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Graphs are everywhere

Protein interaction network
Image Source : wikipedia

Financial network
Image Source : Schweitzer et al. 2009
 Image Source : Medium

Social network
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Success of Graph Machine Learning

• discover novel antibiotics (Stokes et al., Cell’20) 

• power web-scale recommender systems (Ying et al., 
KDD’18; Pal et al., KDD’20) 

• assist particle physicists (Shlomi et al., Mach. Learn.: Sci. Technol’21)  

Example: Link Prediction
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Content 
recommendation is 

link prediction! ?

Image Source : Coman et al. 2017

-ACH� ,EARN�� 3CI� 4ECHNOL� � �����	 ������ * 3HLOMI ET AL

(a)

(b)

(c) (d)

&IGURE �� (%0 DATA LEND ITSELF TO BEING REPRESENTED AS A GRAPH FOR MANY APPLICATIONS� �A	 CLUSTERING TRACKING DETECTOR HITS INTO
TRACKS� �B	 SEGMENTING CALORIMETER CELLS� �C	 CLASSIFYING EVENTS WITH MULTIPLE TYPES OF PHYSICS OBJECTS� �D	 JET CLASSIFICATION BASED ON
THE PARTICLES ASSOCIATED TO THE JET�

4HIS REVIEW PAPER IS ORGANIZED AS FOLLOWS� !N OVERVIEW OF THE FIELD OF GEOMETRICAL DEEP LEARNING IS GIVEN IN
SECTION �� %XISTING APPLICATIONS TO PARTICLE PHYSICS ARE REVIEWED IN �� 'ENERAL GUIDELINES FOR FORMULATING (%0
TASKS FOR '..S ARE GIVEN IN SECTION �� )N PARTICULAR WE GO IN THE DETAILS OF THE DIFFERENT APPROACHES IN
BUILDING THE GRAPH CONNECTIVITY IN SECTION ���� THE VARIOUS MODEL ARCHITECTURE ADOPTED IN SECTION ���� 4HIS
PAPER CONCLUDES WITH A DISCUSSION ON THE VARIOUS APPROACHES AND THE REMAINING OPEN QUESTIONS IN SECTION ��

�� 'EOMETRIC DEEP LEARNING

���� /VERVIEW
$EEP LEARNING HAS BEEN CENTRAL TO THE PAST DECADE�S ADVANCES IN MACHINE LEARNING AND ARTIFICIAL
INTELLIGENCE ;��� ��=� AND CAN BE UNDERSTOOD AS THE CONFLUENCE OF SEVERAL KEY FACTORS� &IRST� LARGE NEURAL
NETWORKS CAN EXPRESS VERY COMPLEX FUNCTIONS� 3ECOND� VALUABLE INFORMATION IN BIG DATA CAN BE ENCODED INTO
THE PARAMETERS OF LARGE NEURAL NETWORKS VIA GRADIENT
BASED TRAINING PROCEDURES� 4HIRD� PARALLEL COMPUTER
HARDWARE CAN PERFORM SUCH TRAINING IN HOURS OR DAYS� WHICH IS EFFICIENT ENOUGH FOR MANY IMPORTANT USE
CASES� &OURTH� WELL
DESIGNED SOFTWARE FRAMEWORKS� SUCH AS 4ENSOR&LOW ;��= AND 0Y4ORCH ;��=� LOWER THE
TECHNICAL BAR TO DEVELOPING AND DISTRIBUTING DEEP LEARNING APPLICATIONS� MAKING POWERFUL MACHINE LEARNING
TOOLS BROADLY ACCESSIBLE TO PRACTITIONERS�

&ULLY CONNECTED� CONVOLUTIONAL� AND RECURRENT LAYERS HAVE BEEN THE PRIMARY BUILDING BLOCKS IN MODERN
DEEP LEARNING� EACH OF WHICH CARRIES DIFFERENT INDUCTIVE BIASES� WHICH INCENTIVIZE OR CONSTRAIN THE LEARNING
ALGORITHM TO PRIORITIZE ONE SOLUTION OVER ANOTHER� &OR EXAMPLE� CONVOLUTIONAL LAYERS SHARE THEIR UNDERLYING
KERNEL FUNCTION ACROSS SPATIAL DIMENSIONS OF THE INPUT SIGNAL� WHILE RECURRENT LAYERS SHARE ACROSS THE TEMPORAL

�
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Typical ML Tasks on GraphsExample: Node Classification
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? ?

?
?

?
Machine 
Learning

Credits: tutorial on graph representation learning at The WebConf. 2018Node classification Link prediction

Graph classification Community detection
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Shallow network embeddings
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Graph neural networks Generative graph models

G
<latexit sha1_base64="AjP53B4MDnbfPclV8g5FUhTD4V0=">AAAB7XicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsstCRaaIlRBAMXsrcssGFv77I7Z0Iu/AQbC22Mrf/Hzn/jAlco+JLdvLw3k5l5QSyFQdf9dnIrq2vrG/nNwtb2zu5ecf/gwUSJZrzBIhnpVkANl0LxBgqUvBVrTsNA8mYwupr6zSeujYjUPY5j7od0oERfMIpWuitfl7vFkltxZyDLxMtICTLUu8WvTi9iScgVMkmNaXtujH5KNQom+aTQSQyPKRvRAW9bqmjIjZ/OVp2QE6v0SD/S9ikkM/V3R0pDY8ZhYCtDikOz6E3F/7x2gv0LPxUqTpArNh/UTyTBiEzvJj2hOUM5toQyLeyuhA2ppgxtOgUbgrd48jJ5rFa8s4r9qrfVUu0ySyQPR3AMp+DBOdTgBurQAAYDeIZXeHOk8+K8Ox/z0pyT9RzCHzifPxLGjcY=</latexit>

�G
<latexit sha1_base64="n7WhlDU6g4xWIX7WhhaWLFhu9rg=">AAAB93icbVA9TwJBEJ3DL8Qv1NLmIphYkTsstCRaaImJCAYuZG9vDzbs7Z27cxhy4XfYWGhjbP0rdv4bl49CwZfM5OW9mezs8xPBNTrOt5VbWV1b38hvFra2d3b3ivsH9zpOFWUNGotYtXyimeCSNZCjYK1EMRL5gjX9wdXEbw6Z0jyWdzhKmBeRnuQhpwSN5JU7TzxgfYLZ9bjcLZacijOFvUzcOSnBHPVu8asTxDSNmEQqiNZt10nQy4hCTgUbFzqpZgmhA9JjbUMliZj2sunRY/vEKIEdxsqURHuq/t7ISKT1KPLNZESwrxe9ifif104xvPAyLpMUmaSzh8JU2BjbkwTsgCtGUYwMIVRxc6tN+0QRiianggnBXfzyMnmoVtyzimnV22qpdjlPJA9HcAyn4MI51OAG6tAACo/wDK/wZg2tF+vd+piN5qz5ziH8gfX5AxVMkmQ=</latexit>

G
<latexit sha1_base64="AjP53B4MDnbfPclV8g5FUhTD4V0=">AAAB7XicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsstCRaaIlRBAMXsrcssGFv77I7Z0Iu/AQbC22Mrf/Hzn/jAlco+JLdvLw3k5l5QSyFQdf9dnIrq2vrG/nNwtb2zu5ecf/gwUSJZrzBIhnpVkANl0LxBgqUvBVrTsNA8mYwupr6zSeujYjUPY5j7od0oERfMIpWuitfl7vFkltxZyDLxMtICTLUu8WvTi9iScgVMkmNaXtujH5KNQom+aTQSQyPKRvRAW9bqmjIjZ/OVp2QE6v0SD/S9ikkM/V3R0pDY8ZhYCtDikOz6E3F/7x2gv0LPxUqTpArNh/UTyTBiEzvJj2hOUM5toQyLeyuhA2ppgxtOgUbgrd48jJ5rFa8s4r9qrfVUu0ySyQPR3AMp+DBOdTgBurQAAYDeIZXeHOk8+K8Ox/z0pyT9RzCHzifPxLGjcY=</latexit>

�G
<latexit sha1_base64="n7WhlDU6g4xWIX7WhhaWLFhu9rg=">AAAB93icbVA9TwJBEJ3DL8Qv1NLmIphYkTsstCRaaImJCAYuZG9vDzbs7Z27cxhy4XfYWGhjbP0rdv4bl49CwZfM5OW9mezs8xPBNTrOt5VbWV1b38hvFra2d3b3ivsH9zpOFWUNGotYtXyimeCSNZCjYK1EMRL5gjX9wdXEbw6Z0jyWdzhKmBeRnuQhpwSN5JU7TzxgfYLZ9bjcLZacijOFvUzcOSnBHPVu8asTxDSNmEQqiNZt10nQy4hCTgUbFzqpZgmhA9JjbUMliZj2sunRY/vEKIEdxsqURHuq/t7ISKT1KPLNZESwrxe9ifif104xvPAyLpMUmaSzh8JU2BjbkwTsgCtGUYwMIVRxc6tN+0QRiianggnBXfzyMnmoVtyzimnV22qpdjlPJA9HcAyn4MI51OAG6tAACo/wDK/wZg2tF+vd+piN5qz5ziH8gfX5AxVMkmQ=</latexit>

Z<latexit sha1_base64="zzz0Bblkw3ymPvk+TsLDv90zbwE=">AAAB9nicbVC9TsMwGPxS/kr5KzCyWLRITFVSBhgrWBiLRCnQRJXjOq1Vx45sB6mK+hosDLAgVp6FjbfBaTNAy0m2TnffJ58vTDjTxnW/ndLK6tr6RnmzsrW9s7tX3T+40zJVhHaI5FLdh1hTzgTtGGY4vU8UxXHIaTccX+V+94kqzaS4NZOEBjEeChYxgo2V/LofYzMKo+xxWu9Xa27DnQEtE68gNSjQ7le//IEkaUyFIRxr3fPcxAQZVoYRTqcVP9U0wWSMh7RnqcAx1UE2yzxFJ1YZoEgqe4RBM/X3RoZjrSdxaCfziHrRy8X/vF5qoosgYyJJDRVk/lCUcmQkygtAA6YoMXxiCSaK2ayIjLDCxNiaKrYEb/HLy+Sh2fDOGvZq3jRrrcuikTIcwTGcggfn0IJraEMHCCTwDK/w5qTOi/PufMxHS06xcwh/4Hz+AFdbkfk=</latexit>

Look-up
table

…
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Approach

Representation
output

• Node embeddings
• Edge embeddings

• Node embedding
• Edge embeddings
• Subgraph embeddings
• Graph embeddings

Input • Graph structure • Local graph neighborhoods
• Node and edge attributes

• Graph structure
• Node and edge attributes
• Graph attributes

Learning task
• Node property prediction
• Link property prediction

• Node property prediction
• Link property prediction
• Graph property prediction

• Molecular graph generation
• Molecule optimization

Method example DeepWalk, Node2vec, LINE,
Metapath2vec GCN, GIN, GAT, JK-Net GCPN, JT-VAE, GraphRNN

• Graph structure

Figure �: Predominant paradigms in graph representation learning. (a) Shallow network embedding methods generate a
dictionary of representations hC for every node C that preserves the input graph structure information. This is achieved by learning
a mapping function 5H that maps nodes into an embedding space such that nodes with similar graph neighborhoods measured
by function 5< get embedded closer together (Section �.�). Given the learned embeddings, an independent decoder method can
optimize embeddings for downstream tasks, such as node or link property prediction. Method examples include DeepWalk [���],
Node�vec [��], LINE [���], and Metapath�vec [��]. (b) In contrast with shallow network embedding methods, graph neural networks
can generate representations for any graph element by capturing both network structure and node attributes and metadata. The
embeddings are generated through a series of non-linear transformations, i.e., message-passing layers (!9 denotes transformations
at layer 9), that iteratively aggregate information from neighboring nodes at the target node C. GNN models can be optimized
for performance on a variety of downstream tasks (Section �.�). Method examples include GCN [���], GIN [���], GAT [���], and
JK-Net [���]. (c) Generative graph models estimate a distribution landscape Z to characterize a collection of distinct input graphs.
They use the optimized distribution to generate novel graphs b⌧ that are predicted to have desirable properties, e.g., a generated
graph can be represent a molecular graph of a drug candidate. Generative graph models use graph neural networks as encoders
and produce graph representations that capture both network structure and attributes (Section �.�). Method examples include
GCPN [���], JT-VAE [��], and GraphRNN [���]. SI Figure � and SI Note � outline other representation learning techniques.

�

Shallow Node Embedding Methods 

Image Source:  [Li et al., 2022]

Graph Machine Learning (GraphML)

▪Generate a look up table for node representations

▪Similar nodes get embedded closer

DeepWalk, Node2Vec, NERD, HOPE
Examples :
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Message Passing Graph Neural Networks (GNNs)
z(ℓ)
i = AGGREGATE ({x(ℓ−1)

i , {x(ℓ−1)
j ∣ j ∈ 𝒩i}})

x(ℓ)
i = TRANSFORM (z(ℓ)

i )

Image Source : https://tkipf.github.io/graph-convolutional-networks/

GCN, GAT, GIN
Examples :
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Computational Graph for GNNs
Generative Causal Explanations for Graph Neural Networks

i

kj
m

Figure 1. An illustration of the computation graph (best viewed in
color). Node i is the target node to be explained.

et al., 2017). Taking GCNs as an example, the basic oper-
ator for the neighborhood information aggregation is the
element-wise mean. After L iterations of aggregation, a
node’s representation can capture the structural information
within its L-hop graph neighborhood.

Formally, a graph neural network (GNN) can be written as a
function f (·) : G ! Y or f (·) : V ! Y . The former is a
graph-level classifier, and the latter is a node-level classifier.
Typically, a GNN f (·) is trained with an objective function
L : y ⇥ ỹ ! s that computes a scalar loss s 2 R after
comparing the model’s predictive output ỹ to a ground-truth
output y. The categorical cross-entropy for classification
models is commonly used for such objectives.

Objective. We are given a pre-trained classification model,
represented by f (·), and our ultimate goal is to obtain an
explanation model, denoted as f (·)

exp
, that can provide fast

and accurate explanations for the pre-trained model, which
can also be called a target GNN. Intrinsically, an explanation
is a subgraph that is the most relevant for a prediction —
the outcome of the target GNN, denotes as ỹ. Consistent
with previous studies in the literature (Yuan et al., 2020),
we focus on explanations on graph structures. In particular,
we specifically do not require access to, or knowledge of,
the process by which the classification model produces its
output, nor do we require the classification model to be
differentiable or any specific form. We allow the explainers
to retrieve different predictions by performing queries on
f (·).

3. Methodology
In essence, the core of the GNNs is a neighborhood-based
aggregation process, where a prediction of an instance is
fully determined by its computation graph. Let us use
G

c
i = (V c

i , A
c
i , X

c
i ) to represent the computation graph

of an instance i, where V
c
i is the node set, Ac

i 2 {0, 1}
indicates the adjacency matrix, and X

c
i is the feature ma-

trix of the computation graph. Typically, a GNN learns a
conditional distribution denoted as P (Y |G

c
i ), where Y is

a random variable representing the class labels. For clarity,
let us see an example graph, shown in Figure 1, which will
also be used throughout this paper. In this example, a target
GNN is trained for node classification, and the node i is the

target node to be explained. Oftentimes, the computation
graph of node i is a L-hop subgraph; an exmaple of L = 2
is highlighted in Figure 1.

Therefore, the setting we focus on can be reformulated as
the following: we are given a GNN-based classification
model that processes the computation graph of an instance
(a node or a graph), denoted as Gc, and generates the cor-
responding outputs p (Y |G

c) for predicting ỹ. Unlike the
node classification task, when the target GNN is trained for
graph classification, the computation graph of an instance
will be the entire graph. Accordingly, this work seeks to
generate an explanation, a subgraph of Gc that is most rel-
evant for predicting ỹ, efficiently and automatically. We
use G

s to denote the generated explanation. Our setting is
general and works for any graph learning tasks, including
node classification and graph classification. Our ultimate
goal is to encourage a compact subgraph of the computation
graph to have a large causal influence on the outcome of the
target GNN.

Differences from PGExplainer. PGExplainer is the most
closely related work to our study, as both PGExplainer
and Gem adopt parameterized networks to provide local
and global views for model explanations. However, PGEx-
plainer relies on node embeddings from the target GNN to
learn a multilayer perceptron, which may not be obtained
without knowing its internal model structure. In contrast,
to explain an instance (a node or a graph), Gem simply in-
puts the original computation graph into the explainer and
outputs a compact explanation graph. In other words, Gem

does not require any prior knowledge of the internal model
structure (the target GNN) and parameters, or any prior
knowledge of the motifs associated with the graph learning
tasks. Therefore, it exhibits better generalization abilities.
In what follows, we will present Gem, our model-agnostic
approach for providing interpretable explanations for any
GNNs on a variety of graph learning tasks. The design
of Gem is based upon principles of causality, in particular
Granger causality (Granger, 1969).

Granger causality (Granger, 1969; 1980). In general,
Granger causality describes the relationships between two
(or more) variables when one is causing the other. Specif-
ically, if we are better able to predict variable ỹ using all
available information U than if the information apart from
variable xi had been used, we say that xi Granger-causes
ỹ (Granger, 1980), denoted by xi ! ỹ

1.

The crux of our approach is to train an explanation model,
or an explainer, to explain the target graph neural network.
Specifically, Gem is trained with the guidance built on
the first principles of Granger causality. Here we extend

1We are aware of the drawbacks of reusing notations. xi and
ỹ in this definition represent any random variables for simplicity.

Computational graph for 
node i corresponding to 
a 2-layer GNN

At inference time decision of a GNN on a particular node can be 
attributed to important nodes/edges and their features in its 

computational graph.

Image Source:  [Lin et al., 2021]
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Explainable GraphML

Supervised GNNS

Why was a node/edge/graph assigned a particular label?

Bob X
Decision has to be explained not only in terms 
of features but also graph structure. General 
explainability methods cannot be trivially 
applied for graphs.
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When features are themselves uninterpretable?

Unsupervised node embeddings

What do node embeddings encode?

No task information. Need to decode/explain embeddings in terms of input 
graph structure. What should an explanation look like?
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Post hoc explanations Vs. Self explaining models

Post-hoc explanations Self explaining models

Explaining an already trained 

complex model 

does not affect its performance 

There is usually a tradeoff between 

interpretability and performance

Explanations might not be faithful to the 

model

Explanations are by design faithful to 
the model 
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Local Vs Global Explanation

Local vs Global

Dr. Megha Khosla, Dr. Thorben Funke ML4G 01.12.2021 10 / 35

Vs.

Local vs Global
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Global explanations should ideally should

explain complete model behaviour

Local or instance level explanations for explaining

Individual predictions



12

Key Challenges

How to define explanations?

How to evaluate the explainer and the explanations?

 Uncover effect of various input elements in decision making

Agreement with the decision logic of the model

Should be human understandable 

User of the explanation should be able to understand the explanation
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Post-hoc  explanations for supervised GNNs
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Substructures and subset of input features 
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Fig. 2. The general pipeline of the perturbation-based methods. They employ different mask generation algorithms to obtain different types of masks.
Note that the mask can correspond to nodes, edges, or node features. In this example, we show a soft mask for node features, a discrete mask
for edges, and an approximated discrete mask for nodes. Then the mask is combined with the input graph to capture important input information.
Finally, the trained GNNs evaluate whether the new prediction is similar to the original prediction and can provide guidance for improving the mask
generation algorithms.

masks for nodes. The soft masks contain continuous values
between [0, 1] and the mask generation algorithm can be
directly updated by back-propagation. However, soft masks
are suffered from the “introduced evidence” problem [14]
that any non-zero or non-one value in the mask may in-
troduce new semantic meaning or new noise to the input
graph, thus affecting the explanation results. Meanwhile,
the discrete masks only contain discrete values 0 and 1,
which can avoid the “introduced evidence” problem since
no new numerical value is introduced. However, discrete
masks always involve non-differentiable operations, such
as sampling. One popular way to solve it is the policy
gradient technique [66]. Furthermore, recent studies [50],
[67], [68] propose to employ reparameterization tricks, such
as Gumbel-Softmax estimation and sparse relaxations, to
approximate the discrete masks. Note that the output mask
is not strictly discrete but provides a good approxima-
tion, which not only enables the back-propagation but also
largely alleviates the “introduced evidence” problem.

4.2.2 Methods
GNNExplainer [46] learns soft masks for edges and node
features to explain the predictions via mask optimization. To
obtain masks, it randomly initializes soft masks and treats
them as trainable variables. Then GNNExplainer combines
the masks with the original graph via element-wise multi-
plications. Next, the masks are optimized by maximizing the
mutual information between the predictions of the original
graph and the predictions of the newly obtained graph.
Even though different regularization terms, such as element-
wise entropy, are employed to encourage optimized masks
to be discrete, the obtained masks are still soft masks so
that GNNExplainer cannot avoid the “introduced evidence”
problem. In addition, the masks are optimized for each
input graph individually and hence the explanations may
lack a global view.

PGExplainer [47] learns approximated discrete masks
for edges to explain the predictions. To obtain edge masks,

it trains a parameterized mask predictor to predict edge
masks. Given an input graph, it first obtains the embeddings
for each edge by concatenating the corresponding node
embeddings. Then the predictor uses the edge embeddings
to predict the probability of each edge being selected,
which can be treated as the importance score. Next, the
approximated discrete masks are sampled via the reparam-
eterization trick. Finally, the mask predictor is trained by
maximizing the mutual information between the original
predictions and new predictions. Note that even though the
reparameterization trick is employed, the obtained masks
are not strictly discrete but can largely alleviate the “intro-
duced evidence” problem. In addition, since all edges in
the dataset share the same predictor, the explanations can
provide a global understanding of the trained GNNs.

GraphMask [57] is a post-hoc method for explaining
the edge importance in each GNN layer. Similar to the
PGExplainer, it trains a classifier to predict whether an edge
can be dropped without affecting the original predictions.
However, GraphMask obtains an edge mask for each GNN
layer while PGExplainer only focuses the input space. In ad-
dition, to avoiding changing graph structures, the dropped
edges are replaced by learnable baseline connections, which
are vectors with the same dimensions as node embeddings.
Note that binary Concrete distribution [68] and reparame-
terization trick are employed to approximate discrete masks.
In addition, the classifier is trained using the whole dataset
by minimizing a divergence term, which measures the
difference between network predictions. Similar to PGEx-
plainer, it can largely alleviate the “introduced evidence”
problem and provide a global understanding of the trained
GNNs.

ZORRO [56] employs discrete masks to identify impor-
tant input nodes and node features. Given an input graph,
a greedy algorithm is used to select nodes or node features
step by step to obtain discrete masks for nodes and features.
For each step, ZORRO selects one node or one node feature
with the highest fidelity score. Note that the objective func-
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Fig. 2. The general pipeline of the perturbation-based methods. They employ different mask generation algorithms to obtain different types of masks.
Note that the mask can correspond to nodes, edges, or node features. In this example, we show a soft mask for node features, a discrete mask
for edges, and an approximated discrete mask for nodes. Then the mask is combined with the input graph to capture important input information.
Finally, the trained GNNs evaluate whether the new prediction is similar to the original prediction and can provide guidance for improving the mask
generation algorithms.

masks for nodes. The soft masks contain continuous values
between [0, 1] and the mask generation algorithm can be
directly updated by back-propagation. However, soft masks
are suffered from the “introduced evidence” problem [14]
that any non-zero or non-one value in the mask may in-
troduce new semantic meaning or new noise to the input
graph, thus affecting the explanation results. Meanwhile,
the discrete masks only contain discrete values 0 and 1,
which can avoid the “introduced evidence” problem since
no new numerical value is introduced. However, discrete
masks always involve non-differentiable operations, such
as sampling. One popular way to solve it is the policy
gradient technique [66]. Furthermore, recent studies [50],
[67], [68] propose to employ reparameterization tricks, such
as Gumbel-Softmax estimation and sparse relaxations, to
approximate the discrete masks. Note that the output mask
is not strictly discrete but provides a good approxima-
tion, which not only enables the back-propagation but also
largely alleviates the “introduced evidence” problem.

4.2.2 Methods
GNNExplainer [46] learns soft masks for edges and node
features to explain the predictions via mask optimization. To
obtain masks, it randomly initializes soft masks and treats
them as trainable variables. Then GNNExplainer combines
the masks with the original graph via element-wise multi-
plications. Next, the masks are optimized by maximizing the
mutual information between the predictions of the original
graph and the predictions of the newly obtained graph.
Even though different regularization terms, such as element-
wise entropy, are employed to encourage optimized masks
to be discrete, the obtained masks are still soft masks so
that GNNExplainer cannot avoid the “introduced evidence”
problem. In addition, the masks are optimized for each
input graph individually and hence the explanations may
lack a global view.

PGExplainer [47] learns approximated discrete masks
for edges to explain the predictions. To obtain edge masks,

it trains a parameterized mask predictor to predict edge
masks. Given an input graph, it first obtains the embeddings
for each edge by concatenating the corresponding node
embeddings. Then the predictor uses the edge embeddings
to predict the probability of each edge being selected,
which can be treated as the importance score. Next, the
approximated discrete masks are sampled via the reparam-
eterization trick. Finally, the mask predictor is trained by
maximizing the mutual information between the original
predictions and new predictions. Note that even though the
reparameterization trick is employed, the obtained masks
are not strictly discrete but can largely alleviate the “intro-
duced evidence” problem. In addition, since all edges in
the dataset share the same predictor, the explanations can
provide a global understanding of the trained GNNs.

GraphMask [57] is a post-hoc method for explaining
the edge importance in each GNN layer. Similar to the
PGExplainer, it trains a classifier to predict whether an edge
can be dropped without affecting the original predictions.
However, GraphMask obtains an edge mask for each GNN
layer while PGExplainer only focuses the input space. In ad-
dition, to avoiding changing graph structures, the dropped
edges are replaced by learnable baseline connections, which
are vectors with the same dimensions as node embeddings.
Note that binary Concrete distribution [68] and reparame-
terization trick are employed to approximate discrete masks.
In addition, the classifier is trained using the whole dataset
by minimizing a divergence term, which measures the
difference between network predictions. Similar to PGEx-
plainer, it can largely alleviate the “introduced evidence”
problem and provide a global understanding of the trained
GNNs.

ZORRO [56] employs discrete masks to identify impor-
tant input nodes and node features. Given an input graph,
a greedy algorithm is used to select nodes or node features
step by step to obtain discrete masks for nodes and features.
For each step, ZORRO selects one node or one node feature
with the highest fidelity score. Note that the objective func-
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FEATURE-ATTRIBUTION/IMPORTANCE

Explainable Deep Learning:A Field Guide for the Uninitiated

Figure 2: Examples of what explanations can look like in practice. The explanation depends
on the type of data used and the method used to create the explanation. In general
an explanation is any information that aids the user in understanding the model
rationale behind the model prediction.

value of the hyperparameters, model choice. The other category is (ii) explanations that
give insight into model predictions. Most explanations fall into this category and help prac-
titioners explain why the model made a particular prediction, usually in terms of the model
input. These explanations can be used to communicate to others (potentially non-experts)
about model predictions. Many individual predictions can be analyzed to reveal patterns
in overall model prediction behavior. This category of explanations can further be broken
down in more specific categories such as counterfactual explanations [Verma et al., 2020]
and contrastive explanations [Miller, 2018].

Most explanations bear a strong resemblance to the data type that was used to train
the DNN. If the datatype is an image, the explanation can be a saliency or heatmap. A
saliency map depicts regions in the image that the explanation method determined was
important for the network’s prediction. If the datatype is text-based, the explanation can
look like highlighted words in the text. The explanation method (for instance, attention
visualization) determines which words are highlighted. If the data is composed of attributes,
i.e., data that can be represented as a table, the explanation can be a set of rules that describe
which combinations of different attribute values lead to which predictions. The illustrations
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EXAMPLE EXPLANATION
COUNTERFACTUAL

I Smallest amount of perturbation on the input graph that changes the target GNN’s prediction

Global Counterfactual Explainer for Graph Neural Networks WSDM ’23, February 27-March 3, 2023, Singapore, Singapore

Figure 4: Recourse coverage comparison between GCFE�������� and baselines based on di�erent distance threshold values
(� ). GCFE�������� consistently outperforms the baselines across di�erent � .

Next, we show the recourse coverage and cost for di�erent sizes
of counterfactual summary in Figure 3. As expected, adding more
graphs to the recourse representation increases recourse coverage
while decreasing recourse cost, at the cost of interpretability. And
GCFE�������� maintains a constant edge over the baselines.

We also compare the recourse coverage based on di�erent dis-
tance thresholds � , with results shown in Figure 4. While coverage
increases for all methods as the threshold increases, GCFE��������
consistently outperforms the baselines across di�erent sizes.

4.3 Global Counterfactual Insight
We have demonstrated the superiority of GCFE�������� based on
various quality metrics for global recourse. Here, we show how
GCFE�������� provides global insights compared to local counter-
factual examples. Figure 5 illustrates (a) four input undesired graphs
with a similar structure from the AIDS dataset, (b) corresponding
local counterfactual examples (based on RCE�������� and CFF),
and (c) the representative global counterfactual graph from GCFE��
������� covering the input graphs. Our goal is to understand why
the input graphs are inactive against AIDS (undesired) and how to
obtain the desired property with minimal changes.

The local counterfactuals in (b) attribute the classi�cation re-
sults to di�erent edges in individual graphs (shown as red dotted
lines) and recommend their removal to make input graphs active
against HIV. Note that while only two edits are proposed for each
individual graph, they appear at di�erent locations, which are hard
to generalize for a global view of the model behavior. In contrast,
the global counterfactual graph from GCFE�������� presents a
high-level recourse rule. Speci�cally, the carbon atom with the
carbon-oxygen bond is connected to two other carbon atoms in the
input graphs, making them ketones (with a C=O bond) or ethers
(with a C-O bond). On the other hand, the global counterfactual
graph highlights a di�erent functional group, aldehyde (shown in
blue), to be the key for combating AIDS. In aldehydes, the carbon
atom with a carbon-oxygen bond is only connected to one other
carbon atom, leading to di�erent chemical properties compared
to ketones and ethers. Indeed, aldehydes have been shown to be
e�ective HIV protease inhibitors [34].

Finally, this case study also demonstrates that counterfactual
candidates found by GCFE�������� are better for global expla-
nation than local counterfactuals. We note that while the graph
edit distance between the local counterfactuals and their corre-
sponding input graphs is only 2, they do not cover other similarly
structured input graphs (with distance > 5). Meanwhile, our global
counterfactual graph covers all input graphs (with distance � 4).
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Figure 5: Illustration of global and local counterfactual ex-
planations for the AIDS dataset. The global counterfactual
graph (c) presents a high-level recourse rule—changing ke-
tones and ethers into aldehydes (shown in blue)—to combat
HIV, while the edge removals (shown in red) recommended
by local counterfactual examples (b) are hard to generalize.

4.4 Ablation Study
We then conduct an ablation study to investigate the e�ectiveness
of GCFE�������� components. We consider three alternatives:
• GCFE���������NVR: no vertex-reinforcement (� (�) = 1)
• GCFE���������NIF: no importance function (� (�) = 1)
• GCFE���������NDT: no dynamic teleportation (�� (�) = 1/|G|)
The coverage results are shown in Table 4. We observe decreased
performance when any of GCFE�������� components is absent.

Table 4: Ablation study results based on recourse coverage.

NCI1 Mutagenicity AIDS Proteins

GCFE��������-NVR 24.56% 35.44% 11.33% 8.56%
GCFE��������-NIF 13.29% 29.16% 4.54% 6.83%

GCFE��������-NDT 27.34% 36.35% 14.05% 9.28%
GCFE�������� 27.85% 37.08% 14.66% 10.93%
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(� ). GCFE�������� consistently outperforms the baselines across di�erent � .

Next, we show the recourse coverage and cost for di�erent sizes
of counterfactual summary in Figure 3. As expected, adding more
graphs to the recourse representation increases recourse coverage
while decreasing recourse cost, at the cost of interpretability. And
GCFE�������� maintains a constant edge over the baselines.

We also compare the recourse coverage based on di�erent dis-
tance thresholds � , with results shown in Figure 4. While coverage
increases for all methods as the threshold increases, GCFE��������
consistently outperforms the baselines across di�erent sizes.

4.3 Global Counterfactual Insight
We have demonstrated the superiority of GCFE�������� based on
various quality metrics for global recourse. Here, we show how
GCFE�������� provides global insights compared to local counter-
factual examples. Figure 5 illustrates (a) four input undesired graphs
with a similar structure from the AIDS dataset, (b) corresponding
local counterfactual examples (based on RCE�������� and CFF),
and (c) the representative global counterfactual graph from GCFE��
������� covering the input graphs. Our goal is to understand why
the input graphs are inactive against AIDS (undesired) and how to
obtain the desired property with minimal changes.

The local counterfactuals in (b) attribute the classi�cation re-
sults to di�erent edges in individual graphs (shown as red dotted
lines) and recommend their removal to make input graphs active
against HIV. Note that while only two edits are proposed for each
individual graph, they appear at di�erent locations, which are hard
to generalize for a global view of the model behavior. In contrast,
the global counterfactual graph from GCFE�������� presents a
high-level recourse rule. Speci�cally, the carbon atom with the
carbon-oxygen bond is connected to two other carbon atoms in the
input graphs, making them ketones (with a C=O bond) or ethers
(with a C-O bond). On the other hand, the global counterfactual
graph highlights a di�erent functional group, aldehyde (shown in
blue), to be the key for combating AIDS. In aldehydes, the carbon
atom with a carbon-oxygen bond is only connected to one other
carbon atom, leading to di�erent chemical properties compared
to ketones and ethers. Indeed, aldehydes have been shown to be
e�ective HIV protease inhibitors [34].

Finally, this case study also demonstrates that counterfactual
candidates found by GCFE�������� are better for global expla-
nation than local counterfactuals. We note that while the graph
edit distance between the local counterfactuals and their corre-
sponding input graphs is only 2, they do not cover other similarly
structured input graphs (with distance > 5). Meanwhile, our global
counterfactual graph covers all input graphs (with distance � 4).

CCO

C

C

C

C

C

C
C

C

CCO

C

C

C

C

C

C
C

C

CCO

C

C

C

C

C

C
C

C

CCO

C

C

C

C

C

C
C

C

(a) Input graphs

CCO

C

C

C

C

C

C
C

C

CCO

C

C

C

C

C

C
C

C

CCO

C

C

C

C

C

C
C

C

CCO

C

C

C

C

C

C
C

C

(b) Local counterfactuals

CCO

C

C

C

C

C

C
C

C

(c) Global counterfactual

Figure 5: Illustration of global and local counterfactual ex-
planations for the AIDS dataset. The global counterfactual
graph (c) presents a high-level recourse rule—changing ke-
tones and ethers into aldehydes (shown in blue)—to combat
HIV, while the edge removals (shown in red) recommended
by local counterfactual examples (b) are hard to generalize.

4.4 Ablation Study
We then conduct an ablation study to investigate the e�ectiveness
of GCFE�������� components. We consider three alternatives:
• GCFE���������NVR: no vertex-reinforcement (� (�) = 1)
• GCFE���������NIF: no importance function (� (�) = 1)
• GCFE���������NDT: no dynamic teleportation (�� (�) = 1/|G|)
The coverage results are shown in Table 4. We observe decreased
performance when any of GCFE�������� components is absent.

Table 4: Ablation study results based on recourse coverage.

NCI1 Mutagenicity AIDS Proteins

GCFE��������-NVR 24.56% 35.44% 11.33% 8.56%
GCFE��������-NIF 13.29% 29.16% 4.54% 6.83%

GCFE��������-NDT 27.34% 36.35% 14.05% 9.28%
GCFE�������� 27.85% 37.08% 14.66% 10.93%
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EXPLANATION PARADIGMS
COUNTERFACTUAL EXPLANATIONS

A counterfactual explanation indicates the smallest change in feature values that can translate to a
different outcome

Further Examples and Stakeholders
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Concepts
Concepts are small higher level units of information that can be interpreted by humans

Examples : motifs in graphs or specific properties like "node degree > 6" or  “node next to 
carbon atom"

EXAMPLE EXPLANATION : CONCEPTS

I Concepts are small higher level units of information that can be interpreted by humans
I Examples : motifs in graphs or specific properties like "node degree > 6" or " node next to carbon

atom"
I Usually used to explain the model globally

Published as a conference paper at ICLR 2023

Figure 3: Global explanations of GLGExplainer (ours) and XGNN. For Class 0 of BAMultiShapes,
XGNN was not able to generate a graph with confidence � 0.5. Note that for each clause, missing
concepts are implicitly negated.

Table 2: Mean and standard deviation for Fidelity, Accuracy, and Concept Purity computed over 5
runs with different random seeds. Since the Concept Purity is computed for every cluster indepen-
dently, here we report mean and standard deviation across clusters over the best run according to the
validation set.

Dataset Fidelity Accuracy Test Concept
PurityTrain Test Train Test

BAMultiShapes 0.96 ± 0.03 0.96 ± 0.03 0.92 ± 0.03 0.96 ± 0.03 0.87 ± 0.24
Mutagenicity 0.82 ± 0.00 0.81 ± 0.01 0.78 ± 0.00 0.79 ± 0.01 1.00 ± 0.00

HIN 0.89 ± 0.00 0.85 ± 0.02 0.86 ± 0.01 0.85 ± 0.02 0.78 ± 0.18

resents local explanations with specific characteristics, thus achieving the desired goal of creating
interpretable concepts. Note that clusters corresponding to concepts are on average quite homo-
geneous (see Concept Purity in Table 2), and the concept representatives in the figure are faithful
representations of the instances in their corresponding cluster. See the Appendix for further de-
tails, where we report five random instances for each concept. It is worth noting that this clustering
emerges solely based on the supervision defined by Eq 3, while no specific supervision was added
to cluster local explanations based on their similarity. This is the reason behind the emergence of
the Mix cluster around p2 in the upper part of Figure 2, which represents all local explanations with
at least two motifs that are present solely in Class 1 of BAMultiShapes.

Additionally, as shown in Figure 3, GLGExplainer manages to combine these building blocks into
highly interpretable explanations. The explanation for BAMultiShapes almost perfectly matches the
ground-truth formula, where the only difference is the conjunction of all motifs being assigned to
Class 1 rather than Class 0. This however is due to a discrepancy between the ground-truth formula
and what the GNN learned, as will be discussed in the answer to Q2. Note that the Mix cluster has
been rewritten as the conjunction of the shapes it contains when extracting the human-interpretable

7
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Image source:  Azzolin et al., 2023
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Concepts
Concepts are small higher level units of information that can be interpreted by humans

Examples : motifs in graphs or specifi




Substructure and feature 
explanations

20
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Valid Explanation

A subset of the input such that the prediction while just using the

 input stays the same as the original prediction is a valid explanation

Zorro: Hard feature and node masks

What are the essential properties of an explanation?
Let’s say we have some trained GNN providing us predictions on a
given input
A valid explanation can then be a subset of input such that the
prediction stays the same
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Zorro: Hard feature and node masks

What are the essential properties of an explanation?
Let’s say we have some trained GNN providing us predictions on a
given input
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Sparsity

Zorro: Hard feature and node masks

What are the essential properties of an explanation?
Let’s say we have some trained GNN providing us predictions on a
given input
A valid explanation can then be a subset of input such that the
prediction stays the same
In addition the chosen subset (explanation) should be sparse
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The chosen subset (explanation) should be sparse

But a complete input is also a valid explanation
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Stability
What happens to the not selected part of the input?

What about Stability?

What happens to the not selected pat of the input?
We aim for having a stable explanation.
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▪ Set the not selected part by some 
noisy values.

▪ Check the expected prediction over 
multiple such perturbations.


A stable explanation is one which achieves in expectation a 
close prediction to that of the original prediction
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Constructing a perturbed input

Constructing a Perturbed Input

Let S = {Vs ,Fs} be the explanation with selected nodes Vs and selected
features Fs .

The selected features and nodes are colored green

Perturbed Input

Construct Ys by setting features Fs of nodes in Vs to their true values and
setting rest to random values.

YS = X � M(S) + Z � ( � M(S)),Z ⇠ N

Dr. Megha Khosla, Dr. Thorben Funke ML4G 08.12.2021 24 / 28

Selected nodes and features are marked green

Construct a perturbed input  by setting selected features of selected nodes 

(the green cells) to their true values and others to random noisy values

If M(S) corresponds to product of feature and node masks, we obtain the 
perturbed input as

XS = X ⊙ M(S) + Z ⊙ (1 − M(S)), Zij ∼ 𝒩
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RDT-Fidelity of an explanation

Zorro 

Find the sparsest explanation such that its RDT-fidelity is maximised.

Computation Graph for node n

Feature Mask

N
od

e 
M

as
k

with

F(S) = 𝔼XS|Z∼𝒩 [1Φ(X)=Φ(XS)]

XS = X ⊙ M(S) + Z ⊙ (1 − M(S)), Zij ∼ 𝒩

Zorro: Valid, Sparse, and Stable Explanations in Graph Neural Networks. Funke, Khosla et al. TKDE 2022 


https://ieeexplore.ieee.org/abstract/document/9866587
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Evaluating Post-Hoc Explanations
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Evaluating Post-Hoc Explanations

Evaluating the explainer

Faithfullness

Sparsity

Correctness

(Right for right 

reasons)

Plausibility

https://github.com/Mandeep-Rathee/Bagel-benchmark

[BAGEL Benchmark, Rathee et al. 2022]

Evaluating the explanation
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Faithfullness

Take 1: Check sufficiency and comprehensiveness of the explanation

Keep the most important features/nodes/edges and check if they 
alone can predict the original decision.

Sufficiency

Remove the features/nodes/edges not in the explanation and check if 
the original prediction changes.

Comprehensiveness
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Faithfullness

How to compute sufficiency and comprehensiveness for soft masks?

Take 2: Use RDT-Fidelity to check if the explanation is predictive and stable 

What happens when you cannot remove features?

F(S) = 𝔼XS|Z∼𝒩 [1Φ(X)=Φ(XS)]
XS = X ⊙ M(S) + Z ⊙ (1 − M(S)), Zij ∼ 𝒩

Where
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Sparsity
But the full input is also a faithful explanation

Are the explanations non-trivial?

Sparsity for hard masks = Selection size / total Take 1: 

Zorro: Hard feature and node masks

What are the essential properties of an explanation?
Let’s say we have some trained GNN providing us predictions on a
given input
A valid explanation can then be a subset of input such that the
prediction stays the same
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What about soft masks ?

A uniform distribution of normalised mask distribution implies complete input

Sparsity 

Take 2: Check Entropy of normalised distribution of masks
Lower the entropy sparser the explanation
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Correctness

Introduce correlations in the training data which can change the decision 
on a node/graph. Then check if explanation discovers the added 

correlations.

Can the explainer detect any injected correlations responsible for altering model's 
behavior ?

*11

*11

([SODLQHU�
([SODQDWLRQ

*URXQG�7UXWK

9V

5H�WUDLQLQJ

Target Node Incorrect prediction

Correct prediction

Check the explanation 

On retrained model
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Correctness

(i) Choosing correlations is tricky in the first place

(ii) Requires model retraining Drawbacks : 

*11

*11

([SODLQHU�
([SODQDWLRQ

*URXQG�7UXWK

9V

5H�WUDLQLQJ

Target Node Incorrect prediction

Correct prediction

Check the explanation 

On retrained model



34

Plausibility

How close are the explanations to human rationales ?

7KH�ILUVW�SUREOHP�WKDW�IDLU�JDPH�KDV�LV�WKH�FDVWLQJ�RI�VXSHUPRGHO�FLQG\�FUDZIRUG�LQ�WKH�OHDG�UROH��QRW
WKDW�FLQG\�GRHV�WKDW�EDG����VXUH�ZLOOLDP�LV�Q
W�D�EDG�DFWRU��XQIRUWXQDWHO\�KH�MXVW�GRHV�Q
W�GHPRQVWUDWH�LW
DOO�LQ�WKLV�PRYLH����

+XPDQ��
5DWLRQDOHV

*11([S

*UDG

&$0

7KH�ILUVW�SUREOHP�WKDW�IDLU�JDPH�KDV�LV�WKH�FDVWLQJ�RI�VXSHUPRGHO�FLQG\�FUDZIRUG�LQ�WKH�OHDG�UROH��QRW
WKDW�FLQG\�GRHV�WKDW�EDG����VXUH�ZLOOLDP�LV�Q
W�D�EDG�DFWRU��XQIRUWXQDWHO\�KH�MXVW�GRHV�Q
W�GHPRQVWUDWH�LW
DOO�LQ�WKLV�PRYLH���

7KH�ILUVW�SUREOHP�WKDW�IDLU�JDPH�KDV�LV�WKH�FDVWLQJ�RI�VXSHUPRGHO�FLQG\�FUDZIRUG�LQ�WKH�OHDG�UROH��QRW
WKDW�FLQG\�GRHV�WKDW�EDG����VXUH�ZLOOLDP�LV�Q
W�D�EDG�DFWRU��XQIRUWXQDWHO\�KH�MXVW�GRHV�Q
W�GHPRQVWUDWH�LW
DOO�LQ�WKLV�PRYLH����

7KH�ILUVW�SUREOHP�WKDW�IDLU�JDPH�KDV�LV�WKH�FDVWLQJ�RI�VXSHUPRGHO�FLQG\�FUDZIRUG�LQ�WKH�OHDG�UROH��QRW
WKDW�FLQG\�GRHV�WKDW�EDG����VXUH�ZLOOLDP�LV�Q
W�D�EDG�DFWRU��XQIRUWXQDWHO\�KH�MXVW�GRHV�Q
W�GHPRQVWUDWH�LW
DOO�LQ�WKLV�PRYLH����

Metrics : F1 score for hard masks, AUPRC score for soft masks

Compute agreement of explanation with human rationales
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Plausibility

Should be used in conjunction with a suitable faithfulness metric

First ensure that the explanation is in fact approximating model’s decision

7KH�ILUVW�SUREOHP�WKDW�IDLU�JDPH�KDV�LV�WKH�FDVWLQJ�RI�VXSHUPRGHO�FLQG\�FUDZIRUG�LQ�WKH�OHDG�UROH��QRW
WKDW�FLQG\�GRHV�WKDW�EDG����VXUH�ZLOOLDP�LV�Q
W�D�EDG�DFWRU��XQIRUWXQDWHO\�KH�MXVW�GRHV�Q
W�GHPRQVWUDWH�LW
DOO�LQ�WKLV�PRYLH����*&1

$3313
7KH�ILUVW�SUREOHP�WKDW�IDLU�JDPH�KDV�LV�WKH�FDVWLQJ�RI�VXSHUPRGHO�FLQG\�FUDZIRUG�LQ�WKH�OHDG�UROH��QRW
WKDW�FLQG\�GRHV�WKDW�EDG����VXUH�ZLOOLDP�LV�Q
W�D�EDG�DFWRU��XQIRUWXQDWHO\�KH�MXVW�GRHV�Q
W�GHPRQVWUDWH�LW
DOO�LQ�WKLV�PRYLH����

*$7

7KH�ILUVW�SUREOHP�WKDW�IDLU�JDPH�KDV�LV�WKH�FDVWLQJ�RI�VXSHUPRGHO�FLQG\�FUDZIRUG�LQ�WKH�OHDG�UROH��QRW
WKDW�FLQG\�GRHV�WKDW�EDG����VXUH�ZLOOLDP�LV�Q
W�D�EDG�DFWRU��XQIRUWXQDWHO\�KH�MXVW�GRHV�Q
W�GHPRQVWUDWH�LW
DOO�LQ�WKLV�PRYLH���

Given the explainer is faithful to the model one can use plausibility to compare GNN 
models for the agreement of their decision making process with human rationales.
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Other Evaluation schemes

Measuring agreement (explanation accuracy) with planted subgraph in a synthetic 
graph

Table 1: Illustration of synthetic datasets (refer to “Synthetic datasets” for details) together with performance
evaluation of GNNEXPLAINER and alternative baseline explainability approaches.
A BA B
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Figure 3: Evaluation of single-instance explanations. A-B. Shown are exemplar explanation subgraphs for node
classification task on four synthetic datasets. Each method provides explanation for the red node’s prediction.

importance, since a 1-hop neighbor of a node can also be a 2-hop neighbor of the same node due to
cycles. Each edge’s importance is thus computed as the average attention weight across all layers.
Setup and implementation details. For each dataset, we first train a single GNN for each dataset,
and use GRAD and GNNEXPLAINER to explain the predictions made by the GNN. Note that
the ATT baseline requires using a graph attention architecture like GAT [33]. We thus train a
separate GAT model on the same dataset and use the learned edge attention weights for explanation.
Hyperparameters KM ,KF control the size of subgraph and feature explanations respectively, which
is informed by prior knowledge about the dataset. For synthetic datasets, we set KM to be the
size of ground truth. On real-world datasets, we set KM = 10. We set KF = 5 for all datasets.
We further fix our weight regularization hyperparameters across all node and graph classification
experiments. We refer readers to the Appendix for more training details (Code and datasets are
available at https://github.com/RexYing/gnn-model-explainer).
Results. We investigate questions: Does GNNEXPLAINER provide sensible explanations? How
do explanations compare to the ground-truth knowledge? How does GNNEXPLAINER perform on
various graph-based prediction tasks? Can it explain predictions made by different GNNs?
1) Quantitative analyses. Results on node classification datasets are shown in Table 1. We have
ground-truth explanations for synthetic datasets and we use them to calculate explanation accuracy for
all explanation methods. Specifically, we formalize the explanation problem as a binary classification
task, where edges in the ground-truth explanation are treated as labels and importance weights given
by explainability method are viewed as prediction scores. A better explainability method predicts
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Figure 4: Evaluation of single-instance explanations. A-B. Shown are exemplar explanation subgraphs for graph
classification task on two datasets, MUTAG and REDDIT-BINARY.

8

Image Source : GNNExplainer 

Drawback/Issue : How to be sure if the model picked the planted subgraph?
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Other Evaluation schemes

Measuring attribution (explanation) consistency across high performing models 

[Sanchez-Lengeling et al. 2020]

practitioner’s common sense, we may use attributions as a debugging tool — we can highlight, and
then subsequently correct, spurious correlations in a dataset [29], or apply regularization to encourage
desired behavior in the model [33, 38].

Attribution methods have been most studied in the domains of image modeling [16] and text [6],
areas where humans have strong intuition. A “ground truth” credit assignment in these domains
ultimately rests with subjective human judgment. Unfortunately, obtaining ground truth for realistic
image and text tasks is subjective, expensive, and time-consuming.

The introduction and refinement of graph-based neural network models [11, 39] has opened up
new and powerful capabilities for modeling structured data. For instance, social networks [52],
protein-protein interaction networks [54], and molecules [18, 20] are naturally represented as graphs.
Graph-valued data offer an opportunity to inexpensively and quantitatively benchmark attribution
methods, due to the fact that challenging synthetic graph problems have computable ground-truth
attributions. This allows us to quantitatively measure the performance of popular attribution methods
on several GNN model types, built for a variety of tasks.

Figure 1: Schematic of attribution task setup and attribution metrics. A. We create classification and regression tasks for which we have
a computable ground-truth. We train GNN models on these labels, and calculate attributions using the graph inputs and attribution methods we
adapt to graphs. B. We quantify attribution performance with four metrics. Accuracy measures how well an attribution matches ground-truth.
Consistency measures how accuracy varies across different hyperparameters of a model. Faithfulness measures how well the performance of
an attribution method matches model performance. Stability measures how attributions change when the input is perturbed.

Measuring Performance of Attribution Methods We use tasks with graph-valued data and com-
putable ground truths (Figure 1, left) to examine qualities of an attribution method that are necessary
for credibility: accuracy, faithfulness, consistency and stability [37] (Figure 1, right). We consider
an attribution method to have high attribution performance if it scores well on all four properties.
We focus on these qualities from [37] because they are quantitative, do not require soliciting human
judgment, and are specific to attribution, as opposed to interpretability more broadly.

Accuracy. We assess attribution accuracy by quantifying how well attributions match ground-truth
credit assignments. If the model is “right for the right reasons” [17], we expect the attribution method
to highlight the correct, ground truth nodes in the input graph (Figure 1B, upper left).

Consistency. The accuracy of an attribution technique should be consistent across high-performing
model architectures. To test attribution consistency, we quantify the variability in attribution accuracy
using the top 10% of models through a hyperparameter scan over model architectures (Figure 1B,
lower left).

Faithfulness. The performance of a faithful attribution method should reflect the performance of the
model. To quantify faithfulness, we run two experiments where we intentionally damage the training
dataset to degrade a model’s predictive performance, and systematically measure how each attribution

2

Quantifies the variability in explanation 
accuracy using the top 10% of models 
through a hyperparameter scan over model 
architectures 

Drawback/Issue : How to be sure if the models used the intended explanation?
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Explaining Node Embeddings
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Global explanations for embedding dimensions

Map dimensions to input graph substructures 
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Global explanations for embedding dimensions

DINE: Dimensional Interpretability of Node Embeddings. Piaggesi, Khosla et al. 2023.

https://arxiv.org/abs/2310.01162
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Explanations and privacy of training data

Private Graph Extraction via Feature Explanations
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ABSTRACT
Privacy and interpretability are two important ingredients for achiev-
ing trustworthy machine learning. We study the interplay of these
two aspects in graph machine learning through graph reconstruc-
tion attacks. The goal of the adversary here is to reconstruct the
graph structure of the training data given access to model explana-
tions. Based on the di�erent kinds of auxiliary information avail-
able to the adversary, we propose several graph reconstruction
attacks. We show that additional knowledge of post-hoc feature ex-
planations substantially increases the success rate of these attacks.
Further, we investigate in detail the di�erences between attack
performance with respect to three di�erent classes of explanation
methods for graph neural networks: gradient-based, perturbation-
based, and surrogate model-based methods. While gradient-based
explanations reveal the most in terms of the graph structure, we
�nd that these explanations do not always score high in utility. For
the other two classes of explanations, privacy leakage increases
with an increase in explanation utility. Finally, we propose a de-
fense based on a randomized response mechanism for releasing
the explanations, which substantially reduces the attack success
rate. Our code is available at https://github.com/iyempissy/graph-
stealing-attacks-with-explanation.

KEYWORDS
privacy risk, model explanations, graph reconstruction attacks,
private graph extraction, graph neural networks, attacks

1 INTRODUCTION
Graphs are highly informative, �exible, and natural ways of repre-
senting data in various real-world domains. Graph neural networks
(GNNs) [19, 23, 37] have emerged as the standard tool to analyze
graph data that is non-euclidean and irregular in nature. GNNs
have gained state-of-the-art results in various graph analytical
tasks ranging from applications in biology, and healthcare [2, 7] to
recommending friends in a social network [12]. GNNs’ success can
be attributed to their ability to extract powerful latent features via
complex aggregation of neighborhood aggregations [16, 46].

This work is licensed under the Creative Commons Attribu-
tion 4.0 International License. To view a copy of this license
visit https://creativecommons.org/licenses/by/4.0/ or send a
letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
Proceedings on Privacy Enhancing Technologies YYYY(X), 1–20
© YYYY Copyright held by the owner/author(s).
https://doi.org/XXXXXXX.XXXXXXX
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Figure 1: The importance scores for the features, as provided
by an explanation, can be exploited to infer the graph struc-
ture. Here, we show an example of a binary explanation
where a score of 1 indicates that the corresponding feature is
part of the explanation.

However, these models are inherently black-box and complex,
making it extremely di�cult to understand the underlying reason-
ing behind their predictions. With the growing adoption of these
models in various sensitive domains, e�orts have been made to
explain their decisions in terms of feature as well as neighborhood
attributions. Model explanations can o�er insights into the inter-
nal decision-making process of the model, which builds the trust
of the users. Moreover, owing to the current regulations [28] and
guidelines for designing trustworthy AI systems, several proposals
advocate for deploying (automated) model explanations [17, 31].

Nevertheless, releasing additional information, such as expla-
nations, can have adverse e�ects on the privacy of the training
data. While the risk to privacy due to model explanations exists for
machine learning models in general [34], it can have more severe
implications for graph neural networks. For instance, several works
[8, 27] have established the increased vulnerability of GNNs to
privacy attacks due to the additional encoding of graph structure
in the model itself. We initiate the �rst investigation of the e�ect
of releasing feature explanations for graph neural networks on the
leakage of private information in the training data.

To analyze the information leakage due to explanations, we take
the perspective of an adversary whose goal is to infer the hidden
connections among the training nodes. Consider a setting where

1

Private graph extraction via feature explanations.Olatunji et al.  PETS 2023

Privacy and Transparency in Graph Machine Learning: A Unified Perspective. Khosla.  AIMLAI 2022 

https://petsymposium.org/popets/2023/popets-2023-0041.pdf
https://arxiv.org/abs/2207.10896
https://ceur-ws.org/Vol-3318/short27.pdf


42

Join us !
MLoG course together with Elvin Isufi 

Participate in our workshop on Interplay of explainability and privacy in AI 
on 8th and 9th February 2024 in TU Delft 

https://www.delftdesignforvalues.nl/event/workshop-series-on-values-and-value-conflicts-navigating-the-interplay-of-explainability-and-privacy-in-ai/

