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1 Fenchel duality

Overview of Fenchel Duality

• Key concepts: Convex conjugates and the Fenchel-Young inequality.

• The goal: To derive a dual problem from a primal problem using convex conjugates.

Blanket assumption

• Our focus is on functions f : Rn → R that are convex and proper.

Motivation Fenchel conjugates

Theorem 1 (Existence of the Subdifferential). Let f : Rn → R be a convex function.

x0 ∈ int dom(f) implies ∂f(x0) 6= ∅.

Pf. Apply separ. hyperplane thm. to (x0, f(x0)) and dom(f). �

Given x ∈ int dom(f) there is always y ∈ ∂f(x)

What about opposite: Given y, find x such that y ∈ ∂f(x)?

Fenchel conjugates
Definition: Conjugate The Fenchel conjugate of f : Rn → R, denoted f∗ : Rn → R, is:

f∗(y) := sup
x∈Rn

{〈y, x〉 − f(x)} .

Fenchel-Young Inequality

Let f : Rn → R,
f(x) + f∗(y) ≥ 〈x, y〉, ∀x, y ∈ Rn .

Equality holds iff y ∈ ∂f(x).

Primal and Dual Problems
Given f : Rn → R, g : Rm → R, and A ∈ Rm×n.
This primal problem is:

p∗ = inf
x
f(x) + g(Ax)

And the dual problem is:
d∗ = sup

y
−f∗(AT y)− g∗(−y).

Fenchel Duality - weak

Weak Duality

For any x ∈ Rn and y ∈ Rm,

f(x) + g(Ax) ≥ −f∗(AT y)− g∗(−y).
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Fenchel Duality - strong

Strong Duality

If f : Rn → R and g : Rm → R are convex functions, and 0 ∈ int(dom g −Adom f) then

inf
x
f(x) + g(Ax) =: p∗ = d∗ := sup

y
−f∗(AT y)− g∗(−y).

And dual problem is attained if finite.

Example Semidefinite Programming and Fenchel Duality
Semidefinite Program (SDP): Consider the primal form of an SDP:

min
X

〈C,X〉

s.t. 〈Ai, X〉 = bi ∀i = 1, . . . ,m,

X � 0.

where C ∈ Rn×n and Ai ∈ Rn×n

Convex subgradient calculus

Corollary

Under the assumptions of strong duality,

∂(f + g ◦A)(x) = ∂f(x) +AT∂g(Ax).

Duality: Switching roles between solutions and (sub)gradients

Lagrangean
Primal Problem:

p∗ := inf
x
{f(x) : gi(x) ≤ 0, i = 1, . . . ,m}.

Lagrangean Function: The Lagrangean function L(x, λ) for inequality constraints is:

L(x, λ) = f(x) +

m∑
i=1

λigi(x),

where λi ≥ 0 are the Lagrange multipliers associated with the inequality constraints.

Saddle-Point Condition: The solution to the primal problem is found by solving a saddle-point prob-
lem:

p∗ = inf
x

sup
λ≥0
L(x, λ).

Dual Problem and Saddle-Point Formulation
Dual Function:

q(λ) = inf
x
L(x, λ) = inf

x

(
f(x) +

m∑
i=1

λigi(x)

)
.

Dual Problem:
d∗ := sup

λ≥0
q(λ) = sup

λ≥0
inf
x
L(x, λ).
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Lagrangean Duality

Question

What is the relation between

p∗ = inf
x

sup
λ≥0
L(x, λ) and d∗ = sup

λ≥0
inf
x
L(x, λ)?

Super Lagrangian Duality

Let f, gi : Rn → R, (not necessarily convex). Let v : Rm → R:

v(b) := inf
x
{f(x) : gi(x) ≤ b, i = 1, . . . ,m}.

Then

1. p∗ = v(0).

2. v∗(−λ) =

{
−g(λ) if λ ≥ 0

∞ o.w.
.

3. d∗ = v∗∗(0)

From Super-lagrangian Duality we obtain:

1. [Weak Lagrangian duality] p∗ ≤ d∗

2. [Strong Lagrangian duality] Assume f and gi are convex, and there is x̃ such that gi(x̃) < 0 for all i
(Slater condition). Then p∗ = d∗, and if d∗ is finite, it is attained.

Proof. For any function v we have v(x) ≥ v∗∗(x) for any x. Then Weak duality follows. Now we prove
strong duality. From weak duality, if p∗ = −∞, we have then d∗ = −∞. Then we assume p∗ > −∞. From
Slater condition, the primal is feasible, and thus p∗ is finite. That is 0 ∈ dom v. Now notice (exercise) that
f and gi convex implies v is convex. Therefore v(x) = v∗∗(x) if and only if v is lower semicontinuous at x.
We claim that Slater condition implies 0 ∈ int(dom(v)), which from convexity implies that v is continuous
at 0. To prove the claim, Let b̃ = g(x̃) > 0. For any b ≤ b̃ the primal is feasible, and thus v(b) < +∞. Let
r = min{b̃i : i = 1, . . . ,m} > 0. As 0 ∈ dom(v) and v is convex we get {b : ‖b‖ ≤ r ⊆ dom(v)}, that is
0 ∈ int dom(v). Attainment follows as λ is dual optimum if and only if 0 ∈ ∂v∗(−λ). But, this condition is
equivalent to −λ ∈ ∂v∗∗(0).
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