

Roadmap

- 1. What's this work about?
 - SIDH Key exchange
 - GPST Adaptive Attack [AC:GPST16]
 - A countermeasure for SIDH-type Schemes by Fouotsa and Petit [AC:FP21]
- 2. Quick Questions
- 3. Technical Overview
 - First Bit Extraction
 - Extraction of the maximal power of 2 divisor
 - Next Bit Extraction

Content

Preliminaries

Quick Questions

Technical Overview

Content

Preliminaries

Quick Questions

Technical Overview

A Brief Intro/Setting for SIDH

- ▶ $p = 2^a 3^b 1$ is a prime where $2^a \approx 3^b$.
- ► Elliptic curves: E_A/\mathbb{F}_{p^2} : $y^2 = x^3 + Ax^2 + x$.

A Brief Intro/Setting for SIDH

- $p = 2^a 3^b 1$ is a prime where $2^a \approx 3^b$.
- ► Elliptic curves: E_A/\mathbb{F}_{p^2} : $y^2 = x^3 + Ax^2 + x$.
- An isogeny $\phi: E_A \to E_B$ is a morphism and also a group homomorphism, uniquely determined by the kernel and the image curve (up to isomorphism).
- For N not divisible by p,

A Brief Intro/Setting for SIDH

- $p = 2^a 3^b 1$ is a prime where $2^a \approx 3^b$.
- ► Elliptic curves: E_A/\mathbb{F}_{p^2} : $y^2 = x^3 + Ax^2 + x$.
- An isogeny $\phi: E_A \to E_B$ is a morphism and also a group homomorphism, uniquely determined by the kernel and the image curve (up to isomorphism).
- For N not divisible by p,

$$E[N] = \{ P \in E(\bar{\mathbb{F}}_p) \mid [N]P = \mathbf{O} \}$$
$$\cong \mathbb{Z}_N \times \mathbb{Z}_N$$

SIDH Key Exchange

- ► $E[2^a] \cong \mathbb{Z}_{2^a} \times \mathbb{Z}_{2^a}$ with a basis $\{P_2, Q_2\}$.
- ► $E[3^b] \cong \mathbb{Z}_{3^b} \times \mathbb{Z}_{3^b}$ with a basis $\{P_3, Q_3\}$.
- ightharpoonup Alice: $sk_A \in [2^a]$
- $ightharpoonup \ker(\phi_A) = \langle P_2 + \operatorname{sk}_A Q_2 \rangle$

- ▶ Bob: $sk_B \in [3^b]$
- $ightharpoonup \ker(\phi_B) = \langle P_3 + \operatorname{sk}_B Q_3 \rangle$

SIDH Key Exchange

- ► $E[2^a] \cong \mathbb{Z}_{2^a} \times \mathbb{Z}_{2^a}$ with a basis $\{P_2, Q_2\}$.
- ► $E[3^b] \cong \mathbb{Z}_{3^b} \times \mathbb{Z}_{3^b}$ with a basis $\{P_3, Q_3\}$.
- ightharpoonup Alice: $\operatorname{sk}_A \in [2^a]$
- $ightharpoonup \ker(\phi_A) = \langle P_2 + \operatorname{sk}_A Q_2 \rangle$

- ▶ Bob: $sk_B \in [3^b]$
- $\ker(\phi_B) = \langle P_3 + \mathsf{sk}_B Q_3 \rangle$

SIDH Key Exchange

- ► $E[2^a] \cong \mathbb{Z}_{2^a} \times \mathbb{Z}_{2^a}$ with a basis $\{P_2, Q_2\}$.
- ► $E[3^b] \cong \mathbb{Z}_{3^b} \times \mathbb{Z}_{3^b}$ with a basis $\{P_3, Q_3\}$.
- ightharpoonup Alice: $sk_A \in [2^a]$
- $ightharpoonup \ker(\phi_A) = \langle P_2 + \operatorname{sk}_A Q_2 \rangle$

- ▶ Bob: $sk_B \in [3^b]$
- $\ker(\phi_B) = \langle P_3 + \mathsf{sk}_B Q_3 \rangle$

▶ (**Modeling**) Bob is the bad guy. Alice is an oracle on input $O_{sk_A}(E_B, P', Q', E_{AB})$ and returns 1 iff

$$E_{AB} \cong E_B/\langle P' + \operatorname{sk}_A Q' \rangle$$
,

$$e_{2a}(\mathbf{P'},\mathbf{Q'}) = e_{2a}(\mathbf{P},\mathbf{Q})^{3b}.$$

▶ (**Modeling**) Bob is the bad guy. Alice is an oracle on input $O_{sk_A}(E_B, P', Q', E_{AB})$ and returns 1 iff

$$E_{AB} \cong E_B/\langle P' + \operatorname{sk}_A Q' \rangle,$$

 $e_{2a}(P', Q') = e_{2a}(P, Q)^{3b}.$

▶ (**Assumption**) When $|G_1|, |G_2| \ll p$, with an overwhelming chance,

$$E_B/G_1 \cong E_B/G_2 \iff G_1 = G_2.$$

▶ (**Modeling**) Bob is the bad guy. Alice is an oracle on input $O_{sk_A}(E_B, P', Q', E_{AB})$ and returns 1 iff

$$E_{AB} \cong E_B/\langle P' + \operatorname{sk}_A Q' \rangle,$$

 $e_{2a}(P', Q') = e_{2a}(P, Q)^{3b}.$

▶ (**Assumption**) When $|G_1|, |G_2| \ll p$, with an overwhelming chance,

$$E_B/G_1 \cong E_B/G_2 \iff G_1 = G_2.$$

▶ Hence, on input $O_{sk_A}(E_B, P', Q', E_{AB})$, Alice returns 1 iff

$$\langle P + \operatorname{sk}_A Q \rangle = \langle \underline{P'} + \operatorname{sk}_A \underline{Q'} \rangle$$

$$e_{2a}(\mathbf{P'},\mathbf{Q'}) = e_{2a}(\mathbf{P},\mathbf{Q})^{3b}.$$

- 1. Bob honestly computes E_B , $P = \phi_B(P_2)$, $Q = \phi_B(Q_2)$, E_{AB} .
- 2. Let P' = P, $Q' = 2^{a-1}P + Q$. Then

$$O_{\mathsf{sk}_A}(E_B, P', Q', E_{AB}) \to 1 \iff sk_A = 0 \mod 2.$$

⟨ Sketch of Pf ⟩: Firstly,

$$e_{2^a}(P',Q') = e_{2^a}(P,Q) = e_{2^a}(P,Q)^{3b}.$$

Claim

$$\langle P' + \operatorname{sk}_A Q' \rangle = \langle P + \operatorname{sk}_A Q \rangle \iff \operatorname{sk}_A$$
: even

$$\langle P' + \operatorname{sk}_A Q' \rangle = \langle P + \operatorname{sk}_A (2^{a-1}P + Q) \rangle$$

= $\langle P + \operatorname{sk}_A Q + \operatorname{sk}_A (2^{a-1}P) \rangle$
= $\langle P + \operatorname{sk}_A Q \rangle \iff \operatorname{sk}_A : \operatorname{even.} (2^a P = \mathbf{O})$

→

Take
$$a=3$$
 for instance: $\langle P,Q\rangle=E[8]\cong\mathbb{Z}_8\times\mathbb{Z}_8$

$$\begin{array}{ll} P & Q & P & Q \\ \langle (001,000) + (000,001) \text{sk}_A \rangle & \text{(The correct kernel.)} \\ \\ \langle (001,000) + (100,001) \text{sk}_A \rangle & \text{(The manipulated input.)} \end{array}$$

$$P Q P Q$$
 \(\langle (001, 000) + (000, 001) \sk_A \rangle \) (The correct kernel.) \(\langle (001, 000) + (100, 001) \sk_A \rangle \) (The manipulated input.) \(= \langle (001, 000) + (000, 001) \sk_A + (100, 000) \sk_A \rangle \)


```
P Q P Q
\langle (001, 000) + (000, 001) sk_A \rangle (The correct kernel.)
\langle (001, 000) + (100, 001) sk_A \rangle (The manipulated input.)
= \langle (001, 000) + (000, 001) sk_A \rangle + (100, 000) sk_A \rangle
\Rightarrow Get lsb sk<sub>0</sub>.
```

• 💢

Take
$$a = 3$$
 for instance: $\langle P, Q \rangle = E[8] \cong \mathbb{Z}_8 \times \mathbb{Z}_8$

$$P \quad Q \qquad P \quad Q$$

$$\langle (001, 000) + (000, 001) \text{sk}_A \rangle \quad \text{(The correct kernel.)}$$

$$\langle (001, 000) + (100, 001) \text{sk}_A \rangle \quad \text{(The manipulated input.)}$$

$$= \langle (001, 000) + (000, 001) \text{sk}_A + (100, 000) \text{sk}_A \rangle$$

$$\Rightarrow \text{Get lsb sk}_0.$$

$$\langle (0-\text{sk}_0 1, 000) + (010, 001) \text{sk}_A \rangle \quad \text{(The manipulated input.)}$$

$$\begin{array}{ll} P & Q & P & Q \\ \langle (001,000) + (000,001) \text{sk}_A \rangle & \text{(The correct kernel.)} \\ \langle (001,000) + (100,001) \text{sk}_A \rangle & \text{(The manipulated input.)} \\ = & \langle (001,000) + (000,001) \text{sk}_A + (100,000) \text{sk}_A \rangle \\ \Rightarrow & \text{Get lsb sk}_0. \\ \langle (0\text{-sk}_01,000) + (010,001) \text{sk}_A \rangle & \text{(The manipulated input.)} \\ = & \langle (001,000) + (000,001) \text{sk}_A + (010,000) \text{sk}_A + (0\text{-sk}_00,000) \rangle. \end{array}$$

```
P Q P Q
\langle (001, 000) + (000, 001) sk_A \rangle (The correct kernel.)
\langle (001,000) + (100,001) sk_A \rangle (The manipulated input.)
=\langle (001,000) + (000,001) sk_A + (100,000) sk_A \rangle
\Rightarrow Get lsb sk<sub>0</sub>.
\langle (0-sk_01,000) + (010,001)sk_A \rangle (The manipulated input.)
=\langle (001,000) + (000,001) sk_A + (010,000) sk_A + (0-sk_00,000) \rangle.
=\langle (001,000) + (000,001) sk_A + (sk_1 sk_0 0,000) + (0-sk_0 0,000) \rangle.
```

```
P Q P Q
\langle (001,000) + (000,001) sk_A \rangle (The correct kernel.)
\langle (001,000) + (100,001) sk_A \rangle (The manipulated input.)
=\langle (001,000) + (000,001) sk_A + (100,000) sk_A \rangle
\Rightarrow Get lsb sk<sub>0</sub>.
\langle (0-sk_0 1,000) + (010,001)sk_A \rangle (The manipulated input.)
=\langle (001,000) + (000,001) sk_A + (010,000) sk_A + (0-sk_00,000) \rangle.
=\langle (001,000) + (000,001) sk_A + (sk_1 sk_0 0,000) + (0-sk_0 0,000) \rangle.
=\langle (001,000) + (000,001) sk_A + (sk_100,000) \rangle.
```

```
P Q P Q
\langle (001, 000) + (000, 001) sk_A \rangle (The correct kernel.)
\langle (001,000) + (100,001) sk_A \rangle (The manipulated input.)
=\langle (001,000) + (000,001) sk_A + (100,000) sk_A \rangle
\Rightarrow Get lsb sk<sub>0</sub>.
\langle (0-sk_01,000) + (010,001)sk_A \rangle (The manipulated input.)
=\langle (001,000) + (000,001) sk_A + (010,000) sk_A + (0-sk_00,000) \rangle.
=\langle (001,000) + (000,001) sk_A + (sk_1 sk_0 0,000) + (0-sk_0 0,000) \rangle.
=\langle (001,000) + (000,001) sk_A + (sk_100,000) \rangle.
\Rightarrow Get the second lsb sk<sub>1</sub>.
(Rmk: one has to scale the coefficient to have pass the pairing check.)
```


- This can be easily prevented by using the FO-transform-type method: Bob always uses an ephemeral secret key and reveal it to Alice.
 - This results in having static-ephemeral only cryptosystem.

- This can be easily prevented by using the FO-transform-type method: Bob always uses an ephemeral secret key and reveal it to Alice.
 - This results in having static-ephemeral only cryptosystem.
- ► Alternative: use either ZK proof systems or the multiple-public-keys techniques e.g.[UJ:20, SAC:AJL17].

- This can be easily prevented by using the FO-transform-type method: Bob always uses an ephemeral secret key and reveal it to Alice.
 - This results in having static-ephemeral only cryptosystem.
- Alternative: use either ZK proof systems or the multiple-public-keys techniques e.g.[UJ:20, SAC:AJL17].
 - This results in the number of isogeny computations non-constant in λ .

- This can be easily prevented by using the FO-transform-type method: Bob always uses an ephemeral secret key and reveal it to Alice.
 - This results in having static-ephemeral only cryptosystem.
- Alternative: use either ZK proof systems or the multiple-public-keys techniques e.g.[UJ:20, SAC:AJL17].
 - This results in the number of isogeny computations non-constant in λ .
- [AC:FP21] gives an interactive proof system for the correctness of the public key.

A Proposed Countermeasure

- A countermeasure proposed by Fouotsa and Petit in [AC:FP21].
- ► The high-level idea is to use *commutativity* of isogenies [Leo20].

If Bob manipulates the points in his public key, then the final evaluation will not match.

What Did We Do?

Based on the flaw, we derive a variant of GPST attack that adaptively recovers users' secret keys again.

What Did We Do?

- Based on the flaw, we derive a variant of GPST attack that adaptively recovers users' secret keys again.
- ▶ The attack is as efficient and effective as the GPST attack.

Content

Preliminaries

Quick Questions

Technical Overview

Quick Questions

- Can the Castryck-Decru (passive) attack (2022/975) apply to this scheme?
 - Yes, but not in polynomial-time theoretically by the current version (17 Sep 2022) due to the unknown endomorphism ring.

Quick Questions

- Can the Castryck-Decru (passive) attack (2022/975) apply to this scheme?
 - Yes, but not in polynomial-time theoretically by the current version (17 Sep 2022) due to the unknown endomorphism ring.
- How about the Robert (passive) attack (2022/1038)?
 - Yes, and in polynomial-time theoretically.

Quick Questions

- Can the Castryck-Decru (passive) attack (2022/975) apply to this scheme?
 - Yes, but not in polynomial-time theoretically by the current version (17 Sep 2022) due to the unknown endomorphism ring.
- How about the Robert (passive) attack (2022/1038)?
 - Yes, and in polynomial-time theoretically.
- What's the salvage value of this attack?
 - No practical. Only theoretical values.

Content

--

Preliminaries

Quick Questions

Technical Overview

HealSIDH and Its Key Validation Mechanism

- $\{P_2, Q_2\}$: basis for $E[2^{2a}]$
- ightharpoonup Alice: $sk_A \in [2^a]$
- $\ker(\phi_A) = \langle 2^a P_2 + \operatorname{sk}_A 2^a Q_2 \rangle$

- $\{P_3, Q_3\}$: basis for $E[3^{2b}]$
- ▶ Bob: $sk_B \in [3^b]$
- $\ker(\phi_B) = \langle 3^b P_3 + \operatorname{sk}_B 3^b Q_3 \rangle$

Modeling

- Say Bob is the bad guy; Alice is the victim of the attack.
- ▶ Say Alice is an oracle on input $(E_B, R_a, S_a, R_{ab}, S_{ab})$ returning 1 iff the following three equations holds:

$$e_{4^a}(R_a, S_a) = e_{4^a}(P_2, Q_2)^{3^b},$$
 (Pairing Eq)
 $\phi'_A(R_a) = [w]R_{ab} + [x]S_{ab} \in E_{BA},$ (Eq. 1)
 $\phi'_A(S_a) = [y]R_{ab} + [z]S_{ab} \in E_{BA},$ (Eq. 2)

where

$$\phi_A': E_B \to E_{BA}$$

$$\ker(\phi_A') = \langle [2^a] R_a + [\operatorname{sk}_A 2^a] S_a \rangle \subset E_B.$$
 (Kernel Eq)

Manipulate R_a , S_a

- ▶ Say Alice is an oracle on input $(E_B, R_a, S_a, R_{ab}, S_{ab})$ returning 1 iff the following three equations holds.
- ▶ We will only manipulate ... $(E_B, R_a, S_a, R_{ab}, S_{ab})$

$$e_{4^a}(R_a, S_a) = e_{4^a}(P_2, Q_2)^{3^b},$$
 (Pairing Eq)
 $\phi'_A(R_a) = [w]R_{ab} + [x]S_{ab} \in E_{BA},$ (Eq. 1)
 $\phi'_A(S_a) = [y]R_{ab} + [z]S_{ab} \in E_{BA},$ (Eq. 2)

where

$$\phi_A': E_B \to E_{BA}$$

$$\ker(\phi_A') = \langle [2^a] R_a + [\mathsf{sk}_A 2^a] S_a \rangle \subset E_B.$$
 (Kernel Eq)

1.
$$\langle R_a, S_a \rangle = E_B[2^{2a}]$$
.

1.
$$\langle R_a, S_a \rangle = E_B[2^{2a}].$$

2. Recall that

$$\phi'_{A}(R_{a}) = [w]R_{ab} + [x]S_{ab} \in E_{BA},$$

 $\phi'_{A}(S_{a}) = [y]R_{ab} + [z]S_{ab} \in E_{BA},$

1.
$$\langle R_a, S_a \rangle = E_B[2^{2a}].$$

2. Recall that

$$\phi'_{A}(R_{a}) = [w]R_{ab} + [x]S_{ab} \in E_{BA},$$

 $\phi'_{A}(S_{a}) = [y]R_{ab} + [z]S_{ab} \in E_{BA},$

we can prove that

$$w + \mathsf{sk}_A y = x + \mathsf{sk}_A z = 0 \mod 2^a$$

$$(w, x, y, z \in [2^{2a}], \mathsf{sk}_A \in [2^a]).$$

1.
$$\langle R_a, S_a \rangle = E_B[2^{2a}].$$

2. Recall that

$$\phi'_{A}(R_{a}) = [w]R_{ab} + [x]S_{ab} \in E_{BA},$$

 $\phi'_{A}(S_{a}) = [y]R_{ab} + [z]S_{ab} \in E_{BA},$

we can prove that

$$w + \operatorname{sk}_A y = x + \operatorname{sk}_A z = 0 \mod 2^a$$

$$(w, x, y, z \in [2^{2a}], \mathsf{sk}_A \in [2^a]).$$

 \Rightarrow Information of sk_A is hidden in the lower bits of w, x, y, z.

Recall:
$$\phi'_A \begin{pmatrix} R_a \\ S_a \end{pmatrix} = \begin{pmatrix} \mathbf{w} & \mathbf{x} \\ \mathbf{y} & \mathbf{z} \end{pmatrix} \begin{pmatrix} R_{ab} \\ S_{ab} \end{pmatrix}$$

Recall:
$$\phi'_A \begin{pmatrix} R_a \\ S_a \end{pmatrix} = \begin{pmatrix} \mathbf{w} & \mathbf{x} \\ \mathbf{y} & \mathbf{z} \end{pmatrix} \begin{pmatrix} R_{ab} \\ S_{ab} \end{pmatrix}$$

- ► Find special matrices \mathbf{P}_1 , \mathbf{P}_2 s.t. $\mathbf{P}_1\begin{pmatrix} \mathbf{w} & \mathbf{x} \\ \mathbf{y} & \mathbf{z} \end{pmatrix} = \begin{pmatrix} \mathbf{w} & \mathbf{x} \\ \mathbf{y} & \mathbf{z} \end{pmatrix} \mathbf{P}_2$ conditioned on parity of \mathbf{w} , \mathbf{x} , \mathbf{y} , \mathbf{z} .
- ► Also, $det(\mathbf{P}_1) = 1$. (For the pairing eq.)

Recall:
$$\phi'_A \begin{pmatrix} R_a \\ S_a \end{pmatrix} = \begin{pmatrix} \mathbf{w} & \mathbf{x} \\ \mathbf{y} & \mathbf{z} \end{pmatrix} \begin{pmatrix} R_{ab} \\ S_{ab} \end{pmatrix}$$

- Find special matrices \mathbf{P}_1 , \mathbf{P}_2 s.t. $\mathbf{P}_1 \begin{pmatrix} w & x \\ y & z \end{pmatrix} = \begin{pmatrix} w & x \\ y & z \end{pmatrix} \mathbf{P}_2$ conditioned on parity of w, x, y, z.
- ► Also, $det(\mathbf{P}_1) = 1$. (For the pairing eq.)
- ▶ With such a pair, invoking the oracle by $(E_B, R'_a, S'_a, R'_{ab}, S'_{ab})$ where

$$\begin{pmatrix} \mathbf{R}'_a \\ \mathbf{S}'_a \end{pmatrix} = \mathbf{P}_1 \begin{pmatrix} \mathbf{R}_a \\ \mathbf{S}_a \end{pmatrix}, \begin{pmatrix} \mathbf{R}'_{ab} \\ \mathbf{S}'_{ab} \end{pmatrix} = \mathbf{P}_2 \begin{pmatrix} \mathbf{R}_{ab} \\ \mathbf{S}_{ab} \end{pmatrix}.$$

It returns 1 iff the the commutativity condition holds.

We take

$$\mathbf{P}_1 = \begin{pmatrix} 1 & 0 \\ 2^{2a-1} & 1 \end{pmatrix}, \mathbf{P}_2 = \mathbf{I}_2.$$

The commutativity holds iff $w = x = 0 \mod 2$.

We take

$$\mathbf{P}_1 = \begin{pmatrix} 1 & 0 \\ 2^{2a-1} & 1 \end{pmatrix}, \mathbf{P}_2 = \mathbf{I}_2.$$

The commutativity holds iff $w = x = 0 \mod 2$.

Recall $w + sk_A y = x + sk_A z = 0 \mod 2^a$ $(w, x, y, z \in [2^{2a}], sk_A \in [2^a])$.

- We can prove that y, z cannot be both even.
- ▶ The commutativity holds iff $sk_A = 0 \mod 2$.
- ▶ The first bit of $sk_A = 0$ if and only if the oracle returns 1.
- The lsb of sk_A is extracted!

Base on $w + \operatorname{sk}_A y = x + \operatorname{sk}_A z = 0 \mod 2^a$, we can write

$$\phi_A'\begin{pmatrix} R_a \\ S_a \end{pmatrix} = \begin{pmatrix} -\mathsf{sk}_A y \mod 2^a + * & -\mathsf{sk}_A z \mod 2^a + * \\ & y & z \end{pmatrix} \begin{pmatrix} R_{ab} \\ S_{ab} \end{pmatrix}$$

Base on $w + \operatorname{sk}_A y = x + \operatorname{sk}_A z = 0 \mod 2^a$, we can write

$$\phi_A'\begin{pmatrix} R_a \\ S_a \end{pmatrix} = \begin{pmatrix} -\mathsf{sk}_A y & \bmod \ 2^a + * & -\mathsf{sk}_A z & \bmod \ 2^a + * \\ & y & & z \end{pmatrix} \begin{pmatrix} R_{ab} \\ S_{ab} \end{pmatrix}$$

▶ Use the homomorphism ϕ'_{A} to launch GPST-type attack:

$$R_a' = [1 + 2^{2a-2}]R_a + [sk_0 2^{2a-2}]S_a,$$

$$\blacktriangleright \text{ (Eq1) } \phi_A'(R_a') = \phi_A'(R_a) \iff \mathsf{sk}_1 = 0.$$

Base on $w + \operatorname{sk}_A y = x + \operatorname{sk}_A z = 0 \mod 2^a$, we can write

$$\phi_A'\begin{pmatrix} R_a \\ S_a \end{pmatrix} = \begin{pmatrix} -\mathsf{sk}_A y & \mathsf{mod} \ 2^a + * & -\mathsf{sk}_A z & \mathsf{mod} \ 2^a + * \\ y & z \end{pmatrix} \begin{pmatrix} R_{ab} \\ S_{ab} \end{pmatrix}$$

▶ Use the homomorphism ϕ'_{A} to launch GPST-type attack:

$$R_a' = [1 + 2^{2a-2}]R_a + [sk_0 2^{2a-2}]S_a,$$

- $\blacktriangleright \text{ (Eq1) } \phi_A'(R_a') = \phi_A'(R_a) \iff \mathsf{sk}_1 = 0.$
- (Eq2) $\phi'_{A}(S_{a}) = \phi'_{A}(S_{a})$ always.

Base on $w + \operatorname{sk}_A y = x + \operatorname{sk}_A z = 0 \mod 2^a$, we can write

$$\phi_A'\begin{pmatrix} R_a \\ S_a \end{pmatrix} = \begin{pmatrix} -\mathsf{sk}_A y & \mathsf{mod} \ 2^a + * & -\mathsf{sk}_A z & \mathsf{mod} \ 2^a + * \\ y & z \end{pmatrix} \begin{pmatrix} R_{ab} \\ S_{ab} \end{pmatrix}$$

▶ Use the homomorphism ϕ'_{A} to launch GPST-type attack:

$$R_a' = [1 + 2^{2a-2}]R_a + [sk_0 2^{2a-2}]S_a,$$

- $\blacktriangleright \text{ (Eq1) } \phi_A'(R_a') = \phi_A'(R_a) \iff \mathsf{sk}_1 = 0.$
- (Eq2) $\phi'_{A}(S_{a}) = \phi'_{A}(S_{a})$ always.
- $(KernelEq) \ker(\phi'_A) = \langle [2^a]R_a + [\operatorname{sk}_A 2^a]S_a \rangle = \langle [2^a]R'_a + [\operatorname{sk}_A 2^a]S_a \rangle \bigcirc$

Base on $w + \operatorname{sk}_A y = x + \operatorname{sk}_A z = 0 \mod 2^a$, we can write

$$\phi_A'\begin{pmatrix} R_a \\ S_a \end{pmatrix} = \begin{pmatrix} -\mathsf{sk}_A y & \mathsf{mod}\ 2^a + * & -\mathsf{sk}_A z & \mathsf{mod}\ 2^a + * \\ & y & z \end{pmatrix} \begin{pmatrix} R_{ab} \\ S_{ab} \end{pmatrix}$$

▶ Use the homomorphism ϕ'_{A} to launch GPST-type attack:

$$R_a' = [1 + 2^{2a-2}]R_a + [sk_0 2^{2a-2}]S_a,$$

- $\blacktriangleright \text{ (Eq1) } \phi_A'(R_a') = \phi_A'(R_a) \iff \mathsf{sk}_1 = 0.$
- (Eq2) $\phi'_{A}(S_{a}) = \phi'_{A}(S_{a})$ always.
- $\text{(KernelEq)} \ker(\phi_A') = \langle [2^a]R_a + [\operatorname{sk}_A 2^a]S_a \rangle = \langle [2^a]R_a' + [\operatorname{sk}_A 2^a]S_a \rangle \bigcirc$
- ▶ (PairingEq) But $e_{4a}(R'_a, S_a) \neq e_{4a}(R_a, S_a) = e_{4a}(P_2, Q_2)^{3b}$ (The scaling method won't work due to the Eq 2 & Kernel Eq.)

Base on $w + \operatorname{sk}_A y = x + \operatorname{sk}_A z = 0 \mod 2^a$, we can write

$$\phi_A'\begin{pmatrix} R_a \\ S_a \end{pmatrix} = \begin{pmatrix} -\mathsf{sk}_A y & \bmod \ 2^a + * & -\mathsf{sk}_A z & \bmod \ 2^a + * \\ & y & & z \end{pmatrix} \begin{pmatrix} R_{ab} \\ S_{ab} \end{pmatrix}$$

▶ Use the homomorphism ϕ'_{A} to launch GPST-type attack:

$$R_a' = [1 + 2^{2a-2}]R_a + [sk_0 2^{2a-2}]S_a,$$

- $\blacktriangleright \text{ (Eq1) } \phi_A'(R_a') = \phi_A'(R_a) \iff \mathsf{sk}_1 = 0.$
- (Eq2) $\phi'_{A}(S_{a}) = \phi'_{A}(S_{a})$ always.
- $\text{(KernelEq)} \ker(\phi_A') = \langle [2^a]R_a + [\operatorname{sk}_A 2^a]S_a \rangle = \langle [2^a]R_a' + [\operatorname{sk}_A 2^a]S_a \rangle \bigcirc$
- ► (PairingEq) But $e_{4a}(R'_a, S_a) \neq e_{4a}(R_a, S_a) = e_{4a}(P_2, Q_2)^{3b}$ (The scaling method won't work due to the Eq 2 & Kernel Eq.)
- ▶ The oracle taking as input $(E_B, R'_a, S_a, R_{ab}, S_{ab})$ will return 0. \bigcirc

$$\phi_A'\begin{pmatrix} R_a \\ S_a \end{pmatrix} = \begin{pmatrix} w & x \\ -\mathsf{sk}_A^{-1}w \mod 2^a + * & -\mathsf{sk}_A^{-1}x \mod 2^a + * \end{pmatrix} \begin{pmatrix} R_{ab} \\ S_{ab} \end{pmatrix}$$

$$-wsk_A^{-1} = y, -xsk_A^{-1} = z \mod 2^a$$

$$\phi_A'\begin{pmatrix} R_a \\ S_a \end{pmatrix} = \begin{pmatrix} w & x \\ -\mathsf{sk}_A^{-1}w \mod 2^a + * & -\mathsf{sk}_A^{-1}x \mod 2^a + * \end{pmatrix} \begin{pmatrix} R_{ab} \\ S_{ab} \end{pmatrix}$$

$$-wsk_A^{-1} = y, -xsk_A^{-1} = z \mod 2^a$$

$$R'_a = [1 + 2^{2a-2}]R_a + [sk_0 2^{2a-2}]S_a,$$

$$S_a' = [sk_0^{-1}2^{2a-2}]R_a + [1 - 2^{2a-2}]S_a,$$

$$-wsk_A^{-1} = y, -xsk_A^{-1} = z \mod 2^a$$

- $R'_a = [1 + 2^{2a-2}]R_a + [sk_0 2^{2a-2}]S_a,$
- $S_a' = [sk_0^{-1}2^{2a-2}]R_a + [1 2^{2a-2}]S_a,$
- $\blacktriangleright (\mathsf{Eq1}) \ \phi_A'(R_a') = \phi_A'(R_a) \iff \mathsf{sk}_1 = 0.$

$$\phi_A'\begin{pmatrix} R_a \\ S_a \end{pmatrix} = \begin{pmatrix} w & x \\ -\mathsf{sk}_A^{-1}w \mod 2^a + * & -\mathsf{sk}_A^{-1}x \mod 2^a + * \end{pmatrix} \begin{pmatrix} R_{ab} \\ S_{ab} \end{pmatrix}$$

$$-wsk_A^{-1} = y, -xsk_A^{-1} = z \mod 2^a$$

- $R'_a = [1 + 2^{2a-2}]R_a + [sk_0 2^{2a-2}]S_a,$
- $S_a' = [sk_0^{-1}2^{2a-2}]R_a + [1 2^{2a-2}]S_a,$
- (Eq1) $\phi'_A(R'_a) = \phi'_A(R_a) \iff \mathsf{sk}_1 = 0.$
- $\blacktriangleright (\mathsf{Eq2}) \ \phi_A'(S_a') = \phi_A'(S_a) \iff (\mathsf{sk}_A)_1^{-1} = 0 \iff \mathsf{sk}_1 = 0.$

$$\phi_A'\begin{pmatrix} R_a \\ S_a \end{pmatrix} = \begin{pmatrix} w & x \\ -\mathsf{sk}_A^{-1}w \mod 2^a + * & -\mathsf{sk}_A^{-1}x \mod 2^a + * \end{pmatrix} \begin{pmatrix} R_{ab} \\ S_{ab} \end{pmatrix}$$

$$-wsk_A^{-1} = y, -xsk_A^{-1} = z \mod 2^a$$

- $R'_a = [1 + 2^{2a-2}]R_a + [sk_0 2^{2a-2}]S_a,$
- $S_a' = [sk_0^{-1}2^{2a-2}]R_a + [1 2^{2a-2}]S_a,$
- (Eq1) $\phi'_A(R'_a) = \phi'_A(R_a) \iff \mathsf{sk}_1 = 0.$
- $\blacktriangleright (\mathsf{Eq2}) \ \phi_A'(S_a') = \phi_A'(S_a) \iff (\mathsf{sk}_A)_1^{-1} = 0 \iff \mathsf{sk}_1 = 0.$
- (PairingEq) And $e_{4a}(R'_a, S'_a) = e_{4a}(P_2, Q_2)^{3b}$.

$$\phi_A'\begin{pmatrix} R_a \\ S_a \end{pmatrix} = \begin{pmatrix} w & x \\ -\mathsf{sk}_A^{-1}w \mod 2^a + * & -\mathsf{sk}_A^{-1}x \mod 2^a + * \end{pmatrix} \begin{pmatrix} R_{ab} \\ S_{ab} \end{pmatrix}$$

$$-wsk_A^{-1} = y, -xsk_A^{-1} = z \mod 2^a$$

- $R'_a = [1 + 2^{2a-2}]R_a + [sk_0 2^{2a-2}]S_a,$
- $S_a' = [sk_0^{-1}2^{2a-2}]R_a + [1 2^{2a-2}]S_a,$
- (Eq1) $\phi'_A(R'_a) = \phi'_A(R_a) \iff \mathsf{sk}_1 = 0.$
- $\blacktriangleright (\mathsf{Eq2}) \ \phi_A'(S_a') = \phi_A'(S_a) \iff (\mathsf{sk}_A)_1^{-1} = 0 \iff \mathsf{sk}_1 = 0.$
- ► (PairingEq) And $e_{4a}(R'_a, S'_a) = e_{4a}(P_2, Q_2)^{3b}$. \bigcirc
- ► (KernelEq) Also $\ker(\phi_A') = \langle [2^a]R_a + [\operatorname{sk}_A 2^a]S_a \rangle = \langle [2^a]R_a' + [\operatorname{sk}_A 2^a]S_a' \rangle \bigcirc$

$$\phi_A'\begin{pmatrix} R_a \\ S_a \end{pmatrix} = \begin{pmatrix} w & x \\ -\mathsf{sk}_A^{-1}w \mod 2^a + * & -\mathsf{sk}_A^{-1}x \mod 2^a + * \end{pmatrix} \begin{pmatrix} R_{ab} \\ S_{ab} \end{pmatrix}$$

$$-w\mathsf{sk}_A^{-1} = y, -x\mathsf{sk}_A^{-1} = z \mod 2^a$$

- $R'_a = [1 + 2^{2a-2}]R_a + [sk_0 2^{2a-2}]S_a,$
- $S_a' = [sk_0^{-1}2^{2a-2}]R_a + [1 2^{2a-2}]S_a,$
- (Eq1) $\phi'_A(R'_a) = \phi'_A(R_a) \iff \mathsf{sk}_1 = 0.$
- $\blacktriangleright (\mathsf{Eq2}) \ \phi_A'(S_a') = \phi_A'(S_a) \iff (\mathsf{sk}_A)_1^{-1} = 0 \iff \mathsf{sk}_1 = 0.$
- (PairingEq) And $e_{4a}(R'_a, S'_a) = e_{4a}(P_2, Q_2)^{3b}$.
- (KernelEq) Also $\ker(\phi_A') = \langle [2^a]R_a + [\operatorname{sk}_A 2^a]S_a \rangle = \langle [2^a]R_a' + [\operatorname{sk}_A 2^a]S_a' \rangle \bigcirc$
- \blacktriangleright What if sk_A is not invertible??

sk_A is Even.

Idea: Reuse the P_1 , P_2 commutativity method, we can keep extracting the next bit until 1 appears.

- $ightharpoonup R'_a = [1 + 2^{2a-1}]R_a,$
- $S'_a = [2^{2a-2}]R_a + [1 2^{2a-1}]S_a,$

sk_A is Even.

Idea: Reuse the P_1 , P_2 commutativity method, we can keep extracting the next bit until 1 appears.

- $R'_a = [1 + 2^{2a-1}]R_a$
- $S'_a = [2^{2a-2}]R_a + [1 2^{2a-1}]S_a,$
- ► (Eq1) $\phi'_{A}(R'_{a}) = \phi'_{A}(R_{a})$: always. \bigcirc
- ► (Eq2)

$$\phi'_A(S'_a) = \phi'_A(S_a) \iff \mathsf{sk}_1 2^{2a-1} - 2^{2a-1} = 0 \mod 2^{2a}$$
$$\iff \mathsf{sk}_1 = 1.$$

- (PairingEq) And $e_{4a}(R'_a, S'_a) = e_{4a}(P_2, Q_2)^{3b}$.
- ► (KernelEq) Also $\ker(\phi'_A) = \langle [2^a]R_a + [\operatorname{sk}_A 2^a]S_a \rangle = \langle [2^a]R'_a + [\operatorname{sk}_A 2^a]S'_a \rangle \bigcirc$

sk_A is Even.

Idea: Reuse the P_1 , P_2 commutativity method, we can keep extracting the next bit until 1 appears.

- $ightharpoonup R'_a = [1 + 2^{2a-1}]R_a,$
- $S'_a = [2^{2a-2}]R_a + [1 2^{2a-1}]S_a,$
- ► (Eq1) $\phi'_{A}(R'_{a}) = \phi'_{A}(R_{a})$: always. \bigcirc
- ► (Eq2)

$$\phi'_A(S'_a) = \phi'_A(S_a) \iff \mathsf{sk}_1 2^{2a-1} - 2^{2a-1} = 0 \mod 2^{2a}$$
$$\iff \mathsf{sk}_1 = 1.$$

- (PairingEq) And $e_{4a}(R'_a, S'_a) = e_{4a}(P_2, Q_2)^{3b}$.
- ► (KernelEq) Also $\ker(\phi'_A) = \langle [2^a]R_a + [\operatorname{sk}_A 2^a]S_a \rangle = \langle [2^a]R'_a + [\operatorname{sk}_A 2^a]S'_a \rangle \bigcirc$
- ▶ One can recursively use this approach to extract the maximal power of 2 in sk_A .

Say 2^j is the maximal power of 2 dividing sk_A and i lsbs of sk_A has been recovered, denoted by sk_ℓ .

Say 2^j is the maximal power of 2 dividing sk_A and i lsbs of sk_A has been recovered, denoted by sk_ℓ .

- ► Making queries on $(E_B, R'_a, S'_a, R_{ab}, S_{ab})$, where
- $R'_a = [1 + 2^{2a-i-1}2^j]R_a [sk_\ell 2^{2a-i-1}2^j]S_a,$
- $S'_a = [\widetilde{\mathsf{sk}}_{\ell} 2^{2a-i-1}] R_a + [1 + 2^{2a-i-1} 2^j] S_a,$

 $(\widetilde{\mathsf{sk}_\ell})$ is the inverse of $\mathsf{sk}_\ell/2^j \mod 2^i$

Say 2^j is the maximal power of 2 dividing sk_A and i lsbs of sk_A has been recovered, denoted by sk_ℓ .

- ► Making queries on $(E_B, R'_a, S'_a, R_{ab}, S_{ab})$, where
- $R'_a = [1 + 2^{2a-i-1}2^j]R_a [sk_\ell 2^{2a-i-1}2^j]S_a,$
- $S'_a = [\widetilde{\operatorname{sk}}_{\ell} 2^{2a-i-1}] R_a + [1 + 2^{2a-i-1} 2^j] S_a,$ $(\widetilde{\operatorname{sk}}_{\ell} \text{ is the inverse of } \operatorname{sk}_{\ell} / 2^j \mod 2^i)$
- Paring/ Ker Eqs will hold.
- ▶ It returns 1 if the next bit is 0.

Say 2^j is the maximal power of 2 dividing sk_A and i lsbs of sk_A has been recovered, denoted by sk_ℓ .

- ► Making queries on $(E_B, R'_a, S'_a, R_{ab}, S_{ab})$, where
- $R'_a = [1 + 2^{2a-i-1}2^j]R_a [sk_\ell 2^{2a-i-1}2^j]S_a,$
- $S'_a = [\widetilde{\operatorname{sk}}_{\ell} 2^{2a-i-1}] R_a + [1 + 2^{2a-i-1} 2^j] S_a,$ $(\widetilde{\operatorname{sk}}_{\ell} \text{ is the inverse of } \operatorname{sk}_{\ell}/2^j \mod 2^i)$
- Paring/ Ker Eqs will hold.
- ▶ It returns 1 if the next bit is 0.
- ► Nicely done! ©©©©©©©©

We also generalize the result to any small primes and a more general form of the private keys.

Summary and Open Problems

Summary

- We present a new adaptive attack against SIDH-type schemes using the commutativity of isogenies.
- The adaptive attack runs in polynomial time.

Open Problems

- Is it possible to have an efficient variant of SIDH secure against the Castryck-Decru and Robert attacks? (e.g. 2022/1019,1054?)
- If so, can we have an efficient proof system to prevent the attack?

