
Probing actin cytoskeleton dynamics using a
micropillar array

Master thesis
January 25, 2013

W. Pomp, BSc

Supervised by:

Ir. H van Hoorn
Prof. dr. T. Schmidt

Leiden University

This report is written based on a six month graduation project in the group ’Physics of Life Processes’
for the master ’Research in Experimental Phyics’ at Leiden University by Wim Pomp, BSc.

Email: wimpomp@gmail.com

Supervisors for this project were:

Ir. H. van Hoorn
Prof. dr. T. Schmidt

Front cover image: Graphical
representation of a cell with actin
and focal adhesions on pillars.

mailto:wimpomp@gmail.com

Abstract
Environmental cues regulate cell fate and behavior. Cells use force sensors while exerting forces on the
environment to probe properties such as the rigidity of the environment. We built an autofocus system
onto a spinning disk confocal microscope. This enables us to capture time-lapse movies of cells expressing
fluorescent actin in an automated manner. An inverted pillar array substrate was used to measure forces
the cells exert on the substrate. In this way we were able to confirm and quantify a theory suggesting
that cells use the leading edge of the cell to pull themselves forward. Furtermore, in more than 90% of the
observed cells distinct cortical actin stress-fibers were found. These cases were checked against active gel
theory assuming a homogeneous contractilty. However, in our experiments, forces described by this model
are not significant and we propose an extension to the active gel theory incorporating stress-fiber force
exertion. Our new model agrees well with our experiments and shows that forces mediated by stress-fibers
are 14 times higher than forces generated by homogeneous contractility.

2

Contents

1 Introduction 4
1.1 The cytoskeleton and extracellular matrix . 4

2 Theory 6
2.1 Cell dynamics . 6
2.2 Active gel and stress-fibers . 7

3 Materials & Methods 10
3.1 Confocal microscopy . 10
3.2 Autofocus and drift correction . 10
3.3 Sample preparation . 12

3.3.1 Pillar arrays . 12
3.3.2 Cell culture . 12

3.4 Stress fiber and pillar deflection analysis . 13
3.4.1 Deflections and forces . 13
3.4.2 Stress-fiber analysis . 13

4 Results 14
4.1 Force and strength . 14
4.2 Migrational forces . 15
4.3 Stress-fiber mediated active gel theory . 16

5 Discussion 19

6 Conclusion 20

7 References 21

8 Acknowledgments 22

9 Appendix 23
9.1 Stress-fiber analysis . 23
9.2 Horizontal drift correction . 27
9.3 Pillar identification . 27
9.4 Circle fitting . 29
9.5 General Control . 29

3

1 Introduction

Understanding mechanisms governing cell fate is crucial in several medical applications. It is known that
stem cell fate depends on various external cues. It has been shown that stem cell differentiation, for
example, depends on the rigidity of the surrounding tissue [1]. Also, the anisotropy of actin stress-fiber
alignment, determining cell fate, depends on the rigidity of the surroundings [2]. The actin network plays a
central role in generating and mediating forces, exerted on the surroundings of the cell. By exerting forces
the cell can probe the surrounding tissue, and estimate properties like the rigidity of the surrounding
tissue.

1.1 The cytoskeleton and extracellular matrix

Figure 1: The cytoskeleton [3]. In this image
the microtubules are colored blue, actin green,
and the nucleus red.

The basic unit of every organism is the cell [4]. While there
are major differences between different cells, many features
are common to most cells. For example, all cells have a cell
membrane. Also, most cells have a cytoskeleton, providing
rigidity to the cell.

The cytoskeleton is a network of three different kinds of
proteins, of which two can be seen in figure 1. The micro-
tubules are the largest filaments with a diameter of 25 nm.
Microtubules are important in transport in the cell and in cell
division. The 10 nm diameter intermediate filaments consti-
tute a large family, occurring in different places in the cell,
for example as a network of lamin in the nucleus. The protein
that forms the smallest of the cytokeletal filaments is actin.
A single actin filament has a diameter of 5 to 9 nm.

Eukaryotic cells have a nucleus somewhere near the center.
Next to the nucleus is a microtubule organizing center from which microtubules extend outward to the
edge of the cell. Throughout the whole cell, but mainly at the cortex extends an actin network. Sometimes
multiple actin fibrils are bundled together into actin fibers that can even span the whole cell. At leading
edges of the cell protrusions filled with a dense actin network exist. The flat edges of these lamellae are
called lamellipodia and the actin network in these protrusions is highly dynamic.

Figure 2: Actin network with focal adhesions [5]. The
cell membrane is blue, actin is red and the focal adhe-
sions are green.

In a tissue outside the cell consists of a network
which we call the extracellular matrix (ECM). Cells
can attach to the ECM and use it to migrate through
tissues. The proteins forming the ECM, for example
collagen and fibronectin, are produced by the cells
in the ECM. Migrating cells often break down the
ECM in front, and regenerate it behind the cell. The
connection between the ECM and the cytoskeleton is
provided by integrins and focal adhesions (FA). Inte-
grins are transmembrane proteins, providing anchor
points for the ECM outside the cell, and binding to
FAs inside the cell. A focal adhesion is a large com-
plex, consisting of many different proteins. Once for-
mation of a focal adhesion at an integrin has started
actin can bind to it.

Part of the actin network is enriched with myosin motors which slide actin filaments alongside each
other, contracting parts of the actin network. Integrins in the cell membrane transmit forces generated
by the actin myosin network to the ECM outside the cell. Forces generated in different parts of the cell
can be transmitted to the cell membrane by actin fibers. Naturally, thicker actin fibers should be able to
sustain bigger forces, the thick stress fibers being the strongest. This leads to the hypothesis that in a
cell the majority of the forces is mediated by stress fibers, and in a polarized cell this should be clearly
visible because of a lot of force exterted in the direction of the stress fibers.

Arrays of micropillars have been used to vary substrate stiffness without modifying other substrate
properties [6], showing the dependency of cell behaviour on global substrate stiffness. At the same time,
a pillar array can be used to measure forces [7]. Theories describing cell migration predict that cells use a
protrusion of the membrane filled with actin to probe the environment and to pull themselves forward [8].

4

We measured these forces over time and verified that indeed the leading edge of the cell exerts most of
the force.

Forces in the cytoskeleton generate tension which affects the shape of a cell. This behavior has been
described in the active gel theory by modeling the cell as a homogeneous gel of contractile actin-myosin
motors [9]. As we will show, a majority of the forces generated by the actin network are mediated by
stress-fibers; thick cross-linked bundles of many actin filaments. Furthermore, we show a dependency
between the orientation of stress-fibers in the cell relative to the edge of the cell and forces. We therefore
propose an extension to the active gel theory, incorporating forces mediated by stress-fibers.

5

2 Theory

2.1 Cell dynamics

Integrins and focal adhesions play a major role in the process of cellular force sensing. Not only do they
provide the connection between the cell and its surroundings, but integrins also are particularly good at
transmitting forces through the membrane. A changing force on one side of an integrin dimer changes the
conformation of the pair, which in turn also changes the conformation of the integrins at the other side of
the membrane. Furthermore, several proteins inside FAs, for example talin and zyxin as well as the focal
adhesion kinase and p130Cas proteins, are thought to act as force sensors, exposing a binding site when
stretched by a force [10]. This mechanism is probably also involved in the growth of focal adhesions, as
recent reseach suggests that proteins are recruited by a focal adhesion when a connected actin filament
exerts a force on it [8].

Figure 3: Focal adhesions [11]. A. A cell sitting on the ECM, the cell exerts a force on the ECM and the ECM
exerts a force on the cell. B. The forces are transmitted from the actin network to the ECM and vice versa
through focal adhesions attached to integrins.

The cytoskeleton forms a skeleton for the cell, but for a cell to move, the cytoskeleton also has to
be flexible. The main feature that adds to the flexibility of the cytoskeleton is the instability of the
cytoskeleton. It is constantly depolymerizing and polymerizing everywhere in the cell. In this way the
cell can rapidly change its shape. Several proteins are employed in this process, for example to prevent or
promote binding to either of the ends of actin filaments. Since actin monomers undergo a conformational
change when they bind to one of either ends of a filament, the binding affinity at either ends is different [4].
The fast growing end is called the plus or barbed end and is always pointed towards the cell periphery. The
minus end is always pointed to the center of the cell and usually the binding affinity there is so low that it
is depolymerizing. This process of polymerization at the plus end and at the same time depolymerization
at the minus end is called tread-milling.

Figure 4: Actin network [8]. The lamellipodium, near the edge of the cell, has a heavily branched actin network,
with nascent adhesion. More to the center of the cell myosin contracts the actin into more rigid fibers. This force
also matures adhesions into focal adhesions. LP: lamellipodium, LM: lamella, SF: stress-fiber.

The actin network in the bulk of the cell is decorated with myosin. Myosin is a motor-protein, and
as such can pull one actin filament along another. By doing this the actin network in the bulk forms
thicker actin fibers. Also, this contractile network pulls on the heavily branched actin network inside the
lamellipodia. These lamellipodia are formed by polymerizing actin which pushes the membrane outward,
forming a protrusion.

On the integrins in this membrane, adhesions start to form, as shown in figure 5A(1). The actin
network binds to those nascent adhesions. The contractile actin network in the bulk of the cell pulls

6

on the network inside the lamellipodia. Because of the tension this generates on the adhesions in the
lamellipodia, the adhesions start to grow into focal adhesions. At the same time the integrins, pulled on
by focal adhesions, pull on the environment outside the cell. If the cell then for some reason does not
move in that direction, the lamellipodia often become ruffles, the actin depolymerizes and the extended
membrane travels back in a wave-like motion. However, when the connection between the integrins and
the environment are rigid enough, the contents of the cell move forward and the focal adhesions move
into the lamellae (figure 5A(3)). This process can be continuous, such that in fast moving cells such as
fish keratocites there is always a lamellipodium, extending at the leading edge, and disappearing in the
bulk at the rear [12].

Figure 5: Adhesion dynamics [8]. A Adhesion proteins start to grow in the lamellipodium (1), under tension
they mature into focal adhesions (3). B Tractionforce versus retrograde flow of the treadmilling actin in the
lamellipodium. The flow is a measure for position in the lamellipodium, with the flow being biggest near the cell
front of the cell.

Growth of adhesions is governed by forces exerted on the adhesions. Force-sensing proteins can recruit
more adhesion proteins to the adhesion. Forces on the adhesions are exerted by the contractile actin-
myosin gel connecting the leading edge of the cell to the cell contents in the bulk of the cell. At some
point the focal adhesions themselve move into the bulk of the cell. Here, the contractile actin exerts less
or no force on them. Under this decreased force the focal adhesions start to disassemble and eventually
will disappear completely. In figure 5B, the force on a adhesion is plotted versus the flow of treadmilling
actin, which is a measure for the position in the lamellipodium. We see that adhesions start at a position
with high actin flow and when maturing the force on the adhesions increases and the actin flow decreases.
Eventually, the flow still decreases, but the traction forces decreases again when the focal adhesion
disassembles. Based on this we can hypothesize that when cells migrate they use the leading edge of the
cell to pull themselves forward.

2.2 Active gel and stress-fibers

The shape and structure of a cell is mainly determined by the actin network, of which a part is enriched
with myosin. The myosin-enriched actin network is contractile and so a cell can be described as an active,
contractile gel. This has been done in previous work [13,14]. This is a purely physical description in which
it is assumed that the gel exerts a uniform force, perpendicular to the membrane, on the membrane. Using
this description, it can be shown from minimizing the energy functional for the cell contour:

E =

∫
σdA+

∫
λdl (1)

that if the line tension (λ) and surface tension (σ) along a stress-fiber next to a cell boundary are constant,
then the stress-fiber follows a circular path. The surface tension can then be calculated as:

σ =
λ

R
(2)

In a two-dimensional picture, like in figure 6, λ and σ are measured in units of force and force per length
respectively. The line-tension can be measured as a force at the ends of the stress-fiber. It is convenient to

7

view the surface tension as a measure of the contractility of the active gel. However, the model leading to
equation 2 only works if the network exhibits no resistance against compression, and the surface tension
is constant and perpendicular to the stress fiber (figure 7A), similar to a uniform pressure.

σ

λ

R

Figure 6: A contractile actin network (black) has edges which are circular in shape with radius R (green).
The line-tension λ (red) can be measured as a force on the ends of a stress-fiber running along the edge. The
contractility σ (blue) of the gel can be calculated from the line-tension and the radius.

A B

Figure 7: A. When forces (red arrows) are perpendicular to a fiber (black) and have the same magnitude, then
the fiber will assume a circular shape. B. If the forces all point in the same direction, the fiber will assume the
shape of a parabola.

If the actin does not exert a uniform pressure on the edge-fibers, then the shape of the edge-fiber will
deviate from circularity. If for example the surface tension on the edge-fiber is not perpendicular to the
fiber, but on every point on the fiber points in the same direction, then the fiber will take the shape of a
parabola (figure 7B). This conformation will make equation 2 incorrect, because the shape of the fiber is
no longer circular. However, we can always approximate a parabola with a circle and thus define a radius.
In reality the shape of the fiber will probably be somewhere between circular and parabolic because of the
contributions of the active gel and basal stress-fibers. Therefore, we propose a new model which adds the
force that basal stress-fibers exert on stress-fibers along the edge of the cell to the active gel description.

θ

s

Figure 8: The density of stress-fibers (red) attached to the edge (blue) depends on the spacing s between stress-
fibers and on the angle between the stress-fibers and the edge. So the shape the edge is then pulled into (black)
also depends on this angle.

8

To account for the contribution of basal stress-fibers to the stress on the cortical fibers we assume
that the shape of the cortical fiber does not deviate much from circularity, so that equation 2 is still a
good approximation. If we assume that stress-fibers are uniformly spaced (spacing s) and hit the edge
stress-fiber at a common angle θ, as depicted in figure 8, then the density n of attachments of basal
stress-fibers to the edge fiber is given as:

n =
1

s
sin θ (3)

Equation 3 is exact if the edge fiber assumes the shape of a straight line between the attachment points.
When the shape is not a straight line two things happen. Depending on the angle of the basal stress-
fibers, more stress-fibers attach to the edge fiber, increasing the surface tension. At the same time the
fiber length is longer, decreasing the surface tension. These two effects roughly cancel each other, so that
equation 3 can be used for most edge fibers in a cell. If we then assume that the stress f per basal
stress-fiber is roughly the same for every basal stress-fiber, an approximation to the surface tension due
to basal stress-fibers is:

σSF =
f

s
sin θ (4)

Using equation 2 again and at the same time combining contributions from the active gel and stress-fibers
we arrive at:

σ =
λAG
R

[
1 +

λSF
λAG

sin θ

]
(5)

Where λAG and λSF are contributions to the force from the active gel and basal stress-fibers respectively.
A tension-elasticity model has been proposed [14] that incorporates elastic fibers via an one-dimensional

elastic modulus EA which is the product of a three-dimensional elastic moduls and a cross-sectional area;
and a resting length L0 = αd modifying the tension:

σAG =
EA

R

[
2R

αd
arcsin

(
d

2R

)
− 1

]
(6)

It has been used to explain different radii R of circular parts of the cell membrane for different spanning
distances d. However, this model does not incorporate the importance of basal stress-fibers. It could be
expanded using equation 4 to also describe basal stress-fibers. However, both elastic modulus and resting
lengths are unknown in our experiments, so we use equation 5 as an approximation instead.

9

3 Materials & Methods

3.1 Confocal microscopy

All experiments where done using a Zeiss Axiovert 200 inverted microscope and a Zeiss plan-apochromat
100× 1.4 oil imersion objective. The microscope is equiped with a Yokogawa spinning disk unit and a
Andor iXon+ camera. A 100 mW 405 nm laser from CrystaLaser and a 100 mW 561 nm Cobolt laser
were used for fluorescense imaging. For automatic sample positioning a Marzhaüser Scan IM 120×100
stage and a PI piezo objective postioning system were used.

A warm water circulation system flowing heated water around the objective and the sample kept the
sample at 37◦C. The microscope stage insert and heated sample-holder were produced such that possible
movements of the sample were reduced to a minimum. This allows us to image different spots on the
sample repeatedly.

3.2 Autofocus and drift correction

Some of our experiments involve time-lapse movies, but due to the shallow focus depth of our objective
and drift, focus can easily be lost. To overcome this problem we built an auto-focus system using an
IR-laser to keep the distance between objective and microscope slide constant.

Figure 9: Auto focus setup. Laser-light reflects from the sample, such that the amount of light that hits the
detector depends on the distance between sample and objective. A feedback system is then used to keep this
distance constant. DET: Thorlabs detector, REF: reference detector.

As shown in figure 9, we use an 850 nm laser (Axiz 850 nm, 5 mW) and let the light enter the
optical path via the backport of the microscope and a dichroic mirror (Chroma T800dcspxr). The light
passes the objective off-axis so that it hits the microscope slide at an oblique angle. At the glass-sample
interface about 4% of the light is reflected back. The entry point into the objective now depends on
the distance between objective and microscope slide, and thus the further path of the light. Depending
on this, some part of the light hits a detector (Thorlabs PDA36A). The output from this detector and
that of a reference detector (BPX65) measuring laser power is used as a feedback value. Keeping the

10

ratio between the outputs of these detectors constant means keeping the distance between objective and
sample constant and thus keeping the object in focus.

Software for the auto-focus system was written in Labview (National Instruments Labview 2011) and
python. The Labview program named ´General Control´ is connected to the hardware by a National
Instruments PCI6250 data acquisition card. It controls the auto-focus system with positioning stage and
a substrate stretcher not used in the experiments in this thesis. General Control interfaces with Andor IQ
2.6 microscope software by means of TTL triggers. In this way the user of the microscope is able to specify
an imaging protocol in Andor IQ that controls the autofocus and positioning stage in an automated way.

0 20 40 60 80
−300

−200

−100

0

100

time (minutes)

d
is

ta
n

ce
to

fo
cu

s
(n

m
)

A

0 20 40 60 80
−2

0

2

4

6

8

10

time (minutes)

x
,

y
(µ

m
)

x (µm)

y (µm)

B

Figure 10: A. Drift from focus in about 1.5 hours. Tested using fluorescent beads stuck to a microscope slide,
submersed in water, heated to 37 ◦C. B. Trajectory of drift in the horizontal plane in the same 1.5 hours.

As shown in figure 10A, our autofocus system is able to stay within 200 nm from the chosen focus, well
within the focusdepth of the objective of about 1 µm. The data shown in figure 10A is collected using
suboptimal gain settings, resulting in a oscillation around the actual focus. Using optimized gain settings
results in a 100 nm accuracy without drift. This data is generated using beads stuck to the microscope
slide as a test sample. The slide was submersed in water and heated to 37◦ C while measuring. Afterwards
the intensity of the beads was compared to the intensity of the beads in images at known distances from
focus.

Figure 10B shows the trajectory of the drift in the horizontal plane, it shows that there is drift in these
directions too. Since this drift is only a few percent of the field of view, we compensate for this afterwards
by doing a cross-correlation between frames. In our experiments with cells and pillars we do have for each
time point a frame with pillars and a frame with actin. Because the cell image is dynamic we can only use
the correlation between subsequent frames. To prohibit errors summing up we also correlate each frame
with pillars with the first frame. The pixel accuracy thus acquired is enough to track the cell and pillars
over time.

11

3.3 Sample preparation

3.3.1 Pillar arrays

To measure forces we used a PDMS pillar array with pillars of 2 µm diameter and 6.9 µm height in a
hexagonal pattern with a 4 µm center-to-center distance. An electron micrograph is shown in figure 11a.
Flanking the array on two sides are 50 µm high spacers (figure 11b), which allow for 43 µm space between
pillars and glass when the array is upside down on a microscope slide for imaging. To make this array we
have a silicon wafer as a mold. PDMS and curing agent where mixed in a 1 to 10 ratio and then degassed.
After pouring the PDMS on the silanized wafer the the PDMS is degassed again and cured for 16 hours
at 110◦C. After curing the 10 by 10 mm pillar arrays are peeled off of the wafer and excess PDMS is cut
off. The surface of the PDMS is then activated by UV-ozone treatment for 30 minutes.

A B

Figure 11: Electron micrographs of a pillar array. A. Dimensions of a pillar are shown. B. The spacer of about
50 µm high keeps some space between the pillars and the microscope slide.

A fibronectin solution consisting of 50 µg/ml fibronectin and 10 µg/ml fibronectin conjugated with Alexa-
405 was prepared. On a flat piece of PDMS somewhat smaller than 10 by 10 mm, 40 µl of this solution
was deposited. The fibronectin was allowed to sink to the PDMS stamp for one hour before wicking off
the liquid and gently washing the stamp with pure water (Merck Millipore MilliQ). Then the stamp was
applied to the ozone treated pillar array for 15 minutes. This procedure makes sure only the tops of the
pillars get coated with fibronectin. To block all other surfaces the pillars arrays where submersed in a
solution of 0.2% pluronic f127 in PBS, and the stamp is removed. After 30 minutes the pluronic is washed
out by PBS.

3.3.2 Cell culture

For our experiments we used NIH 3T3-Fibroblasts with a stable expression of mCherry-LifeAct. This
complex binds to actin and enables us to visualize the actin network. The cells where kept in medium
(DMEM high glucose without phenol red or glutamine, with 10% NBS, 100 µg/ml pen/strep and 10%
glutamax) in a 37◦ C, 7% CO2 incubator and passaged twice a week. At least four hours before an
experiment the cells where seeded in a 1:20 ratio onto a pillar array submersed in medium in a six-well
plate well (962 mm2 area). This gives the cells time to properly attach to the pillar array which is needed
because unattached cells sink away from the pillar array which we put upside down on the microscope.

12

3.4 Stress fiber and pillar deflection analysis

3.4.1 Deflections and forces

+1.375e+00
+6.897e+01
+1.366e+02
+2.041e+02
+2.717e+02
+3.393e+02
+4.069e+02
+4.745e+02
+5.421e+02
+6.097e+02
+6.773e+02
+7.449e+02
+8.125e+02

Figure 12: Finite element analysis
of one PDMS pillar gives a force-
deflection relation. Stress is repre-
sented by color, with hotter colors
representing bigger stress.

We use image analysis in Matlab (Mathworks Matlab R2012a) to
determine the deflection of the top of a pillar from which we can
calculate the force on the pillar. The force-deflection relationship is
determined using finite element analysis (figure 12). If the contrast
of the fluorescent pillar-tops to the background is good enough we
can transform the microscope image into a black-and-white image.
From this image the centers of the pillars can be found and at the
same time features that do not represent pillars can be removed.
From this list of pillar coordinates the original grid before deflection
can be reconstructed given that most of the pillars are not deflected.
Because our array is about 50 µm above the microscope slide we
have to compensate some aberrations. This is done by fitting the
smallest 90% of the deflections respective to a perfect grid on a
5th order polynomial function. The reference grid is then adapted
to this polynomial. In a time-series the average polynomial over all
frames is used to correct the reference grids. Individual pillars can
be tracked over time after drift in the horizontal plane is corrected
which is described in section 3.2. Pillars in consecutive frames are
then identified by the shortest distance between the pillars.

3.4.2 Stress-fiber analysis

To find stress-fibers we made a script that first converts a grayscale image into a black-and-white image
using a low-pass filtered image and a threshold one standard deviation above the mean. Now the image
is cleaned and all small features are filtered out. Using standard Matlab functions to make a skeleton
representation of the image, end- and branch-points can be found. Now some fibers are connected depend-
ing on their relative orientation and are given a unique number. Using these numbers, a list is generated
listing the locations, sizes and orientations of the stress-fibers. This procedure finds the fibers at the edges
of cells and also the brightest fibers in the bulk of the cell.

After stress-fibers are found further analysis reveals radii of the circular parts of stress-fibers. This
involves manual selection from the list of the stress-fibers generated by earlier described script. The
selected stress-fibers are fitted to circle shapes, and the forces on the pillars at their ends is calculated.
Other Matlab scripts sum the pixel values of the pixels in a certain stress-fiber and compare it the the
average pixel value in the whole frame to calculate the brightness of a stress-fiber.

13

4 Results

4.1 Force and strength

0 5 10 15

-60◦

-30◦
0◦

30◦

60◦

Figure 13: Histogram of the difference be-
tween the direction of the stress-fibers and the
direction of the force on the pillars. The av-
erage is 2.3 ± 21.4◦.

All fibroblast cells used in our experiments that were spread
out on a pillar substrate were polarized, so the cells contain
thick stress-fibers which are all oriented in the same direction.
To see whether stress fibers are important in mediating forces
in the cell we examined the direction of the orientation of the
stress-fibers and the direction of the orientation of the forces
that the cell exerts on the pillar substrate in 26 live but static
cells. We averaged the direction of all stress-fibers found by a
custom algorithm. Also the direction of all forces bigger than
3 nN in a frame were averaged. As shown in figure 13, the
difference between the directions of the orientation of forces
and stress-fibers in a cell is 2.3 ± 21.4◦. This suggests that
stress-fibers indeed are the principle mediator of forces that
a cell exerts on a substrate.

The main component of the cytoskeleton is actin. The small
actin filaments as well as the stick stress-fibers are able to
mediate forces. However, we showed that the thick stress-fibers are the main mediator of cell-to-substrate
forces. This suggests a relation between fiber thickness and the force it exerts on the substrate. To test
this, we look at the thickness of stress-fibers by assuming their brightness is a measure for their thickness.
We compensate for differences between images due to exposure or fluorescence differences by looking
at the brightness of a fiber relative to the brightness of the while image. However, comparison of the
thicknesses of the stress-fibers to the forces that each stress-fiber exerts on the pillar substrate does not
reveal a correlation between stress-fiber thickness and mediated force, as is shown in figure 14. This,
however does not disprove the hypothesis that stress-fibers are important in mediating forces. It only
shows that thick fibers do not necessarily mediate big forces although they probably can.

So, figure 13 suggests a relation between stress-fiber orientation and force exertion. However, figure 14
shows that, within in cell, thicker stress-fibers not necessarily do mediate big forces.

0 5 10 15 20 25 30 35 40

1

1.5

2

2.5

force on pillar (nN)

b
ri

gh
tn

es
s

of
fi

b
er

re
la

ti
ve

to
th

e
av

er
ag

e
b

ri
gh

tn
es

s
of

th
e

ce
ll

Figure 14: Forces on pillars and the brightness of the fiber attached to it. We assume the brightness of a fiber
is proportional to its thickness. The brightness and the force appear to be uncorrelated.

14

4.2 Migrational forces

It has been suggested that cells use the leading edge of the cell called lamellipodium to move forward.
To test if the leading edge of a moving cell exerts relatively big forces on the pillar substrate, we made
time-lapse movies of moving cells. Three frames of such a time-lapse are shown in figure 15. Forces are
then calculated from the deflections of the pillars. To track the progress of a cell over a pillar we divided
each image into 4 µm diameter hexagonal areas using the grid for the calculated positions of non-deflected
pillars. Then by plotting for each pillar the force versus time and the fraction of the area above the pillar
that is taken up by the cell we show that indeed the leading edge of the cell exerts a relatively big force
on the pillar substrate. Two examples of such plots are shown in figure 17.

0’ 10’ 25’

15 nN

10 µm

Figure 15: Timelapse of a moving cell, the length and direction of the arrows correspond to the magnitude and
direction of the force. Actin is labelled red and stamped fibronectin is labelled blue. The force is mainly applied
at the cell edge.

0 20 40 60
0

20

40

60

tf (minutes)

t c
(m

in
u

te
s)

Figure 16: tf plotted versus tc.

As soon as a cell attaches to a pillar, it starts pulling on the pillar.
The force exerted by the cell on a pillar is on average 6.2 ± 3.2 nN
and lasts for (tf) 35.5 ± 9.0 minutes. Over the 23 cells examined
the time a cell needs to crawl over a pillar is (tc) 23 ± 7.5 minutes.
Their ratio tf/tc is 2.3 ± 1.5 which can be used to calculate the size
of the area that the cell uses to pull itself forward. Since we used
4 µm areas, the size of the area used for pulling is the area until
9.2± 6.0 µm from the leading edge. Although some theories predict
that the part that pulls the cell forward is the lamellipodium, we do
not call this part lamellipodium because from our experiments we
cannot know how far the lamellipodium extends. Also, the plot of
tc versus tf in figure 16 does not show any correlation between tc
and tf . The reason might be that the size of the pulling part of the
cell does vary hugely from cell to cell. Another thing that is likely
to interfere is the fact that the cells we used are fibroblasts which

are known to produce the ECM protein fibronectin. Fibronectin can connect multiple pillars together,
distributing forces in the pillar array and thus obscuring measurements.

Although the leading edge of the cell is used to pull the cell forward, these forces are not the only forces
present. In the rest of the cell there is friction and transient forces. These almost counteract the pulling
force, resulting in only a slow crawling of the cell. The magnitude of these forces is generally below 2 nN
as is shown in figure 15 where forces smaller than 2 nN are hidden.

Most cells exhibit the behavior explained above. However, about 10% of the cells exert only a small
force of on average 2 nN when they move. Two examples are shown in figure 18. Where for most moving
cells the force on a single pillar is 6.2 ± 3.2 nN and lasts for 7.1 ± 1.8 minutes, here there is no such
big peak in the force. There still is a force, but it is spread over all pillars under the cell. This probably
means that these cells move in a rolling-like motion as opposed to pulling themselves forward with a
lamellipodium. We saw earlier that fibroblasts make fibronectin, so it might be that these cells do exert
big forces, but that the pillars underneath these cells are interconnected with fibronectin and therefore
are not deflected as much.

15

0 10 20 30 40 50 60 70
0

2

4

6

8

10

time (minutes)

fo
rc

e
(n

N
)

force on pillar 1
force on pillar 2

0 10 20 30 40 50 60 70

0

0.2

0.4

0.6

0.8

1

fr
a
ct

io
n

o
f

a
re

a
a
b

ov
e

p
il

la
r

co
ve

re
d

area pillar 1
area pillar 2

Figure 17: Forces on pillars and the extension of the cell above them. Some cells exert forces on pillars when
they move over them.

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

time (minutes)

fo
rc

e
(n

N
)

force on pillar 1
force on pillar 2

0 10 20 30 40 50 60 70 80 90 100

0

0.2

0.4

0.6

0.8

1
fr

ac
ti

on
of

ar
ea

ab
ov

e
p

il
la

r
co

ve
re

d
area pillar 1
area pillar 2

Figure 18: Forces on pillars and the extension of the cell above them. Some cells barely exert forces on pillars
when they move over them.

16

4.3 Stress-fiber mediated active gel theory

Almost all cells imaged on pillars show curved edges with thick stress-fibers running along it. Only when
cells where not completely spread, or dividing there were no curved edges with stress-fibers. We assume
that the edges with a circular shape are only attached to the pillar substrate at the ends of the stress-fiber,
the distance between the attachment points is the spanning distance d. Using the force on the pillars
on the ends of the fibers and the radius R of the circular shape a surface tension σ can be found. Two
examples are shown in figure 19. This suggests that the active gel theory is a good approximation to the
behavior of the actin network in a cell.

A

A

θ

20 nN

10 µm

B

B

Figure 19: Live cells on pillars. Fibronectin stamped pillars in blue and mcherry labeled actin in red. Green
arrows show forces bigger than 5 nN. A. Two edge stress fibers are fitted to a part of a circle. Surface tensions
on the left and right stress fiber are 0.15 nN/µm and 0.56 nN/µm respectively. B. Tensions are 0.4 nN/µm on the
fiber fitted by the big arc, and 2.2 nN/µm on the other fiber. The orange lines depict the general direction of the
stress-fibers in the cell and the orientation of an edge of the cell. The angle between those is θ.

The tension-elasticity model described by equation 6 suggests a correlation between arc radius and
spanning distance and line tension λ. However, we could not recover the suggested correlation between
spanning distance, circle radius and line tension. Equation 6 is plotted in figure 20 with AE = 500 nN and
α = 1. The results from 51 arcs in different cells are also shown in figure 20B, but reveal no correlation.
This suggests that when stress-fibers mediate the majority of the forces, the contribution due to the
elasticity of actin is small.

Using equation 2 to calculate surface tensions gives surface tensions from less than 0.1 nN/µm to more
than 1.0 nN/µm. However, this surface tension does not just vary from cell to cell, but the surface-tension
also differs between different stress-fibers in a single cell. Almost all the cells we imaged are highly
polarized, and have have big basal stress-fibers running parallel in the cell. As is shown in figure 20A,
edge stress-fibers tend to run parallel to the basal stress-fibers; in about 80% of the cases the angle
between edge and basal stress-fibers is less than 30◦.

As described in section 2.2, we expect the orientation of the edge stress-fibers relative to the basal stress-
fibers to be important. In figure 21 the surface tension is plotted versus the sinus of this angle. This plot
indeed suggests a relation between tension and orientation. By fitting a line described by equation 5 to
this plot we can estimate the contribution of the active gel to the tension in an average 3T3-Fibroblast
as λAG/R = 0.08± 0.07 nN/µm, and the contribution of the basal stress-fibers as λSF/R = 1.11± 0.19 nN/µm

or λSF/λAG = 14 ± 12.

17

0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

orientation (◦)

o
cc

u
re

n
ce

(%
)

A

0 2 4 6 8
0

10

20

30

40

2R/d

σ
R

=
λ

(n
N

)

B

Figure 20: A. Orientation distribution of 49 edge stress-fibers relative to the basal stress-fibers. The edge stress-
fibers tend to align parallel to the basal stress-fibers. B. Red: equation 6 with AE = 500 nN and α = 1. Blue:
data from 51 circular edges, no correlation was found between R/d and λ.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

sin(θ)

su
rf

ac
e

te
n

si
on

(n
N
/µ

m
)

Figure 21: Surface ten-
sion (nN/µm) versus ori-
entation. Data points
are blue. A fit σ =
0.08 + 1.11 · sin θ in red
shows the contributions
of the active gel and
basal stress-fibers to the
surface tension in an av-
erage cell.

18

5 Discussion

Our experiments involve fibroblast cells on a pillar array coated with fibronectin. Fibroblasts are known to
produce fibronectin. In this way the cells are able to interconnect pillars. These connections can distribute
the forces that a cell exerts over different pillars. So it is possible that on some pillars that are not deflected
much still a big force is exerted that is then distributed over several pillars. However, we mainly look at
big forces, and in those cases the majority of the force is generated by the cell on the pillar where the
force is measured. The agreement of our result with theory further confirms that however fibronectin my
be interconnecting pillars, a pillar array is still a good method to measure forces that cells exert on a
substrate.

Our analysis was done on two-dimensional pictures of the bases of cells, so we do not know how the
actin network outside the basal plane affects our results. However, the active gel theory works in either
two or three dimensions. Also our extension to the active gel theory is valid in both cases. Our extension is
an approximation the interaction between stress-fibers and tension in the cell, however, any more detailed
model will require experiments that control stress-fiber growth and deliver results with better accuracy.
Despite our models simplicity, our results suggest that the stress-fiber mediated active gel theory describes
the interaction between stress-fibers and tension in the cell.

19

6 Conclusion

Using confocal microscopy and pillar arrays we showed that in accordance with recent theories [8], cells
mainly exert forces with an average magnitude of 6.2± 3.2 nN on a substrate via the leading edge of the
cell, which extends 9.2±6.0 µm the cell. We were also able to show that in a polarized cell stress-fibers are
the main mediator for forces by showing a correlation between the directions of force and basal stress-fiber
orientation. The average difference between those directions was 2.3 ± 21.4◦ Furthermore, we show that
there is no correlation between stress-fiber thickness and the force that that stress-fiber transmits.

Our experiments show a correlation between orientation of fibers relative to the edge of the cell and
the surface tension. Our experiments suggest a contribution to the contractility of a cell from stress-
fibers up to 14 ± 12 times higher than the contribution from the active gel, depending on the relative
orientation of basal stress-fibers and the edge of the cell. Therefore we propose an extension to the active
gel theory [13,14] incorporating basal stress-fibers. We show that our results cannot be explained by the
tension-elasticity model, because the contribution of stress-fibers to tension in fibroblasts is bigger than
the correction due to the elasticity of the actin network. However, it might be possible to combine the
tension-elasticity and stress-fiber mediated active gel theory into one model.

20

7 References

[1] Adam J Engler, Shamik Sen, H Lee Sweeney, and Dennis E Discher. Matrix elasticity directs stem
cell lineage specification. Cell, 126(4):677–89, August 2006.

[2] A Zemel, F Rehfeldt, A E X Brown, D E Discher, and S A Safran. Optimal matrix rigidity for stress
fiber polarization in stem cells. Nature physics, 6(6):468–473, June 2010.

[3] Tubulin, actin and DNA distribution in 3T3 cells. http://www.olympusmicro.com/galleries/

confocal/cells/3t3/3t3sb3.html.

[4] Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, and Peter Walter.
Molecular biology of the cell. Garland Science, 5th edition, 2008.

[5] Irina Kaverina, Olga Krylyshkina, and J Victor Small. Regulation of substrate adhesion dynamics
during cell motility. The international journal of biochemistry & cell biology, 34(7):746–61, July
2002.

[6] Jianping Fu, Yang-Kao Wang, Michael T Yang, Ravi A Desai, Xiang Yu, Zhijun Liu, and Christo-
pher S Chen. Mechanical regulation of cell function with geometrically modulated elastomeric sub-
strates. Nature methods, 7(9):733–6, September 2010.

[7] Michael T Yang, Jianping Fu, Yang-Kao Wang, Ravi A Desai, and Christopher S Chen. Assaying
stem cell mechanobiology on microfabricated elastomeric substrates with geometrically modulated
rigidity. Nature protocols, 6(2):187–213, February 2011.

[8] Ulrich S Schwarz and Margaret L Gardel. United we stand - integrating the actin cytoskeleton and
cell-matrix adhesions in cellular mechanotransduction. Journal of cell science, 125(July):3051–3060,
July 2012.

[9] F Julicher, K Kruse, J Prost, and J Joanny. Active behavior of the Cytoskeleton. Physics Reports,
449(1-3):3–28, September 2007.

[10] Arisa Uemura, Thuc-Nghi Nguyen, Amanda N Steele, and Soichiro Yamada. The LIM domain of
zyxin is sufficient for force-induced accumulation of zyxin during cell migration. Biophysical journal,
101(5):1069–75, September 2011.

[11] Christopher S Chen. Mechanotransduction - a field pulling together? Journal of cell science, 121(Pt
20):3285–92, October 2008.

[12] Cyrus A Wilson, Mark A Tsuchida, Greg M Allen, Erin L Barnhart, Kathryn T Applegate, Patricia T
Yam, Lin Ji, Kinneret Keren, Gaudenz Danuser, and Julie A Theriot. Myosin II contributes to cell-
scale actin network treadmilling through network disassembly. Nature, 465(7296):373–7, May 2010.

[13] Ilka B Bischofs, Franziska Klein, Dirk Lehnert, Martin Bastmeyer, and Ulrich S Schwarz. Filamentous
network mechanics and active contractility determine cell and tissue shape. Biophysical journal,
95(7):3488–96, October 2008.

[14] Ilka Bischofs, Sebastian Schmidt, and Ulrich Schwarz. Effect of Adhesion Geometry and Rigidity on
Cellular Force Distributions. Physical Review Letters, 103(4):1–4, July 2009.

21

http://www.olympusmicro.com/galleries/confocal/cells/3t3/3t3sb3.html
http://www.olympusmicro.com/galleries/confocal/cells/3t3/3t3sb3.html

8 Acknowledgments

I would like to thank Hedde van Hoorn and Thomas Schmidt for their supervision on this work. It was
nice to be a part of the mechanosensing project. Furthermore, thanks to all members of the Physics of
Live Processes group for the wonderfull time. I´m happy to be privileged to continue to work in this
symbiotic environment. Let´s not forget the homefront, without your support and interest this thesis
wouldn´t have been possible. However, above all: Soli Deo Gloria.

Figure 22: Thomas Schmidt, Wim Pomp and Hedde van Hoorn

22

9 Appendix

9.1 Stress-fiber analysis

The following scripts are written in Matlab to find stress-fibers in images. A general description is given
in section 3.4.2.

sffind.m

1 function [SF ,SD,BP,EP ,GSF ,branches ,E,B] = sffind(im)
2 % usage: [SF,SD ,BP,EP,GSF ,branches ,E,B] = sffind(im)
3 % ---
4 % tries to find stress fibers
5 %
6 % input: im: 2D grayscale image
7 % output: SF: BW image with stress fibers (logical image)
8 % SD: skeleton (logical image)
9 % BP: branchpoints (logical image)

10 % EP: endpoints (logical image)
11 % GSF: image in which branches are numbered (uint16 image)
12 % branches: branches info struct(i)
13 % i: number of the branch , corresponding to GSF
14 % Area: area of the branch (pixels)
15 % Orientation: orientaion of the branch ()
16 % PixelIdxList: linear list of pixel indices in the original
17 % Endpoints: number of the endpoint(s) to this branch
18 % Branchpoints: number of the branchpoint(s) to this branch
19 % E/B: endpoints/branchpoints info struct(i) containing Area and
20 % PixelIdxList
21 % i: number of the ep/bp, corresponding to
22 % branches.Endpoints/Branchpoints
23 % AdjBranch: number of the branch(es) adjacent to the ep/bp
24 % ---
25

26 if nargin <1,help sffind;return;end
27

28 im=double(im);
29

30 B=LowpassImage(im ,30);
31 BI=(im -B);
32 thr=std(BI(:));
33 DBW=imfill(LowpassImage(BI ,2)>thr ,’holes’);
34 M=imdilate(bwmorph(bwmorph(DBW ,’shrink ’ ,3),’clean’),strel(’disk’ ,1));
35 F=[regionprops(M,’Area’,’PixelIdxList ’)];
36

37 %find all features with a big size
38 SF=zeros(size(im));
39 for i=1: length(F)
40 if(F(i).Area >50)
41 SF(F(i).PixelIdxList)=1;
42 end
43 end
44

45 %make skeleton image and find branch and endpoints
46 skel=bwmorph(SF,’skel’ ,12);
47 thin=bwmorph(skel ,’thin’);
48 BP=bwmorph(thin ,’branchpoints ’);
49 EP=bwmorph(thin ,’endpoints ’);
50 SD=bwmorph(thin ,’diag’);
51

52 %make sure branches are cut at branchpoints
53 BP = expbp(SD ,BP);
54

55 %give each branch a number
56 NBS=numberbranches(SD,BP ,EP);
57

58 F=[regionprops(NBS ,’Area’,’PixelIdxList ’,’Orientation ’)];
59

60 %treat small pieces as branchpoints
61 NBSG=zeros(size(NBS));
62 for i=1: length(F)
63 if F(i).Area <=10
64 BP(F(i).PixelIdxList)=1;
65 else
66 NBSG(F(i).PixelIdxList)=i;
67 end
68 end
69

70 %identify adjoining fibers with the same orientation
71 try
72 GSF=gluefibers(NBSG ,BP,F);
73 catch err
74 cprintf ([1,0.5,0],err.message);
75 GSF=zeros(size(NBSG));
76 end

23

77

78 F=[regionprops(int32(GSF),’Area’,’PixelIdxList ’,’Orientation ’)];
79

80 %reorder
81 GSF=zeros(size(im));
82 j=1;
83 for i=1: length(F);
84 if F(i).Area
85 branches(j)=F(i);
86 GSF(F(i).PixelIdxList)=j;
87 j=j+1;
88 end
89 end
90

91 %the image has changed , so we need to determine branch - and endpoints again
92 [E,B]= getendpoints(GSF);
93

94 %list endpoints in branches struct
95 for i=1: length(E)
96 for j=1: length(E(i).AdjBranch)
97 if ~isfield(branches(E(i).AdjBranch),’Endpoints ’)
98 branches(E(i).AdjBranch(j)).Endpoints=i;
99 else

100 branches(E(i).AdjBranch(j)).Endpoints =[branches(E(i).AdjBranch(j)).Endpoints ,i];
101 end
102 end
103 end
104

105 %list branchpoints in branches struct
106 for i=1: length(B)
107 for j=1: length(B(i).AdjBranch)
108 if ~isfield(branches(B(i).AdjBranch),’Branchpoints ’)
109 branches(B(i).AdjBranch(j)).Branchpoints=i;
110 else
111 branches(B(i).AdjBranch(j)).Branchpoints =[branches(B(i).AdjBranch(j)).Branchpoints ,i];
112 end
113 end
114 end
115

116 GSF=uint16(GSF);
117 SF=logical(SF);
118 if exist(’branches ’,’var’)
119 branches=transpose(branches);
120 else
121 branches=struct;
122 branches.PixelIdxList =[];
123 branches.Orientation =[];
124 branches.Endpoints =[];
125 branches.Branchpoints =[];
126 end
127 end

expbp.m

1 function BP = expbp(SD,BP)
2 % usage: BP = expbp(SD,BP)
3 %
4 % Finds true branchpoints
5 %
6 % SD: skeleton image
7 % BP: branchpoints image
8

9 s=size(SD);
10 t=s(1);
11 u=s(2);
12

13 idx=[-t,-1,t,1];
14 idy=[-t+1,-t-1,t-1,t+1,-t+1];
15

16 bp=find(BP);
17

18 for i=1: length(bp)
19 for j=1: length(idx)
20 li=bp(i)+idx(j);
21 lj=bp(i)+idy(j);
22 lk=bp(i)+idy(j+1);
23 if(SD(li)&&SD(lj)&&SD(lk))
24 BP(li)=1;
25 end
26 end
27 end
28 end

numberbranches.m

24

1 function [NBS ,branches ,bp] = numberbranches(SD ,BP,EP)
2 % usage: [NBS ,branches ,bp] = numberbranches(SD,BP,EP)
3 %
4 % Gives each branch a number
5 %
6 % SD: skeleton image
7 % BP: branchpoints
8 % EP: endpoints
9 %

10 % NBS: image with numbered branches
11 % branches: struct with properties of branches
12 % bp: list of branchpoints
13

14 s=size(SD);
15 t=s(1);
16 u=s(2);
17 NBS=BP;
18 bp=cat(1,find(BP),find(EP));
19 SD=SD-BP-EP;
20

21 idx=[-t-1,-t,-t+1,-1,1,t-1,t,t+1];
22

23 branches=struct;
24 branches (1).Endpoints =[];
25 branches (1).PixelIdxList =[];
26

27 k=2;
28 for i=1: length(bp)
29 for j=1: length(idx)
30 li=bp(i)+idx(j);
31 if(li >0&&li <=t*u)
32 if(SD(li)==1)
33 %disp([’i=’,num2str(i),’ li=’,num2str(li)]);
34 B=(imfill (~SD ,li) -(~SD))*k;
35 NBS=NBS+B;
36 SD=SD+B;
37 [y,x]= ind2sub(s,bp(i));
38 branches(k).Endpoints =[x,y];
39 branches(k).PixelIdxList=find(B);
40 k=k+1;
41 elseif(SD(li) >1)
42 [y,x]= ind2sub(s,bp(i));
43 if ~isempty(branches(SD(li) -1).Endpoints)
44 if branches(SD(li) -1).Endpoints(end ,:)~=[x,y]
45 branches(SD(li) -1).Endpoints=cat(1,branches(SD(li) -1).Endpoints ,[x,y]);
46 end
47 end
48 end
49 end
50 end
51 end
52 end

gluefibers.m

1 function GSF = gluefibers(NBS ,BP ,F)
2 % usage: GSF = gluefibers(NBS ,BP,F)
3 %
4 % This function glues two fibers at every bp, it glues the two with the
5 % best matching orientations
6 %
7 % NBS: image with numbered branches
8 % BP: image with branchpoints
9 % F: struct with properties of branches

10 %
11 % GSF: new image with glued and numbered stress -fiber branches
12

13 s=size(NBS);
14 t=s(1);
15 u=s(2);
16

17 GSF=NBS;
18 B=[regionprops(BP ,’Area’,’PixelIdxList ’)];
19

20 for i=1: length(B)
21 %make a list of pixels bordering a bp
22 idx{i}= border(BP,B(i).PixelIdxList);
23

24 orientations=nan(length(idx{i}) ,1);
25 num=nan(length(idx{i}) ,1);
26 o=nan(length(idx{i}));
27 ff=nan(length(idx{i}) ,1);
28

29 %make a list of orientations of branches around the bp , each branch
30 %occurs only once!
31 for j=1: length(idx{i})

25

32 if(idx{i}(j) >0&&idx{i}(j)<=t*u&&NBS(idx{i}(j)) >1&& nanmin(abs(num -NBS(idx{i}(j))))~=0)
33 num(j)=NBS(idx{i}(j));
34 orientations(j)=F(NBS(idx{i}(j))).Orientation;
35 end
36 end
37

38 %relate orientations of branches in o
39 for q=1: length(orientations)
40 for r=q:length(orientations)
41 if (orientations(r)~=0&& orientations(q)~=0&&r~=q)
42 o(r,q)=abs(orientations(r)-orientations(q));
43 if o(r,q) >90,o(r,q)=abs(o(r,q) -180);end
44 end
45 end
46 end
47

48 %find connections
49 [m,id]= nanmin(o(:));
50 while ~isnan(m)
51 [x,y]= ind2sub(size(o,1),id);
52 ff(y)=x;
53 o(x,:)=NaN;
54 o(:,x)=NaN;
55 o(y,:)=NaN;
56 o(:,y)=NaN;
57 [m,id]= nanmin(o(:));
58 end
59

60 %sort to make sure bottomright branches always get the number from
61 %topleft
62 for j=1: length(ff)
63 if ff(j)<j
64 ff(ff(j))=j;
65 ff(j)=NaN;
66 end
67 end
68

69 %glue
70 for j=1: length(idx{i})
71 if(idx{i}(j) >0&&idx{i}(j)<=t*u&&~ isnan(ff(j)))
72 px=F(NBS(idx{i}(ff(j)))).PixelIdxList;
73 GSF(px)=GSF(idx{i}(j));
74

75 F(GSF(idx{i}(j))).PixelIdxList = cat(1,F(GSF(idx{i}(j))).PixelIdxList ,F(GSF(idx{i}(ff
(j)))).PixelIdxList);

76

77 end
78 end
79 end
80

81 %give the BPs a color
82 for i=1: length(B)
83 A=GSF(idx{i});
84 A(A==0) =[];
85 GSF(B(i).PixelIdxList)=mode(A);
86 end
87 end

getendpoints.m

1 function [E,B] = getendpoints(GSF)
2 % usage: [E,B] = getendpoints(GSF)
3 %
4 % Finds endpoints end branchpoints to branches
5 %
6 % GSF: numbered stress -fiber image
7 %
8 % E: struct with endpoints
9 % B: struct with branchpoints

10

11 s=size(GSF);
12 t=s(1);
13 u=s(2);
14

15 EP=bwmorph(bwmorph(GSF >1,’thin’),’endpoints ’);
16 BP=bwmorph(bwmorph(GSF >1,’thin’),’branchpoints ’);
17

18 E=[regionprops(EP ,’Area’,’PixelIdxList ’)];
19 B=[regionprops(BP ,’Area’,’PixelIdxList ’)];
20

21 for i=1: length(E)
22 %make a list of pixels bordering an ep
23 idx{i}= border(EP,E(i).PixelIdxList);
24 A=GSF(idx{i});
25 A(A==0) =[];
26 E(i).AdjBranch=unique(A);

26

27 end
28

29 for i=1: length(B)
30 %make a list of pixels bordering a bp
31 idx{i}= border(BP,B(i).PixelIdxList);
32

33 A=GSF(idx{i});
34 A(A==0) =[];
35 B(i).AdjBranch=unique(A);
36 end
37

38 %remove false branchpoints
39 for i=1: length(B),l(i)=length(B(i).AdjBranch);end
40 if exist(’l’),B(l<2)=’’;end
41

42 end

9.2 Horizontal drift correction

The following script uses Fourier transformations to determine the offset of a frame relative to the first
frame.

corrfft.m

1 function [d,cfunc] = corrfft(imageb1 ,imageb2 ,imager1 ,imager2 ,pd)
2 % usage: [d,cfunc] = corrfft(pillarimage (1),pillarimage(n),image(n-1),image(n),d(n-1));
3 %
4 % uses fft ’s to calculate the correlation function between images and thus
5 % determine the offset relative to the first frame
6 %
7 % input:
8 % pillarimage (1): first frame from the pillardata
9 % pillarimage(n): current frame from the pillardata

10 % image(n-1): previous frame from ’other ’ data
11 % image(n): current frame from ’other ’ data
12 % d(n-1): offset of the previous frame
13 %
14 % output:
15 % d: offset (x,y)
16 % cfunc: correlation function
17

18 if nargin <5,help corrfft;return;end
19

20 %first shift the n-1 frame so that its offset is 0
21 imager1=shiftimage(imager1 ,pd);
22

23 cfunc=ifft2(fft2(imageb1).*conj(fft2(imageb2))).* ifft2(fft2(imager1).*conj(fft2(imager2)));
24

25 [~,i]=max(cfunc (:));
26 [x,y]= ind2sub(size(cfunc),i);
27

28 d=[x-1,y-1];
29

30 %peak at x=511 means xoffset=-1 etc
31 for k=1:2,if d(k) >256,d(k)=d(k) -512;end;end
32

33 end

9.3 Pillar identification

The following scripts identify pillars in consecutive frames

connectpillars.m

1 function [defl ,tempdefl] = connectpillars(defl ,tempdefl ,shift)
2 % usage: [defl ,tempdefl] = connectpillars(defl ,tempdefl ,shift);
3 % ---
4 % Reorders pillars in defl so that in each frame pillar n alsways holds
5 % defl.xy(n,:), defl.xyref(n,:), etc
6 %
7 % defl=connectpillars(defl ,shift)
8 %
9 % defl: struct with where within each sub the last array index is the

10 % framenumber
11 % shift: xy-correction as the output from alloffsets
12

13 if nargin <1,help connectpillars;return;end
14 if nargin ==3,defl=shiftdefl(defl ,shift);end
15

16 %%initiate the coordinates against which pillars will be sought
17 %tempdefl.xyref=defl {1}. xyref;

27

18 %h = waitbar (0,);
19 cpb=create_bar(’Time’,’on’,’Text’,sprintf(’Sorting pillars , frame 1 of %d, total %d pillars.’,size(

defl ,2),size(tempdefl.xyref ,1)),’Length ’ ,10);
20

21 for i=2: size(defl ,2)
22 if (~ isempty(defl{i})&&~ isempty(fieldnames(defl{i})))
23 %find pillars in a frame and sort them
24 c=pillarfind(tempdefl ,defl{i});
25 [defl{i},extra]= pillarsort(defl{i},c);
26

27 %add extra pillars to tempdefl
28 s=length(tempdefl.xyref);
29 if size(extra.xyref ,1)
30 for j=1: size(extra.xyref ,1),
31 tempdefl.xyref(s+j,:)=extra.xyref(j,:);
32 end
33 end
34 %waitbar(i/size(defl ,2),h,sprintf(’Sorting pillars , frame %d of %d, total %d pillars.’,i,size(

defl ,2),size(tempdefl.xyref ,1)));
35 cpb.setTextandValue(i/size(defl ,2),sprintf(’Sorting , frame %d/%d, %d pillars.’,i,size(defl ,2),

size(tempdefl.xyref ,1)));
36 end
37 end
38

39 s=size(tempdefl.xyref ,1);
40 defl=deflstruct2arr(defl ,s);
41

42 %delete(h);
43 cpb.stop;
44 scatter(tempdefl.xyref (:,1),tempdefl.xyref (:,2));
45

46 %check for duplicates
47 [~,d]= pillarfind(tempdefl ,tempdefl);
48 x=(sum(d(:))-size(d,1))/2;
49 if x
50 %[~,c]=find(d-eye(size(d,1)));
51 cprintf ([1,0.3,0],[’Warning: ’,num2str(x),’ extra pillars found.\n’]);
52 %for i=1: size(r),disp([num2str(r(i)),’=’,num2str(c(i))]);end
53 end
54 end

pillarfind.m

1 function [c,d] = pillarfind(defl1 ,defl2)
2 % usage: [c,d] = pillarfind(defl1 ,defl2)
3 % ---
4 % correlates pillars in two frames
5 % inputs:
6 % defl1 , defl2: deflection structs , xy -correction needs to be done first!
7 %
8 % output:
9 % c: c(i)=j; i in defl1 corresponds to j in defl2

10

11 if nargin <2,help pillarfind;return;end
12

13 for i=1: size(defl1.xyref ,1)
14 for j=1: size(defl2.xyref ,1)
15 d(i,j)=norm(defl1.xyref(i,:)-defl2.xyref(j,:)) <10;
16 end
17 [v,j]=max(d(i,:));
18 c(i)=v*j;
19 end
20 end

pillarsort.m

1 function [deflcorr ,extra] = pillarsort(defl ,c)
2 % usage: [deflcorr ,extra] = pillarsort(defl ,c)
3 % ---
4 % Sorts deflections according to c and puts leftover deflections in extra
5 %
6 % inputs:
7 % defl: deflection structure
8 % c: array c(i)=j, pillar j gets place i
9 %

10 % outputs:
11 % deflcorr: deflection structure , sorted
12 % extra: defl structure (only xyref) of pillars not defined in c
13

14 if nargin <2,help pillarsort;return;end
15

16 done =[];
17 for i=1: length(c)
18 if c(i)
19 deflcorr.xy(i,:)=defl.xy(c(i) ,:);

28

20 deflcorr.xyref(i,:)=defl.xyref(c(i) ,:);
21 deflcorr.xydefl(i,:)=defl.xydefl(c(i) ,:);
22 deflcorr.absdefl(i,1)=defl.absdefl(c(i) ,1);
23 done(c(i))=1;
24 else
25 deflcorr.xy(i,:)=[NaN ,NaN];
26 deflcorr.xyref(i,:)=[NaN ,NaN];
27 deflcorr.xydefl(i,:)=[NaN ,NaN];
28 deflcorr.absdefl(i,1)=NaN;
29 end
30 end
31

32 if length(done)-sum(done)
33 s=size(defl.xyref ,1);
34 for i=1: length(done)-sum(done)
35 [~,j]=min(done);
36 extra.xyref(i,:)=defl.xyref(j,:);
37 deflcorr.xy(s+i,:)=defl.xy(j,:);
38 deflcorr.xyref(s+i,:)=defl.xyref(j,:);
39 deflcorr.xydefl(s+i,:)=defl.xydefl(j,:);
40 deflcorr.absdefl(s+i,1)=defl.absdefl(j,1);
41 done(j)=1;
42 end
43 else
44 extra.xyref =[];
45 end
46 end

9.4 Circle fitting

Fitting circles to identified stress-fiber images is done using the following Matlab script:

curvature.m

1 function [r,c,curve]= curvature(GSF ,n)
2 % usage: [r,c,curve]= curvature(GSF ,n)
3 %
4 % Fits a circle to stress -fibers
5 %
6 % GSF: 2D image with stress -fibers , as generated by sffind
7 % n: index or indices of the stress -fiber that should be fitted
8 %
9 % r: radius of the fitted circle

10 % c: center of the fitted circle
11 % curve: linear indices of the stress -fiber
12

13 if nargin <2,help curvature;return;end
14 if length(size(GSF))~=2,help curvature;return;end
15

16 curve=zeros(size(GSF));
17 for i=1: length(n)
18 curve=(GSF(:,:,1)==n(i))+curve;
19 end
20 [x,y]=find(curve);
21 mx = mean(x); my = mean(y);
22 X = x - mx; Y = y - my; % Get differences from means
23 dx2 = mean(X.^2); dy2 = mean(Y.^2); % Get variances
24 t = [X,Y]\(X.^2-dx2+Y.^2-dy2)/2; % Solve least mean squares problem
25 a0 = t(1); b0 = t(2); % t is the 2 x 1 solution array [a0;b0]
26 r = sqrt(dx2+dy2+a0^2+b0^2); % Calculate the radius
27 a = a0 + mx; b = b0 + my; % Locate the circle ’s center
28 %curv = 1/r; % Get the curvature
29 c=[b,a];
30 end

9.5 General Control

General Control controls the autofocus hardware and is written in NI Labview 2011. Because it is written
in a graphical programming language, including all the code with all possible cases is almost impossible.
Therefore, we only include the block diagram of General Control itself in figure 23. The program is
divided into several parallel loops that each control a different piece of hardware or a part of the user
interface. The grey blocks in figure 23 are the loops that contain the code for the user interface. The
loops that control the hardware is in subfunctions which in figure 23 are displayed as green squares near
the top of the image. Each loop can communicate variables to another loop by making use of ´handles´,
subfunctions which can store variables and do small operations on them.

All hardware but the Marzhauser microscope stage could be controlled using Labview. Therefore we
made a Python script that executes functions from a dynamic link library provided by Marzhauser. The

29

Figure 23: General Control block diagram, code is written in NI Labview 2011

script can communicate with General Control via the TCP/IP protocol.

mh–tcp.py

1 #!/usr/bin/env python
2 # coding: utf -8
3 # ---
4 # Marzhauzer xy -stepper python script , controllabe by a string over tcp:
5 #
6 # -a acceleration: set acceleration (m/s^2)
7 # -j: turns joystick on
8 # -l: logging on for this execution
9 # -m -x xpos -y ypos , move to [xpos , ypos] (um) optional: -v for speed

10 # just this move
11 # -v speed: set speed um/s)
12 #
13 # Wim Pomp BSc.
14 # ---
15

16 #use ctypes to call C-library
17 from ctypes import *
18 from optparse import OptionParser
19 import sys
20 import socket
21 import re
22

23 TCP_IP = ’127.0.0.1 ’
24 TCP_PORT = 5005
25 BUFFER_SIZE = 64 # Normally 1024, but we want fast response
26

30

27 parser = OptionParser ()
28 parser.add_option(’-l’, action=’store_true ’, dest=’log’, default=False)
29 (opts , args) = parser.parse_args ()
30

31 log = opts.log
32

33 #constants
34 char = c_char ()
35 dnul = c_double (0)
36 deen = c_double (1)
37

38 #load Marzhauser driver
39 mh = windll.LoadLibrary("E:\\ Programs \\ Marzhauser \\ lstep4x.dll")
40

41 #error checking function
42 def chk(err):
43 if err:
44 raise SystemExit(’Error:’, err)
45

46 #decode message
47 def options(message):
48 p = OptionParser ()
49 p.add_option(’-a’, type=’float ’, dest=’acc’, default =0)
50 p.add_option(’-v’, type=’float ’, dest=’speed’, default =0)
51 p.add_option(’-x’, type=’float ’, dest=’xposs’, default =0)
52 p.add_option(’-y’, type=’float ’, dest=’yposs’, default =0)
53 p.add_option(’-j’, action=’store_true ’, dest=’joy’, default=False)
54 p.add_option(’-m’, action=’store_true ’, dest=’move’, default=False)
55 p.add_option(’-q’, action=’store_true ’, dest=’stop’, default=False)
56 #can’t communicate empty strings , use -p to get pos only
57 p.add_option(’-p’, action=’store_true ’, dest=’getpos ’, default=True)
58 arguments=re.split(r"\s",message)
59 (o, args) = p.parse_args(arguments)
60 return o
61

62 #actually do things with the stage
63 def doit(op):
64 #variables from options
65 xposs = c_double(op.xposs /1000)
66 yposs = c_double(op.yposs /1000)
67 acc = c_double(op.acc)
68 speed = c_double(op.speed /1000)
69

70 #boolians from options
71 move = op.move
72 joy = op.joy
73

74 #byref variables
75 xpos = c_double (0)
76 ypos = c_double (0)
77 zpos = c_double (0)
78 apos = c_double (0)
79 xspeed = c_double (0)
80 yspeed = c_double (0)
81 zspeed = c_double (0)
82 aspeed = c_double (0)
83 jo = c_bool(False)
84 man = c_bool(False)
85 pc = c_bool(False)
86 enc = c_bool(False)
87

88 #The labview libary is the best source on how to call a certain function , LSTEP*.pdf=BS
89 mh.LSX_GetVel (1,byref(xspeed),byref(yspeed),byref(zspeed),byref(aspeed))
90 if acc: #set acceleration
91 mh.LSX_SetAccel (1,acc ,acc ,dnul ,dnul)
92 print "Acceleration set to "+str(op.acc)+" m/s^2."
93 if speed: #set speed
94 mh.LSX_SetVel (1,speed ,speed ,deen ,deen)
95 if not move:
96 print "Speed set to "+str(op.speed)+" um/s."
97 if move: #move , first get joystick (js) status settings and turn js of
98 mh.LSX_GetJoystick (1,byref(jo),byref(man),byref(pc),byref(enc))
99 mh.LSX_SetJoystickOff (1)

100 print "Moving ... speed: "+str(op.speed)+" um/s."
101 mh.LSX_MoveAbs (1, xposs , yposs , dnul , dnul , 1) #<-- actual movement command
102 print "Moved to: ("+str(op.xposs)+"; "+str(op.yposs)+") um."
103 if jo: #afterwards make js on if it was on before
104 mh.LSX_SetJoystickOn (1,True ,False)
105 if speed: #reset speed
106 mh.LSX_SetVel (1,xspeed ,yspeed ,zspeed ,aspeed)
107 if joy: #joystick on
108 mh.LSX_SetJoystickOn (1,True ,False)
109 print "Joystick on"
110 mh.LSX_GetPos (1,byref(xpos),byref(ypos),byref(zpos),byref(apos))
111 xpos = 1000* float((str(xpos)[9: -1]+"00000000000")[0:10])
112 ypos = 1000* float((str(ypos)[9: -1]+"00000000000")[0:10])
113 zpos = 1000* float((str(zpos)[9: -1]+"00000000000")[0:10])

31

114 apos = 1000* float((str(apos)[9: -1]+"00000000000")[0:10])
115 pos=[xpos ,ypos ,zpos ,apos]
116 return pos
117

118 #bind to socket
119 s = socket.socket(socket.AF_INET , socket.SOCK_STREAM)
120 s.bind((TCP_IP , TCP_PORT))
121 s.listen (1)
122 print "I am a python script that talks to the marzhauser stage. Please don’t kill me, because if you

do, the stage will stop working , and you will have to restart GC.\n"
123 print "Bound to "+str(TCP_IP)+":"+str(TCP_PORT)+"."
124

125 #connect to stage
126 chk(mh.LSX_ConnectSimple (1, 4, char , 0, log))
127 chk(mh.LSX_SetActiveAxes (1,3))
128

129 while 1:
130 #connect to socket
131 (conn , addr) = s.accept ()
132 message = conn.recv(BUFFER_SIZE)
133 op=options(message)
134 if op.stop: break
135 pos=doit(op)
136 conn.send(str(pos [0])+";"+str(pos [1])+"\r\n")
137 conn.close()
138

139 #disconnect
140 conn.send("stopped\r\n")
141 conn.close()
142 print "Stopped."
143 chk(mh.LSX_Disconnect (1))

32

	Introduction
	The cytoskeleton and extracellular matrix

	Theory
	Cell dynamics
	Active gel and stress-fibers

	Materials & Methods
	Confocal microscopy
	Autofocus and drift correction
	Sample preparation
	Pillar arrays
	Cell culture

	Stress fiber and pillar deflection analysis
	Deflections and forces
	Stress-fiber analysis

	Results
	Force and strength
	Migrational forces
	Stress-fiber mediated active gel theory

	Discussion
	Conclusion
	References
	Acknowledgments
	Appendix
	Stress-fiber analysis
	Horizontal drift correction
	Pillar identification
	Circle fitting
	General Control

