

There are solutions for Machine Learning as 
well.

10



Makefile for Machine Learning

Suggested Read: “Make My Day…ta Science Easier” by David Stevens. URL: https://edu.nl/eaxag

Makefile Example:  https://edu.nl/a78xy

 

Makefile

.PHONY: clean data lint requirements  
## ... 

## Install Python Dependencies 
requirements: test_environment 
 $(PYTHON_INTERPRETER) -m pip install -U pip setuptools wheel 
 $(PYTHON_INTERPRETER) -m pip install -r requirements.txt 

## Make Dataset 
data: requirements 
 $(PYTHON_INTERPRETER) src/data/make_dataset.py data/raw data/processed 

## Delete all compiled Python files 
clean: 
 find . -type f -name "*.py[co]" -delete 
 find . -type d -name "__pycache__" -delete 

## Lint using flake8 
lint: 
 flake8 src 

## ... 

11

https://edu.nl/eaxag
https://edu.nl/a78xy


DVC

• Open-source tool.


• Automate pipelines.


• Remote storage setup.


• Version control for data, models (and other intermediate artefacts).


• Experiment management.


• Website: https://dvc.org
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dvc.yml

stages: 
  get_data: 
    cmd: python get_data.py 
    deps: 
    - get_data.py 
    outs: 
    - data_raw.csv   
  process: 
    cmd: python process_data.py 
    deps: 
    - process_data.py 
    - data_raw.csv 
    outs: 
    - data_processed.csv 
  train: 
    cmd: python train.py 
    deps: 
    - train.py 
    - data_processed.csv 
    outs: 
    - by_region.png 
    - model.pickle 
    metrics: 
    - metrics.json: 
        cache: false 

Example of a pipeline

getdata.py

1

Remote data source data_raw.csv

process_data.py

2

data_processed.csv

process_train.py

3 model.pickle

metrics.json

by_region.png

1

2

3
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Data Version Control
(and other artefacts)

Local Project 

Remote Project 

Remote Storage (S3, Google Drive) 

- Dataset Jan 2021 
- Dataset Mar 2021 
- Dataset Mar 2021 extra 
- Model v0.0.1 
- Model DT 
- Model v0.0.2

Remote Git (Gitlab, Github) 

- Codebase 
- Reports

v0.0.3
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data code

Jan 2021 V0.0.1

Mar 2021

Apr 2021

V0.0.2

V0.0.3

model/reports

V0.0.1

V0.0.2

v0.0.3
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data code

Jan 2021 V0.0.1

Mar 2021

Apr 2021

V0.0.2

V0.0.3

model/reports

V0.0.1?

V0.0.2?

v0.0.3?
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v0.0.1

v0.0.2

Data Version Control
(and other artefacts)

Local Project 
Remote Project 

Remote Storage (S3, Google Drive) 

- Datasets 
- Models

Remote Git (Gitlab, Github) 
- Reports 
- Codebase 
- Dataset hash 
- Model hash

v0.0.3
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data code

Jan 2021 V0.0.1

Mar 2021

Apr 2021

V0.0.2

V0.0.3

model/reports

V0.0.1?

V0.0.2?

v0.0.3?
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data code

Jan 2021 V0.0.1

Mar 2021

Apr 2021

V0.0.2

V0.0.3

model

* 8f6a318 V0.01 Jan 2021 

* 0d9c225 v0.02 Jan 2021 

* acd3231 v0.03 Jan 2021 

* fe177af V0.01 Mar 2021 

* 706db09 v0.02 Mar 2021 

* 76933a6 v0.03 Mar 2021 

* e9abfcd V0.01 Apr 2021 

* 17a56d1 v0.02 Apr 2021 

* 7bada48 v0.03 Apr 2021
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more in the next class…
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Code quality in ML projects

• Pair-programming


• Manual code review


• Guidelines/Checklists


• …


• Static analysis
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Code smells in ML projects

• What is a code smell?


• Any code pattern that may indicate a deeper problem in the project.


• We already have a long list of code smells for software projects.


• Can you name a few tools that help you detect code smells?


• For python: pylint, flake8, Bandit, etc.


• How do traditional code smells fit the realm of ML projects?
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Code smells in ML

https://arxiv.org/abs/2103.04146 23

https://arxiv.org/abs/2103.04146
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Results

• Naming conventions do not apply for ML cases, due to its resemblance with 
mathematical notation.


• Code duplication is a common issue in ML applications 


• There are several flaws when specifying dependencies. Many projects did not 
even have any written config.


• Pylint poses several incompatibilities with ML-specific libraries. Too many 
false positives.


• Bottom line: you configure your linter so that it fits your project/conventions.
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Pandas snipet

import pandas as pd 
df = pd.DataFrame([-1]) 
df.abs() 
print(df)

————————————————————————————— 
>    0 
  0 -1
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Numpy snipet

import numpy as np 
zhats = [2, 3, 1, 0] 
np.clip(zhats, -1, 1)

1+ months to be fixed here:

https://github.com/bamos/dcgan-completion.tensorflow/commits/e8b930501dffe01db423b6ca1c65d3ac54f27223/model.py

Also a problem with other libraries.
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Code smells infor ML



How did we create code smells?
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Code Smells for ML

• In the end, we collected 22 ML-specific code smells.


• Available online: https://hynn01.github.io/ml-smells/

30

https://hynn01.github.io/ml-smells/


A few examples of code smells
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A few notes about smells

• Code smells can indicate issues, but not all of them have the same severity 
level.


• By definition, smells are not always a problem. They are just a warning that 
developers need to reflect and take action if needed.


• Some code smells can be automated.
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dslinter – Code Smells for ML
https://github.com/SERG-Delft/dslinter

Give us a ⭐

Contributions are 
welcome!

https://github.com/SERG-Delft/dslinter


pip install dslinter 
pylint —load-plugins=dslinter mysource.py
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Structuring an ML project

• ML projects are very experimental.


• What’s the overhead of setting up dvc, removing all code smells, etc. for code 
that does not lead to anything?


• An ML project needs to allow both exploratory and production code to co-
exist in the same repo.


• (Still an open question)


• Cookiecutter may help.
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Cookiecutter

• Proposes a standard structure 
for ML projects.


• It is only a suggestion. Users 
can create their own 
boilerplate.


• Organisations should strive to 
create a standard project 
structure that fits their 
infrastructure/values.

├── LICENSE 
├── Makefile 
├── README.md 
├── data 
│   ├── external 
│   ├── interim 
│   ├── processed 
│   └── raw 
├── docs 
├── models 
├── notebooks 
├── references 
├── reports 
│   └── figures 
├── requirements.txt 
├── setup.py 
├── src 
│   ├── __init__.py 
│   ├── data 
│   │   └── make_dataset.py 
│   ├── features 
│   │   └── build_features.py 
│   ├── models 
│   │   ├── predict_model.py 
│   │   └── train_model.py 
│   └── visualization 
│       └── visualize.py 
└── tox.ini39



How today’s lecture should impact your final project

• You should extract different stages to different python files


• You should have a structure that enables experimentation and production 
code


• Your pipeline should be managed by DVC (next class)


• Pylint + DSlinter should be properly configured and part of your continuous 
integration pipeline
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Next lecture

• DVC tutorial 
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