SODAQ ONE Tracker v2 with Atmel Studio 7

Version 1 — August 2017 — Vincent van Beveren — ¥anbeveren@gmail.com

You will notice how horribly wrong this goes each step of the way, and how we circumvent each
barrier thrown in our way. Eventually you'll be able to run the Tracker in a debugging session and fix
issues which may occur.

Requirements:

- SODAQ ONE board

- Asupported debug probe. I've used a Segger JLink, but Atmel SAM-ICE should work also.
Maybe others...

- 5 female mini-PV patch wires

- Atmel Studio 7 (7.0.1417 was used for this document)

- Latest Arduino software

- Sodaq ONE Tracker v2 sources

- Original tracker sketch will not be changed. Any changes made in Atmel Studio must be
copied back into the Sketch if you wish to continue to use the Arduino environment

- Due to some limitations it is not possible to use the latest Arduino/SODAQ libraries. If you
wish to use the latest, do not use this document.

- I have attempted to use VisualMicro. However, it did not seem to do much more than the
Arduino environment. For some this may be a solution, but it wasn’t one for me.

- Itake no responsibility for bricked/broken hardware/software. Apply the steps at your
own risk!

Step 1: Correct library versions

First make sure you can build and run the SODAQ ONE tracker v2 application from Arduino. Also have
a working Blink Sketch for SODAQ ONE. We're actually going to use Blink as a base, and pervert it to
the tracker app.

You may wish to change the name of the Blink sketch to something like Tracker, otherwise the Blink
name will persist right into your Atmel Studio project. | did not do this for this document (Didn’t
realize how difficult it was to change later on). Whenever | refer to Blink this should be the name of
whatever you have chosen for your Blink Sketch.

As of this writing Atmel Studio 7 does not support the newer Arduino libraries. Also the SODAQ
libraries up to 1.6.12 seem to be based on an older version of the Arduino libraries. As far as | can
tell, it seems to be closest to 1.6.6. So we need to downgrade the SAMD Boards to this old one,
version 1.6.6, and the SODAQ SAMD Boards library to 1.6.12.

9 Boards Manager ht

Type | Al ~ | |samd

Arduino SAMD Boards (32-bits ARM Cortex-M0+) by Arduino version 1.6.6 INSTALLED

Ecards included in this package:

Arduino/Genuino Zero, Arduino/Genuing MKR 1000, Arduing MKRZero, Arduino MERFox1200, Arduino MO Pro, Arduine MO, Arduino
Tian, Adafruit Circuit Playground Express.

Cnline help
Maore infa

Select version - Inztal Update Remaove

SODAQ SAMD Boards by SODAQ version 1.6.12 INSTALLED
Ecards included in this package:
S0DAQ Autonomo, SODAQ ONE, SODAQ ExplLoRer.

Coline help
More info

Close

The arduino environment may now not compile anymore for SODAQ ONE, and say “Board
SODAQ_one (platform samd, package SODAQ) is unknown”. For running it in Atmel Studio this is not
a problem. | have not attempted to fix this issue yet, though | suspect reinstalling the Arduino IDE will
fix this (maybe the user libraries must be cleared first).

Step 2: Connect debug adapter, and make backup image

Connect an SWD a compatible debug adapter, and connect ARM SWD pins: SWDIO, SWCLK, RESET,
GND and V3.3 (to VTref) (Could be different for Atmel debuggers, this is a JLink)

12p-2.54 T4
{"'\1

FLLEL _SCL
FCCEL_S0R
AN
PIMZ

GND

VTref
Not used
Not used

S DY
RESET
Not used

=
ur
L B B

5V-Supply |19

Connection from Link to SODAQ ONE board (colors do not match colors on picture)

NC
GND
GND
GND
GND
GND
GND*
GND*
GND*
GND*

Start Atmel Studio 7. First thing you should do is make a backup of the complete flash of the module.
This way it will be easy to revert everything. In Atmel studio go to ‘Tools’ > ‘Device programming’.

Select the correct tool, and device (ATSAMD21G18A), interface (SWD) and click on apply. As
verification you might want to read the device signature (0x10010305) and check the voltage being
3.3V. If this all checks out you have connected the debugger correctly.

Go to the page ‘Memories’, and click on [Read...] at the Flash (256 KB section). Select a sensible
name and save a backup. If you ever wish to revert, you can select this file and Program the micro

back to its content as it was.

Ctip=le SLaliuaru vivue A LUK LU WAy
e J-Link (260100 7) - Device Programming
Tool Device Interface Device signature Target Voltage
Jlink v | ATSAMD21G12A4 « |SWD 0x10010305 33V ¥
Device

Interface settings

Flash (256 KB)

Tool infermation

Device information

f’?L
[-]

Memories -
Fuses Erase Flash before pregramming — Verify
l Security Save As >
1 « v <« Documents * Arduino » w | Search Arduino 2
Organize = Mew folder == - 9 |
£3 Dropbox (Persoen ” Mame Date modified Type
L
O3 This pC Blink 18-8-2017 11:50 File folder
2 This
T libraries 18-8-2017 11:29 File folder
B Desktop SodagOneTracker 21-8-2017 10:28 File folder
Reading device ID...0 Decuments SodagOneTracker_v2 21-3-2017 10:30 File folder
4 Downleads
D Music
= Pictures
B Videos

‘e Local Disk ()
I8 DVD Drive (D:) G

[+] ok

¥ Network o Il =

File name: | sodag_one_backup|hex

Save as type: | Intel Hex (hex) (".hex)

Save

» Hide Folders

Now close the Device programming screen.

Cancel

Step 3. Importing the tracker project, getting Blinky to run.

Go to ‘File’ > ‘New...” > ‘Project...”.

Mew Project
P Recent Sort by: Default - 5=
4 |nstalled
GCC C ASF Board Project C/Ce+
C/C++
Assembler GCC C Executable Project C/C++
AtrnelStudic Selution
GCC C Static Library Project CiCe+
GCC C++ Executable Project C/C++
GCC C++ Static Library Project C/C++
Create project from Arduino sketch C/C++

Name: [SedagOneTrackerv2 |

Location: CAUsers\ Admin' Documents' Atmel Studich 7.00

Solution name: SodagOneTrackery2

- Browse...

Create directory for solution

? X
Search Installed Templates (Ctrl+E) P~

Type: C/Ce+

Creates an Atmel Studic project from
Arduino sketch file, Creates two projects
(Sketch, ArduincCore). The Sketch project
contains the sketch file and the
ArduinoCore project contains all the core,
variant and any library files.

Select ‘Create project from Arduino Sketch’, and give it a good name, e.g. ‘SODAQOneTrackerV2'.
Click on [OK]. Select the Blink.ino file, not the SODAQOneTracker, as Atmel studio completely fails to

copy in the correct files to the correct locations. Now this seems to be going very smoothly. SODAQ
ONE is already available! ... Unfortunately you will get an error trying this:

Create C+~+ project from Arduino sketch x
Sketch File | C:\Users\ Admin\DecumentstArduing'Blink'Blink.ino
Arduine IDE Path | C:\Program Files (xB6)\Arduino El
Board

SODAQ ONE =

Device | ATSAMD21G184 <

| Cancel | | Ok |

AtmelStudio X

The device architecture is not valid, Atmel $tudic doesn't support this
board/device combination.

You will need to select ‘Arduino/Genduino Zero’, either Native USB / Programming Port, it won’t

matter.
Create C++ project from Arduino sketch x
Sketch File | C:\Users\Admin\Documents\Arduing'Blink\Blink.ino D
Arduino IDE Path | C'Program Files (x86)\Arduino D

Board | Arduine/Genuine Zero (Programming Py ~ |

Device | ATSAMD21G18A v

Cancel | ‘ Ok

Press [OK].

Success! So now we have a Sketch. It will build and you can upload it. It won’t work though. But at

least we can debug it, whatever it does.

Step 4. Getting Blinky to run correctly

We need to get down and dirty with the file system. Copy the correct files into the Atmel Studio
project. Close Atmel Studio.

1. Open two explorer windows, one to the following Arduino library location:
C:\Users\<username>\AppData\Local\Arduino15\packages\SODAQ\hardware\samd\1.6.12\variants\sodag_one
And one to the following location inside your solution:

C:\<solution location> \ArduinoCore\include\variants

2. Replace the header (.h) files in the include\variants directory with those located in the
variants\sodag_one directory. Don’t copy the .cpp file!

3. Now move inside the solution to the ArduinoCore\src\variants directory.
4. Copy variant.cpp from the library location into the solution’s ArduinoCore source directory.

Open Atmel studio again and open the Tracker application. Clean and build the solution. It will fail,
but with two distinct errors only (Ignore the .o failed messages)!

E SodaqOneTrackerV2 - AtmelStudio Standard Mode | ™ Quick Launch (Ctrl+ Q) P - O x
File Edit View VAssist{ ASF Project Build Debug Tools Window Help

: | i3 - & o W F | il | - A | B a | P Ml Debug + Debug Browser ~ | 5 :

| 'n 20

- Py 2 |He %@~ <0

samd21_host.c* & X Blink ASF Wizard

Sketch.cpp

= =zamd21_host.c -
¥

Solution Explorer
D o-am| p -
Search Solution Explorer (Ctrl+;) P~

uhd_state = UHD_STATE_NO_VBUS; o CDC.cpp -
) PluggablelSB.cpp

¢ samd21_host.c

// Put VBUS on USBE port
//pinMode(PIN_USB_HOST_ENABLE, OUTPUT);
//digitallirite(PIN_USB_HOST_ENABLE, HIGH);

c+d B nre rnn
ASF Explorer VA View VA Outline [ERIMBhESTIIEY

Properties
uhd_enable_connection_int();

110% |4
Error List
Entire Solution - | €3 5Errors | 1 0'Warnings | 0 1 Message | Build + IntelliSense Search Error List

Description Project File
€3 recipe for target 'src/core/USB/samd21_host.o' failed ArduinoCore Makefile
Q 'PIN_USB_HOST_EMABLE' undeclared (first use in this function) ArduinoCore samd21_host.c
@ each undeclared identifier is reported only once for each function it appears in ArduinoCore samd21_host.c 158
€3 recipe for target 'Sketch.o' failed Makefile
€3 'LED_BUILTIN' was not declared in this scope Sketch.cpp
€3 'LED_BUILTIN' was not declared in this scope Sketch.cpp

Output

Ready

Click on the 2" line and comment out the two lines regarding PIN_USB_HOST_ENABLE. Now click
on any LED_BUILDIN error. Replace all instances of LED_BUILDIN with LED_GREEN inside your
Sketch.cpp file. Now compile again, and there should be no errors!

Run it, and blinky should work! But now you can pause your app and inspect it. So much better...

Now take a deep breath as we’re going to change blinky into tracker...

Step 5. Migrating the SODAQ ONE Tracker V2 application

First we'll need to copy all tracker files into the Blink project, in our solution. Open Windows explorer
and navigate to the original tracker sketch. Select all C, CPP and H files in the Arduino SODAQ One
Tracker V2 and copy it in the Blinky folder, next to Sketch.cpp.

Open the SODAQOnNeTracker_v2.ino file from the Arduino project, and select its content, and copy
everything (CTRL+A, CTRL+C) into the copy/paste buffer.

Go to Atmel Studio, and replace the content of Sketch.cpp with the content of the
SODAQOneTracker_v2.ino (should still be in the buffer, just CTRL+A, CTRL+V in the Sketch.cpp
editor). Save it (CTRL+S).

Though we copied all the tracker files into the Blink project, they’re not visible and not compiled.
Select the Blink project and click ‘Show all files’.

E SodagOneTrackerV2 - AtmelStudio Standard Mede | W | Quick Launch (Ctrl+ Q) Pl - g x
File Edit View VAssist{ ASF Project Build Debug Tools Window Help
E < |alﬁ'ﬁ”tl'o Hm|3{,|:'|—-| | = '|E@§|DWH Debug ~| Debug Browser ~ |p ;

| ' oMo,
R ow | ot |Hex % | @~ .5

Blink delay.c i X Solution Explorer >~ o x

@ o-a@|g -
Search Soluty . ‘ P~
T _smtt.c o

& Whath.cpp

5 WString.cpp

4 | variants
P [openccd_scripts

o variant.cpp

by |) _§ oW ATSAMD21G18A 7§ SWD on J-Link (260100117) _

ASF Wizard
3 setDevAddrOEUIcHWEUl ~ -5

Sketch.cpp + X
= void setDevAddrOrEUIteHWEUI(])

samd21_host.c

setlorabctive(false); // make sure it is disabled in &=

¥

=lvoid setDevAddrOrEUItoHWEUI()
{

gatHUEUI();

P |=d| Dependencies
P =4 Qutput Files

I [:g Libraries

b [linker_scripts
o Sketch.cpp

if (isLoraHWEuiInitialized) {
for (uint8_t 1 = 8; 1 < sizeof(loraHweui); i++) {
params._devAddrOrEUI[i * 2] = NIBBLE_TO_HEX_CHAR(H
params._devAddrOrEUI[1 * 2 + 1] = NIBBLE_TO_HEX_CH

-

»

Error List

Entire Sclution - | €3 OErrors || 4. 0Warnings | @) 0Messages | Build + IntelliSense - Search Error List P

Description Project File Line

Output

Ready

Next, select all the CPP, C and H files not yet in the Blink project. Now select ‘Include in project’.

3

SodaqOneTrackerV2 - AtmelStudio Standard Mode = ¥ || Quick Launch (Ctrl+Q) Pl - (m] x
File Edit VWiew VAssist ASF Project Build Debug Tools Window Help

‘-0 |B-B - RE | XTa]2-C - |BRK| P m Debug ~ Debug Browser ~ -
WSS 2 ang,

|2 p]et 2tk TlHx X

§:| =

W

@ -

(4 ATSAMD21G18A § SWD on J-Link (260100117) —

ASF Wizard samd21_host.c Sketch.cpp R 2 Blink * I x

e
B RICTimerh
B RiCZero.cpp
B RiCZeroh
o Sketch.cpp
} Sodaq RN2483.cpp
¥ Sodag RN2483.h
j Sodaq RN2483_internal.h

B Sodag wdt.cpp
B Sodag wdth

Flvoid setDevAddrOrEUItoHWEUI()

{
gatHWEUI();

if (isLoraHWEuiInitialized) {
for (uint8 t 1 = @; 1 < sizeof(loraHWEui); i++) {

params._devAddrOrEUI[i * 2] = NIBBLE_TO_HEX_CHAR(+

params._devAddrOrEUI[1 * 2 + 1] = NIBBLE_TO_HEX_CH

Open File Location

Copy Full Path

3
Mew Solution Explorer View

Include In Project
Cut Ctrl+X

Error List

Entire Solution - | 0 0 Errors 1 0'Warnings ‘ o 0 Messages Build + IntelliSense -

Description

Copy Ctrl+C
Remove Del
Rename F2

B8 AsFWizard
Compare...

Output
Revert to original ASF file...
Ready
A Properties

Right mouse click again on the Blink project, and select Add Arduino Library. Scroll down to SAMD
and select Wire. Press [Add].

Import Arduine library x

Arduino IDE Path | C\Program Files (x86)\Arduino l:l
LI HD ~
[SAMD_AnalogCorrection
[]spI
[] USBHast
Wire
I HID
O SAMD_AnalogCorrection
[sk

[] UsBHost
1 \fire -

Close | ‘ Add

Now we need to add the symbol ARDUINO_SODAQ_ONE to the Blink Toolchain. Right mouse click on
the Blink project, and select Properties. Go to ‘ARM/GNU C Compiler’ > ‘Symbols’ and add
ARDUINO_SODAQ_ONE to the list of defined symbols, also go to to ‘ARM/GNU C++ Compiler’ >
‘Symbols’ and add the define there also.

SodaqOneTrackerV2 - AtmelStudio Advanced Mode | ' Quick Launch (Ctrl+ () P - O x

File Edit View VAssist{ ASF Project Build Debug Tecls Window Help

P e . HE -2 - O - |EH | b bl Debug -
S > 2 Hee % | R~

_ i W ATSAMD21G18A —

f DataRecord.h HardwareSerial.h ArduinoCore ASF Wizard ublox.cpp <« Solution Explorer > 1 x
i . "
Build - e - G| o-adm| L
1 Configuration: | All Configurations ~ Platform: | Active (ARM]) ~ - =
Build Events Search Solution Explorer (Ctrl+; 2 =
3 P 3 include
Device S b [src
3 Tool H Miscellaneous |.-lRP\-".-"GI\J C++ Compiler = Symbols | 4 Blink
“ J" U C++ Campiler = b [=d Dependencies
Components i symbaols (-0 =] [z 4.5
P General |DEanC pockl D"|#— "“ Jj| el | : b = Output Files
Advanced & Preprocessar USE VI 3341 b [Libraries
& Symbols - b iy
% Directories USB_PID=0xB04d i
Cptimization USE_PRODUCT="\"Arduino Zero\™
& Debugging USB_MANUFACTURER="\"Arduino LLC\"" ~
& Warnings - =
= USBCON os: [
& Miscellaneous oS zd
4 .ﬁﬁRP U Linker SAMD_SERIES
[General
Add Defined symbols (-D) *

Defined symbols (-D)

ARDUING_SODAC_ONE|
Entire Sclutiocn ~ | €3 OErrors 1. 0Warnings | | ! r List P~

Description Line
P

Try to build it again. Now there should be just one error left:

Entire Selution - | €3 2Errors || 4 0Warnings | @ 0Messages | Build + IntelliSense - Search Error List P~
Description Project File Line
€3 recipe for target ‘Sketch.o' failed Blink Makefile 224
€3 'runOnTheMoveFixEvent' was not declared in this scope Blink Sketch.cpp)

This can easily fix this by pre-declaring this function. Add the line:

void runOnTheMoveFixEvent(uint32_t now); [& com. purrv _
just before the

void resetRtcTimerEvents() function.

Now it should build and run correctly!

Some more remarks:

- Debug build still builds with optimization on, so there is no one to one relationship between
the code and the program operation. Change the debug optimization to None(-00).

- When running the DEBUG build you will see debugging output of the u-blox GPS. If this
annoys you, you should remove the ‘DEBUG’ symbol from the ‘Defined symbols’ at the
Toolchain properties, or modify ublox.cpp.

- If you get: underfined reference to ‘vtable for <class name>’ during the debug build a virtual
function has not been set to 0. | encountered this when | tried to build with optimization
level 0. I’'m not sure why the error is not generated otherwise.

HardwareSerial should look like this:

class HardwareSerial : public Stream
{
public:
virtual void begin(unsigned long) = ©;
virtual void begin(unsigned long baudrate, uintl6_t config) = ©;
virtual void end() = 0;
virtual int available(void) = 0;
virtual int peek(void) = 0;
virtual int read(void) = ©;
virtual void flush(void) = ©;
virtual size_t write(uint8_t) = 0;
using Print::write; // pull in write(str) and write(buf, size) from Print
virtual operator bool() = 0;

3

Start of DataRecord should look like this:

class DataRecord
{
public:
virtual void init() = @;

virtual bool isValid() const = 0;

virtual uintl6_t getSize() const = 0;
virtual uint8_t getFieldCount() const = 0;
// .. rest is OK

