Attack on SHealS and HealS: the Second Wave of GPST

Yi-Fu Lai
joint work with Steven D. Galbraith

University of Auckland
New Zealand
September @ PQCrypto2022

Roadmap

1. What's this work about?

- SIDH Key exchange
- GPST Adaptive Attack [AC:GPST16]
- A countermeasure for SIDH-type Schemes by Fouotsa and Petit [AC:FP21]

2. Quick Questions
3. Technical Overview

- First Bit Extraction
- Extraction of the maximal power of 2 divisor
- Next Bit Extraction

Preliminaries

Quick Questions

Technical Overview

- 8 ถิ

Content

Preliminaries

Quick Questions

Technical Overview

A Brief Intro/Setting for SIDH

- $p=2^{a} 3^{b}-1$ is a prime where $2^{a} \approx 3^{b}$.
- Elliptic curves: $E_{A} / \mathbb{F}_{p^{2}}: y^{2}=x^{3}+A x^{2}+x$.

A Brief Intro/Setting for SIDH

- $p=2^{a} 3^{b}-1$ is a prime where $2^{a} \approx 3^{b}$.
- Elliptic curves: $E_{A} / \mathbb{F}_{p^{2}}: y^{2}=x^{3}+A x^{2}+x$.
- An isogeny $\phi: E_{A} \rightarrow E_{B}$ is a morphism and also a group homomorphism, uniquely determined by the kernel and the image curve (up to isomorphism).
- For N not divisible by p,

A Brief Intro/Setting for SIDH

- $p=2^{a} 3^{b}-1$ is a prime where $2^{a} \approx 3^{b}$.
- Elliptic curves: $E_{A} / \mathbb{F}_{p^{2}}: y^{2}=x^{3}+A x^{2}+x$.
- An isogeny $\phi: E_{A} \rightarrow E_{B}$ is a morphism and also a group homomorphism, uniquely determined by the kernel and the image curve (up to isomorphism).
- For N not divisible by p,

$$
\begin{aligned}
E[N] & =\left\{P \in E\left(\overline{\mathbb{F}}_{p}\right) \mid[N] P=\mathbf{O}\right\} \\
& \cong \mathbb{Z}_{N} \times \mathbb{Z}_{N}
\end{aligned}
$$

SIDH Key Exchange

- $E\left[2^{a}\right] \cong \mathbb{Z}_{2^{a}} \times \mathbb{Z}_{2^{a}}$ with a basis $\left\{P_{2}, Q_{2}\right\}$.
- $E\left[3^{b}\right] \cong \mathbb{Z}_{3^{b}} \times \mathbb{Z}_{3^{b}}$ with a basis $\left\{P_{3}, Q_{3}\right\}$.
- Alice: $\mathrm{sk}_{A} \in\left[2^{a}\right]$
- Bob: $\mathrm{sk}_{B} \in\left[3^{b}\right]$
- $\operatorname{ker}\left(\phi_{A}\right)=\left\langle P_{2}+\mathrm{sk}_{A} Q_{2}\right\rangle$
- $\operatorname{ker}\left(\phi_{B}\right)=\left\langle P_{3}+\mathrm{sk}_{B} Q_{3}\right\rangle$

SIDH Key Exchange

- $E\left[2^{a}\right] \cong \mathbb{Z}_{2^{a}} \times \mathbb{Z}_{2^{a}}$ with a basis $\left\{P_{2}, Q_{2}\right\}$.
- $E\left[3^{b}\right] \cong \mathbb{Z}_{3^{b}} \times \mathbb{Z}_{3^{b}}$ with a basis $\left\{P_{3}, Q_{3}\right\}$.
- Alice: $\mathrm{sk}_{A} \in\left[2^{a}\right]$
- Bob: $\mathrm{sk}_{B} \in\left[3^{b}\right]$
- $\operatorname{ker}\left(\phi_{A}\right)=\left\langle P_{2}+\mathrm{sk}_{A} Q_{2}\right\rangle$
- $\operatorname{ker}\left(\phi_{B}\right)=\left\langle P_{3}+\mathrm{sk}_{B} Q_{3}\right\rangle$

SIDH Key Exchange

- $E\left[2^{a}\right] \cong \mathbb{Z}_{2^{a}} \times \mathbb{Z}_{2^{a}}$ with a basis $\left\{P_{2}, Q_{2}\right\}$.
- $E\left[3^{b}\right] \cong \mathbb{Z}_{3^{b}} \times \mathbb{Z}_{3^{b}}$ with a basis $\left\{P_{3}, Q_{3}\right\}$.
- Alice: $\mathrm{sk}_{A} \in\left[2^{a}\right]$
- Bob: $\mathrm{sk}_{B} \in\left[3^{b}\right]$
- $\operatorname{ker}\left(\phi_{A}\right)=\left\langle P_{2}+\mathrm{sk}_{A} Q_{2}\right\rangle$
- $\operatorname{ker}\left(\phi_{B}\right)=\left\langle P_{3}+\mathrm{sk}_{B} Q_{3}\right\rangle$

GPST Adaptive Attack

- (Modeling) Bob is the bad guy. Alice is an oracle on input $O_{\text {sk }_{A}}\left(E_{B}, P^{\prime}, Q^{\prime}, E_{A B}\right)$ and returns 1 iff

$$
\begin{aligned}
& E_{A B} \cong E_{B} /\left\langle P^{\prime}+\mathrm{sk}_{A} Q^{\prime}\right\rangle, \\
& e_{2^{a}}\left(P^{\prime}, Q^{\prime}\right)=e_{2^{a}}(P, Q)^{3 b} .
\end{aligned}
$$

GPST Adaptive Attack

- (Modeling) Bob is the bad guy. Alice is an oracle on input $O_{\mathrm{sk}_{A}}\left(E_{B}, P^{\prime}, Q^{\prime}, E_{A B}\right)$ and returns 1 iff

$$
\begin{aligned}
& E_{A B} \cong E_{B} /\left\langle P^{\prime}+\mathrm{sk}_{A} Q^{\prime}\right\rangle, \\
& e_{2^{a}}\left(P^{\prime}, Q^{\prime}\right)=e_{2^{a}}(P, Q)^{3 b} .
\end{aligned}
$$

- (Assumption) When $\left|G_{1}\right|,\left|G_{2}\right| \ll p$, with an overwhelming chance,

$$
E_{B} / G_{1} \cong E_{B} / G_{2} \Longleftrightarrow G_{1}=G_{2} .
$$

GPST Adaptive Attack

- (Modeling) Bob is the bad guy. Alice is an oracle on input $O_{\text {sk }_{A}}\left(E_{B}, P^{\prime}, Q^{\prime}, E_{A B}\right)$ and returns 1 iff

$$
\begin{aligned}
& E_{A B} \cong E_{B} /\left\langle P^{\prime}+\mathrm{sk}_{A} Q^{\prime}\right\rangle, \\
& e_{2^{a}}\left(P^{\prime}, Q^{\prime}\right)=e_{2^{a}}(P, Q)^{3 b} .
\end{aligned}
$$

- (Assumption) When $\left|G_{1}\right|,\left|G_{2}\right| \ll p$, with an overwhelming chance,

$$
E_{B} / G_{1} \cong E_{B} / G_{2} \Longleftrightarrow G_{1}=G_{2} .
$$

- Hence, on input $O_{\text {sk }_{A}}\left(E_{B}, P^{\prime}, Q^{\prime}, E_{A B}\right)$, Alice returns 1 iff

$$
\begin{aligned}
\left\langle P+\mathrm{sk}_{A} Q\right\rangle & =\left\langle P^{\prime}+\mathrm{sk}_{A} Q^{\prime}\right\rangle \\
e_{2^{a}}\left(P^{\prime}, Q^{\prime}\right) & =e_{2^{a}}(P, Q)^{3 b}
\end{aligned}
$$

GPST Adaptive Attack

1. Bob honestly computes $E_{B}, P=\phi_{B}\left(P_{2}\right), Q=\phi_{B}\left(Q_{2}\right), E_{A B}$.
2. Let $P^{\prime}=P, Q^{\prime}=2^{a-1} P+Q$. Then

$$
O_{\mathrm{sk}_{A}}\left(E_{B}, P^{\prime}, Q^{\prime}, E_{A B}\right) \rightarrow 1 \Longleftrightarrow s k_{A}=0 \bmod 2
$$

\langle Sketch of Pf \rangle : Firstly,

$$
e_{2^{a}}\left(P^{\prime}, Q^{\prime}\right)=e_{2^{a}}(P, Q)=e_{2^{a}}(P, Q)^{3 b}
$$

Claim

$$
\begin{aligned}
&\left\langle P^{\prime}+\mathrm{sk}_{A} Q^{\prime}\right\rangle=\left\langle P+\mathrm{sk}_{A} Q\right\rangle \Longleftrightarrow \text { sk }_{A}: \text { even } \\
&\left\langle P^{\prime}+\mathrm{sk}_{A} Q^{\prime}\right\rangle=\left\langle P+\mathrm{sk}_{A}\left(2^{a-1} P+Q\right)\right\rangle \\
&=\left\langle P+\mathrm{sk}_{A} Q+\mathrm{sk}_{A}\left(2^{a-1} P\right)\right\rangle \\
&=\left\langle P+\mathrm{sk}_{A} Q\right\rangle \Longleftrightarrow \text { sk }_{A}: \text { even. }\left(2^{a} P=\mathbf{O}\right)
\end{aligned}
$$

The Concept of GPST Attack

Take $a=3$ for instance: $\langle P, Q\rangle=E[8] \cong \mathbb{Z}_{8} \times \mathbb{Z}_{8}$
$\begin{array}{cccc}P & Q & P & Q \\ \langle(001,000) & \left.+(000,001) \text { sk }_{A}\right\rangle & \text { (The correct kernel.) }\end{array}$

The Concept of GPST Attack

Take $a=3$ for instance: $\langle P, Q\rangle=E[8] \cong \mathbb{Z}_{8} \times \mathbb{Z}_{8}$
$\begin{array}{ccc}P & Q & P \\ \left\langle(001,000)+(000,001) \mathrm{sk}_{A}\right\rangle & \text { (The correct kernel.) } \\ \left\langle(001,000)+(100,001) \mathrm{sk}_{A}\right\rangle & \text { (The manipulated input.) }\end{array}$

The Concept of GPST Attack

Take $a=3$ for instance: $\langle P, Q\rangle=E[8] \cong \mathbb{Z}_{8} \times \mathbb{Z}_{8}$

$$
\begin{array}{ccc}
P & Q & P \\
\left\langle(001,000)+(000,001) \mathrm{sk}_{A}\right\rangle & \text { (The correct kernel.) } \\
\left\langle(001,000)+(100,001) \mathrm{sk}_{A}\right\rangle & \text { (The manipulated input.) } \\
=\left\langle(001,000)+(000,001) \mathrm{sk}_{A}+(100,000) \mathrm{sk}_{A}\right\rangle
\end{array}
$$

The Concept of GPST Attack

Take $a=3$ for instance: $\langle P, Q\rangle=E[8] \cong \mathbb{Z}_{8} \times \mathbb{Z}_{8}$
$\begin{array}{cccc}P & Q & P & Q \\ \langle(001,000) & \left.+(000,001) \text { sk }_{A}\right\rangle & \text { (The correct kernel.) }\end{array}$
$\left\langle(001,000)+(100,001)\right.$ sk $\left._{A}\right\rangle \quad$ (The manipulated input.)
$=\left\langle(001,000)+(000,001) \mathrm{sk}_{A}+(100,000) \mathrm{sk}_{A}\right\rangle$
\Rightarrow Get lsb sk ${ }_{0}$.

The Concept of GPST Attack

Take $a=3$ for instance: $\langle P, Q\rangle=E[8] \cong \mathbb{Z}_{8} \times \mathbb{Z}_{8}$
$\begin{array}{cccc}P & Q & P & Q \\ \langle(001,000) & \left.+(000,001) \text { sk }_{A}\right\rangle & \text { (The correct kernel.) }\end{array}$
$\left\langle(001,000)+(100,001) \mathrm{sk}_{A}\right\rangle \quad$ (The manipulated input.)
$=\left\langle(001,000)+(000,001) \mathrm{sk}_{A}+(100,000) \mathrm{sk}_{A}\right\rangle$
\Rightarrow Get Isb sk ${ }_{0}$.
$\left\langle\left(0-\right.\right.$ sk $\left._{0} 1,000\right)+(010,001)$ sk $\left._{A}\right\rangle \quad$ (The manipulated input.)

The Concept of GPST Attack

Take $a=3$ for instance: $\langle P, Q\rangle=E[8] \cong \mathbb{Z}_{8} \times \mathbb{Z}_{8}$

P	Q	P	Q
$\langle(001,000)$	$+(000,001)$ sk $\left._{A}\right\rangle$	(The correct kernel.)	

$\left\langle(001,000)+(100,001) \mathrm{sk}_{A}\right\rangle \quad$ (The manipulated input.)
$=\left\langle(001,000)+(000,001) \mathrm{sk}_{A}+(100,000) \mathrm{sk}_{A}\right\rangle$
\Rightarrow Get Isb sk ${ }_{0}$.
$\left\langle\left(0-\right.\right.$ sk $\left._{0} 1,000\right)+(010,001)$ sk $\left._{A}\right\rangle \quad$ (The manipulated input.)
$=\left\langle(001,000)+(000,001)\right.$ sk $_{A}+(010,000)$ sk $_{A}+\left(0-\right.$ sk $\left.\left._{0} 0,000\right)\right\rangle$.

The Concept of GPST Attack

Take $a=3$ for instance: $\langle P, Q\rangle=E[8] \cong \mathbb{Z}_{8} \times \mathbb{Z}_{8}$

P	Q	P	Q
$\langle(001,000)$	$+(000,001)$ sk $\left._{A}\right\rangle$	(The correct kernel.)	

$\left\langle(001,000)+(100,001)\right.$ sk $\left._{A}\right\rangle \quad$ (The manipulated input.)
$=\left\langle(001,000)+(000,001) \mathrm{sk}_{A}+(100,000) \mathrm{sk}_{A}\right\rangle$
\Rightarrow Get lsb sk ${ }_{0}$.
$\left\langle\left(0-\right.\right.$ sk $\left._{0} 1,000\right)+(010,001)$ sk $\left._{A}\right\rangle \quad$ (The manipulated input.)
$=\left\langle(001,000)+(000,001)\right.$ sk $_{A}+(010,000)$ sk $_{A}+\left(0-\right.$ sk $\left.\left._{0} 0,000\right)\right\rangle$.
$=\left\langle(001,000)+(000,001)\right.$ sk $\left._{A}+\left(\mathrm{sk}_{1} \mathrm{sk}_{0} 0,000\right)+\left(0-\mathrm{sk}_{0} 0,000\right)\right\rangle$.

The Concept of GPST Attack

Take $a=3$ for instance: $\langle P, Q\rangle=E[8] \cong \mathbb{Z}_{8} \times \mathbb{Z}_{8}$

P	Q	P	Q
$\langle(001,000)$	$+(000,001)$ sk $\left._{A}\right\rangle$	(The correct kernel.)	

$\left\langle(001,000)+(100,001)\right.$ sk $\left._{A}\right\rangle \quad$ (The manipulated input.)
$=\left\langle(001,000)+(000,001) \mathrm{sk}_{A}+(100,000) \mathrm{sk}_{A}\right\rangle$
\Rightarrow Get lsb sk ${ }_{0}$.
$\left\langle\left(0-\right.\right.$ sk $\left._{0} 1,000\right)+(010,001)$ sk $\left._{A}\right\rangle \quad$ (The manipulated input.)
$=\left\langle(001,000)+(000,001)\right.$ sk $_{A}+(010,000)$ sk $_{A}+\left(0-\right.$ sk $\left.\left._{0} 0,000\right)\right\rangle$.
$=\left\langle(001,000)+(000,001)\right.$ sk $_{A}+\left(\right.$ sk $_{1}$ sk $\left.\left._{0} 0,000\right)+\left(0-\mathrm{sk}_{0} 0,000\right)\right\rangle$.
$=\left\langle(001,000)+(000,001)\right.$ sk $\left._{A}+\left(\mathrm{sk}_{1} 00,000\right)\right\rangle$.

The Concept of GPST Attack

Take $a=3$ for instance: $\langle P, Q\rangle=E[8] \cong \mathbb{Z}_{8} \times \mathbb{Z}_{8}$

P	Q	P	Q
$\left\langle(001,000)+(000,001) \mathrm{sk}_{A}\right\rangle$			

$\left\langle(001,000)+(100,001)\right.$ sk $\left._{A}\right\rangle \quad$ (The manipulated input.)
$=\left\langle(001,000)+(000,001) \mathrm{sk}_{A}+(100,000) \mathrm{sk}_{A}\right\rangle$
\Rightarrow Get lsb sk ${ }_{0}$.
$\left\langle\left(0-\right.\right.$ sk $\left._{0} 1,000\right)+(010,001)$ sk $\left._{A}\right\rangle \quad$ (The manipulated input.)
$=\left\langle(001,000)+(000,001)\right.$ sk $_{A}+(010,000)$ sk $_{A}+\left(0-\right.$ sk $\left.\left._{0} 0,000\right)\right\rangle$.
$=\left\langle(001,000)+(000,001)\right.$ sk $_{A}+\left(\right.$ sk $_{1}$ sk $\left.\left._{0} 0,000\right)+\left(0-\mathrm{sk}_{0} 0,000\right)\right\rangle$.
$=\left\langle(001,000)+(000,001)\right.$ sk $\left._{A}+\left(\mathrm{sk}_{1} 00,000\right)\right\rangle$.
\Rightarrow Get the second Isb sk ${ }_{1}$.
(Rmk: one has to scale the coefficient to have pass the pairing check.)

Is this Bad?

- This can be easily prevented by using the FO-transform-type method: Bob always uses an ephemeral secret key and reveal it to Alice.
- This results in having static-ephemeral only cryptosystem.

Is this Bad?

- This can be easily prevented by using the FO-transform-type method: Bob always uses an ephemeral secret key and reveal it to Alice.
- This results in having static-ephemeral only cryptosystem.
- Alternative: use either ZK proof systems or the multiple-public-keys techniques e.g.[UJ:20, SAC:AJL17].

Is this Bad?

- This can be easily prevented by using the FO-transform-type method: Bob always uses an ephemeral secret key and reveal it to Alice.
- This results in having static-ephemeral only cryptosystem.
- Alternative: use either ZK proof systems or the multiple-public-keys techniques e.g.[UJ:20, SAC:AJL17].
- This results in the number of isogeny compuations non-constant in λ.

Is this Bad?

- This can be easily prevented by using the FO-transform-type method: Bob always uses an ephemeral secret key and reveal it to Alice.
- This results in having static-ephemeral only cryptosystem.
- Alternative: use either ZK proof systems or the multiple-public-keys techniques e.g.[UJ:20, SAC:AJL17].
- This results in the number of isogeny compuations non-constant in λ.
- [AC:FP21] gives an interactive proof system for the correctness of the public key.

A Proposed Countermeasure

- A countermeasure proposed by Fouotsa and Petit in [AC:FP21].
- The high-level idea is to use commutativity of isogenies [Leo20].

- If Bob manipulates the points in his public key, then the final evaluation will not match.

What Did We Do?

- We notice the flaw in the proof of the proof system in [AC:FP21].
- Based on the flaw, we derive a variant of GPST attack that adaptively recovers users' secret keys again.

What Did We Do?

- We notice the flaw in the proof of the proof system in [AC:FP21].
- Based on the flaw, we derive a variant of GPST attack that adaptively recovers users' secret keys again.
- The attack is as efficient and effective as the GPST attack.

Content

Preliminaries

Quick Questions

Technical Overview

Quick Questions

- Can the Castryck-Decru (passive) attack (2022/975) apply to this scheme?
- Yes, but not in polynomial-time theoretically by the current version (17 Sep 2022) due to the unknown endomorphism ring.

Quick Questions

- Can the Castryck-Decru (passive) attack (2022/975) apply to this scheme?
- Yes, but not in polynomial-time theoretically by the current version (17 Sep 2022) due to the unknown endomorphism ring.
- How about the Robert (passive) attack (2022/1038)?
- Yes, and in polynomial-time theoretically.

Quick Questions

- Can the Castryck-Decru (passive) attack (2022/975) apply to this scheme?
- Yes, but not in polynomial-time theoretically by the current version (17 Sep 2022) due to the unknown endomorphism ring.
- How about the Robert (passive) attack (2022/1038)?
- Yes, and in polynomial-time theoretically.
- What's the salvage value of this attack?
- No practical. Only theoretical values.

Content

Preliminaries

Quick Questions

Technical Overview

HealSIDH and Its Key Validation Mechanism

- $\left\{P_{2}, Q_{2}\right\}$: basis for $E\left[2^{2 a}\right]$
- Alice: $\mathrm{sk}_{A} \in\left[2^{a}\right]$
- $\operatorname{ker}\left(\phi_{A}\right)=\left\langle 2^{a} P_{2}+\operatorname{sk}_{A} 2^{a} Q_{2}\right\rangle$
- $\left\{P_{3}, Q_{3}\right\}$: basis for $E\left[3^{2 b}\right]$
- Bob: $\mathrm{sk}_{B} \in\left[3^{b}\right]$
- $\operatorname{ker}\left(\phi_{B}\right)=\left\langle 3^{b} P_{3}+\operatorname{sk}_{B} 3^{b} Q_{3}\right\rangle$

Modeling

- Say Bob is the bad guy; Alice is the victim of the attack.
- Say Alice is an oracle on input ($E_{B}, R_{a}, S_{a}, R_{a b}, S_{a b}$) returning 1 iff the following three equations holds:

$$
\begin{aligned}
e_{4^{a}}\left(R_{a}, S_{a}\right) & =e_{4^{a}}\left(P_{2}, Q_{2}\right)^{3^{b}}, \\
\phi_{A}^{\prime}\left(R_{a}\right) & =[w] R_{a b}+[x] S_{a b} \in E_{B A}, \\
\phi_{A}^{\prime}\left(S_{a}\right) & =[y] R_{a b}+[z] S_{a b} \in E_{B A},
\end{aligned}
$$

(Pairing Eq)
(Eq. 1)
(Eq. 2)
where

$$
\begin{gathered}
\phi_{A}^{\prime}: E_{B} \rightarrow E_{B A} \\
\operatorname{ker}\left(\phi_{A}^{\prime}\right)=\left\langle\left[2^{a}\right] R_{a}+\left[\mathrm{sk}_{A} 2^{a}\right] S_{a}\right\rangle \subset E_{B} .
\end{gathered}
$$

(Kernel Eq)

Manipulate R_{a}, S_{a}

- Say Alice is an oracle on input ($E_{B}, R_{a}, S_{a}, R_{a b}, S_{a b}$) returning 1 iff the following three equations holds.
- We will only manipulate $\ldots\left(E_{B}, R_{a}, S_{a}, R_{a b}, S_{a b}\right)$

$$
\begin{aligned}
e_{4^{a}}\left(R_{a}, S_{a}\right) & =e_{4^{a}}\left(P_{2}, Q_{2}\right)^{3^{b}}, \\
\phi_{A}^{\prime}\left(R_{a}\right) & =[w] R_{a b}+[x] S_{a b} \in E_{B A}, \\
\phi_{A}^{\prime}\left(S_{a}\right) & =[y] R_{a b}+[z] S_{a b} \in E_{B A},
\end{aligned}
$$

(Pairing Eq)
(Eq. 1)
(Eq. 2)
where

$$
\begin{gathered}
\phi_{A}^{\prime}: E_{B} \rightarrow E_{B A} \\
\operatorname{ker}\left(\phi_{A}^{\prime}\right)=\left\langle\left[2^{a}\right] R_{a}+\left[\mathrm{sk}_{A} 2^{a}\right] S_{a}\right\rangle \subset E_{B} .
\end{gathered}
$$

(Kernel Eq)

Lemmata

1. $\left\langle R_{a}, S_{a}\right\rangle=E_{B}\left[2^{2 a}\right]$.

Lemmata

1. $\left\langle R_{a}, S_{a}\right\rangle=E_{B}\left[2^{2 a}\right]$.
2. Recall that

$$
\begin{aligned}
\phi_{A}^{\prime}\left(R_{a}\right) & =[w] R_{a b}+[x] S_{a b} \in E_{B A}, \\
\phi_{A}^{\prime}\left(S_{a}\right) & =[y] R_{a b}+[z] S_{a b} \in E_{B A},
\end{aligned}
$$

Lemmata

1. $\left\langle R_{a}, S_{a}\right\rangle=E_{B}\left[2^{2 a}\right]$.
2. Recall that

$$
\begin{aligned}
\phi_{A}^{\prime}\left(R_{a}\right) & =[w] R_{a b}+[x] S_{a b} \in E_{B A}, \\
\phi_{A}^{\prime}\left(S_{a}\right) & =[y] R_{a b}+[z] S_{a b} \in E_{B A},
\end{aligned}
$$

we can prove that

$$
w+\mathrm{sk}_{A} y=x+\mathrm{sk}_{A} z=0 \quad \bmod 2^{a}
$$

$\left(w, x, y, z \in\left[2^{2 a}\right], \mathrm{sk}_{A} \in\left[2^{a}\right]\right)$.

Lemmata

1. $\left\langle R_{a}, S_{a}\right\rangle=E_{B}\left[2^{2 a}\right]$.
2. Recall that

$$
\begin{aligned}
\phi_{A}^{\prime}\left(R_{a}\right) & =[w] R_{a b}+[x] S_{a b} \in E_{B A}, \\
\phi_{A}^{\prime}\left(S_{a}\right) & =[y] R_{a b}+[z] S_{a b} \in E_{B A},
\end{aligned}
$$

we can prove that

$$
w+\mathrm{sk}_{A} y=x+\mathrm{sk}_{A} z=0 \quad \bmod 2^{a}
$$

$\left(w, x, y, z \in\left[2^{2 a}\right], \mathrm{sk}_{A} \in\left[2^{a}\right]\right)$.
\Rightarrow Information of sk_{A} is hidden in the lower bits of w, x, y, z.

The First Bit Extraction

Recall: $\phi_{A}^{\prime}\binom{R_{a}}{S_{a}}=\left(\begin{array}{ll}w & x \\ y & z\end{array}\right)\binom{R_{a b}}{S_{a b}}$

The First Bit Extraction

Recall: $\phi_{A}^{\prime}\binom{R_{a}}{S_{a}}=\left(\begin{array}{ll}w & x \\ y & z\end{array}\right)\binom{R_{a b}}{S_{a b}}$

- Find special matrices $\mathbf{P}_{1}, \mathbf{P}_{2}$ s.t. $\mathbf{P}_{1}\left(\begin{array}{ll}w & x \\ y & z\end{array}\right)=\left(\begin{array}{ll}w & x \\ y & z\end{array}\right) \mathbf{P}_{2}$ conditioned on parity of w, x, y, z.
- Also, $\operatorname{det}\left(\mathbf{P}_{1}\right)=1$. (For the pairing eq.)

The First Bit Extraction

Recall: $\phi_{A}^{\prime}\binom{R_{a}}{S_{a}}=\left(\begin{array}{ll}w & x \\ y & z\end{array}\right)\binom{R_{a b}}{S_{a b}}$

- Find special matrices $\mathbf{P}_{1}, \mathbf{P}_{2}$ s.t. $\mathbf{P}_{1}\left(\begin{array}{ll}w & x \\ y & z\end{array}\right)=\left(\begin{array}{ll}w & x \\ y & z\end{array}\right) \mathbf{P}_{2}$ conditioned on parity of w, x, y, z.
- Also, $\operatorname{det}\left(\mathbf{P}_{1}\right)=1$. (For the pairing eq.)
- With such a pair, invoking the oracle by $\left(E_{B}, R_{a}^{\prime}, S_{a}^{\prime}, R_{a b}^{\prime}, S_{a b}^{\prime}\right)$ where

$$
\binom{R_{a}^{\prime}}{S_{a}^{\prime}}=\mathbf{P}_{1}\binom{R_{a}}{S_{a}},\binom{R_{a b}^{\prime}}{S_{a b}^{\prime}}=\mathbf{P}_{2}\binom{R_{a b}}{S_{a b}} .
$$

- It returns 1 iff the the commutativity condition holds.

The First Bit Extraction

We take

$$
\mathbf{P}_{1}=\left(\begin{array}{cc}
1 & 0 \\
2^{2 a-1} & 1
\end{array}\right), \mathbf{P}_{2}=\mathbf{I}_{2} .
$$

The commutativity holds iff $w=x=0 \bmod 2$.

The First Bit Extraction

We take

$$
\mathbf{P}_{1}=\left(\begin{array}{cc}
1 & 0 \\
2^{2 a-1} & 1
\end{array}\right), \mathbf{P}_{2}=\mathbf{I}_{2} .
$$

The commutativity holds iff $w=x=0 \bmod 2$.

Recall $w+\mathrm{sk}_{A} y=x+\mathrm{sk}_{A} z=0 \bmod 2^{a}\left(w, x, y, z \in\left[2^{2 a}\right], \mathrm{sk}_{A} \in\left[2^{a}\right]\right)$.

- We can prove that y, z cannot be both even.
- The commutativity holds iff $\mathrm{sk}_{A}=0 \bmod 2$.
- The first bit of $\mathrm{sk}_{A}=0$ if and only if the oracle returns 1 .
- The Isb of sk_{A} is extracted!

Recovering Higher Bits (High-level Idea)

Base on $w+\mathrm{sk}_{A} y=x+\mathrm{sk}_{A} z=0 \bmod 2^{a}$, we can write

$$
\phi_{A}^{\prime}\binom{R_{a}}{S_{a}}=\left(\begin{array}{ccc}
-\mathrm{sk}_{A} y & \bmod 2^{a}+* & -\mathrm{sk}_{A} z \\
y & \bmod 2^{a}+* \\
z
\end{array}\right)\binom{R_{a b}}{S_{a b}}
$$

Recovering Higher Bits (High-level Idea)

Base on $w+\mathrm{sk}_{A} y=x+\mathrm{sk}_{A} z=0 \bmod 2^{a}$, we can write

$$
\phi_{A}^{\prime}\binom{R_{a}}{S_{a}}=\left(\begin{array}{ccc}
-\mathrm{sk}_{A} y & \bmod 2^{a}+* & -\mathrm{sk}_{A} z \\
y & \bmod 2^{a}+* \\
y
\end{array}\right)\binom{R_{a b}}{S_{a b}}
$$

- Use the homomorphism ϕ_{A}^{\prime} to launch GPST-type attack:

$$
R_{a}^{\prime}=\left[1+2^{2 a-2}\right] R_{a}+\left[\mathrm{sk}_{0} 2^{2 a-2}\right] S_{a}
$$

where sk_{0} is $\mathrm{sk}_{A} \bmod 2$, just extracted.

- (Eq1) $\phi_{A}^{\prime}\left(R_{a}^{\prime}\right)=\phi_{A}^{\prime}\left(R_{a}\right) \Longleftrightarrow \mathrm{sk}_{1}=0$.

Recovering Higher Bits (High-level Idea)

Base on $w+\mathrm{sk}_{A} y=x+\mathrm{sk}_{A} z=0 \bmod 2^{a}$, we can write

$$
\phi_{A}^{\prime}\binom{R_{a}}{S_{a}}=\left(\begin{array}{ccc}
-\mathrm{sk}_{A} y & \bmod 2^{a}+* & -\mathrm{sk}_{A} z \\
y & \bmod 2^{a}+* \\
y
\end{array}\right)\binom{R_{a b}}{S_{a b}}
$$

- Use the homomorphism ϕ_{A}^{\prime} to launch GPST-type attack:

$$
R_{a}^{\prime}=\left[1+2^{2 a-2}\right] R_{a}+\left[\mathrm{sk}_{0} 2^{2 a-2}\right] S_{a}
$$

where sk_{0} is $\mathrm{sk}_{A} \bmod 2$, just extracted.

- (Eq1) $\phi_{A}^{\prime}\left(R_{a}^{\prime}\right)=\phi_{A}^{\prime}\left(R_{a}\right) \Longleftrightarrow \mathrm{sk}_{1}=0$.
- (Eq2) $\phi_{A}^{\prime}\left(S_{a}\right)=\phi_{A}^{\prime}\left(S_{a}\right)$ always.

Recovering Higher Bits (High-level Idea)

Base on $w+\mathrm{sk}_{A} y=x+\mathrm{sk}_{A} z=0 \bmod 2^{a}$, we can write

$$
\phi_{A}^{\prime}\binom{R_{a}}{S_{a}}=\left(\begin{array}{ccc}
-\mathrm{sk}_{A} y & \bmod 2^{a}+* & -\mathrm{sk}_{A} z \\
y & \bmod 2^{a}+* \\
z
\end{array}\right)\binom{R_{a b}}{S_{a b}}
$$

- Use the homomorphism ϕ_{A}^{\prime} to launch GPST-type attack:

$$
R_{a}^{\prime}=\left[1+2^{2 a-2}\right] R_{a}+\left[\mathrm{sk}_{0} 2^{2 a-2}\right] S_{a}
$$

where sk_{0} is $\mathrm{sk}_{A} \bmod 2$, just extracted.

- (Eq1) $\phi_{A}^{\prime}\left(R_{a}^{\prime}\right)=\phi_{A}^{\prime}\left(R_{a}\right) \Longleftrightarrow \mathrm{sk}_{1}=0$.
- (Eq2) $\phi_{A}^{\prime}\left(S_{a}\right)=\phi_{A}^{\prime}\left(S_{a}\right)$ always.
- (KernelEq) $\operatorname{ker}\left(\phi_{A}^{\prime}\right)=\left\langle\left[2^{a}\right] R_{a}+\left[\mathrm{sk}_{A} 2^{a}\right] S_{a}\right\rangle=\left\langle\left[2^{a}\right] R_{a}^{\prime}+\left[\mathrm{sk}_{A} 2^{a}\right] S_{a}\right\rangle$

Recovering Higher Bits (High-level Idea)

Base on $w+\mathrm{sk}_{A} y=x+\mathrm{sk}_{A} z=0 \bmod 2^{a}$, we can write

$$
\phi_{A}^{\prime}\binom{R_{a}}{S_{a}}=\left(\begin{array}{ccc}
-\mathrm{sk}_{A} y & \bmod 2^{a}+* & -\mathrm{sk}_{A} z \\
y & \bmod 2^{a}+* \\
z
\end{array}\right)\binom{R_{a b}}{S_{a b}}
$$

- Use the homomorphism ϕ_{A}^{\prime} to launch GPST-type attack:

$$
R_{a}^{\prime}=\left[1+2^{2 a-2}\right] R_{a}+\left[\mathrm{sk}_{0} 2^{2 a-2}\right] S_{a}
$$

where sk_{0} is $\mathrm{sk}_{A} \bmod 2$, just extracted.

- (Eq1) $\phi_{A}^{\prime}\left(R_{a}^{\prime}\right)=\phi_{A}^{\prime}\left(R_{a}\right) \Longleftrightarrow \mathrm{sk}_{1}=0$.
- (Eq2) $\phi_{A}^{\prime}\left(S_{a}\right)=\phi_{A}^{\prime}\left(S_{a}\right)$ always.
- (KernelEq) $\operatorname{ker}\left(\phi_{A}^{\prime}\right)=\left\langle\left[2^{a}\right] R_{a}+\left[\mathrm{sk}_{A} 2^{a}\right] S_{a}\right\rangle=\left\langle\left[2^{a}\right] R_{a}^{\prime}+\left[\mathrm{sk}_{A} 2^{a}\right] S_{a}\right\rangle$
- (PairingEq) But $e_{4^{a}}\left(R_{a}^{\prime}, S_{a}\right) \neq e_{4^{a}}\left(R_{a}, S_{a}\right)=e_{4^{a}}\left(P_{2}, Q_{2}\right)^{3^{b}}$) (The scaling method wont work due to the Eq 2 \& Kernel Eq.)

Recovering Higher Bits (High-level Idea)

Base on $w+\mathrm{sk}_{A} y=x+\mathrm{sk}_{A} z=0 \bmod 2^{a}$, we can write

$$
\phi_{A}^{\prime}\binom{R_{a}}{S_{a}}=\left(\begin{array}{ccc}
-\mathrm{sk}_{A} y & \bmod 2^{a}+* & -\mathrm{sk}_{A} z \\
y & \bmod 2^{a}+* \\
y
\end{array}\right)\binom{R_{a b}}{S_{a b}}
$$

- Use the homomorphism ϕ_{A}^{\prime} to launch GPST-type attack:

$$
R_{a}^{\prime}=\left[1+2^{2 a-2}\right] R_{a}+\left[\mathrm{sk}_{0} 2^{2 a-2}\right] S_{a}
$$

where sk_{0} is $\mathrm{sk}_{A} \bmod 2$, just extracted.

- (Eq1) $\phi_{A}^{\prime}\left(R_{a}^{\prime}\right)=\phi_{A}^{\prime}\left(R_{a}\right) \Longleftrightarrow \mathrm{sk}_{1}=0$.
- (Eq2) $\phi_{A}^{\prime}\left(S_{a}\right)=\phi_{A}^{\prime}\left(S_{a}\right)$ always.
- (KernelEq) $\operatorname{ker}\left(\phi_{A}^{\prime}\right)=\left\langle\left[2^{a}\right] R_{a}+\left[\mathrm{sk}_{A} 2^{a}\right] S_{a}\right\rangle=\left\langle\left[2^{a}\right] R_{a}^{\prime}+\left[\mathrm{sk}_{A} 2^{a}\right] S_{a}\right\rangle$
- (PairingEq) But $e_{4^{a}}\left(R_{a}^{\prime}, S_{a}\right) \neq e_{4^{a}}\left(R_{a}, S_{a}\right)=e_{4^{a}}\left(P_{2}, Q_{2}\right)^{3^{b}}$) (The scaling method won't work due to the Eq 2 \& Kernel Eq.)
- The oracle taking as input ($E_{B}, R_{a}^{\prime}, S_{a}, R_{a b}, S_{a b}$) will return 0 . :)

Recovering the Higher Bits (High-level Idea)

$$
\phi_{A}^{\prime}\binom{R_{a}}{S_{a}}=\left(\begin{array}{cll}
w & x \\
-\mathrm{sk}_{A}^{-1} w & \bmod 2^{a}+* & -\mathrm{sk}_{A}^{-1} x \\
\bmod 2^{a}+*
\end{array}\right)\binom{R_{a b}}{S_{a b}}
$$

Assume sk_{A} is invertible modulo 2^{a}, then

$$
-w \mathrm{sk}_{A}^{-1}=y,-x \mathrm{sk}_{A}^{-1}=z \quad \bmod 2^{a}
$$

Recovering the Higher Bits (High-level Idea)

$$
\phi_{A}^{\prime}\binom{R_{a}}{S_{a}}=\left(\begin{array}{cll}
& w & x \\
-\mathrm{sk}_{A}^{-1} w & \bmod 2^{a}+* & -\mathrm{sk}_{A}^{-1} x
\end{array} \bmod 2^{a}+*\right)\binom{R_{a b}}{S_{a b}}
$$

Assume sk_{A} is invertible modulo 2^{a}, then

$$
-w \mathrm{sk}_{A}^{-1}=y,-x \mathrm{sk}_{A}^{-1}=z \quad \bmod 2^{a}
$$

- $R_{a}^{\prime}=\left[1+2^{2 a-2}\right] R_{a}+\left[\mathrm{sk}_{0} 2^{2 a-2}\right] S_{a}$,
- $S_{a}^{\prime}=\left[\mathrm{sk}_{0}^{-1} 2^{2 a-2}\right] R_{a}+\left[1-2^{2 a-2}\right] S_{a}$,

Recovering the Higher Bits (High-level Idea)

$$
\phi_{A}^{\prime}\binom{R_{a}}{S_{a}}=\left(\begin{array}{cll}
& w & x \\
-\mathrm{sk}_{A}^{-1} w & \bmod 2^{a}+* & -\mathrm{sk}_{A}^{-1} x
\end{array} \bmod 2^{a}+*\right)\binom{R_{a b}}{S_{a b}}
$$

Assume sk_{A} is invertible modulo 2^{a}, then

$$
-w \mathrm{sk}_{A}^{-1}=y,-x \mathrm{sk}_{A}^{-1}=z \quad \bmod 2^{a}
$$

- $R_{a}^{\prime}=\left[1+2^{2 a-2}\right] R_{a}+\left[\mathrm{sk}_{0} 2^{2 a-2}\right] S_{a}$,
- $S_{a}^{\prime}=\left[\mathrm{sk}_{0}^{-1} 2^{2 a-2}\right] R_{a}+\left[1-2^{2 a-2}\right] S_{a}$,
- (Eq1) $\phi_{A}^{\prime}\left(R_{a}^{\prime}\right)=\phi_{A}^{\prime}\left(R_{a}\right) \Longleftrightarrow \mathrm{sk}_{1}=0$.

Recovering the Higher Bits (High-level Idea)

$$
\phi_{A}^{\prime}\binom{R_{a}}{S_{a}}=\left(\begin{array}{cll}
& w & x \\
-\mathrm{sk}_{A}^{-1} w & \bmod 2^{a}+* & -\mathrm{sk}_{A}^{-1} x
\end{array} \bmod 2^{a}+*\right)\binom{R_{a b}}{S_{a b}}
$$

Assume sk_{A} is invertible modulo 2^{a}, then

$$
-w \mathrm{sk}_{A}^{-1}=y,-x \mathrm{sk}_{A}^{-1}=z \quad \bmod 2^{a}
$$

- $R_{a}^{\prime}=\left[1+2^{2 a-2}\right] R_{a}+\left[\mathrm{sk}_{0} 2^{2 a-2}\right] S_{a}$,
- $S_{a}^{\prime}=\left[\mathrm{sk}_{0}^{-1} 2^{2 a-2}\right] R_{a}+\left[1-2^{2 a-2}\right] S_{a}$,
- (Eq1) $\phi_{A}^{\prime}\left(R_{a}^{\prime}\right)=\phi_{A}^{\prime}\left(R_{a}\right) \Longleftrightarrow \mathrm{sk}_{1}=0$.
- (Eq2) $\phi_{A}^{\prime}\left(S_{a}^{\prime}\right)=\phi_{A}^{\prime}\left(S_{a}\right) \Longleftrightarrow\left(\mathrm{sk}_{A}\right)_{1}^{-1}=0 \Longleftrightarrow \mathrm{sk}_{1}=0$.

Recovering the Higher Bits (High-level Idea)

$$
\phi_{A}^{\prime}\binom{R_{a}}{S_{a}}=\left(\begin{array}{cll}
& w & x \\
-\mathrm{sk}_{A}^{-1} w & \bmod 2^{a}+* & -\mathrm{sk}_{A}^{-1} x
\end{array} \bmod 2^{a}+*\right)\binom{R_{a b}}{S_{a b}}
$$

Assume sk_{A} is invertible modulo 2^{a}, then

$$
-w \mathrm{sk}_{A}^{-1}=y,-x \mathrm{sk}_{A}^{-1}=z \quad \bmod 2^{a}
$$

- $R_{a}^{\prime}=\left[1+2^{2 a-2}\right] R_{a}+\left[\mathrm{sk}_{0} 2^{2 a-2}\right] S_{a}$,
- $S_{a}^{\prime}=\left[\mathrm{sk}_{0}^{-1} 2^{2 a-2}\right] R_{a}+\left[1-2^{2 a-2}\right] S_{a}$,
- (Eq1) $\phi_{A}^{\prime}\left(R_{a}^{\prime}\right)=\phi_{A}^{\prime}\left(R_{a}\right) \Longleftrightarrow \mathrm{sk}_{1}=0$.
- (Eq2) $\phi_{A}^{\prime}\left(S_{a}^{\prime}\right)=\phi_{A}^{\prime}\left(S_{a}\right) \Longleftrightarrow\left(\mathrm{sk}_{A}\right)_{1}^{-1}=0 \Longleftrightarrow \mathrm{sk}_{1}=0$.
- (PairingEq) And $e_{4^{a}}\left(R_{a}^{\prime}, S_{a}^{\prime}\right)=e_{4^{a}}\left(P_{2}, Q_{2}\right)^{3^{b}}$.

Recovering the Higher Bits (High-level Idea)

$$
\phi_{A}^{\prime}\binom{R_{a}}{S_{a}}=\left(\begin{array}{cll}
& w & x \\
-\mathrm{sk}_{A}^{-1} w & \bmod 2^{a}+* & -\mathrm{sk}_{A}^{-1} x
\end{array} \bmod 2^{a}+*\right)\binom{R_{a b}}{S_{a b}}
$$

Assume sk_{A} is invertible modulo 2^{a}, then

$$
-w \mathrm{sk}_{A}^{-1}=y,-x \mathrm{sk}_{A}^{-1}=z \quad \bmod 2^{a}
$$

- $R_{a}^{\prime}=\left[1+2^{2 a-2}\right] R_{a}+\left[\mathrm{sk}_{0} 2^{2 a-2}\right] S_{a}$,
- $S_{a}^{\prime}=\left[\mathrm{sk}_{0}^{-1} 2^{2 a-2}\right] R_{a}+\left[1-2^{2 a-2}\right] S_{a}$,
- (Eq1) $\phi_{A}^{\prime}\left(R_{a}^{\prime}\right)=\phi_{A}^{\prime}\left(R_{a}\right) \Longleftrightarrow \mathrm{sk}_{1}=0$.
- (Eq2) $\phi_{A}^{\prime}\left(S_{a}^{\prime}\right)=\phi_{A}^{\prime}\left(S_{a}\right) \Longleftrightarrow\left(\mathrm{sk}_{A}\right)_{1}^{-1}=0 \Longleftrightarrow \mathrm{sk}_{1}=0$.
- (PairingEq) And $e_{4^{a}}\left(R_{a}^{\prime}, S_{a}^{\prime}\right)=e_{4^{a}}\left(P_{2}, Q_{2}\right)^{3^{b}}$.
- (KernelEq) Also
$\operatorname{ker}\left(\phi_{A}^{\prime}\right)=\left\langle\left[2^{a}\right] R_{a}+\left[\mathrm{sk}_{A} 2^{a}\right] S_{a}\right\rangle=\left\langle\left[2^{a}\right] R_{a}^{\prime}+\left[\mathrm{sk}_{A} 2^{a}\right] S_{a}^{\prime}\right\rangle$ ()

Recovering the Higher Bits (High-level Idea)

$$
\phi_{A}^{\prime}\binom{R_{a}}{S_{a}}=\left(\begin{array}{cll}
& w & x \\
-\mathrm{sk}_{A}^{-1} w & \bmod 2^{a}+* & -\mathrm{sk}_{A}^{-1} x
\end{array} \bmod 2^{a}+*\right)\binom{R_{a b}}{S_{a b}}
$$

Assume sk_{A} is invertible modulo 2^{a}, then

$$
-w \mathrm{sk}_{A}^{-1}=y,-x \mathrm{sk}_{A}^{-1}=z \quad \bmod 2^{a}
$$

- $R_{a}^{\prime}=\left[1+2^{2 a-2}\right] R_{a}+\left[\mathrm{sk}_{0} 2^{2 a-2}\right] S_{a}$,
- $S_{a}^{\prime}=\left[\mathrm{sk}_{0}^{-1} 2^{2 a-2}\right] R_{a}+\left[1-2^{2 a-2}\right] S_{a}$,
- (Eq1) $\phi_{A}^{\prime}\left(R_{a}^{\prime}\right)=\phi_{A}^{\prime}\left(R_{a}\right) \Longleftrightarrow \mathrm{sk}_{1}=0$.
- (Eq2) $\phi_{A}^{\prime}\left(S_{a}^{\prime}\right)=\phi_{A}^{\prime}\left(S_{a}\right) \Longleftrightarrow\left(\mathrm{sk}_{A}\right)_{1}^{-1}=0 \Longleftrightarrow \mathrm{sk}_{1}=0$.
- (PairingEq) And $e_{4^{a}}\left(R_{a}^{\prime}, S_{a}^{\prime}\right)=e_{4^{a}}\left(P_{2}, Q_{2}\right)^{3^{b}}$.
- (KernelEq) Also
$\operatorname{ker}\left(\phi_{A}^{\prime}\right)=\left\langle\left[2^{a}\right] R_{a}+\left[\mathrm{sk}_{A} 2^{a}\right] S_{a}\right\rangle=\left\langle\left[2^{a}\right] R_{a}^{\prime}+\left[\mathrm{sk}_{A} 2^{a}\right] S_{a}^{\prime}\right\rangle$ ()
- What if sk_{A} is not invertible??

sk_{A} is Even.

Idea: Reuse the $\mathbf{P}_{1}, \mathbf{P}_{2}$ commutativity method, we can keep extracting the next bit until 1 appears.

- $R_{a}^{\prime}=\left[1+2^{2 a-1}\right] R_{a}$,
- $S_{a}^{\prime}=\left[2^{2 a-2}\right] R_{a}+\left[1-2^{2 a-1}\right] S_{a}$,

sk_{A} is Even.

Idea: Reuse the $\mathbf{P}_{1}, \mathbf{P}_{2}$ commutativity method, we can keep extracting the next bit until 1 appears.

- $R_{a}^{\prime}=\left[1+2^{2 a-1}\right] R_{a}$,
- $S_{a}^{\prime}=\left[2^{2 a-2}\right] R_{a}+\left[1-2^{2 a-1}\right] S_{a}$,
- (Eq1) $\phi_{A}^{\prime}\left(R_{a}^{\prime}\right)=\phi_{A}^{\prime}\left(R_{a}\right)$: always. (;)
- (Eq2)

$$
\begin{align*}
\phi_{A}^{\prime}\left(S_{a}^{\prime}\right)=\phi_{A}^{\prime}\left(S_{a}\right) & \Longleftrightarrow \mathrm{sk}_{1} 2^{2 a-1}-2^{2 a-1}=0 \quad \bmod 2^{2 a} \\
& \Longleftrightarrow \mathrm{sk}_{1}=1 .
\end{align*}
$$

- (PairingEq) And $e_{4^{a}}\left(R_{a}^{\prime}, S_{a}^{\prime}\right)=e_{4^{a}}\left(P_{2}, Q_{2}\right)^{3^{b}}$.
- (KernelEq) Also

$$
\operatorname{ker}\left(\phi_{A}^{\prime}\right)=\left\langle\left[2^{a}\right] R_{a}+\left[\mathrm{sk}_{A} 2^{a}\right] S_{a}\right\rangle=\left\langle\left[2^{a}\right] R_{a}^{\prime}+\left[\mathrm{sk}_{A} 2^{a}\right] S_{a}^{\prime}\right\rangle \odot
$$

sk_{A} is Even.

Idea: Reuse the $\mathbf{P}_{1}, \mathbf{P}_{2}$ commutativity method, we can keep extracting the next bit until 1 appears.

- $R_{a}^{\prime}=\left[1+2^{2 a-1}\right] R_{a}$,
- $S_{a}^{\prime}=\left[2^{2 a-2}\right] R_{a}+\left[1-2^{2 a-1}\right] S_{a}$,
- (Eq1) $\phi_{A}^{\prime}\left(R_{a}^{\prime}\right)=\phi_{A}^{\prime}\left(R_{a}\right)$: always. (;)
- (Eq2)

$$
\begin{align*}
\phi_{A}^{\prime}\left(S_{a}^{\prime}\right)=\phi_{A}^{\prime}\left(S_{a}\right) & \Longleftrightarrow \mathrm{sk}_{1} 2^{2 a-1}-2^{2 a-1}=0 \quad \bmod 2^{2 a} \\
& \Longleftrightarrow \mathrm{sk}_{1}=1 .
\end{align*}
$$

- (PairingEq) And $e_{4^{a}}\left(R_{a}^{\prime}, S_{a}^{\prime}\right)=e_{4^{a}}\left(P_{2}, Q_{2}\right)^{3^{b}}$.
- (KernelEq) Also
$\operatorname{ker}\left(\phi_{A}^{\prime}\right)=\left\langle\left[2^{a}\right] R_{a}+\left[\mathrm{sk}_{A} 2^{a}\right] S_{a}\right\rangle=\left\langle\left[2^{a}\right] R_{a}^{\prime}+\left[\mathrm{sk}_{A} 2^{a}\right] S_{a}^{\prime}\right\rangle$
- One can recursively use this approach to extract the maximal power of 2 in sk_{A}.

Extracting the Next Bit When sk_{A} is Even.

$$
\phi_{A}^{\prime}\binom{R_{a}}{S_{a}}=\left(\begin{array}{ccc}
-\mathrm{sk}_{A} y & \bmod 2^{a}+* & -\mathrm{sk}_{A} z \\
y & \bmod 2^{a}+* \\
z
\end{array}\right)\binom{R_{a b}}{S_{a b}}
$$

Say 2^{j} is the maximal power of 2 dividing $s k_{A}$ and i Isbs of $s k_{A}$ has been recovered, denoted by sk_{ℓ}.

Extracting the Next Bit When sk_{A} is Even.

$$
\phi_{A}^{\prime}\binom{R_{a}}{S_{a}}=\left(\begin{array}{ccc}
-\mathrm{sk}_{A} y & \bmod 2^{a}+* & -\mathrm{sk}_{A} z \\
y & \bmod 2^{a}+* \\
y
\end{array}\right)\binom{R_{a b}}{S_{a b}}
$$

Say 2^{j} is the maximal power of 2 dividing $s k_{A}$ and i Isbs of $s k_{A}$ has been recovered, denoted by sk_{ℓ}.

- Making queries on ($E_{B}, R_{a}^{\prime}, S_{a}^{\prime}, R_{a b}, S_{a b}$), where
- $R_{a}^{\prime}=\left[1+2^{2 a-i-1} 2^{j}\right] R_{a}-\left[\mathrm{sk}_{\ell} 2^{2 a-i-1} 2^{j}\right] S_{a}$,
- $S_{a}^{\prime}=\left[\widetilde{\mathbf{s k}_{\ell}} 2^{2 a-i-1}\right] R_{a}+\left[1+2^{2 a-i-1} 2^{j}\right] S_{a}$,
($\widetilde{\mathrm{sk}_{\ell}}$ is the inverse of $\mathrm{sk}_{\ell} / 2^{j} \bmod 2^{i}$)

Extracting the Next Bit When sk_{A} is Even.

$$
\phi_{A}^{\prime}\binom{R_{a}}{S_{a}}=\left(\begin{array}{ccc}
-\mathrm{sk}_{A} y & \bmod 2^{a}+* & -\mathrm{sk}_{A} z \\
y & \bmod 2^{a}+* \\
y
\end{array}\right)\binom{R_{a b}}{S_{a b}}
$$

Say 2^{j} is the maximal power of 2 dividing $s k_{A}$ and i Isbs of $s k_{A}$ has been recovered, denoted by sk_{ℓ}.

- Making queries on ($E_{B}, R_{a}^{\prime}, S_{a}^{\prime}, R_{a b}, S_{a b}$), where
- $R_{a}^{\prime}=\left[1+2^{2 a-i-1} 2^{j}\right] R_{a}-\left[\mathrm{sk}_{\ell} 2^{2 a-i-1} 2^{j}\right] S_{a}$,
- $S_{a}^{\prime}=\left[\widetilde{\mathrm{sk}_{\ell}} 2^{2 a-i-1}\right] R_{a}+\left[1+2^{2 a-i-1} 2^{j}\right] S_{a}$,
$\left(\widetilde{\mathrm{sk}_{\ell}}\right.$ is the inverse of $\left.\mathrm{sk}_{\ell} / 2^{j} \bmod 2^{i}\right)$
- Paring/ Ker Eqs will hold.
- It returns 1 if the next bit is 0 .

Extracting the Next Bit When sk_{A} is Even.

$$
\phi_{A}^{\prime}\binom{R_{a}}{S_{a}}=\left(\begin{array}{ccc}
-\mathrm{sk}_{A} y & \bmod 2^{a}+* & -\mathrm{sk}_{A} z \\
y & \bmod 2^{a}+* \\
y
\end{array}\right)\binom{R_{a b}}{S_{a b}}
$$

Say 2^{j} is the maximal power of 2 dividing $s k_{A}$ and i Isbs of $s k_{A}$ has been recovered, denoted by sk_{ℓ}.

- Making queries on ($E_{B}, R_{a}^{\prime}, S_{a}^{\prime}, R_{a b}, S_{a b}$), where
- $R_{a}^{\prime}=\left[1+2^{2 a-i-1} 2^{j}\right] R_{a}-\left[\mathrm{sk}_{\ell} 2^{2 a-i-1} 2^{j}\right] S_{a}$,
- $S_{a}^{\prime}=\left[\widetilde{\mathrm{sk}}_{\ell} 2^{2 a-i-1}\right] R_{a}+\left[1+2^{2 a-i-1} 2^{j}\right] S_{a}$,
$\left(\widetilde{\mathrm{sk}_{\ell}}\right.$ is the inverse of $\left.\mathrm{sk}_{\ell} / 2^{j} \bmod 2^{i}\right)$
- Paring/ Ker Eqs will hold.
- It returns 1 if the next bit is 0 .

We also generalize the result to any small primes and a more general form of the private keys.

Summary and Open Problems

Summary

- We present a new adaptive attack against SIDH-type schemes using the commutativity of isogenies.
- The adaptive attack runs in polynomial time.

Open Problems

- Is it possible to have an efficient variant of SIDH secure against the Castryck-Decru and Robert attacks? (e.g. 2022/1019,1054?)
- If so, can we have an efficient proof system to prevent the attack?

Kप्तथ

\int_{0}

```
SCO
```


Thanks for listening!

