
Attack on SHealS and HealS:
the Second Wave of GPST

Yi-Fu Lai
joint work with Steven D. Galbraith

University of Auckland

New Zealand

September @ PQCrypto2022

-

1 / 27



Roadmap

1. What’s this work about?
▶ SIDH Key exchange
▶ GPST Adaptive Attack [AC:GPST16]
▶ A countermeasure for SIDH-type Schemes

by Fouotsa and Petit [AC:FP21]

2. Quick Questions
3. Technical Overview

▶ First Bit Extraction
▶ Extraction of the maximal power of 2 divisor
▶ Next Bit Extraction
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A Brief Intro/Setting for SIDH

▶ p = 2a3b − 1 is a prime where 2a ≈ 3b.
▶ Elliptic curves: EA/Fp2 : y2 = x3 + Ax2 + x.

▶ An isogeny ϕ : EA → EB is a morphism and also a group
homomorphism, uniquely determined by the kernel and the image
curve (up to isomorphism).

▶ For N not divisible by p,

E[N] = {P ∈ E(F̄p) | [N]P = O}
� ZN × ZN
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SIDH Key Exchange
▶ E[2a] � Z2a × Z2a with a basis {P2,Q2}.
▶ E[3b] � Z3b × Z3b with a basis {P3,Q3}.
▶ Alice: skA ∈ [2a]
▶ ker(ϕA) = ⟨P2 + skAQ2⟩

▶ Bob: skB ∈ [3b]
▶ ker(ϕB) = ⟨P3 + skBQ3⟩
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GPST Adaptive Attack
▶ (Modeling) Bob is the bad guy. Alice is an oracle on input
OskA(EB, P′,Q′, EAB) and returns 1 iff

EAB � EB/⟨P′ + skAQ′⟩,

e2a(P′,Q′) = e2a(P,Q)3b.

▶ (Assumption) When |G1|, |G2| ≪ p, with an overwhelming chance,

EB/G1 � EB/G2 ⇐⇒ G1 = G2.

▶ Hence, on input OskA(EB, P′,Q′, EAB), Alice returns 1 iff

⟨P + skAQ⟩ = ⟨P′ + skAQ′⟩

e2a(P′,Q′) = e2a(P,Q)3b.

7 / 27



GPST Adaptive Attack
▶ (Modeling) Bob is the bad guy. Alice is an oracle on input
OskA(EB, P′,Q′, EAB) and returns 1 iff

EAB � EB/⟨P′ + skAQ′⟩,

e2a(P′,Q′) = e2a(P,Q)3b.

▶ (Assumption) When |G1|, |G2| ≪ p, with an overwhelming chance,

EB/G1 � EB/G2 ⇐⇒ G1 = G2.

▶ Hence, on input OskA(EB, P′,Q′, EAB), Alice returns 1 iff

⟨P + skAQ⟩ = ⟨P′ + skAQ′⟩

e2a(P′,Q′) = e2a(P,Q)3b.

7 / 27



GPST Adaptive Attack
▶ (Modeling) Bob is the bad guy. Alice is an oracle on input
OskA(EB, P′,Q′, EAB) and returns 1 iff

EAB � EB/⟨P′ + skAQ′⟩,

e2a(P′,Q′) = e2a(P,Q)3b.

▶ (Assumption) When |G1|, |G2| ≪ p, with an overwhelming chance,

EB/G1 � EB/G2 ⇐⇒ G1 = G2.

▶ Hence, on input OskA(EB, P′,Q′, EAB), Alice returns 1 iff

⟨P + skAQ⟩ = ⟨P′ + skAQ′⟩

e2a(P′,Q′) = e2a(P,Q)3b.

7 / 27



GPST Adaptive Attack
1. Bob honestly computes EB, P = ϕB(P2),Q = ϕB(Q2), EAB.

2. Let P′ = P, Q′ = 2a−1P + Q. Then

OskA(EB, P′,Q′, EAB)→ 1 ⇐⇒ skA = 0 mod 2.

⟨ Sketch of Pf ⟩: Firstly,

e2a(P′,Q′) = e2a(P,Q) = e2a(P,Q)3b.

Claim

⟨P′ + skAQ′⟩ = ⟨P + skAQ⟩ ⇐⇒ skA: even

⟨P′ + skAQ′⟩ = ⟨P + skA(2a−1P + Q)⟩

= ⟨P + skAQ + skA(2a−1P)⟩

= ⟨P + skAQ⟩ ⇐⇒ skA: even. (2aP = O)
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The Concept of GPST Attack
Take a = 3 for instance: ⟨P,Q⟩ = E[8] � Z8 × Z8

P Q P Q
⟨(001, 000) + (000, 001)skA⟩ (The correct kernel.)

⟨(001, 000) + (100, 001)skA⟩ (The manipulated input.)
=⟨(001, 000) + (000, 001)skA + (100, 000)skA⟩

⇒ Get lsb sk0.

⟨(0-sk01, 000) + (010, 001)skA⟩ (The manipulated input.)
=⟨(001, 000) + (000, 001)skA + (010, 000)skA + (0-sk00, 000)⟩.
=⟨(001, 000) + (000, 001)skA + (sk1sk00, 000) + (0-sk00, 000)⟩.
=⟨(001, 000) + (000, 001)skA + (sk100, 000)⟩.

⇒ Get the second lsb sk1.
(Rmk: one has to scale the coefficient to have pass the pairing check.)
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Is this Bad?

▶ This can be easily prevented by using the FO-transform-type
method: Bob always uses an ephemeral secret key and reveal it to
Alice.
▶ This results in having static-ephemeral only cryptosystem.

▶ Alternative: use either ZK proof systems or the multiple-public-keys
techniques e.g.[UJ:20, SAC:AJL17].
▶ This results in the number of isogeny compuations non-constant in
λ.

▶ [AC:FP21] gives an interactive proof system for the correctness of
the public key.
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A Proposed Countermeasure
▶ A countermeasure proposed by Fouotsa and Petit in [AC:FP21].
▶ The high-level idea is to use commutativity of isogenies [Leo20].

▶ If Bob manipulates the points in his public key, then the final
evaluation will not match.
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What Did We Do?

▶ We notice the flaw in the proof of the proof system in [AC:FP21].

▶ Based on the flaw, we derive a variant of GPST attack that
adaptively recovers users’ secret keys again.

▶ The attack is as efficient and effective as the GPST attack.
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Quick Questions

▶ Can the Castryck-Decru (passive) attack (2022/975) apply to this
scheme?
▶ Yes, but not in polynomial-time theoretically by the current version

(17 Sep 2022) due to the unknown endomorphism ring.

▶ How about the Robert (passive) attack (2022/1038)?
▶ Yes, and in polynomial-time theoretically.

▶ What’s the salvage value of this attack?
▶ No practical. Only theoretical values.
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HealSIDH and Its Key Validation Mechanism

▶ {P2,Q2} : basis for E[22a]
▶ Alice: skA ∈ [2a]
▶ ker(ϕA) = ⟨2aP2 + skA2aQ2⟩

▶ {P3,Q3} : basis for E[32b]
▶ Bob: skB ∈ [3b]
▶ ker(ϕB) = ⟨3bP3 + skB3bQ3⟩
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Modeling

▶ Say Bob is the bad guy; Alice is the victim of the attack.
▶ Say Alice is an oracle on input (EB,Ra, S a,Rab, S ab) returning 1 iff

the following three equations holds:

e4a(Ra, S a) = e4a(P2,Q2)3b
, (Pairing Eq)

ϕ′A(Ra) = [w]Rab + [x]S ab ∈ EBA, (Eq. 1)

ϕ′A(S a) = [y]Rab + [z]S ab ∈ EBA, (Eq. 2)

where

ϕ′A : EB → EBA

ker(ϕ′A) = ⟨[2a]Ra + [skA2a]S a⟩ ⊂ EB. (Kernel Eq)

17 / 27



Manipulate Ra, S a

▶ Say Alice is an oracle on input (EB,Ra, S a,Rab, S ab) returning 1 iff
the following three equations holds.

▶ We will only manipulate ... (EB,Ra, S a,Rab, S ab)

e4a(Ra, S a) = e4a(P2,Q2)3b
, (Pairing Eq)

ϕ′A(Ra) = [w]Rab + [x]S ab ∈ EBA, (Eq. 1)

ϕ′A(S a) = [y]Rab + [z]S ab ∈ EBA, (Eq. 2)

where

ϕ′A : EB → EBA

ker(ϕ′A) = ⟨[2a]Ra + [skA2a]S a⟩ ⊂ EB. (Kernel Eq)
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Lemmata

1. ⟨Ra, S a⟩ = EB[22a].

2. Recall that

ϕ′A(Ra) = [w]Rab + [x]S ab ∈ EBA,

ϕ′A(S a) = [y]Rab + [z]S ab ∈ EBA,

we can prove that

w + skAy = x + skAz = 0 mod 2a

(w, x, y, z ∈ [22a], skA ∈ [2a]).

⇒ Information of skA is hidden in the lower bits of w, x, y, z.
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The First Bit Extraction

Recall: ϕ′A

(
Ra

S a

)
=

(
w x
y z

) (
Rab

S ab

)

▶ Find special matrices P1,P2 s.t. P1

(
w x
y z

)
=

(
w x
y z

)
P2 conditioned

on parity of w, x, y, z.
▶ Also, det(P1) = 1. (For the pairing eq.)

▶ With such a pair, invoking the oracle by (EB,R′a, S
′
a,R
′
ab, S

′
ab) where(

R′a
S ′a

)
= P1

(
Ra

S a

)
,

(
R′ab
S ′ab

)
= P2

(
Rab

S ab

)
.

▶ It returns 1 iff the the commutativity condition holds.
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The First Bit Extraction

We take

P1 =

(
1 0

22a−1 1

)
,P2 = I2.

The commutativity holds iff w = x = 0 mod 2.

Recall w + skAy = x + skAz = 0 mod 2a (w, x, y, z ∈ [22a], skA ∈ [2a]).
▶ We can prove that y, z cannot be both even.
▶ The commutativity holds iff skA = 0 mod 2.
▶ The first bit of skA = 0 if and only if the oracle returns 1.

▶ The lsb of skA is extracted!
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Recovering Higher Bits (High-level Idea)
Base on w + skAy = x + skAz = 0 mod 2a, we can write

ϕ′A

(
Ra

S a

)
=

(
−skAy mod 2a + ∗ −skAz mod 2a + ∗

y z

) (
Rab

S ab

)

▶ Use the homomorphism ϕ′A to launch GPST-type attack:

R′a = [1 + 22a−2]Ra + [sk022a−2]S a,

where sk0 is skA mod 2, just extracted.
▶ (Eq1) ϕ′A(R′a) = ϕ′A(Ra) ⇐⇒ sk1 = 0.
▶ (Eq2) ϕ′A(S a) = ϕ′A(S a) always.
▶ (KernelEq) ker(ϕ′A) = ⟨[2a]Ra + [skA2a]S a⟩=⟨[2a]R′a + [skA2a]S a⟩ ⌣

▶ (PairingEq) But e4a(R′a, S a),e4a(Ra, S a) = e4a(P2,Q2)3b
⌢ (The

scaling method won’t work due to the Eq 2 & Kernel Eq.)
▶ The oracle taking as input (EB,R′a, S a,Rab, S ab) will return 0. ⌢
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Recovering the Higher Bits (High-level Idea)

ϕ′A

(
Ra

S a

)
=

(
w x

−sk−1
A w mod 2a + ∗ −sk−1

A x mod 2a + ∗

) (
Rab

S ab

)
Assume skA is invertible modulo 2a, then

−wsk−1
A = y,−xsk−1

A = z mod 2a

▶ R′a = [1 + 22a−2]Ra + [sk022a−2]S a,

▶ S ′a = [sk−1
0 22a−2]Ra + [1 − 22a−2]S a,

▶ (Eq1) ϕ′A(R′a) = ϕ′A(Ra) ⇐⇒ sk1 = 0.
▶ (Eq2) ϕ′A(S ′a) = ϕ′A(S a) ⇐⇒ (skA)−1

1 = 0 ⇐⇒ sk1 = 0.

▶ (PairingEq) And e4a(R′a, S
′
a) = e4a(P2,Q2)3b

. ⌣

▶ (KernelEq) Also
ker(ϕ′A) = ⟨[2a]Ra + [skA2a]S a⟩=⟨[2a]R′a + [skA2a]S ′a⟩ ⌣

▶ What if skA is not invertible??
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skA is Even.
Idea: Reuse the P1,P2 commutativity method, we can keep extracting
the next bit until 1 appears.
▶ R′a = [1 + 22a−1]Ra,

▶ S ′a = [22a−2]Ra + [1 − 22a−1]S a,

▶ (Eq1) ϕ′A(R′a) = ϕ′A(Ra) : always. ⌣
▶ (Eq2)

ϕ′A(S ′a) = ϕ′A(S a) ⇐⇒ sk122a−1 − 22a−1 = 0 mod 22a

⇐⇒ sk1 = 1.

▶ (PairingEq) And e4a(R′a, S
′
a) = e4a(P2,Q2)3b

. ⌣

▶ (KernelEq) Also
ker(ϕ′A) = ⟨[2a]Ra + [skA2a]S a⟩=⟨[2a]R′a + [skA2a]S ′a⟩ ⌣

▶ One can recursively use this approach to extract the maximal
power of 2 in skA.
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Extracting the Next Bit When skA is Even.

ϕ′A

(
Ra

S a

)
=

(
−skAy mod 2a + ∗ −skAz mod 2a + ∗

y z

) (
Rab

S ab

)
Say 2 j is the maximal power of 2 dividing skA and i lsbs of skA has been
recovered, denoted by skℓ.

▶ Making queries on (EB,R′a, S
′
a,Rab, S ab), where

▶ R′a = [1 + 22a−i−12 j]Ra − [skℓ22a−i−12 j]S a,

▶ S ′a = [s̃kℓ22a−i−1]Ra + [1 + 22a−i−12 j]S a,

(s̃kℓ is the inverse of skℓ/2 j mod 2i)

▶ Paring/ Ker Eqs will hold.
▶ It returns 1 if the next bit is 0.
▶ Nicely done! ⌣⌣⌣⌣⌣⌣⌣⌣⌣

We also generalize the result to any small primes and a more general
form of the private keys.
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Summary and Open Problems

Summary
▶ We present a new adaptive attack against SIDH-type schemes

using the commutativity of isogenies.
▶ The adaptive attack runs in polynomial time.

Open Problems
▶ Is it possible to have an efficient variant of SIDH secure against the

Castryck-Decru and Robert attacks? (e.g. 2022/1019,1054?)
▶ If so, can we have an efficient proof system to prevent the attack?
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Thanks for listening!
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