Attack on SHealS and HealS:
the Second Wave of GPST

Yi-Fu Lai
joint work with Steven D. Galbraith
University of Auckland
New Zealand

Sepg?mber @ PQCrypto2022

::52" Roadmap ‘:t:(

SRRIARVARIARIASINZNRLNRLARLNIVNRLARINAG

1. What’s this work about?
> SIDH Key exchange
> GPST Adaptive Attack [AC:GPST16]
> A countermeasure for SIDH-type Schemes
by Fouotsa and Petit [AC:FP21]

2. Quick Questions
3. Technical Overview

> First Bit Extraction
> Extraction of the maximal power of 2 divisor
> Next Bit Extraction

o o>

A Content)
_SRRIAZARZARIAILAILASLARLARLASIAIVNRINIL
Preliminaries

Quick Questions

Technical Overview

Content

Preliminaries

WA Brief Intro/Setting for SIDH

> p=293"_1is aprime where 2¢ ~ 3°,
> Elliptic curves: E4/F . : ¥ = x>+ Ax? + x.

‘A Brief Intro/Setting for SIDH

v

> p =230 _1is aprime where 2¢ =~ 3.
> Elliptic curves: E4/F 2 : y* = X + Ax* + x.
> Anisogeny ¢ : E4 — Epis a morphism and also a group

homomorphism, uniquely determined by the kernel and the image
curve (up to isomorphism).

» For N not divisible by p,

5/27

‘A Brief Intro/Setting for SIDH

v

> p =293 _1is aprime where 2¢ ~ 3°.
> Elliptic curves: E4/F 2 : y* = X + Ax* + x.

> Anisogeny ¢ : E4 — Egis a morphism and also a group
homomorphism, uniquely determined by the kernel and the image
curve (up to isomorphism).

» For N not divisible by p,

EIN1 = (P € E(E,) | INIP = O}
= 7N X LN

5/27

'SIDH Key Exchange

> E[29] = Zsa X Zpa With @ basis {P2, 0»}.

> E[3°] = Z3 x Zy with a basis {P3, Q3.

> Alice: sk, € [2¢] > Bob: skg € [3”]

> ker(¢a) = (P2 + ska02) > ker(¢p) = (P3 + skpQ3)

Al
o et =if, ekl

U

Ea
M W e

| i EB
4 (R), 4(0,)

'SIDH Key Exchange

> E[29] = Zsa X Zpa With @ basis {P2, 0»}.

> E[3°] = Z3 x Zy with a basis {P3, Q3.

> Alice: sk, € [2¢] > Bob: skg € [3”]

> ker(¢a) = (P2 + ska02) > ker(¢p) = (P3 + skzQ3)

Aliw
gy’ kerBy=<Fo + skl

U

Ea /
M R), iﬂN
Eas
Es Eia
N\ 55»\/

M 4 40

'SIDH Key Exchange

> E[29] = Zsa X Zpa With @ basis {P2, 0»}.

> E[3°] = Z3 x Zy with a basis {P3, Q3.

> Alice: sk, € [2¢] > Bob: skg € [3”]

> ker(¢a) = (P2 + ska02) > ker(¢p) = (P3 + skzQ3)

Al
o et =if, ekl

U

Ea
/e) f.N

Ab A P) ?‘5 (@)
" \: \1 ker Ja=4P"+ sha Q">

‘GPST Adaptive Attack

» (Modeling) Bob is the bad guy. Alice is an oracle on input
Osk,(E, P', O, Eap) and returns 1 iff

Esp = Ep/(P" +sks0"),

ex(P', Q") = exa(P, Q).

GPST Adaptive Attack

» (Modeling) Bob is the bad guy. Alice is an oracle on input
Osk,(E, P', O, Eap) and returns 1 iff

v

Esp = Ep/(P" +sks0"),

ex(P', Q") = exa(P, Q).

> (Assumption) When |G|, |G»| < p, with an overwhelming chance,

EB/G1 = EB/G2 — G1 = Gz.

7127

GPST Adaptive Attack

» (Modeling) Bob is the bad guy. Alice is an oracle on input
Osk,(E, P', O, Eap) and returns 1 iff

v

Esp = Ep/(P" +sks0"),

ex(P', Q") = exa(P, Q).

> (Assumption) When |G|, |G»| < p, with an overwhelming chance,

EB/G1 = EB/G2 — G1 = Gz.

> Hence, on input Og, (Eg, P’, O’, E4p), Alice returns 1 iff
(P +sksQ) = (P +sks0")

? exa(P', Q') = exa(P, Q).

7127

GPST Adaptive Attack

1. Bob honestly computes Eg, P = ¢p(P2), Q = ¢p(Q>), Esp.
2. LetP =P, Q' =2'P+ Q. Then

Osk,(Ep,P', Q' ,Eap) > 1 & skq4 =0 mod 2.
(Sketch of Pf): Firstly,
e2(P', Q") = ex(P, Q) = exu(P, Q).
Claim

(P" +8ksQ'y = (P +8sks0) < skyu: even

(P +sks0Q’) = (P + sks(2"'P + Q))
= (P + sk, O + sky (2471 P))
= (P +8sky0) < sky: even. 2P = O)

8/27

WThe Concept of GPST Attack

Take a = 3 for instance: (P, Q) = E[8] = Zg X Zg

P 0 P Q
((001,000) + (000,001)sks) (The correct kernel.)

‘The Concept of GPST Attack

Take a = 3 for instance: (P, Q) = E[8] = Zg X Zg

P Q P Q
((001, 000) + (000,001)sks) (The correct kernel.)

((001,000) + (100,001)sks) (The manipulated input.)

‘The Concept of GPST Attack

Take a = 3 for instance: (P, Q) = E[8] = Zg X Zg

P Q P Q
((001, 000) + (000,001)sks) (The correct kernel.)

((001,000) + (100,001)sks) (The manipulated input.)
=((001, 000) + (000, 001)sk4 + (100,000)sk4)

'The Concept of GPST Attack

Take a = 3 for instance: (P, Q) = E[8] = Zg X Zg

P Q P Q
((001, 000) + (000,001)sks) (The correct kernel.)

((001,000) + (100,001)sks) (The manipulated input.)
=((001, 000) + (000, 001)sky + (100, 000)sk,)

= Get Isb sky.

' The Concept of GPST Attack

Take a = 3 for instance: (P, Q) = E[8] = Zg X Zg

P Q P Q
((001, 000) + (000,001)sks) (The correct kernel.)

((001,000) + (100,001)sks) (The manipulated input.)
=((001, 000) + (000, 001)sk4 + (100,000)sk4)

= Get Isb sky.

((0-skp1,000) + (010,001)sks) (The manipulated input.)

9/27

' The Concept of GPST Attack

Take a = 3 for instance: (P, Q) = E[8] = Zg X Zg

P Q P Q
((001, 000) + (000,001)sks) (The correct kernel.)

((001,000) + (100,001)sks) (The manipulated input.)
=((001, 000) + (000, 001)sk4 + (100,000)sk4)

= Get Isb sky.

((0-skp1,000) + (010,001)sks) (The manipulated input.)
=((001, 000) + (000, 001)sk4 + (010, 000)sky4 + (0-sky0, 000)).

9/27

' The Concept of GPST Attack

Take a = 3 for instance: (P, Q) = E[8] = Zg X Zg

v

P Q P Q
((001, 000) + (000,001)sks) (The correct kernel.)

((001,000) + (100,001)sks) (The manipulated input.)
=((001, 000) + (000, 001)sk4 + (100,000)sk4)

= Get Isb sky.

((0-skp1,000) + (010,001)sks) (The manipulated input.)
=((001, 000) + (000, 001)sk4 + (010,000)sk4 + (0-sky0, 000)).
=((001, 000) + (000, 001)sk4 + (sk;skp0,000) + (0-sky0, 000)).

9/27

' The Concept of GPST Attack

Take a = 3 for instance: (P, Q) = E[8] = Zg X Zg

v

P Q P Q
((001, 000) + (000,001)sks) (The correct kernel.)

((001,000) + (100,001)sks) (The manipulated input.)
=((001, 000) + (000, 001)sk4 + (100,000)sk4)

= Get Isb sky.

((0-skp1,000) + (010,001)sks) (The manipulated input.)
=((001, 000) + (000, 001)sk4 + (010,000)sk4 + (0-sky0, 000)).
=((001, 000) + (000, 001)sk4 + (sk;skp0,000) + (0-sky0, 000)).
=((001, 000) + (000, 001)ska + (sk;00, 000)).

9/27

' The Concept of GPST Attack

Take a = 3 for instance: (P, Q) = E[8] = Zg X Zg

v

P Q P Q
((001, 000) + (000,001)sks) (The correct kernel.)

((001,000) + (100,001)sks) (The manipulated input.)
=((001, 000) + (000, 001)sk4 + (100,000)sk4)

= Get Isb sky.

((0-skp1,000) + (010,001)sks) (The manipulated input.)
=((001, 000) + (000, 001)sk4 + (010,000)sk4 + (0-sky0, 000)).
=((001, 000) + (000, 001)sk4 + (sk;skp0,000) + (0-sky0, 000)).
=((001, 000) + (000, 001)ska + (sk;00, 000)).

= Get the second Isb sk;.
(Rmk: one has to scale the coefficient to have pass the pairing check.)

9/27

s this Bad?

» This can be easily prevented by using the FO-transform-type
method: Bob always uses an ephemeral secret key and reveal it to
Alice.

> This results in having static-ephemeral only cryptosystem.

Is this Bad?

v

» This can be easily prevented by using the FO-transform-type
method: Bob always uses an ephemeral secret key and reveal it to
Alice.

> This results in having static-ephemeral only cryptosystem.

> Alternative: use either ZK proof systems or the multiple-public-keys
techniques e.g.[UJ:20, SAC:AJL17].

10/27

Is this Bad?

v

» This can be easily prevented by using the FO-transform-type
method: Bob always uses an ephemeral secret key and reveal it to
Alice.

> This results in having static-ephemeral only cryptosystem.

> Alternative: use either ZK proof systems or the multiple-public-keys
techniques e.g.[UJ:20, SAC:AJL17].

> This results in the number of isogeny compuations non-constant in
A.

10/27

Is this Bad?

v

» This can be easily prevented by using the FO-transform-type
method: Bob always uses an ephemeral secret key and reveal it to
Alice.

> This results in having static-ephemeral only cryptosystem.

> Alternative: use either ZK proof systems or the multiple-public-keys
techniques e.g.[UJ:20, SAC:AJL17].

> This results in the number of isogeny compuations non-constant in
A.

» [AC:FP21] gives an interactive proof system for the correctness of
the public key.

10/27

A Proposed Countermeasure

> A countermeasure proposed by Fouotsa and Petit in [AC:FP21].

v

» The high-level idea is to use commutativity of isogenies [Leo20].

Al

» |f Bob manipulates the points in his public key, then the final

evaluation will not match.
11/27

‘What Did We Do?

> We notice the flaw in the proof of the proof system in [AC:FP21].

» Based on the flaw, we derive a variant of GPST attack that
adaptively recovers users’ secret keys again.

v

12/27

‘What Did We Do?

> We notice the flaw in the proof of the proof system in [AC:FP21].

» Based on the flaw, we derive a variant of GPST attack that
adaptively recovers users’ secret keys again.

» The attack is as efficient and effective as the GPST attack.

v

12/27

Content

Quick Questions

'‘Quick Questions

» Can the Castryck-Decru (passive) attack (2022/975) apply to this
scheme?

> Yes, but not in polynomial-time theoretically by the current version
(17 Sep 2022) due to the unknown endomorphism ring.

v

14/27

'‘Quick Questions

» Can the Castryck-Decru (passive) attack (2022/975) apply to this
scheme?

> Yes, but not in polynomial-time theoretically by the current version
(17 Sep 2022) due to the unknown endomorphism ring.

» How about the Robert (passive) attack (2022/1038)?
> Yes, and in polynomial-time theoretically.

v

14/27

'‘Quick Questions

» Can the Castryck-Decru (passive) attack (2022/975) apply to this
scheme?

> Yes, but not in polynomial-time theoretically by the current version
(17 Sep 2022) due to the unknown endomorphism ring.

» How about the Robert (passive) attack (2022/1038)?
> Yes, and in polynomial-time theoretically.

» What’s the salvage value of this attack?
> No practical. Only theoretical values.

v

14/27

Content

Technical Overview

—

HealSIDH and lts Key Validation Mechanism

>
»

> {P5, 0>} : basis for E[2%¢] > {P3, 03} : basis for E[3%]
> Alice: sky € [29] > Bob: skp € [37]
> ker(¢a) = (29P2 + ska290») > ker(¢p) = (3" P3 + skp3”Q3)

oa | Ea0aB3'P).6a(3°Qs)
[Eﬂ: PQ:' QQ! PS: Q3 — ¢A(P2) = [GJRA + [b]SA
$a(Q2) = [c]Ra + [d]Sa

(Honest Bob]

Ra = ¢B(F2),S. = ¢op(Q2)
Rap = ¢'5(Ra). Sab = ¢3(Sa)

.)
OB RETISTTTTTIISIIPPITE v..f? (Key Validation 1
[EABaR(Lb:Sab } eqa(Ra, Sa) z 64(1(P2,Q2)3b
- f o ¢a(Ra) = [aRas + [b]Sas
. . ¢ Verify Pal)
[ByRas, Eua6a(Ba)- 9250 | VY 1 g5 2 (el + ()5

T

'Modeling

v

» Say Bob is the bad guy; Alice is the victim of the attack.

» Say Alice is an oracle on input (Eg, Ry, S 4, Rup, S ap) returning 1 iff
the following three equations holds:

ess(RusSa) = eaa(Pa, 02)7, (Pairing Eq)
¢:4(Ra) - [w]Rab + [X]Sab € EBA, (Eq 1)
$4(Sa) = [YlRap + [2)Sap € Ea, (Eq. 2)
where
¢:4 . EB — EBA

ker(¢)y) = ([27]R, + [ska29]1S,) C Ep. (Kernel Eq)

17/27

‘Manipulate R,,, S,

v

» Say Alice is an oracle on input (E, R4, S 4, Rup, S ap) returning 1 iff
the following three equations holds.

> We will only manipulate ... (Eg, R4, S, Rap, S ap)

ess(RusSo) = eaa(Pa, 02)7, (Pairing Eq)
¢:4(Ra) - [w]Rab + [X]Sab € EBA, (Eq 1)
$4(Sa) = [yRap + [2)Sab € Ea, (Eq. 2)
where
¢:4 . EB — EBA

ker(¢)y) = ([27]R, + [ska29]1S,) C Ep. (Kernel Eq)

18/27

WLemmata

1. (R,,S,) = Eg[2*].

qLemmata

1. <Ra, Sa> - EB[Zza]-
2. Recall that

Py(Ry) = [WIRgp + [X]S up € Epa,
$4(Sa) = [YlRap + [2]S ap € Epa,

WLemmata

1. <Ra> Sa> - EB[22a].
2. Recall that

Py(Ry) = [WIRgp + [X]S up € Epa,
$4(Sa) = [YlRap + [2]S ap € Epa,

we can prove that
w+ Skay = x + Skyz =0 mod 2¢

(w, x, y, z € [2°9], sk € [29]).

_

Lemmata

1. <Raa Sa> — EB[zza]-
2. Recall that

¢4(Ra) = [wIRap + [X]S ap € Epa,
$4(Sa) = [ylRap + [2]Sap € Epa,

we can prove that
w+ Skay = x + Skyz =0 mod 2¢

(w, x,y,7 € [224], sky € [29]).

= Information of sk, is hidden in the lower bits of w, x, y, z.

WThe First Bit Extraction

Recall: ¢/, (g;’) = (l;)ZC) (?Zi)

‘The First Bit Extraction

ot (%)= 7))

» Find special matrices P, P> s.t. P; (:))ZC) = (l;))ZC) P, conditioned

on parity of w, x, y, z.
> Also, det(Py) = 1. (For the pairing eq.)

' The First Bit Extraction

ot (%)= 7))

» Find special matrices Py, P, s.t. P; (l;)ZC) = (l;))ZC) P, conditioned

v

on parity of w, x, y, z.
> Also, det(Py) = 1. (For the pairing eq.)

> With such a pair, invoking the oracle by (E, R;,S,,R/,,S) where
R’ R R’ Rap
al — I) a , ?b — I) a .
52)= 7 5:)-(52) (s3]
> It returns 1 iff the the commutativity condition holds.

20/27

WThe First Bit Extraction

We take
1 0
P] = (2261—1 1) ,P2 = 12.

The commutativity holds iff w = x =0 mod 2.

' The First Bit Extraction

v

We take
1 0
P] = (2261—1 1) ,P2 = 12

The commutativity holds iff w = x =0 mod 2.

Recall w + skyy = x + skyz = 0 mod 2 (w, x, y, z € [2°?], sk4 € [2¢]).
> We can prove that y, z cannot be both even.
» The commutativity holds iff sky = 0 mod 2.
» The first bit of sky = 0 if and only if the oracle returns 1.

» The Isb of sk, is extracted!

21/27

WRecovering Higher Bits (High-level Idea)

Base on w + skay = x + skuz = 0 mod 2%, we can write

>

, [Ra —Skay mod 2¢ + % —skyz mod 29 + =\ (Ryp
¢A S =
a Yy Z

Sab

'Recovering Higher Bits (High-level Idea)

Base on w + skay = x + skaz = 0 mod 2%, we can write

, [Ra) _ [—Skay mod 29 + x Rup
¢A \Y B y S ab

> Use the homomorphism ¢, to launch GPST-type attack:

v

R, =[1+2°“2|R, + [sko2**72]S,

where skg is skx mod 2, just extracted.
> (Eq1) ¢, (R}) = ¢,,(R,) < sk; =0.

22/27

'Recovering Higher Bits (High-level Idea)

v

Base on w + skay = x + skaz = 0 mod 2%, we can write

, [Ra) _ [—Skay mod 29 + x Rup
P S.) Y S ab

> Use the homomorphism ¢, to launch GPST-type attack:
R, =[1 +2*2R, + [sko2*%]S ,,

where skg is skx mod 2, just extracted.
> (Eql) ¢, (R)) = ¢, (R,) < sk; =0.
> (Eg2) ¢:4(Sa) = ¢:4(Sa) always.

22/27

'Recovering Higher Bits (High-level Idea)

Base on w + skay = x + skaz = 0 mod 2%, we can write

, [Ra) _ [—Skay mod 29 + x Rup
¢A \Y B y S ab

> Use the homomorphism ¢’, to launch GPST-type attack:

v

R, =[1+2°“2|R, + [sko2**72]S,

where skg is skx mod 2, just extracted.
> (Eq1) ¢, (R}) = ¢,,(R,) < sk; =0.
> (EQ2) ¢/,(Sa) = ¢,(S4) always.
> (KernelEq) ker(¢/,) = ([291R, + [ska2?1S)=([2°1R, + [ska2]1S 4) ©

22/27

'Recovering Higher Bits (High-level Idea)

Base on w + skay = x + skaz = 0 mod 2%, we can write

, [Ra) _ [—Skay mod 29 + x Rup
P S.) Y S ab

> Use the homomorphism ¢’, to launch GPST-type attack:

R, =[1+2°“2|R, + [sko2**72]S,

where skg is skx mod 2, just extracted.
> (Eq1) ¢, (R}) = ¢,,(R,) < sk; =0.
> (EQ2) ¢/,(Sa) = ¢,(S4) always.
> (KernelEq) ker(¢/,) = ([291R, + [ska2?1S)=([2°1R, + [ska2]1S 4) ©

> (PairingEq) But esa(R’,, S o)#esa(Ru, S 4) = eas(Pa, 0)> @ (The
scaling method won’t work due to the Eq 2 & Kernel Eq.)

22/27

'Recovering Higher Bits (High-level Idea)

Base on w + skay = x + skaz = 0 mod 2%, we can write

, [Ra) _ [—Skay mod 29 + x Rup
Pals,) = y Sab

> Use the homomorphism ¢’, to launch GPST-type attack:

R, =[1+2°“2|R, + [sko2**72]S,

where skg is skx mod 2, just extracted.
> (Eq1) ¢} (R,) = ¢, (R,) & sk; =0.
> (Eq2) ¢:4(Sa) = ¢:4(Sa) always.
> (KernelEq) ker(¢/,) = ([291R, + [ska2?1S)=([2°1R, + [ska2]1S 4) ©
> (PairingEq) But esa(R’,, S o)#esa(Ru, S 4) = eas(Pa, 0)> @ (The
scaling method won’t work due to the Eq 2 & Kernel Eq.)
!, » The oracle taking as input (E, R/, S 4, Rap, S ap) Will return 0. @

22/27

WRecovering the Higher Bits (High-level Idea)

>
»

, (Ra) _ w X R
P S.) —sk;llw mod 2¢ + = —sk;lx mod 2% + xJ\S 4

Assume sk, is invertible modulo 24, then

—wSk;‘1 =y, —xsk;' =z mod 2“

'Recovering the Higher Bits (High-level Idea)

¢, R, B w X R
A\S,) T \=skilw mod 29 + % —sk'x mod 29 + «J\S 4

Assume sk, is invertible modulo 2¢, then

—wskg1 =y, —xsk;' =z mod 2“

> R =[1+2%72]R, + [sko22"72]S,,
> S. = [sky'222IR, + [1 — 2297218,

'Recovering the Higher Bits (High-level Idea)

¢/ R, _ w X Rup
A\S,) T \=skilw mod 29 + % —sk'x mod 29 + «J\S 4

Assume sk, is invertible modulo 2¢, then

—wskg1 =y, —xskg1 =z mod 2¢

> R =[1+2%72]R, + [sko22"72]S,,
> S/ = [sky'22921R, + [1 — 2297218,
> (Eq1) ¢, (R;) = ¢, (R)) & sk =0.

'Recovering the Higher Bits (High-level Idea)

¢/ Ra _ w Rab
A\S,) " \=ski'w mod 2¢ + x S ab

Assume sk, is invertible modulo 2¢, then

—wsk;1 =y, —xskg1 =z mod 2¢

> R, =[1+2%72]R, + [sko2?*2]S ,,

> S/ =[sky'2272R, + [1 — 224728,

> (Eql) ¢, (Ry) = ¢4 (Ra) — sk; = 0.

> (Eq2) ¢/,(S,) = ¢,(S.) < (ska)]' =0 & sk; =0.

'Recovering the Higher Bits (High-level Idea)

¢/ Ra _ w Rab
A\S,) " \=ski'w mod 2¢ + x S ab

Assume sk, is invertible modulo 2¢, then

—wsk;1 =y, —xskg1 =z mod 2¢

> R =[1+2%72]R, + [sko2?7%]S ,,

> S. = [sky'222IR, + [1 — 2297218,

> (Eq1) ¢,(R) = ¢, (R,) < sk; =0.

> (Eq2) ¢, (S.) = ¢,(Ss) & (ska);' =0 < sk; =0.
> (PairingEq) And e4 (R, S”) = e4a(P2, 02)¥. ©

'Recovering the Higher Bits (High-level Idea)

¢/ Ra _ w Rab
A\S,) " \=ski'w mod 2¢ + x S ab

Assume sk, is invertible modulo 2¢, then

—wsk;1 =y, —xskg1 =z mod 2¢

> R =[1+2%72]R, + [sko22"72]S,,
> S/ = [sky'22921R, + [1 — 2297218,
> (Eq1) ¢ (R)) = ¢, (R,) < sk; =0.
> (Eq2) ¢/,(S}) = ¢/ (Su) = (ska);' =0 = sk; =0.
> (PairingEq) And e4 (R, S”) = e4a(P2, 02)¥. ©
> (KernelEq) Also
ker(¢,) = ([21R, + [ska21S .)=([2°1R), + [ska21S,) ©

23/27

'Recovering the Higher Bits (High-level Idea)

¢/ Ra _ w Rab
A\S,) " \=ski'w mod 2¢ + x S ab

Assume sk, is invertible modulo 2¢, then

—wsk;1 =y, —xskg1 =z mod 2¢

> R =[1+2%72]R, + [sko22"72]S,,
> S/ = [sky'22921R, + [1 — 2297218,
> (Eq1) ¢ (R)) = ¢, (R,) < sk; =0.
> (Eq2) ¢/,(S}) = ¢/ (Su) = (ska);' =0 = sk; =0.
> (PairingEq) And e4 (R, S”) = e4a(P2, 02)¥. ©
> (KernelEq) Also
ker(¢,) = ([21R, + [ska21S .)=([2°1R), + [ska21S,) ©

‘" » What if sk is not invertible??
23/27

sk, Is Even.

Idea: Reuse the P, P, commutativity method, we can keep extracting
the next bit until 1 appears.

> R/ =[1+2%1R,,

> S, =[22)R, + [1 - 227118,

>
>

24/27

sk, Is Even.

Idea: Reuse the P, P, commutativity method, we can keep extracting
the next bit until 1 appears.

> R/ =[1+2%1R,,

> S/ = [2272|R, + [1 - 2% 118,

> (Eq1) ¢/,(R) = ¢/, (R,) : always. ©
> (Eg2)

¢ (S)) =, (S,) = ski22 1 -2%"1 =0 mod 2%
— sk; = 1.

> (PairingEq) And s (R’ S’) = es(P2, 02)%. ©
> (KernelEq) Also
ker(¢',) = ([2°1Rq + [ska291S o)=([2°1R), + [ska2°1S) ©

v

24/27

sk, Is Even.

Idea: Reuse the P, P, commutativity method, we can keep extracting
the next bit until 1 appears.

> R/ =[1+2%1R,,

> S/ = [2272|R, + [1 - 2% 118,

> (Eq1) ¢/,(R) = ¢/, (R,) : always. ©
> (Eg2)

¢ (S)) =, (S,) = ski22 1 -2%"1 =0 mod 2%
— sk; = 1.

> (PairingEq) And s (R’ S’) = es(P2, 02)%. ©
> (KernelEq) Also
ker(¢',) = ([2°1Rq + [ska291S o)=([2°1R), + [ska2°1S) ©

> One can recursively use this approach to extract the maximal
1 power of 2 in sky.

24/27

'Extracting the Next Bit When sk, is Even.

& R;\ [—sSkay mod 29 + % —skyz mod 29 + %\ [Ryp
ANS.) y Z S ab

Say 2/ is the maximal power of 2 dividing sk4 and i Isbs of sk, has been
recovered, denoted by sk,.

'Extracting the Next Bit When sk, is Even.

v

& R;\ [—sSkay mod 29 + % —skyz mod 29 + %\ [Ryp
AN\S.) Y Z S ab

Say 2/ is the maximal power of 2 dividing sk4 and i Isbs of sk, has been
recovered, denoted by sk;.

» Making queries on (Ep, R}, S/, Rap, S a»), Where

> R, =[1+2*""12/|R, — [sk,22¢7 712718,

> S! = [sk227 R, + [1 + 220712715,

(sky is the inverse of sky/2/ mod 2/

25/27

'Extracting the Next Bit When sk, is Even.

v

& R;\ [—sSkay mod 29 + % —skyz mod 29 + %\ [Ryp
AN\S.) Y Z S ab

Say 2/ is the maximal power of 2 dividing sk4 and i Isbs of sk, has been
recovered, denoted by sk;.

» Making queries on (Ep, R}, S/, Rap, S a»), Where

> R, =[1+2*""12/|R, — [sk,22¢7 712718,

> S! = [sk227 R, + [1 + 220712715,

(sky is the inverse of sky/2/ mod 2/

> Paring/ Ker Eqgs will hold.
» |t returns 1 if the next bit is O.

25/27

'Extracting the Next Bit When sk, is Even.

v

, [Ra\ _ [—Skay mod 29 + % —skqz mod 29 + *\ Ry
als)= (" s
Say 2/ is the maximal power of 2 dividing sk4 and i Isbs of sk, has been
recovered, denoted by sk,.
» Making queries on (Ep, R}, S/, Rap, S a»), Where
> R/ =[1+2%7"12J]R, — [skp2%¢77127]S ,
> S! = [sk227 R, + [1 + 220712715,

(sky is the inverse of sky/2/ mod 2/

> Paring/ Ker Eqgs will hold.
> It returns 1 if the next bit is 0.
> Nicely done! ©OOOOOOOO

We also generalize the result to any small primes and a more general

‘' form of the private keys.
25/27

‘Summary and Open Problems

v

Summary

> We present a new adaptive attack against SIDH-type schemes
using the commutativity of isogenies.

> The adaptive attack runs in polynomial time.

Open Problems

> Is it possible to have an efficient variant of SIDH secure against the
Castryck-Decru and Robert attacks? (e.g. 2022/1019,10547?)

> |If so, can we have an efficient proof system to prevent the attack?

26/27

	Preliminaries
	Quick Questions
	Technical Overview

