

2F - A New Method for Constructing Efficient Multivariate Encryption Schemes

Daniel Smith-Tone^{1,2}

¹University of Louisville ²National Institute of Standards and Technology

29 September, 2022

Objective

Standards and Technology

U.S. Department of Commerce

Given a multivariate quadratic system of equations

$$P(x) = y$$

find x.

Direct Attack

- Solve directly via F4 or XL.
 (Consider the Macaulay matrix: rows = equations, columns = monomials.)
- Complexity related to homogeneous quadratic component.
- Field Equations $(x_i^q x_i)$
- With hybrid approach we consider the Hilbert series

$$\mathcal{H}(t) = rac{(1-t^2)^m(1-t^q)^{n-k}}{(1-t)^{n-k}}$$

Differential Attacks

U.S. Department of Commerce

Idea that broke SFLASH. (Also breaks, C^* , k-ary C^* , ℓ IC-, etc.) Discrete Differential DP(a,x) = P(a+x) - P(a) - P(x) + P(0).

$$DP(La, x) + DP(a, Lx) = \Lambda_L DP(a, x)$$

Rank Attacks

U.S. Department of Commerce

Minrank: Given K matrices M_1, \ldots, M_K of dimension $s \times t$ over the field F, find nonzero coefficients $\lambda_1, \ldots, \lambda_k$ in the field E/F such that

$$\operatorname{rank}\left(\sum_{i=1}^K \lambda_i \mathsf{M}_i\right) \leq r.$$

Definition of SQUARE

U.S. Department of Commerce

U is injective, $f(X) = X^2$, q odd prime-power.

Attacks

- Direct Attack
- Differential Attack (Perturb Input recover in output)
- Differential Attack (Perturb Output recover in input)
- Rank Attack (Big field "traditional")
- Rank Attack (Big field, Tao et al. style)

Linear Maps are Important

Something critical in all of these attacks (or their analyses) is the role of linear maps.

Question: Can we augment a quadratic map in a nonlinear way to disrupt these cryptanalyses?

Modulus Switching

Standards and Technology
U.S. Department of Commerce

Let p = 7 n = m = 3 and q = 331.

$$v_1 = 2x_1^2 - x_1x_2 - 2x_1x_3 + 0x_2^2 + 3x_2x_3 - x_3^2$$

$$v_2 = x_1^2 + 3x_1x_2 - x_1x_3 - 3x_2^2 + 0x_2x_3 - 2x_3^2$$

$$v_3 = -x_1^2 - 3x_1x_2 + x_1x_3 + 2x_2^2 - x_2x_3 + x_3^2$$

Let p = 7 n = m = 3 and q = 331.

$$v_1 = 2(1)^2 - (1)(-2) - 2(1)(2) + 0(-2)^2 + 3(-2)(2) - (2)^2$$

$$v_2 = (1)^2 + 3(1)(-2) - (1)(2) - 3(-2)^2 + 0(-2)(2) - 2(2)^2$$

$$v_3 = -(1)^2 - 3(1)(-2) + (1)(2) + 2(-2)^2 - (-2)(2) + (2)^2$$

Standards and Technology

Let
$$p = 7$$
 $n = m = 3$ and $q = 331$.

$$v_1 = -2$$

$$v_2 = 1$$

$$v_3 = 2$$

Standards and Technology

Let
$$p = 7$$
 $n = m = 3$ and $q = 331$.

$$v_1 = -16$$

$$v_2 = -27$$

$$v_3 = \frac{23}{3}$$

Standards and Technology

Let
$$p = 7$$
 $n = m = 3$ and $q = 331$.

$$v_1 = -16$$

$$v_2 = -27$$

$$v_3 = 23$$

$$y_1 = -153$$

$$y_2 = -83$$

$$y_3 = 109$$

Why it Works

Standards and Technology

U.S. Department of Commerce

lf

$$q>\frac{(p-1)^3}{4}\binom{n+1}{2},$$

then $y = T \circ \iota(F)(x)$ if and only if $T^{-1}(y) = F(x) \pmod{p}$.

Decryption Failures

U.S. Department of Commerce

$$q>\frac{(p-1)^3}{4}\binom{n+1}{2}\Rightarrow$$
 no *new* decryption failures.

These quadratic distributions are rather tight, so much smaller q are possible. If we further restrict $x_i \in \{-1,0,1\}$, the distributions are even tighter. Can have much larger p < q.

Direct Attack

U.S. Department of Commerce

Instead of field equations, we have

$$g_i(x_i) = \prod_{j=\frac{1-p}{2}}^{\frac{p-1}{2}} (x_i - j).$$

$$\mathcal{H}(t) = rac{(1-t^2)^m(1-t^p)^{n-k}}{(1-t)^{n-k}}$$

If $x_i \in \{-1, 0, 1\}$, then

$$\mathcal{H}(t) = \frac{(1-t^2)^m (1-t^3)^{n-k}}{(1-t)^{n-k}}$$

Differential Attacks

Rank Attacks

LLS Department of Commerce

For small field schemes, rank structure may be preserved. For big field schemes,

$$\left[\mathsf{H}_1 \; \mathsf{H}_2 \; \cdots \; \mathsf{H}_m\right] \left(\mathsf{M} \otimes \mathsf{I}_m\right) = \left[\mathsf{S}\mathsf{G}^{*0}\mathsf{S}^\top \; \cdots \; \mathsf{S}\mathsf{G}^{*(n-1)}\mathsf{S}^\top\right],$$

where H_i is the *i*th quadratic form of the hidden quadratic map.

The problem is

$$[P_1 \ P_2 \ \cdots \ P_m] = \left[\widetilde{\mathsf{H}}_1 \ \widetilde{\mathsf{H}}_2 \ \cdots \ \widetilde{\mathsf{H}}_m\right] (\mathsf{T} \otimes \mathsf{I}_m).$$

Lattice Attacks

LLS Department of Commerce

Let P be the Macaulay matrix of the public key P.

P is
$$m \times \binom{n+1}{2}$$
.

Consider

$$\begin{bmatrix} \frac{p}{q} \mathsf{I}_m & \mathsf{P} \\ 0 & q \mathsf{I}_{\binom{n+1}{2}} \end{bmatrix}.$$

Ray Perlner has a much better lattice-based attack. (Breaks parameters from paper.)

Recall that we can restrict $x_i \in \{-1, 0, 1\}$ and use much larger p and smaller q.

Use SQUARE

U.S. Department of Commerce

Most "standard" multivariate attacks can be used to break SQUARE.

Goal: Create weakest possible target to test the 2F construction.

Parameters and Perfomance in Article

Scheme	PK	pt	ct	Enc.(ms)	Dec.(ms)
ABC(2 ⁸ ,384,760)	54863KB	384B	760B	502	545
PCBM(149,414)	743KB	149b	414b	13	743
2FSQ (3, 6653, 81)	417KB	162b	129B	1.5	0.4
2FSQ (3, 8377, 91)	606KB	182b	148B	1.2	0.5
2FSQ (7, 130411, 69)	346KB	207b	147B	1.0	2.6
2FSQ (7, 145861, 73)	413KB	219b	157B	1.1	2.8

Performance of Secure Parameters

Slower, but still 30-40 times faster than any other multivariate decryption.

U.S. Department of Commerce Profile

Standards and Technology

- Small ciphertexts
- Large public keys
- Fairly slow decryption

Future Directions

- 1) More security analysis.
- 2) Examine 2F applied to other schemes.