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Abstract

For some questions, such as what the best policy to address a problem

is, it is uncertain if the answer will ever be known. Asking experts yields

two practical problems: how can their truth-telling be incentivized if the cor-

rect answer is unknowable? And if experts disagree, who should be trusted?

This paper solves both problems simultaneously. Experts decide whether to

endorse a statement and trade an asset whose value depends on the endorse-

ment rate. The respective payoffs of buyers and sellers indicate whom to

trust. We demonstrate theoretically and illustrate empirically that “following

the money” outperforms selecting the majority opinion.
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1. Introduction

A centerpiece of economic theory is the idea that markets are efficient aggregators

of information (Hayek, 1945; Hurwicz, 1960; Fama, 1970). Historically, this idea

has been a descriptive one, explaining the success of market institutions as we en-

counter them in the real world. In line with an ongoing shift from mere description

towards applying economic theory to also create institutions (Roth, 2002, 2018),

economists have more recently argued for the use of artificially designed markets

(“prediction markets”) with information aggregation as a designated goal (Arrow

et al., 2008; Hanson, 2003, 2013). Successful applications range from forecasts of

political elections (Forsythe et al., 1992; Berg et al., 2008) to business sales (Cowgill

and Zitzewitz, 2015; Gillen et al., 2017) and the replicability of experiments in social

science (Dreber et al., 2015; Camerer et al., 2016, 2018).

For prediction markets to be successful it is however necessary, both for theo-

retical and practical reasons, that the true answer to the question they are applied

to can be determined within a relatively short time frame. This poses a challenge

when we wish to apply them to questions such as what the best policy to address a

problem is. For such questions, not only is the answer presently unknown, but it is

also uncertain when and how the answer will be known, if at all. If a central bank

runs a quantitative-easing policy, we may never be able to assess counterfactual poli-

cies (e.g. only using conventional instruments). Furthermore, the best policy may

depend on an unobservable state of nature. This creates what we call the “incentive

problem”: When relying on experts (or on a crowd of laypeople) to provide an an-

swer, how can we incentivize their truth-telling if we do not know whether or when

the correct answer will be known?

Besides the incentive problem, we furthermore face an “aggregation problem”:

which opinion to select if experts disagree? The obvious candidate is the majority

opinion, but there is no guarantee that it is the best approach. For instance, imag-

ine each expert can design and run an experiment to test whether a statement is
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true. Running an experiment can be seen as drawing a binary signal (“support” or

“falsify”) about the state of nature (whether the statement is true or not). In some

extreme cases, a single falsification among many attempts should lead to the rejec-

tion of the statement. This would be the case under a strictly Popperian scientific

methodology (Popper, 1959) or when validating a mathematical statement, where a

single counterexample would be sufficient to establish its falsity. Obviously, in most

scientific endeavours, especially in the social sciences, experiments can be noisy and

one may expect some experiments falsifying a statement even if it is true. However,

the main argument remains: some opinions, based on signals that are more difficult

to get, should drive the conclusion even if they are a minority.

In this paper, we study a mechanism which solves both the incentive problem

and the aggregation problem simultaneously. We design a market in which experts

report their opinions about a statement (endorse it or not) and trade an asset whose

value is determined by the total endorsements. Those who endorse the statement

are offered to buy the asset from a center at price p, where p is randomly drawn.

Essentially, buying the asset is betting that more than p% of others will endorse

the statement. Those not endorsing the statement can sell the asset to the center.

Baillon (2017) showed that such a “Bayesian market” provides incentives to re-

port opinions truthfully, avoiding the no-trade theorem (Milgrom and Stokey, 1982)

through the intermediary role of the center. By making a small adjustment to this

mechanism—making the price individualized, independently drawn for each market

participant—we show that Bayesian markets have desirable properties with respect

to aggregation as well. With sufficiently many participants, experts with the signal

that indicates the actual state of nature, and only them, will make a profit. Hence,

by “following the money”, we can infer the state of nature without relying on what

the majority thinks.

The intuition of our result is based on an argument put forward by Prelec et al.

(2017). If signals are correlated with the states of nature, there will be more signals

supporting a state of nature when this state is the actual one than when it is not, and
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therefore, than we would have expected ex ante. Prelec et al. (2017) proposed the

surprisingly popular algorithm (SPA) in which people are asked to endorse a state

and predict the rate of endorsement. The algorithm picks the state that is more often

endorsed than people predicted. Prelec et al. (2017) demonstrated theoretically and

experimentally that this approach improves upon majority and confidence-weighted

aggregation.

Bayesian markets allow us to obtain the same improvement but with less infor-

mation and requiring less cognitive efforts from the participants. We can estimate

people’s predictions by fitting supply and demand curves for the asset. Furthermore,

our method simultaneously provides incentives to truthfully report opinions even if

the state of nature is unobservable. Our market approach is not only simpler for

participants than the method of Prelec et al. (2017). It also opens up the possibility

of continuous markets, extending prediction markets to unverifiable events.

The next section of the paper introduces the theoretical setting and the market.

We analyze payoffs at the equilibrium and show how the endorsement of those with

positive payoffs indicates the actual state of nature. If the statement is true, those

endorsing it can make a profit from betting on others’ endorsement rate. If it is not

true, those rejecting it can make a profit. The profits realize even in the absence

of verification of the actual state of nature, because bets are based on endorsement

rates, not on states.

Section 3 describes an experiment we ran on a large sample of US students.

We used a task developed by Tereick (2020) that ensures that the informational

assumptions of the model are satisfied. Under these assumptions, homo economicus

would behave exactly as our model predicts. Our experiment allowed us to test

whether our method also worked for homo sapiens, without having to worry whether

the informational part of the model perfectly described the reality. We compared our

method to the majority opinion and to the SPA. Despite using less information than

the SPA, our method had comparable accuracy rates. Both methods substantially

improved upon majority when the majority can be wrong.
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2. Theory

2.1. Setting

Let {Y,N} be the state space, with Y and N the two possible states of nature. For

instance, these two states can represent whether a statement is true or not. Which

state S we are in, is assumed to be unobservable.

A group of n ≥ 4 expert agents however has private information about the state.1

The common prior of the agents is that the probability of state Y is r. Each agent

gets a private signal si ∈ {0, 1}, with sampling probabilities P (si = 1 |Y ) = ωY

and P (si = 1 |N) = ωN . Signals are independent conditionally on the state, i.e.

P (si = 1 |S, sj) = ωS for all S ∈ {Y,N} and j 6= i.2 We assume ωY > ωN . This

implies that signals are informative about the state of nature, si = 1 providing

support for Y and si = 0 for N . We do not require ωY > 0.5 > ωN , which would be

necessary for the majority of signals to be correct (in an infinite group of agents).

The assumption ωY > ωN is as mild as can be. Equality would mean that si is non

informative and therefore, all agents would stick to the prior belief r. The opposite

inequality would simply change the interpretation of the signal (si = 0 providing

support for Y and si = 1 for N). Together, we call the triplet 〈ωY , ωN , r〉 a signal

technology.

Using Bayesian updating, agents form posterior beliefs about the actual state

according to

r1 ≡ P (Y | si = 1) =
rωY

rωY + (1− r)ωN
; (1)

r0 ≡ P (Y | si = 0) =
r(1− ωY )

r(1− ωY ) + (1− r)(1− ωN)
. (2)

For simplicity, we assume that ωY , ωN , and r are such that r1 > 0.5 and r0 < 0.5. It

1n ≥ 4 is required for technical reasons (Baillon, 2017).
2In other words, signals are independent and identically distributed given the state, but the

latter is uncertain. The absence of correlation between signals implies that agents will not exhibit

correlation neglect, unlike studied by Enke and Zimmermann (2019).
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allows us to equate an agent’s signal with the state the agent believes more likely to

be the actual state. If this assumption is not satisfied, signals would be informative

but a single signal would not suffice to reverse one’s belief. A sufficient condition

for this assumption is r = 0.5, as used in our experiment.

Apart from the agents’ posterior beliefs about states, we can also infer posterior

expectations about the proportion of agents who received signal 1 in the population.

We denote the actual value of this proportion by ω. Since the expectation of a

proportion under random sampling equals the sampling probabilities, agents who

received signal 1 expect ω to be

ω1 ≡ E [ω | si = 1] = r1 ωY + (1− r1)ωN , (3)

whereas agents with signal 0 expect

ω0 ≡ E [ω | si = 0] = r0 ωY + (1− r0)ωN . (4)

A center wants to find out which state we are in (the actual state). This center

can be a policy maker consulting experts, but could just as well be an employer

querying employees or a scientific association surveying its members. We make the

usual assumption that the signal technology is common knowledge among the agents.

However, as in Prelec (2004), Baillon (2017), Prelec et al. (2017), and Cvitanić et al.

(2019), the center does not know the signal technology.

The problem faced by the center is a mechanism design problem, i.e., creating an

institution to recover the state of nature given the information structure.3 Expressed

in the terms of our model, the incentive and aggregation problem can be stated as

follows. Each agent will report an endorsement ei, where ei = 1 denotes that agent

i endorses state Y and ei = 0 that i endorses state N . The center wants to reward

the agents in such a way that it becomes profitable for them to endorse a state if

and only if they believe it more likely to be the actual one. Furthermore, upon

3By contrast, information design problems keep the payoff structure fix and allow the center to

allocate information optimally (Kamenica, 2017, 2019).
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learning the endorsements e1, . . . , en, the center selects one of the two states, and

wishes to maximize the probability that it is the actual one. Since the state S is

unobservable and the signal technology is unknown to the center, it is not possible

to make the payments or selection of a state dependent on the actual state, nor

the selection of the state dependent on the parameters ωY and ωN . Thus, it is

impossible to use traditional methods to elicit agents’ signals or beliefs because

the signals are private (impossible to directly reward truth-telling) and the beliefs

are about unverifiable states Y and N (bets and scoring rules cannot be applied).

Second, even knowing signals or beliefs would not enable the center to determine

the state of nature because the center does not know the values for ωY and ωN . In

other words, for anyone unaware of the signal technology, observing 20% of signal 1

does not say which state we are in.

The next subsection introduces the mechanism of our solution concept, called a

Bayesian market. Subsection 2.3 presents the underlying idea for an infinitely sized

group of expert agents, and addresses the incentive problem and the aggregation

problem. It allows us to simplify many practical aspects of the mechanism; for

instance, sample proportions and probabilities are equated, with ω = ωY in state Y

and ω = ωN in state N . In Subsection 2.4 we address the case of a finite group of

agents. While our results translate to the finite case, our approach still works better

the larger the group of experts is.

2.2. Bayesian market

The center and each agent i trade an asset whose settlement value vi is defined as

the share of agents other than i endorsing state Y , i.e.,

vi =

∑
j 6=i ej

n− 1
,

where excluding agent i’s own report prevents agent i from influencing the asset

value. The center organizes a Bayesian market for these assets:

1. Agents simultaneously report ei to the center only.
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2. For each agent i, the center draws4 a price pi from a uniform distribution over

(0, 1) and proposes the following trade to the agent, and the agent can decide

to take up the offer (di = 1) or not (di = 0):

(a) If ei = 1, agent i can buy the asset at price pi from the center;

(b) If ei = 0, agent i can sell the asset at price pi to the center.

3. All endorsements ei and buying/selling decisions di are revealed.

4. (a) If an agent decides to buy at price pi, then there is trade under two

conditions: (i) There exists another agent j selling at pj ≤ pi and (ii)

there is at least one other agent k who also endorses state Y .

(b) If an agent decides to sell at price pi, then there is trade under two

conditions: (i) There exists another agent j buying at pj ≥ pi and (ii)

there is at least one other agent k who also endorses state N .

5. Those agents who bought the asset collect vi and pay pi; those who sold it

collect pi and pay vi.

Step 2 differs slightly from the mechanism proposed in Baillon (2017) in which

a single price p is drawn for all agents. The motivation for the change is to learn

as much as possible from the decisions of different agents. When only a single price

is drawn and, e.g., all potential buyers reject the trade, the center only learns that

the price was larger than the buyers’ reservation price, but not by how much. An

alternative would be to directly ask agents for their reservation prices. The center

could then draw only one random price p for all agents. This would correspond to

the Becker-DeGroot-Marshak mechanism (Becker et al., 1964), but with the trading

rule (step 4) in place. The advantage of binary decisions in step 2 is that they require

less information from the agents, and therefore less cognitive effort. It is easier to

4It is important that the agents are convinced that the prices are independent of their report.

To ensure it, the center may draw the prices before step 1, seal them in an envelope, and open it

in step 2.
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buy/sell at a given price (equivalently, to take/reject a bet on the asset value) than

to report a reservation price.5

Our mechanism as stated induces a game played among the agents. In this game,

a strategy profile is a collection (e, d) = ((e1, d1) , ..., (en, dn)), where ei determines

which state individual i is going to endorse depending on the signal si, and the

trading strategy di assigns to each possible signal a range of prices in the (0, 1)-

interval which i is going to accept when receiving a buy or sell offer from the center.

Note that this definition of strategies precludes mixed strategies and the existence

of an external coordination device among agents, so that the actual endorsements

made by agents are fully determined by their signal and strategy. In Section 5, we

discuss this strategy restriction in light of our empirical results.

The mechanism assigns a payoff Ui(e, d) to each agent. Importantly, these payoffs

cannot depend on the actual state of nature S or its ωS. A Bayesian Nash equilibrium

of the induced game means that, conditioning on their signal, no agent expects a

higher payoff by moving to another strategy, i.e.,

E [Ui (e, d) | si] ≥ E [Ui ((e1, d1) , ..., (e′i, d
′
i) , ..., (en, dn)) | si]

for any (e′i, d
′
i) 6= (ei, di) and all signal realizations si ∈ {0, 1}. We further say that

a strategy profile is truthful if ei(1) = 1 and ei(0) = 0 for any agent i.

We assume that all agents are risk-neutral6 and care only about their own mone-

tary payoff, so that Ui(e, d) is just i’s monetary payoff. If ei = 1, agent i is potentially

a buyer, and we denote by π1(vi, pi) agent i’s monetary payoff if deciding to buy

5Asking for reservation prices, however, has advantages regarding the logistical aspects of prac-

tical implementation: In our design, a random price must be drawn for every respondent. When

asking for reservation prices, respondents can be contacted by a pen and paper survey in which

they submit their reservation prices and a public price is later credibly drawn. Whether these

practical considerations outweigh the cognitive simplicity of a binary decision, will depend on the

application.
6The assumption of risk neutrality is rather common in the literature on expert belief elicitation;

see, however, Offerman et al. (2009) and Hossain and Okui (2013) for alternatives.
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(di = 1), as a function of the asset value vi and individualized buying price pi. Then

π1(vi, pi) =

vi − pi if trade happens;

0 otherwise.

(5)

Symmetrically, π0(vi, pi) denotes agent i’s monetary payoff as a potential seller if

deciding to sell (di = 0):

π0(vi, pi) =

pi − vi if trade happens;

0 otherwise.

(6)

We will first present the intuition of Bayesian markets through the case of an

infinite population.

2.3. The case of an infinite population

Three simplifications come with an infinite group of expert agents, which together,

imply that the asset value is simply ωY or ωN at the truth-telling equilibrium.

First, with n infinite, the proportion of a signal in the population naturally equates

the probability to get that signal. Second, excluding the agent’s own signal or

not from the asset value has no impact, and therefore, the asset individualization

becomes equivalent to all agent trading the same asset. The third simplification is

related to the trading conditions in step 4 of the Bayesian market definition. That

someone else is accepting to buy or to sell at the same price is still important but

the information that someone could make such a choice becomes trivial in an infinite

group. There will always be at least one other experts receiving the same signal and

one with the opposite signal. Moreover, for any nondegenerate proportion of agents

endorsing each signal, there will also always be someone being offered any possible

price. Hence, trade happening does not bring more information about the signal

distribution than si does, unlike in a finite group of agents. Fortunately, we will see

in the next subsection that what there is to learn is negligible when n is finite but

sufficiently large.
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With the three simplifications in mind, we first address the incentive problem by

the following proposition.

Proposition 1. Let 〈ωY , ωN , r〉 be a signal technology and n infinite. In the game

induced by the Bayesian market, truth-telling is a Bayesian Nash equilibrium in

which agents’ betting strategies are such that:

(i) agents whose signal is 1 buy the asset if and only if pi ≤ ω̄1;

(ii) agents whose signal is 0 sell the asset if and only if pi ≥ ω̄0.

Proof. The main result in Baillon (2017) is essentially unaffected by the introduction

of individualized prices. To get an intuition for the result, we can inspect Equations

(3) and (4). It is immediate that ω0 < ω1 since r0 < r1 and ωN < ωY . Thus, signal-1

agents expect more signal-1 agents than signal-0 agents do. Consider then agent i

with si = 1 and assume all other agents are telling the truth, such that the asset

value vi equals the true share of signal-1 agents in the population. Agent i expects

vi to be ω1. For pi less than ω1, agent i will be willing to buy the asset. Agent i

also knows that no one would buy it at a higher price (so i has no reason to pretend

to be a seller) but that some agents will be willing to sell at prices between ω0 and

ω1. For this price range, agent i foresees a profit and has the incentives to endorse

ei = 1 to become a buyer. Outside this range, no trade will go through. The case

si = 0 is symmetric.

The fact that agents trade an asset whose value they disagree on may raise the

question why the no-trade theorem (Milgrom and Stokey, 1982) is not applicable

here. The reason lies in the role of the center: For a trade to go through, it is

sufficient that there exists a single agent who was willing to take the opposite bet.

The center will verify this condition for each individual bettor, without providing

further information about who the agent with the opposite bet is. Since 0 < ωN <

ωY < 1, agents already know that there must be at least one disagreeing agent and

thus the occurence of trade does not provide further information about the actual

11



ω. Since trades are facilitated by the center,7 the agents remain uncertain about the

share of other agents disagreeing with them, which makes our setting different to

the settings in Aumann (1976) or Milgrom and Stokey (1982) in which disagreement

is impossible.

In the following proposition, we consider the aggregation problem and derive

what conclusions the center can draw in the truth-telling equilibrium.

Proposition 2. If n is infinite and the Bayesian market is at the truth-telling

equilibrium, at least one agent has a positive payoff, all those with positive payoffs

have endorsed the actual state, and all those with negative payoffs have endorsed the

opposite state.

Proof. At the truth-telling equilibrium, the settlement value vi is ωN in state N and

ωY in state Y. And according to Proposition 1, trades only occur for prices in the

range [ω0, ω1]. Hence agents’ payoffs, defined in Equations (5)-(6), can be simplified

as

π1(vi, pi) = −π0(vi, pi) =

ω − pi if pi ∈ [ω0, ω1];

0 otherwise.

Notice that Equations (3)-(4) imply

0 < ωN < ω0 < ω1 < ωY < 1. (7)

In state Y , when trade occurs, signal-1 agents pay less than ω1 and therefore less

than the settlement value ωY . They make a profit while sellers (signal-0 agents) sell

the asset at a price too low. The opposite applies in state N . Hence, the center,

seeing that people endorsing Y make a profit, can conclude that we are indeed in

state Y , even though the state itself is not directly observable. Sellers making a

profit indicates state N .

7The center will typically incur a loss from this role. The mechanism is thus not budget-

balanced.
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In this infinite case, at the truth-telling equilibrium and under the actual state

of nature S, the average payoff for agents with the same signal s is equal to the

expected payoff for agents with that signal:

πY1 ≡ Ep[π1(vi, p) |Y ]

= Ep[π1(ωY , p)] =

∫ ω1

ω0

(ωY − p)dp =
1

2

[
(ωY − ω0)2 − (ωY − ω1)2

]
= −πY0 ≡ −Ep[π0(vi, p) |Y ];

(8)

πN0 ≡ Ep[π0(vi, p) |N ]

= Ep[π0(ωN , p)] =

∫ ω1

ω0

(p− ωN)dp =
1

2

[
(ω1 − ωN)2 − (ω0 − ωN)2

]
= −πN1 ≡ −Ep[π1(vi, p) |N ].

(9)

Under state Y , πY1 > 0 and πY0 < 0; and under state N , πN1 < 0 and πN0 > 0.

The value ωs is the prediction of the proportion of signal 1 in the population by

agents with signal s. Hence, ωS − ωs is the prediction error of signal-s agents when

S is the actual state of nature (note that this error can be positive or negative).

The average payoff of signal-s agents are therefore half the difference between the

squared prediction error of agents with signal 1−s and their own squared prediction

error. Agents endorsing the actual state of nature are better able to guess the

signal distribution in the population, and therefore, the opinions of others. Bayesian

markets favor them and allow them to make a profit.

2.4. Adjustments to a finite population

We presented the results with n infinite. However, with a small group of agents,

the individualized prices may affect the equilibrium strategies. For a buyer, the

existence of an agent being offered to sell at a specific price is informative about

the number of sellers, and therefore informative about the asset value. Agents may

then accept to buy or sell at prices that do not give rise to the aggregation property

pointed out by Proposition 2.
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Intuitively, the information contained in the existence of an agent on the opposite

side of the market should decrease with the number of agents. In Appendix A, we

make this intuition rigorous: a “sufficiently large” group of agents restores properties

used by Propositions 1 and 2. Specifically, we show that for any signal technology

there is a truth-telling equilibrium in which agents endorsing the actual state make

a positive payoff with arbitrarily large probability, given that n is larger than some

finite threshold n∗. Thus, as the number of market participants increases, the center

can be almost certain that the agents making money are the ones who correctly

identify the actual state.

2.5. Algorithms for empirical data

Propositions 2 concerns limit behavior of perfectly rational agents. In perfect con-

ditions, all agents endorsing the actual (opposite) state have a nonnegative (non-

positive) payoff, and at least one agent will have a positive payoff. In practical

implementation, a small group may lead to no trade. Furthermore, agents may

make mistakes when endorsing a state or when deciding to trade. In the presence of

noise, agents not endorsing the actual state may still make a profit. We propose two

follow-the-money (FTM) algorithms which can be used empirically by the center to

find the actual state in those non-ideal situations.

The simpler algorithm computes the payoff of each agent and compares the

average payoff of the sellers to that of the buyers. The algorithm picks the side

with the higher average payoff and tosses a coin if no trade occurred. We call this

algorithm FTM-A (for average). FTM-A is able to accommodate some moderate

noise in agents’ behavior but does not solve the no-trade issue.

To account for noise and for no-trade situations, we propose a more elaborate

algorithm, fitting logistic curves, called FTM-L. With F the logistic function,8 FTM-

L first estimates ω̂1 and ω̂0 (which can be interpreted as the reservation prices for

8If F is the probit function, we can define another algorithm called FTM-P. All the reported

results are robust to this specification. We will focus on FTM-L from now on.
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an infinite group at the truth-telling equilibrium) from

Prob(di = 1 | p, ei) =

F (β(p− ω̂1)) if ei = 1

F (β(ω̂0 − p)) if ei = 0

(10)

imposing ω̂0 ≤ ω̂1. Parameter β captures the level of noise/imprecision and is as-

sumed to be the same for sellers and buyers (for parsimony). FTM-L then computes

the expected payoffs for buyers and sellers for an infinite group using Equations (8)

or (9), substituting ω̄1 and ω̄0 with estimated reservation prices ω̂1 and ω̂0, and ω

with the proportion of endorsements 1, and picks the side with a positive expected

payoff.

3. Experimental design

3.1. Stimuli

We conducted an experiment with abstract tasks (urns and balls) ensuring that the

theoretical assumptions were satisfied. We considered groups of n = 100 agents.

In each task, the participants of the experiment were presented with two urns, as

depicted in Figure 1. Urns Left and Right represent the two states of nature, N

and Y respectively. Participants were told that one of the two urns was selected

randomly (r = 0.5) and that each of the 100 participants of a group would get one

ball from that urn. Denoting a yellow ball si = 1 and a blue ball si = 0, Urn Left

would give ωN = 0.10 and Urn Right ωY = 0.40 in this particular example. Urn

Right always contains more yellow balls than Urn Left. Thus Urn Right is state of

nature Y and Urn Left is state of nature N .

There were 30 tasks with ωN ranging from 0.05 to 0.75 and ωY from 0.25 to 0.95,

spanning the unit interval in a systematic way. In twelve tasks, both urns had a

minority of yellow balls, i.e., ωN < ωY < 0.5. Another set of twelve tasks mirrored

them such that ωY > ωN > 0.5, and in six tasks the majority would always guess

the correct state of nature (ωY > 0.5 > ωN). Table 3 in Online Appendix III.1 lists
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Figure 1: Experimental task setting (an example of Task 6)

all the task parameters. The number of yellow balls differs across states of nature

by a minimum of 20 and maximum of 30. Larger differences would mean that the

signal technology discriminates very well between state of nature and the majority

(as well as FTM) would be right most of the time. By contrast, smaller differences

would imply very narrow trading intervals [ω0, ω1] and it could be that none of the

100 participants of a group gets a price in that range.

In each task, the participants were presented with the urns (as in Figure 1) and

asked to press a button to draw their ball. Once the color of their ball was revealed,

they were asked to guess which urn the ball comes from (i.e. to endorse a state).

The next question differed between two experimental treatments, FTM and SPA.

Figure 2: Screenshot of the FTM treatment

In the FTM treatment, we implemented the betting mechanism of the Bayesian
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markets. In Figure 2 for instance, participants were asked whether they were willing

to bet that the number of participants guessing Urn Right (i.e. endorsing Y ) was at

least 41, i.e. whether they were willing to pay p = 0.41 for the sample proportion ω.

For the sake of symmetry, participants guessing Urn Left were asked whether they

would bet that the number of participants guessing Urn Left would be at least 59,

i.e. whether they were willing to accept p = 0.41 for v. Payment was explained in

a training preceding the experiment. The participants were told that the number

(e.g. 41) was random and that their payment would be the actual number of Urn

Right guesses minus that number if someone took the opposite bet (betting that at

least 59 participants would guess Urn Left). It would be 0 otherwise.

Figure 3: Screenshot of SPA.

In the SPA treatment, we followed the approach of Prelec et al. (2017) and asked

participants to predict the number of people who guessed the same urn as they did

(Figure 3). Prelec et al.’s (2017) algorithm first computes the average prediction

across all participants and then select the state of nature that was endorsed more

often than predicted. Predictions were incentivized using the quadratic scoring rule.

Participants received 200 − x2

50
, with x the difference between their prediction and

the actual number of guesses.

In none of the treatments was payment directly based on the task parameters.

Even though we, the experimenters, knew them, we aimed to mimic situations in

which no one knows the actual state of nature and in which the center (paying the

agents) does not even know the signal technology.
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3.2. Deviations from Section 2.2

The implementation of the Bayesian market in our experiment differs from the

Bayesian market mechanism proposed in subsection 2.2 in two ways. First, the

settlement value v did not exclude the agent’s own endorsement. It allowed us to

present all relevant values as shares of 100 (and not 99 or 101). Furthermore, the

draws from the urn (i.e., the signals) were made without replacement. As a con-

sequence, the settlement value could only be ωY or ωN , as in the infinite case. In

Online Appendix III.1, we show that these design choices do not affect the equi-

librium properties of the market for the parameters of the experiment. They only

simplify calculations for respondents. The online appendix also shows that 100 mar-

ket participants is sufficiently large for conditioning on the occurrence of trade to be

negligible. Thus, the incentives and aggregation properties of the Bayesian market

are essentially as explained in Section 2.3 where n is infinite.

3.3. Implementation

The experiment was conducted on Prolific in August 2019, with 473 participants in

the FTM treatment and 462 in the SPA treatment. They were all US students. We

restricted participation to students for their probable familiarity with abstract tasks

as those used in our experiment. Participants watched a short video explaining the

experimental tasks and then went through five training rounds where they received

feedback about their payments and how these payments were calculated (see Online

Appendix III for details). We split the 30 tasks into two sets of 15. After the

training, each participant completed one of the two sets, with the task order being

randomized within that set at the participant level. There was no feedback after

the tasks. Payment, described in the next paragraph, occurred once all participants

had completed the experiment.

Participants received a fixed reward of £1.5 and a bonus of up to £3.9 All

9Prolific required payments in pounds.
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amounts (prices, bets, scores) were presented in tokens. The bonus in pounds was

the number of tokens divided by 1,000. In the FTM treatment, participants could

(in theory) win or lose up to 100 tokens in each task. Hence, they were endowed

with 100 tokens for each task to avoid net losses at the end of the experiment. In the

SPA treatment, the quadratic score was also expressed in tokens. It was equivalent

to endowing them with 200 tokens and imposing a quadratic loss ranging from 0 to

200. In both treatments, the final number of tokens was naturally bounded by 0 and

3000. This allowed us to recruit participants with the same information about bonus

ranges. However, the average bonus was likely to be lower for the FTM treatment

than for the SPA treatment ex ante and, in fact, it was ex post (SPA £2.85, FTM

£1.60).

To compute the bonus of a participant in a given task after the end of the

experiment, we randomly selected a state of nature10 and 100 participants such

that the group (including this particular participant) had the exact combination of

signals shown in the task. In other words, participants were not assigned to a given

group ex ante. Instead, we constructed (random) groups matching the information

provided to the participants.

4. Results

To be consistent, we report data and results in terms of our theoretical setting. In

particular, a yellow ball is signal 1 (si = 1) and a blue ball is signal 0 (si = 0). A

participant guessing Urn Right is endorsing state of nature Y (ei = 1) and guessing

Urn Left is endorsing N (ei = 0).11 We also define truth-telling as reporting ei = si.

10This random selection of a state of nature resulted in 50.2% of state Y selected for bonus calcu-

lations of participants in the SPA treatment, and 48.9% for the FTM treatment. Both proportions

are not significantly different from 0.5 (proportion tests: for SPA, Z-statistic= 0.333, p = 0.739;

and for FTM, Z-statistic= 1.904, p = 0.057).
11Predictions elicited in the SPA treatment were about the number of participants guessing the

same urn, but we deduct the predictions of participants endorsing N from 100 to be the predictions
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4.1. Raw data - Endorsements

According to the model, truth-telling is a Bayesian Nash equilibrium in the FTM

treatment. The empirical truth-telling rate was 87.6%.12 About 53% of the partici-

pants told the truth in all 15 tasks they faced. About 25% guessed the opposite urn

(or lied about their guess) 1 to 3 times out of 15. Less than 4% had a majority of

lies / wrong guesses (Table 4 in Online Appendix III.2). The incentives provided in

the SPA treatment did not make truth-telling a Bayesian Nash equilibrium, but we

observed a very similar truth-telling rate (SPA: 87.8% of the cases, not significantly

different from FTM, with proportion test Z-statistic= 0.376 and p = 0.704).
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Figure 4: Payments in FTM.

The truth-telling rate of the FTM treatment was sufficiently high to reward those

who correctly reported their signal and to penalize those who lied or misreported.

The left panel of Figure 4 displays earnings as a function of the number of times

people told the truth. It shows a positive correlation, with a fitted line slope of

of number of participants endorsing Y . Bets in the FTM treatment were also expressed in terms

of the number of participants guessing the same urn, but we deduct the prices in the bets for

participants endorsing N from 100 to be the the prices to sell the asset whose settlement value is

the number of participant endorsing Y .
12The empirical truth-telling rates were not significantly different for easier questions with ωY >

0.5 > ωN and for other questions with ωY > ωN > 0.5 or 0.5 > ωY > ωN (87.0% and 87.7%

respectively; proportion test Z-statistic= 0.755 and p = 0.450).
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0.010 (p < 0.001). People did not get feedback during the experiment (only in

the five training rounds). The figure illustrates that feedback about payment could

have improved truth-telling rate by allowing participants to learn that correctly

reporting their signal is rewarded. It further shows that in future experiments one

can announce in the instructions that a previous study showed that participants

who tell the truth more often can earn more in such a setting.

So far, we studied what the raw data told us about participants’ strategic be-

havior, illustrating the incentive properties of Bayesian markets (Proposition 1). To

illustrate the aggregation properties (Proposition 2), we can check whether correctly

guessing the selected urn led to higher earnings in our experiment. The prediction

is supported by the right panel of Figure 4, which is a box plot of earnings as a

function of the number of times participants guessed the actual state. The fitted

line slope is 0.008 (p < 0.001). Thus, Bayesian markets reward expertise. While in

our experiment, this expertise is artificially created,13 in many applications one may

expect that the number of times someone guesses the actual state of the world to

be influenced by a more natural notion of expertise, i.e. domain knowledge.

4.2. Raw data - Predictions and trades

If participants are Bayesian, they should report the posteriors ω0 and ω1 in the SPA

treatment, at least if they expect everyone else to tell the truth. Figure 5 displays

the average predictions as a function of theoretical posteriors for both type of guess.

Predictions are very close to Bayesianism for ω0 < 0.5 and ω1 > 0.5. Interestingly,

participants seemed to have much more difficulty to predict that a majority of people

would guess Y when they themselves guess N or that only a minority would guess

Y when they themselves guess Y . The SPA uses the average prediction across both

guesses, which mitigates this issue.

We do not have people’s predictions in the FTM treatment but we can compare

the participants’ decisions di to the theoretical predictions. Table 1 compares the

13It consists of receiving informative signals, in combination with a truth-telling strategy.
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Figure 5: Theoretical ω0 and ω1 vs. average predictions in SPA.

theoretical and empirical proportions of di = 1 (the willingness to buy / to sell) for

five price intervals, defined with ωN , ω0, ω1, and ωY . Buyers should be willing to

pay at most ω1 and sellers willing to accept not less than ω0. If participants do not

compute the Bayesian posterior but use ωY and ωN instead, i.e. the distribution of

balls of the urn they guessed, buyers would be willing to pay at most ωY and sellers

willing to accept not less than ωN . If they were extremely risk averse, buyers would

be willing to pay at most ωN and sellers willing to accept not less than ωY .

Table 1: Theoretical and empirical bet acceptance (in %) and average payoffs (in

tokens) in the FTM treatment by price interval

p ∈ [0, ωN) [ωN , ω0) [ω0, ω1] (ω1, ωY ] (ωY , 1]

guessed N (seller)

theo. acceptance 0% 0% 100% 100% 100%

emp. acceptance 30.4% 55.5% 67.6% 80.8% 90.6%

average payoff -27.2 -6.1 2.2 10.8 19.3

guessed Y (buyer)

theo. acceptance 100% 100% 100% 0% 0%

emp. acceptance 89.9% 80.3% 67.7% 48.4% 29.1%

average payoff 21.0 9.9 1.3 -6.9 -25.0

The empirical willingness to sell was increasing with price and the empirical

willingness to buy was decreasing, as predicted in the truth-telling equilibrium.
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However, for several participants the acceptance and rejection ranges of bets were

not consistent with the equilibrium prediction. About 30% of bets that are losing

for sure under truth-telling were accepted and about 10% of bets that are winning

for sure under truth-telling were rejected (see leftmost column of the seller row and

rightmost column of the buyer row). In total, there was a clear tendency to bet

much more than predicted by equilibrium play.

Table 1 also reports the average payoffs of the participants for each price inter-

val. The results confirm that participants who accepted bets that would have been

losing for sure if everyone else had told the truth, still bore a loss on average in

our experiment. Overall, trading decisions were noisy and substantially deviated

from the theoretical predictions. This underlines that the performance of the FTM

algorithms will depend on their ability to recover aggregate reservation prices from

the noisy trades.

4.3. Accuracy comparison

The final part of the analysis aims to compare accuracy of the various methods. We

want to assess the ability of the majority rule, SPA, and FTM algorithms to identify

the actual state of nature using the participants’ answers.

To make full use of the answers of all respondents who provided answers to a task,

we ran 1,000 simulations for each task, state of nature, and treatment, randomly

making groups of 100 participants. For instance, consider one of the simulations

for the task described in Figure 1 with ωY = 0.40 and ωN = 0.10 (Task 6), state

of nature Y , and the FTM treatment. We randomly composed a group of 100

FTM participants, such that exactly 40 of them had gotten si = 1. We then use

the answers from the 100 participants to determine the state using majority rule,

FTM-A, and FTM-L. Similarly, we randomly composed 1,000 groups of 100 SPA

participants in the same way to determine the state using majority rule and SPA.

Repeating the same procedures for each of the 30 tasks and two possible states of

nature, we obtained 60 accuracy rates for each method. Table 2 summarizes the
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average accuracy rates for each algorithm and for the majority rule. We conducted

Wilcoxon tests to test for differences.

Table 2: Average accuracy rates from simulations

cluster of questions
majority rule

SPA
FTM

data SPA data FTM FTM-A FTM-L

ωY > 0.5 > ωN 95.7% 99.7% 93.2% 87.3% 91.5%

ωY > ωN > 0.5 or 0.5 > ωY > ωN 51.0% 53.8% 73.9% 62.8% 75.0%

Table 2 distinguishes two cases. If ωN < 0.5 < ωY (top row), then the majority

rule should determine the actual state all the time. In the other cases (bottom

row), the majority rule finds the actual state 50% of the time, by pure chance. Our

results are consistent with these predictions (see columns ‘majority rule’), both for

the data from the SPA treatment and for the data of the FTM treatment. The

SPA, our benchmark, should always identify the actual state if participants were

Bayesian and reporting truthfully all the time. Non-Bayesian answers and noise

make the SPA perform worse (Wilcoxon signed rank test p = 0.031) than majority

when ωN < 0.5 < ωY but substantially improved upon majority when following the

majority is equivalent to tossing a coin (Wilcoxon signed rank test p < 0.001). In

that case, the average accuracy increased by 22.9 percentage points (pp).

Computing average payoffs on Bayesian markets, as our FTM-A algorithm does,

led to worse results than SPA, whether ωN < 0.5 < ωY (Wilcoxon signed rank test

p = 0.054) or not (Wilcoxon signed rank test p = 0.001). FTM-A is highly sensitive

to noise and we noticed earlier that our data were clearly noisy. To account for

noise, FTM-L fits logistic supply and demand curves on the buy and sell decisions

and only then computes expected payoffs. FTM-L substantially improved upon

FTM-A (Wilcoxon signed rank test p < 0.001), especially when ωY > ωN > 0.5

or 0.5 > ωY > ωN , with an increase of 12.2pp. It yielded results that were not

significantly different from SPA (Wilcoxon signed rank tests; top row p = 0.322 and

bottom row p = 0.845). Interestingly, it gave results comparable to SPA with less
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information. SPA uses, as input, an endorsement and a prediction (number between

0 and 1), directly asking participants for ω0 and ω1. FTM-L uses an endorsement

and a trade decision, which is binary. FTM-L compensates the information loss by

using (simple) econometric techniques to recover reservation prices, which should be

ω0 and ω1 at the truth-telling equilibrium.
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Figure 6: Accuracy comparisons for different group sizes.

The accuracy analysis so far was based on groups of 100 participants. We can also

study how sensitive results are to group sizes. We replicated the analysis (with 1,000

simulations for each combination of method, task, and state of nature) for various

group sizes ranging from 20 to 100. Figure 6 depicts the accuracy rates as a function

of group size. FTM-L is more sensitive to group size than SPA. In the left panel,

when ωN < 0.5 < ωY , accuracy of FTM-L increases from around 75% for groups

of 20 to more than 90% for groups of 100. SPA performs better for small groups

but accuracy increases less with group size. In the right panel (ωY > ωN > 0.5 or

0.5 > ωY > ωN), SPA is very stable, with accuracy rates between 72% and 74%.

The accuracy of FTM-L is lower than that of SPA for groups of 20 but slightly

higher for groups of 100. These results are not surprising, knowing that, for groups

of 20, FTM-L has to determine reservations prices from very few binary decisions
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(buying or selling).14

5. Discussion

In our experiment, each agent received an endowment to avoid losses. Even without

providing an endowment, agents can expect a strictly positive payoff (Baillon, 2017),

which can motivate them to participate. The center, who plays the role of the market

maker, subsidizes the market and acts as an intermediary between the agents, who

do not trade with each other. Absent this intermediary role of the center, agents

would infer others’ signals from their willingness to buy or sell. Similar to the

classical reasoning in Aumann (1976) and Milgrom and Stokey (1982), they would

then agree on the state, leaving no room for trade based on disagreement.

To communicate the same information to all potential participants, we fixed

the bonus range from £0 to £3. The SPA was more expensive (SPA £2.85, FTM

£1.60). If anything, the SPA participants, with an endowment of 200 tokens and a

quadratic loss should have been more motivated than the FTM participants. The

SPA treatment only incentivized predictions, not truthful endorsement. The latter

could have been done using the Bayesian truth serum of Prelec (2004) but the

payoff rule is difficult to explain to participants. Experiments that have been using

this truth serum did not explain the payoff function in detail, but rather used an

“intimidation method”, telling participants it is in their interest to tell the truth.

We refrained from such an approach, and instead included instructions and training

to explain our payoff rules. An alternative for future research is to incentivize the

SPA using choice-matching (Cvitanić et al., 2019), which elicits predictions and

endorsements with a simpler payment formula.

Regarding our theoretical model, four restrictive assumptions warrant some fur-

ther discussion. First, recall that that we treated strategies as maps from signals

14There may be as little as one buyer or one seller in some groups even if everybody reports

truthfully.
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to endorsements, such that agents could not make their endorsements depend on

any other event or randomization devise, and did not allow asymmetric strategies.

Second, we allowed no communication between agents. Third, we only considered a

binary underlying state space and fourth, our market setting is a one-period, static

setting. We discuss each of those in turn.

It is important that agents cannot coordinate on events other than type realiza-

tions. Among the remaining symmetric equilibria, the truth-telling equilibrium is

(ex-ante) Pareto optimal.15 It is behaviorally plausible, as conjectured by Baillon

(2017), that truth-telling is focal and, in our experiment, there was indeed little ev-

idence of agents trying to find a reverse strategy. More than half of the participants

consistently told the truth and a negligible share of participants chose to system-

atically misstate their type (see Table 4 in Online Appendix III.2). Without the

aforementioned restriction, agents could try to coordinate on some other signal, in

which the probability of receiving a 0-signal in state Y and a 1-signal in state N

is very low. Then, a small number of agents will make a loss of (almost) 1, and a

large share of agents will make a profit of (almost) 1. In expectation, all agents thus

have a high expected payoff. Note that this coordination does not only require mere

communication among respondents but also some credible randomization device. To

avoid such coordinated attacks, the center should make it an active feature of design

that market participants are (at least partially) anonymous, as is the case in our

experiment.

As suggested by the previous paragraph, our approach cannot be used if there is

public discussion of private signals or if agents can form coalitions. If it is possible to

bring all experts together, other approaches to the aggregation problem have been

proposed in the literature, such as the Delphi method developed in the 1950s at the

Rand Corporation (Okoli and Pawlowski, 2004). These approaches do not solve the

15To see this, note first that it is pay-off equivalent to the “reverse” equilibrium in which everyone

endorses the state that they believe to be less likely to be the actual one. The two other equilibria

have universal endorsement of either state Y or of state N and thus obviously lead to a universal

payoff of zero since there is never any trade.
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incentive problem though. In our setting, experts do not have other incentives than

those we provide to hide or manipulate their private information. The literature on

committee decisions studies how agents may agree to share their private signals with

each other in order to look united if their reputation is at stake (Visser and Swank,

2007; Swank et al., 2008).

We considered a binary state space. If the state space is non-binary, one may

organize several Bayesian markets, with different agents. Consider three states A,

B, and C, and assume agents can choose which state they would like a signal about

(e.g., an agent can design an experiment testing whether we are in state A or not-

A). The center can assign agents to markets, inform them about which state their

market will be about, let them run their experiment for that state, and then organize

the Bayesian markets.

Bayesian markets and their aggregation properties can further be translated to

a setting in which a market is run continuously. Suppose that there are T periods

and that for each t = 1, ..., T , a Bayesian market is set up to trade on an asset vt

that represents the share of buyers in the Bayesian market at time t. All of these

markets are only settled at the final period T , so that in particular agents do not

learn the value of the assets. At each t, the incentive and aggregation properties of

Bayesian markets are not affected by the markets in other periods. A continuous

market can sometimes be advantageous for the center: Suppose for instance that

the signal technology is constant across all periods, but that the actual state S (and

therefore ωS) may vary with t. Once the center has found a market-clearing price

p∗ (i.e. a price at which each agent is willing to either buy or sell the asset), this

price can be chosen for any subsequent period. Since the signal technology is the

same, this price will now lead to trade in each period, thereby reducing the payoff-

uncertainty faced by the agents. Then, the center can make inferences about the

change of the state over time by computing which side would make a profit if the

market was settled. Furthermore, if the signal technology is not fixed, this will be

reflected in the buying and selling decisions of the agents, and henceforth the center
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can detect such changes.

The literature on the wisdom of crowds started with the intuition that asking

many people may be better than relying on a few experts. Some have raised doubts

on the mere possibility to “chase the experts” within a group (Larrick and Soll,

2006). However, there is still value to ask large groups of experts. DellaVigna

and Pope (2017) found that the aggregated opinion of academic experts is closer

to experimental results than estimates based on a meta-analysis of previous empir-

ical findings. In a follow-up study, DellaVigna and Pope (2018) also showed that

academic experts better predict than non-experts, even though degrees of expertise

(among experts) such as academic rank or citations do not correlate with perfor-

mance. Aggregating the opinions of very large group of experts becomes more and

more common, for instance the International Panel on Climate Change or surveys

of economists and financial specialists about future economic indicators.

6. Conclusion

Prediction markets are increasingly used to incentivize and aggregate expert opin-

ions. They are not applicable though if the state of the world is not objectively

observable. In such a case, payoffs cannot be state-contingent, creating an incentive

problem. Furthermore, in many plausible situations, one may prefer not to rely on

the majority opinion, at least if experts themselves, aware of the signal structure,

would not. We demonstrated theoretically and empirically how to solve both the

incentive and the aggregation problem at once. Agents bet on others’ endorsement

and their payoffs reveal the state of nature. When implemented in a large online ex-

periment, our follow-the-money approach performed as well as a recent alternative,

the surprisingly popular algorithm, with less information from participants.

Increasingly in companies, prediction markets are used internally among employ-

ees to forecast short-term company performance and external events for decision

making. Examples include Siemens (Ortner, 1998), Nokia (Hankins and Lee, 2011),

29



Hewlett-Packard (Plott and Chen, 2002), Intel (Gillen et al., 2017), Google (Cowgill

et al., 2009), and Ford Motor Company (Cowgill and Zitzewitz, 2015). Results are

promising, showing the potential of markets as an effective information aggregation

tool in practice. For instance, in the case of Ford where weekly auto sales forecasts

are taken extremely seriously for planning procurement and production, forecasts

from the internal prediction markets still outperformed other forecasts available to

management (Cowgill and Zitzewitz, 2015). Since Bayesian markets do not require

the predicted events to be verifiable in the short-term or at all, they expand the

horizon of prediction markets to long-term events or even to counterfactual and

unverifiable events.
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A. Appendix - Results for the finite case

Proposition 3. Let 〈ωY , ωN , r〉 be a signal technology. Then: (i) truth-telling is an

equilibrium in the game induced by the Bayesian Market, and (ii) in this equilibrium,

for any ε > 0, there exists n∗ such that for all n ≥ n∗, the probability that at least

one agent has a positive payoff, and all those with positive payoffs have endorsed the

actual state, and all those with negative payoffs have endorsed the opposite state, is

at least 1− ε.

To simplify the notations in the following proofs, we define ω−i =
∑

j 6=i sj

n−1
,

P̃s(.) ≡ P (. | si = s, ω−i ∈ (0, 1)) and Ẽs[.] ≡ E [. | si = s, ω−i ∈ (0, 1)], suppress-

ing the conditioning on i’s signal being s and the fact that there is at least one

signal-1 agent and one signal-0 agent other than i. Furthermore, r̃s ≡ P̃s(Y ) and

ω̃s ≡ Ẽs [ω−i]. For any agent i with price pi, let E−i0 (pi) be the event that there

exists another agent j such that sj = 0 and pj ≤ pi, and E−i1 (pi) the event that

there exists another agent j such that sj = 1 and pj ≥ pi.

All the proofs in the following subsections and in the Online Appendices establish

the results for si = 1. Equivalent proofs for si = 0 can be immediately obtained by

replacing si, ei, ω−i, pi by 1 − si, 1 − ei, 1 − ω−i, 1 − pi. Recall that n ≥ 4 for all

the proofs.

A.1. Preparatory lemmas

The following lemmas are used to establish Proposition 3 (Lemma 1 being used to

establish Lemma 5). The lemmas are not especially surprising, and the proofs are

more cumbersome than truly informative. We therefore relegated them to Online

Appendix I.

Lemma 1. limn→∞ ω̃1 = ω̄1 and limn→∞ ω̃0 = ω̄0.

Lemma 2. For any ε > 0, there exists n∗ such that for all n ≥ n∗, P (ω−i > ω̄1 |Y ) >

1−ε, P (ω−i < ω̄0 |N) > 1−ε, P (ω−i > ω̃1 |Y ) > 1−ε, and P (ω−i < ω̃0 |N) > 1−ε.
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Lemma 3. Ẽ1

[
ω−i | E−i0 (pi)

]
< ω̃1 < Ẽ1

[
ω−i | E−i1 (pi)

]
and Ẽ0

[
ω−i | E−i0 (pi)

]
<

ω̃0 < Ẽ0

[
ω−i | E−i1 (pi)

]
.

Lemma 4. Ẽ1

[
ω−i | E−i0 (pi)

]
and Ẽ0

[
ω−i | E−i1 (pi)

]
are both continuous in pi.

Lemma 5. limn→∞ Ẽ1

[
ω−i | E−i0 (pi)

]
= ω̄1 and limn→∞ Ẽ0

[
ω−i | E−i1 (pi)

]
= ω̄0.

A.2. Proof of Proposition 3 - Part (i)

Suppose that all agents are truth-telling and further that signal-1 agents will buy

at any price p for which p ≤ Ẽ1

[
ω−i | E−i0 (p)

]
and signal-0 agents will sell at any

price p for which p ≥ Ẽ0

[
ω−i | E−i1 (p)

]
. To see that these strategies constitute an

equilibrium, we take the perspective of a buyer, and it is completely analogous to

show that there is no profitable deviation for a seller. Consider an agent i who

observes signal si = 1 and price pi. Under the strategy described above, i never

accepts to trade at a price for which i expects a negative payoff and thus i’s expected

payoff is strictly positive. Any deviation in which i reports ei = 1 but buys at

a price pi > Ẽ1

[
ω−i | E−i0 (pi)

]
is at best non-harmful, if no seller would sell at

this price in equilibrium, or leads to a lower expected payoff. Suppose then next

that i deviates by reporting ei = 0. Afterwards, i cannot do better than selling

at any price pi for which pi > Ẽ1

[
ω−i | E−i1 (pi)

]
. From Lemma 3, we know that

Ẽ1

[
ω−i | E−i1 (pi)

]
> Ẽ1

[
ω−i | E−i0 (pi)

]
. Hence, all other signal 1-agents reject such

trades, and therefore, i’s payoff will be zero. Thus, there is no profitable deviation

for i and the strategies described above indeed constitute an equilibrium.

A.3. Proof of Proposition 3 - Part (ii)

To prove the second part of Proposition 3, we need to find a group size such that we

are almost certain that at least one agent has a positive payoff, and all those with

positive payoffs have endorsed the actual state, and all those with negative payoffs

have endorsed the opposite state. Alternatively, we can show that, for a given group

size and above, the probability of the following three events is negligible:
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• Event 1: there exists an agent endorsing the actual state making a loss;

• Event 2: there exists an agent endorsing the other state making a profit;

• Event 3: no agent trades.

Let us first show that Event 2 implies Event 1. In state Y , an agent endorsing

ei = 0 can only make a profit if there is a buyer j with pj ≥ pi > vi. Since vi

excludes ei = 0 and vj excludes ej = 1, we have vj = vi − 1
n−1

< vi. Then pj > vj,

implying that agent j must be making a loss. The same argument can be made for

state N . Consequently, Event 2 is a subevent of Event 1 and can be ignored.

We can establish P (“agents endorsing the actual state, and only them, will make

a profit”) > 1− ε for all n above a threshold by showing that P (Event 1) < ε/2 and

P (Event 3) < ε/2. Recall that statement (ii) posits that we are in the truth-telling

equilibrium. We can therefore equate vi with ω−i.

Event 1: there exists an agent endorsing the actual state making a loss.

From Lemma 2, it follows that we can find n1 such that in the truth-telling equi-

librium with probability at most ε
2
, we have vi ≤ ω̃1 in state Y or vi ≥ ω̃0 in

state N . Furthermore, from Lemma 3, we have that for any price p and any n:

Ẽ1

[
vi | E−i0 (p)

]
< ω̃1, and Ẽ0

[
vi | E−i1 (p)

]
> ω̃0. Thus, in the equilibrium described

in part (i) of Proposition 3, there will never be trade for prices exceeding ω̃1 (because

buyers will not accept such prices) and for prices lower than ω̃0 (because sellers will

not accept such prices). Combining the two results, we know that there exists an n1

such that for all n ≥ n1, the probability that any trade occurs at a price larger than

the asset value in state Y (implying that some buyers – who endorse the correct

state – make a loss) is at most ε
2
, and analogously for state N .

Event 3: no agent trades. To obtain the probability of no trade, we will first

derive the probability of trade. Trades occur if there exists an interval of prices I for

which people are willing to trade and prices are drawn in I for sellers and buyers.
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Willingness to trade: Let pm = ω̄0+ω̄1

2
(the “midpoint” between ω̄0 and ω̄1). Choosing

δ = ω̄1−ω̄0

3
, Lemma 5 implies that there exists nδ such that ω̄1− Ẽ1

[
vi | E−i0 (pm)

]
< δ

and Ẽ0

[
vi | E−i1 (pm)

]
− ω̄0 < δ for all n ≥ nδ. Hence, Ẽ1

[
vi | E−i0 (pm)

]
> ω̄1−δ > pm

and Ẽ0

[
vi | E−i1 (pm)

]
< ω̄0 + δ < pm, which show that both buyers and sellers are

willing to trade at price pm, according to the proof of (i). Furthermore, by continuity

of Ẽ1

[
vi | E−i0 (p)

]
in p (Lemma 4), there must be an interval I = [pm − a, pm + a]

such that Ẽ1

[
vi | E−i0 (p)

]
> p for all p ∈ I (and analogously for Ẽ0). We have

therefore shown that for all n ≥ nδ, there is an interval of prices I for which people

are willing to trade.

Prices being drawn in I: In what follows, we keep assuming n ≥ nδ. Let E+ be the

event that there is at least one buyer with pi ∈ [pm, pm + a] and E− be the event

that there is at least one seller with pi ∈ [pm − a, pm]. Then P (E+ | k buyers) =

1 − (1− a)k and P (E− |n− k sellers) = 1 − (1− a)n−k. Hence, under any state of

the world S ∈ {Y,N},

P (trade in I |S)

≥P
(
E+ and E− |S

)
=

n−1∑
k=1

P (k buyers and n− k sellers |S)P
(
E+ and E− | k buyers and n− k sellers

)
=

n−1∑
k=1

P (k buyers and n− k sellers |S)P
(
E+ | k buyers

)
P
(
E− | k sellers

)
=

n−1∑
k=1

(
n

k

)
ωkS (1− ωS)n−k

[
1− (1− a)k

] [
1− (1− a)n−k

]
=1 + (1− a)n − [(1− a)ωS + (1− ωS)]n − [ωS + (1− a)(1− ωS)]n .

Since the limit of the last expression is 1,

lim
n→∞

P (no trade in I) = 1− lim
n→∞

P (Y )P (trade in I |Y )+P (N)P (trade in I |N) = 0.

This implies that there exists an n2 ≥ nδ such that for all n ≥ n2, there is at most

ε
2

probability that no trade occurs in the interval I. Note that n2 must be at least

nδ to ensure the existence of I in which agents are willing to trade.
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Final step. The probability that at least one agent has a positive payoff, and all

those with positive payoffs have endorsed the actual state, and all those with negative

payoffs have endorsed the opposite state, is at least 1 − P (Event 1) − P (Event 3).

For all n ≥ n1, the probability of Event 1 is at most ε
2

and for all n ≥ n2, that

of Event 3 is also at most ε
2
. Let n∗ = max {n1, n2}. Then for any n ≥ n∗, the

probability that some agents endorsing the actual state, and only them, will make

a profit and no agent endorsing the actual state makes a loss is more than 1− ε, as

desired.

A.4. Simulations

Proposition 3 is a limit result and we conducted simulations to estimate what a

sufficient group size should be. For r = 0.5, all pairs (ωN , ωY ) ∈ {0.05, 0.10, . . . , 0.95}

with ωN < ωY , and various group sizes, we checked how often agents endorsing the

actual state and only them make a profit. The results of our simulations assume

that all pairs (ωN , ωY ) described above are equally likely, even though situations in

which ωN and ωY are very close corresponds to signal technologies that are only

very weakly informative.16 Online Appendix II describes the simulation procedure

and the left panel of Figure 7 displays the results.

It is worth noting that situations in which agents endorsing the wrong state are

making a profit are extremely unlikely. Moreover cases in which some agents of both

sides make a loss are basically non-existing. Thus, whenever there is trade, which

side has a positive payoff reveals the actual state with very high accuracy, even for

small group sizes. However, for small numbers of agents (n < 100), the most likely

outcome is that no agent trades, and therefore, no one makes a profit. This still

happens in about 25% of the cases for large group sizes (e.g. 300).17 There are two

16For example, if ωY − ωN = 0.05 and r = 0.5, the average accuracy of the signal technology is

52.5%, to be compared with 50% of random guessing.
17The reason is that in more than one third of our simulations, the difference between ω̄0 and

ω̄1 is less than 0.05. If there are only few agents receiving a given signal, it becomes unlikely that

one of them will also be offered a price in the interval in which trades could occur.
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Figure 7: Simulations for different group sizes n.

main ways to address this issue. First, any information about the signal technology

(for instance a lower bound on ωN or an upper bound on ωY ) would allow the center

to draw prices in a more specific region instead of uniformly between 0 an 1, thereby

increasing the probability of trade. Second, the absence of trades does not mean that

no information was collected. From the agents’ endorsements and trade decisions,

the center can recover information using our two algorithms to infer the actual state.

The right panel of Figure 7 displays the accuracy, defined as the number of times

the actual state is selected, of both FTM-A and FTM-L algorithms in the same

simulations as described in the preceding paragraph. The simulations do not include

noisy agents and therefore, FTM-A cannot improve much with respect to requiring

that all agents make a profit to trust their endorsement. By contrast, FTM-L reaches

an 80% accuracy with groups as small as 20 agents. It reaches a 95% accuracy with

300 participants, which is not an unusual sample size in social sciences. The cases

in which FTM-L is inaccurate correspond to signal technologies that are only very

weakly informative. In all other cases, FTM-L recovers all necessary information

even in the absence of trades.
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Online Appendix I: Proof of the lemmas

I.1. Proof of Lemma 1

Proof. Using that P̃1 (ω−i = 0) = P̃1 (ω−i = 1) = 0, since P̃ conditions on the fact

that ω−i ∈ (0, 1), and further using that

P̃1

(
ω−i =

k

n− 1

)
=

P
(
ω−i = k

n−1
| si = 1

)
1− P (ω−i = 0 or ω−i = 1 | si = 1)

for 0 < k < n− 1, we get

ω̃1 =
n−2∑
k=1

k

n− 1
P̃1

(
ω−i =

k

n− 1

)

=
1

1− P (ω−i = 0 or ω−i = 1 | si = 1)

n−2∑
k=1

k

n− 1
P

(
ω−i =

k

n− 1
| si = 1

)
=

1

1− P (ω−i = 0 or ω−i = 1 | si = 1)
[E(ω−i | si = 1)− P (ω−i = 1 | si = 1)]

=
1

1− P (ω−i = 0 or ω−i = 1 | si = 1)

[
n

n− 1
ω̄1 −

1

n− 1
− P (ω−i = 1 | si = 1)

]
.

Note that in the last step, we use ω−i = nω−1
n−1

= n
n−1

ω − 1
n−1

and Equation (3).

Since r1, ωY , ωN ∈ (0, 1), as n→∞,

P (ω−i = 0 | si = 1)

=P (ω−i = 0 |Y )P (Y | si = 1) + P (ω−i = 0 |N)P (N | si = 1)

=r1(1− ωY )n−1 + (1− r1)(1− ωN)n−1 → 0,

and P (ω−i = 1 | si = 1) = r1ω
n−1
Y + (1− r1)ωn−1

N → 0. We then have ω̃1 → ω̄1.

I.2. Proof of Lemma 2

Proof. By the weak law of large numbers, we have that for any δ > 0 and ε > 0

there exists n(δ, ε) such that for all n ≥ n(δ, ε):

P (|E [ω−i |Y ]− ω−i| < δ |Y ) > 1− ε. (11)
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Then note that E [ω−i |Y ] = ωY . For any ε > 0, taking δ = ωY − ω̄1 > 0 in

Equation (11), we have that for all n ≥ n1 ≡ n(ωY − ω̄1, ε),

1− ε <P (|ωY − ω−i| < ωY − ω̄1 |Y )

≤P (ωY − ω−i < ωY − ω̄1 |Y ) = P (ω−i > ω̄1 |Y ).

Similarly, for all n ≥ n2 ≡ n(ω̄0 − ωN , ε), P (ω−i < ω̄0 |N) > 1− ε.

From Lemma 1, for any δ > 0, there exists m(δ) such that |ω̃1 − ω̄1| < δ and

|ω̃0− ω̄0| < δ for all n ≥ m(δ). Let us first pick δ = ωY −ω̄1

2
> 0 and also in Equation

(11). Then for all n ≥ n3 ≡ max{n
(
ωY −ω̄1

2
, ε
)
,m(ωY −ω̄1

2
)}, |ω̃1 − ω̄1| < ωY −ω̄1

2
and

P
(
|ωY − ω−i| < ωY −ω̄1

2
|Y
)
> 1− ε. Hence,

P (ω−i > ω̃1 |Y ) ≥ P (ω−i >
ωY + ω̄1

2
> ω̃1 |Y )

= P (ω−i >
ωY + ω̄1

2
|Y )

= P (ωY − ω−i <
ωY − ω̄1

2
|Y )

≥ P

(
|ωY − ω−i| <

ωY − ω̄1

2
|Y
)
> 1− ε.

Similarly, for all n ≥ n4 ≡ max{n
(
ω̄0−ωN

2
, ε
)
,m( ω̄0−ωN

2
)}, P (ω−i < ω̃0 |N) > 1− ε.

Finally, taking n∗ = max{n1, n2, n3, n4} completes the proof.

I.3. Proof of Lemma 3

Proof. We first note that ω̃1 =
∑n−2

k=1
k

n−1
P̃1

(
ω−i = k

n−1

)
and

Ẽ1

[
ω−i | E−i0 (pi)

]
=

n−2∑
k=1

k

n− 1
P̃1

(
ω−i =

k

n− 1
| E−i0 (pi)

)

=
n−2∑
k=1

k

n− 1
P̃1

(
ω−i =

k

n− 1

)
P̃1

(
E−i0 (pi) |ω−i = k

n−1

)
P̃1

(
E−i0 (pi)

) .(12)

In what follows, we establish Ẽ1

[
ω−i | E−i0 (pi)

]
≤ ω̃1 by showing that P̃1(ω−i) first-

order stochastically dominates P̃1(ω−i | E−i0 (pi)).
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Observe that

P̃1

(
E−i0 (pi) |ω−i =

k

n− 1

)
=P̃1

(
∃j 6= i, s.t. sj = 0 and pj ≤ pi |ω−i =

k

n− 1

)
=1− P̃1

(
∀j 6= i, sj = 0 : pj > pi |ω−i =

k

n− 1

)
=1− (1− pi)n−k−1

(13)

is strictly decreasing in k. Hence, for the series {P̃1

(
E−i0 (pi) |ω−i = l

n−1

)
}n−2
l=1 , any

weighted average of the first k terms is strictly larger than any weighted average of

the last n− k− 2 terms. We use this result to obtain that for integer k ∈ [1, n− 3],

P̃1

(
E−i0 (pi) |ω−i ≤

k

n− 1

)
=

k∑
l=1

P̃1

(
E−i0 (pi) |ω−i =

l

n− 1

)
P̃1

(
ω−i = l

n−1

)
P̃1

(
ω−i ≤ k

n−1

)
=P̃1

(
ω−i ≤

k

n− 1

) k∑
l=1

P̃1

(
E−i0 (pi) |ω−i =

l

n− 1

)
P̃1

(
ω−i = l

n−1

)
P̃1

(
ω−i ≤ k

n−1

)
+ P̃1

(
ω−i >

k

n− 1

) k∑
l=1

P̃1

(
E−i0 (pi) |ω−i =

l

n− 1

)
P̃1

(
ω−i = l

n−1

)
P̃1

(
ω−i ≤ k

n−1

)
>P̃1

(
ω−i ≤

k

n− 1

) k∑
l=1

P̃1

(
E−i0 (pi) |ω−i =

l

n− 1

)
P̃1

(
ω−i = l

n−1

)
P̃1

(
ω−i ≤ k

n−1

)
+ P̃1

(
ω−i >

k

n− 1

) n−2∑
l=k+1

P̃1

(
E−i0 (pi) |ω−i =

l

n− 1

)
P̃1

(
ω−i = l

n−1

)
P̃1

(
ω−i >

k
n−1

)
=

n−2∑
l=1

P̃1

(
E−i0 (pi) |ω−i =

l

n− 1

)
P̃1

(
ω−i =

l

n− 1

)
=P̃1

(
E−i0 (pi)

)
,

(14)

where the inequality is obtained because
P̃1(ω−i=

l
n−1)

P̃1(ω−i≤ k
n−1)

=
P̃1(ω−i=

l
n−1)∑k

l=1 P̃1(ω−i=
l

n−1)
and thus

the expression
∑k

l=1 P̃1

(
E−i0 (pi) |ω−i = l

n−1

) P̃1(ω−i=
l

n−1)
P̃1(ω−i≤ k

n−1)
is a weighted average of the

first k terms of {P̃1

(
E−i0 (pi) |ω−i = l

n−1

)
}n−2
l=1 . When k = n−2, P̃1

(
E−i0 (pi) |ω−i ≤ k

n−1

)
=
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P̃1

(
E−i0 (pi)

)
. These imply that for any k ∈ [1, n− 3],

P̃1

(
ω−i ≤

k

n− 1
| E−i0 (pi)

)
=P̃1

(
ω−i ≤

k

n− 1

)
P̃1

(
E−i0 (pi) |ω−i ≤ k

n−1

)
P̃1

(
E−i0 (pi)

)
>P̃1

(
ω−i ≤

k

n− 1

)
.

Hence, by first order stochastic dominance of the unconditional distribution of ω−i

over the distribution conditioning on E−i0 , we get Ẽ1

[
ω−i | E−i0 (pi)

]
< ω̃1.

Ẽ1

[
ω−i | E−i1 (pi)

]
> ω̃1 is similarly established by showing that the unconditional

distribution ω−i is stochastically dominated by the distribution conditioning on E−i1 .

This is obtained from

P̃1

(
E−i1 (pi) |ω−i =

k

n− 1

)
=P̃1

(
∃j 6= i, s.t. sj = 1 and pj ≥ pi |ω−i =

k

n− 1

)
=1− P̃1

(
∀j 6= i, sj = 1 : pj < pi |ω−i =

k

n− 1

)
=1− pki

(15)

being strictly increasing in k.

I.4. Proof of Lemma 4

Proof. Consider Equation (12). Only the weights
P̃1(E−i

0 (pi) |ω−i=
k

n−1 )
P̃1(E−i

0 (pi))
are functions

of pi. Since the denominator is the weighted sum of the numerator for all k, it is

enough to show that P̃1

(
E−i0 (pi) |ω−i = k

n−1

)
is continuous in pi. This is immediate

from Equation (13).

I.5. Proof of Lemma 5

Proof. We start from Equation (12) and first show that the denominator of the

fraction in the expression goes to 1 as n → ∞. Using Equation (13) and since for
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any integer k ∈ [1, n− 2],

P̃1

(
ω−i =

k

n− 1

)
=

(
n− 1

k

)
ωkY (1− ωY )n−k−1 r̃1 +

(
n− 1

k

)
ωkN (1− ωN)n−k−1 (1− r̃1) ,

(16)

we arrive at

P̃1

(
E−i0 (pi)

)
=

n−2∑
k=1

P̃1

(
E−i0 (pi) |ω−i =

k

n− 1

)
P̃1

(
ω−i =

k

n− 1

)

=
n−2∑
k=1

[
1− (1− pi)n−k−1

]
P̃1

(
ω−i =

k

n− 1

)

=1−
n−2∑
k=1

(1− pi)n−k−1

(
n− 1

k

)[
ωkY (1− ωY )n−k−1 r̃1 + ωkN (1− ωN)n−k−1 (1− r̃1)

]
=1− r̃1{[ωY + (1− pi) (1− ωY )]n−1 − ωn−1

Y − (1− pi)n−1(1− ωY )n−1}

− (1− r̃1) {[ωN + (1− pi) (1− ωN)]n−1 − ωn−1
N − (1− pi)n−1(1− ωN)n−1},

(17)

where the last equality is obtained from the binomial theorem. In the limit, for any

pi ∈ (0, 1),

lim
n→∞

P̃1

(
E−i0 (pi)

)
= 1 (18)

since pi, ωY , and ωN are all strictly between 0 and 1.

Next, we bound the expression in Equation (12) from above and below to show

that it tends to ω̃1 in the limit. Lemma 3 already gives the upper bound, ω̃1. For

the lower bound:

Ẽ1

[
ω−i | E−i0 (pi)

]
=1− Ẽ1

[
1− ω−i | E−i0 (pi)

]
=1−

∑n−2
k=1

(
1− k

n−1

)
P̃1

(
E−i0 (pi) |ω−i = k

n−1

)
P̃1

(
ω−i = k

n−1

)
P̃1

(
E−i0 (pi)

)
>1−

∑n−2
k=1

(
1− k

n−1

)
P̃1

(
ω−i = k

n−1

)
P̃1

(
E−i0 (pi)

)
=1− 1− ω̃1

P̃1

(
E−i0 (pi)

) .

(19)
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Combining the two bounds, we get

1− 1− ω̃1

P̃1

(
E−i0 (pi)

) < Ẽ1

[
ω−i | E−i0 (pi)

]
< ω̃1. (20)

Taking the limit and using Equation (18) and Lemma 1, we get that for any pi ∈

(0, 1), limn→∞ Ẽ1

[
ω−i | E−i0 (pi)

]
= limn→∞ ω̃1 = ω̄1.
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Online Appendix II: Simulations on Proposition 3

The simulation procedure for Proposition 3 is as follows: Given a group size n ∈

{20, 40, 60, 80, 100, 200, 300} and signal technology parameters r = 1
2

and any (ωN ,ωY )

pair18 randomly selected from {0.05, 0.1, ..., 0.95}, we can calculate Ẽ1

[
ω−i | E−i0 (pi)

]
and Ẽ0

[
ω−i | E−i1 (pi)

]
as a function of pi.

19 This means that we know the trading

18This results in
(
19
2

)
= 171 pairs of ωY and ωN where ωY > ωN .

19For signal-1 agents, we first start from Equation (12):

Ẽ1

[
ω−i | E−i0 (pi)

]
=

n−2∑
k=1

k

n− 1
P̃1

(
ω−i =

k

n− 1

) P̃1

(
E−i0 (pi) |ω−i = k

n−1

)
P̃1

(
E−i0 (pi)

)
=

1

n− 1

1

P̃1

(
E−i0 (pi)

) n−2∑
k=1

kP̃1

(
ω−i =

k

n− 1

)
P̃1

(
E−i0 (pi) |ω−i =

k

n− 1

)
,

where P̃1

(
ω−i = k

n−1

)
is defined in Equation (16) as

P̃1

(
ω−i =

k

n− 1

)
=

(
n− 1

k

)
ωk
Y (1− ωY )

n−k−1
r̃1 +

(
n− 1

k

)
ωk
N (1− ωN )

n−k−1
(1− r̃1) ,

P̃1

(
E−i0 (pi) |ω−i = k

n−1

)
is defined in Equation (13) as

P̃1

(
E−i0 (pi) |ω−i =

k

n− 1

)
= 1− (1− pi)

n−k−1
,

and P̃1

(
E−i0 (pi)

)
is defined in Equation (17) as

P̃1

(
E−i0 (pi)

)
=1− r̃1{[ωY + (1− pi) (1− ωY )]

n−1 − ωn−1
Y − (1− pi)

n−1(1− ωY )n−1}

− (1− r̃1) {[ωN + (1− pi) (1− ωN )]
n−1 − ωn−1

N − (1− pi)
n−1(1− ωN )n−1}.

Then we derive the expression of r̃1 as a function of the signal technology parameters:

r̃1 =P̃1(Y )

=P (Y | si = 1, ω−i ∈ (0, 1))

=
P (ω−i ∈ (0, 1) |Y )P (Y | si = 1)

P (ω−i ∈ (0, 1) |Y )P (Y | si = 1) + P (ω−i ∈ (0, 1) |N)P (N | si = 1)

=
r1
(
1− (1− ωY )n−1 − ωn−1

Y

)
r1
(
1− (1− ωY )n−1 − ωn−1

Y

)
+ (1− r1)

(
1− (1− ωN )n−1 − ωn−1

N

) ,
where r1 is defined in Equation (1) as

r1 =
rωY

rωY + (1− r)ωN
.
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strategies of both buyers and sellers. We then run 200 simulations for a group size n

for both states Y and N . During each simulation under state S, we first determine

the signal each agent gets using the sampling probability ωS and we assume that

agents endorses truthfully (ei = si). Then we randomly draw a price pi from a

uniform distribution on (0, 1) for each agent. Comparing their expectations of the

asset value with the price, we determine whether each agent is willing to bet or not

(di being 1 or 0). Then we check the trading conditions and determine whether the

trade goes through. Payoffs are determined and we document if agents endorsing

the actual states of nature, and only them, make a profit. We then calculate the

proportion of simulations that satisfy this property.

To see whether our FTM-A algorithm could detect the actual state of nature in

each simulation, we only take the payoffs of all the agents and compare the average

payoffs of the two sides. In case of no trade or equal average payoffs, we treat

the performance of FTM-A as 0.5, due to the prior r being 0.5. For our FTM-L

algorithm, we take only the data of agents’ endorsements ei, prices pi, and betting

decisions di, and use these to fit the logistic curves.

Combining all of these equations, we can express Ẽ1

[
ω−i | E−i0 (pi)

]
explicitly as a function of pi

and signal technology parameters r, ωY , and ωN .

We used MATLAB to calculate the conditional expectations. Operationally, the MATLAB

function “binopdf”, required to calculate
(
n−1
k

)
ωk
Sω

n−k−1
S , is too slow for the large number of

simulations. Hence, we first use the inequalities in Equation (20) to compute the upper and lower

bounds of Ẽ1

[
ω−i | E−i0 (pi)

]
: 1− 1−ω̃1

P̃1(E−i
0 (pi))

< Ẽ1

[
ω−i | E−i0 (pi)

]
< ω̃1, where

ω̃1 =

n−2∑
k=1

k

n− 1
P̃1

(
ω−i =

k

n− 1

)
= r̃1

(
ωY − ωn−1

Y

)
+ (1− r̃1)

(
ωN − ωn−1

N

)
,

and we used the expression of the expected value of a binomial distribution:∑n−1
k=0 k

(
n−1
k

)
ωk
S (1− ωS)

n−k−1
= (n − 1)ωS . Only when pi is within these bounds do we

then calculate the exact values of the expectation to determine the trading decision.

Similarly, for signal-0 agents, we can also express Ẽ0

[
ω−i | E−i1 (pi)

]
explicitly as a function of

pi, group size n, and signal technology parameters r, ωY , and ωN , by following similar steps.

Operationally speaking, we can replace si, r, ωY , ωN , ω−i, pi by 1 − si, 1 − r, 1 − ωN , 1 − ωY ,

1− ω−i, 1− pi, respectively, and calculate Ẽ1

[
ω−i | E−i0 (pi)

]
instead.
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Online Appendix III: Experimental details

III.1. Parameter values for each task

In our current experimental design, P (S = Y ) = P (S = N) = 1
2
, and group size

n = 100. Table 3 lists parameter values ωN and ωY of the 30 tasks in our experiment.

They contain all combinations where (ωN , ωY ) ∈ {0.05, 0.1, ..., 0.45, 0.55, ..., 0.95},

ωY − ωN ∈ {0.2, 0.25, 0.3}, and ω̄1 − ω̄0 > 0.04.

In contrast to the finite case in our theoretical setting (Section 2.4), the settle-

ment value does not exclude the participant’s own endorsement, and the number of

participants receiving signal 1 is fixed at nωS for S = {Y,N}. Therefore, there is no

uncertainty stemming from sampling and hence under the truth-telling equilibrium,

E
[
vi | si = 1, vi ∈ (0, 1), E−i0 (pi)

]
=ωY P (vi = ωY | si = 1, E−i0 (pi)) + ωNP (vi = ωN | si = 1, E−i0 (pi))

=ωN + (ωY − ωN)P (Y | si = 1, E−i0 (pi)).

(21)

With this simplified expression, we can write the expectation as an explicit func-

tion of the price pi, given n = 100 and parameters values ωY and ωN for each task.

First, using Bayes’ rule, we get:

P (Y | si = 1, E−i0 (pi))

=
ωY
(
1− (1− pi)n(1−ωY )

)
ωY (1− (1− pi)n(1−ωY )) + ωN (1− (1− pi)n(1−ωN ))

,
(22)

where we used that P (S = Y ) = P (S = N) = 1
2
, P (si = 1 |S) = ωS for S = {Y,N}.

Plugging this expression in Equation (21), we define, for each task, a reservation

price p∗1 for buyers, such that E
[
vi | si = 1, vi ∈ (0, 1), E−i0 (pi)

]
> pi when pi < p∗1,

E
[
vi | si = 1, vi ∈ (0, 1), E−i0 (p∗1)

]
= p∗1, and E

[
vi | si = 1, vi ∈ (0, 1), E−i0 (pi)

]
< pi

when pi > p∗1. Similarly, we can also define a reservation price p∗0 for sellers.

If p∗1 and p∗0 exist, and are such that p∗1 > p∗0, then signal-1 agents will buy at

price p ≤ p∗1 and signal-0 agents will sell at price p ≥ p∗0. These strategies constitute

an equilibrium.
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Table 3: Task parameter values

set task ωN ωY p∗0 p∗1

1 1 0.05 0.25 0.14 0.22

2 2 0.05 0.3 0.16 0.26

1 3 0.05 0.35 0.17 0.31

2 4 0.1 0.3 0.19 0.25

1 5 0.1 0.35 0.2 0.29

2 6 0.1 0.4 0.22 0.34

1 7 0.15 0.35 0.24 0.29

2 8 0.15 0.4 0.25 0.33

1 9 0.15 0.45 0.27 0.37

2 10 0.2 0.4 0.29 0.33

1 11 0.2 0.45 0.3 0.37

2 12 0.25 0.45 0.33 0.38

2 13 0.75 0.95 0.78 0.86

1 14 0.7 0.95 0.74 0.84

2 15 0.65 0.95 0.69 0.83

1 16 0.7 0.9 0.75 0.81

2 17 0.65 0.9 0.71 0.8

1 18 0.6 0.9 0.66 0.78

2 19 0.65 0.85 0.71 0.76

1 20 0.6 0.85 0.67 0.75

2 21 0.55 0.85 0.63 0.73

1 22 0.6 0.8 0.67 0.71

2 23 0.55 0.8 0.63 0.7

1 24 0.55 0.75 0.62 0.67

1 25 0.3 0.6 0.41 0.5

2 26 0.35 0.6 0.45 0.51

1 27 0.35 0.65 0.46 0.54

2 28 0.4 0.6 0.48 0.52

1 29 0.4 0.65 0.49 0.55

2 30 0.4 0.7 0.5 0.59

We derive p∗1 and p∗0 for all the 30 tasks, which are shown in the last two columns

of Table 3. Note that ω1 and ω0 defined in Equations (3)-(4) yields essentially the

same values up to the second decimal place, except tasks 9 and 27 for buyers, but
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still |p∗1−ω1| < 0.01. Thus, conditioning on the occurrence of trade is negligible and

for the parameters chosen in the experiment, the incentives of the Bayesian market

are essentially as explained in Section 2.1 where n is infinite.

III.2. Truth-telling at the individual level

Table 4 shows the proportion of participants with at least certain numbers of truth-

telling in both SPA and FTM treatments.

Table 4: Proportion of participants with at least certain numbers of truth-telling

at least SPA FTM

1 99.8% 100.0%

2 99.8% 99.8%

3 99.8% 99.8%

4 99.6% 99.6%

5 98.9% 98.9%

6 98.1% 98.3%

7 96.1% 96.6%

8 94.6% 94.1%

9 91.3% 91.3%

10 88.7% 85.8%

11 84.0% 82.2%

12 79.0% 77.6%

13 72.7% 71.9%

14 63.4% 64.3%

15 50.6% 53.1%
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III.3. Experimental instructions and training rounds

All participants first watched the experimental instruction video (YouTube link)

where the experimental setting of urns and balls was explained. Then they went

through five rounds of training and got feedback about how the payment was calcu-

lated. Figure 8 shows an example from the SPA treatment, and Figure 9 shows an

example from the FTM treatment where the bet went through.

Figure 8: An example of feedback in the training rounds in SPA.

52

https://www.youtube.com/watch?v=md-8ohEnvEM


Figure 9: An example of feedback in the training rounds in FTM.
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